- 13.
- a.
- We hanteren dezelfde definitie van relativistische kinetische energie
Trel als in de vorige opgave, Trel=Erel-E0. Hieruit volgt Erel
=Trel+E0=2mc2+mc2=3mc2. Anderzijds, , zodat
, . We gebruiken hetzelfde principe als in opgave 6.
Voor de energie-impuls vectoren vóór de botsing geldt
| |
(28) |
Na de botsing geldt, wegens energie-impuls behoud,
| |
(29) |
Uit p'2=m'2c2 vinden we voor de massa m' van het nieuwe deeltje m'2
c2=(25-8)m2c2, ofwel . Uit vgl. (29) lezen we nu af dat
, zodat , de snelheid van het nieuwe
deeltje.
- b.
- Volkomen analoog aan de vorige opgave beginnen we met de energie-impulsvectoren
voor de botsing,
| |
(30) |
(Een foton heeft energie en impuls , en dus
rustmassa nul, m 2c2=E2/c2-p2=0.) Na de botsing geldt voor het nu
aangeslagen (en daardoor zwaarder geworden) deeltje
| |
(31) |
De massa van het deeltje in aangeslagen toestand is nu , (zie vgl. (31)).
De snelheid die het deeltje krijgt is dus .