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Abstract

The conditions are investigated under which a row of increasing domi-
noes is able to keep tumbling over. The analysis is restricted to the sim-
plest case of frictionless dominoes that only can topple not slide. The
model is scale invariant, i.e. dominoes and distances grow in size at
a fixed rate, while keeping the aspect ratios of the dominoes constant.
The maximal magnification factor for which a domino effect exist is de-
termined as a function of the mutual separation.

1 Introduction

The domino effect has received considerable attention because it is spectac-
ular and seems to be governed by simple physics [1, 2, 3]. However, careful
experiments [4, 5, 6] are not so easy. Measuring the propagation speed of
the order of a meter per second of a train of falling dominoes, is already too
difficult to observe by elementary means. Equally, the theory of toppling
dominoes is not as simple as the phenomenon looks like and cannot be re-
duced to the straightforward application of the conservation laws of energy
and angular momentum.

The discussion of a row of falling dominoes involves two aspects: the
tumbling motion and the collisions. The first to realize that the domino
effect is a collective phenomenon was D. E. Shaw [7]. He noted that the
dominoes lean on each other after collision. Consequently the collision of
dominoes is fully inelastic and this is the main source of energy losses dur-
ing the process. It is tempting to invoke conservation of angular momentum
at the collision as in [7], but this does not apply, since colliding dominoes
topple around different axes [8, 9].

The reason to come back on the domino effect is a question posed at
the Dutch Science Quiz 2012 reading: “how many dominoes does one need
to topple a domino as tall as the Domtoren?” (a tower of 112 meter high).
A restriction was that the dominoes have the same aspect ratios as that of
standard dominoes. This restriction is essential for an unique answer, since
the thinner the domino (with fixed height) the easier it topples. The idea
behind the question is that every successive domino is a factor r larger than
the preceding one. The dominoes grow in size as a geometric series rn and
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the correct answer is the n that makes rn times the height of a standard
domino equal to 112 meter. Whitehead [11] describes a demonstration with
a magnification factor r � 1:5.

In order to turn this problem into a scientific problem, one has to make
further specifications. One is a rule for the distance between successive
dominoes. Although not specified in the problem, the logical choice is to
scale the distance with the size. To let the distance grow with the size of
the domino is reasonable, the larger the domino, the more space one needs
between them. Moreover, there will be an optimal distance in each cycle
and this optimum will scale with the size of the dominoes. So we restrict
ourselves to a scale invariant model.

In order to make the mechanical model precise, a few more conditions
have to be imposed:

1. The dominoes may not slide with respect to the ground. It is clear that
sliding is an energy loss that impedes the domino effect. Infinite fric-
tion with the floor is favorable and can basically be reached in practice.
Thus the only possible motion is to topple over. So the state of domino
is given by a single angle � measuring the deviation from the normal
to the ground.

2. The dominoes stay in contact with each other after the collision [7].
This makes the collisions fully inelastic. In practice this condition is
fulfilled as the movie of the the demonstration with wooden dominoes
shows [12]. Inelastic collisions are the main energy drain. Steel domi-
noes would do better, but are too costly to produce in large sizes. We
take this condition as a constraint on the maximum possible r .

3. After hitting a new domino, the dominoes slide frictionless over each
other. It is of course not realized with wooden dominoes, but it would
be not difficult to smooth the surfaces and minimize the friction by
lubrication. Inclusion of friction is quite well possible [9, 10], leading
to a substantial complication in the calculation, while adding little to
the understanding of the mechanism.

We start the discussion with the elementary process of one domino col-
liding with another at distance s and tumbling together downwards. This
provides the setting for the longer train of falling dominoes. The dimensions
of the dominoes are denoted by height h, the thickness d and the width w.
We will consistently work with dimensionless distances to ease the calcu-
lations. The parameter w=h hardly enters in the calculation. The width is
only co-determinant for the massmi of the dominoes. As in all gravitational
phenomena, the total mass of the object drops out of the equations, but not
the mass distribution. We consider two (extreme) cases: q � 4, referring to
massive dominoes where the mass is proportional to the volume and q � 3,
referring to hollow dominoes, with a mass proportional to the surface. The
latter case seems curious, because standard dominoes are massive. How-
ever in an attempt to topple a very large domino [12], the larger dominoes
have to be hollow for practical reasons.

As mentioned the dominoes and their mutual distance all have the same
aspect ratios: w=h; s=h and d=h � 0:14583, which is taken equal to the ratio
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of standard dominoes. Each new domino is r times larger than its prede-
cessor. One could consider varying s and r ; it would make the discussion
considerably more involved and not so much richer, since we investigate
the largest possible magnification factor and it turns out that this occurs
at a well defined value of s. So deviating from the optimal s and r makes
the domino effect less effective. Restricting ourselves to the scale invariant
case allows to discuss only one cycle in the domino effect, all the others are
similar.

A dimensionless time is somewhat more delicate. The natural time unit
reads

� �
q
I=mgh �

q
�h2 � d2�=�3gh�; (1)

where I is the moment of inertia of the foremost domino. This is the appro-
priate time scale for one cycle, the next is a factor

p
r larger, the previous a

factor
p
r smaller. In the formulas we will not express time in terms of the

unit � , as this complicates the connection between different cycles.
The description of the train of falling dominoes centers around the tilt

angle � of the foremost domino as function of the time t. It starts at ��0� �
0 and ends at tf at collision angle ��tf � � �c, where the foremost domino
looses its role as head of the falling train of dominoes. �c is given by

sin�c �
r s
h
: (2)

After �c, the domino continues to fall, but it becomes a slave, just as the pre-
vious domino was of the foremost. We number the dominoes with respect
to the foremost falling domino, which gets the number 0, or by default no
number. So � � �0 is the tilt angle of the foremost domino, �1 that of its
predecessor and so on. The calculation of tf gives the propagation speed of
the domino effect. It is of no concern here. We only note that tf will be pro-
portional to � defined in (1) and therefore tf will increase with a factor

p
r

in every cycle. This slowing down of each cycle is the beauty of the record
attempt [12], where one can see ad oculos the details of a cycle.

The derivative of � with respect to t is the angular velocity

! � d�
dt
: (3)

As long as ! is positive the domino train proceeds. So the question is
whether ! remains positive till the foremost collides with the next one. In
order to calculate! we have to understand what happens during a collision
and what is the equation of motion between collisions. The central func-
tion in this calculation is the relation between the angle �1 of domino 1 as
function of the angle � of the leading domino 0.

We start the discussion with two dominoes 0 and 1. To ease the notation
we replace from now on s=h by s and d=h by d.

2 Two dominoes

Consider domino 1, freely rotating towards the still upright domino 0. In
order that domino 1 keeps moving, the initial push must be large enough
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Figure 1: Successive dominoes. The tilt angle � is taken with respect to the
vertical. Domino 1 hits 0 at the point A. The rotation axis of 1 is the point B
and E is that of 0. The normal force f that domino 1 exerts on domino 0 is
also indicated. The goniometric relations are summarized in Table 1.

to overcome the point of highest potential energy, occuring at the angle �u,
given by

sin�u �
dp

1� d2
: (4)

Here we assume that domino 1 reaches this point before that it hits domino
0. So we must have �u < �c. With (2) and (4) this implies

s >
d

r
p

1� d2
: (5)

Provided that s fulfils this criterion, we find for the maximum potential en-
ergy

E1u �
1
2
m1gh1 �cos�1u � d sin�1u�: (6)

Under marginal circumstances, domino 1 has a vanishing rotation at this
point and thus is its total energy also E1u. While falling the potential energy
decreases and reaches at the collision angle �c the value

E1c �
1
2
m1gh1�cos�c � d sin�c�: (7)

The energy difference is converted into kinetic energy. At the collision the
kinetic energy amounts

1
2
I1!2

1c � E1u � E1c; (8)
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where I1 is the moment of inertia of domino 1. So the angular velocity at the
collision is given by (with �1 the time scale (1) for domino 1)

�2
1!2

1c � �cos�1u � d sin�1u�� �cos�c � d sin�c�: (9)

We consider the collision as instantaneous. Domino 0 gets an impuls F from
1, changing the angular velocity of domino 0 abruptly from 0 to !0, given
by

I!0 � Fa; (10)

where a is the arm of the torque exerted on domino 0. Through the principle
action is reaction, domino 0 gives an impuls �F to domino 1, such that its
angular velocity changes from !1c instantaneously to !0 (as we will see in
a moment). So we have the equation

I1�!0 �!1c� � �Fb; (11)

where b is the moment arm of the torque on domino 1 with respect to
its turning point. For the computation of a and b we have to rely on the
goniometry between touching dominoes which is sketched in Fig. 1.

quantity formula

top angle � of rectangular triangle ABC � � �1 � �

base BC of triangle ABC BC � h sin�

top angle � of rectangular triangle EBD � � �=2� �

base BD of triangle EBD BD � �s � d� sin�

height hcm of center of mass domino 0 2hcm � h cos� � d sin�

moment arm b of force �f exerted on 1 b � �h=r� cos�

moment arm a of force f exerted a �AE sin
 �AC-DE

domino 0 � �h=r� cos�� �s � d� sin�

Table 1: Goniometric relations referring to Fig. 1

The various goniometric relations are explained in Table 1. The basic
relation between the angle �1 and � follows by equating the given expression
for BC and for BC as BD�d

�1=r� sin��1 � �� � �s � d� cos� � d: (12)

It is a direct consequence of the condition that the dominoes lean on each
other after a collision. (12) defines �1 as a function �1��� of � in the interval
0 � � � �c.
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The moment arms a and b, as defined in Table 1, are obviously equal at
collision where � � 0. The angular velocity of domino 1 just after collision,
equals that of domino 0. To see this we have to determine the relation
between !1 and !, when the motion of domino 1 is a slave of domino 0.
Generally holds

!1 �
d�1

dt
� d�1

d�
! � �01���!: (13)

The prime denotes differentiation with respect to the argument and is used
for shortness. Differentiation of (12) with respect to � gives

�01��� �
�1=r� cos ��1 � ��� �s � d� sin�

�1=r� cos ��1 � ��
� a
b
: (14)

The last equality is demonstrated in Table 1. Using this relation for � � 0,
where a � b, leads to �01�0� � 1, showing that the two angular velocities are
equal at collision.

We use arguments for the angle � and subscripts for corresponding time.
So !1c, in (9), is the angular velocity of domino 1 just before the collision
with 0 and !1�0� is its value just after the collision has taken place.

The equality a � b (at collision) makes it easy to eliminate the impuls F ,
yielding the following relation between !0 and !1c

�I � I1�!0 � I1!1c: (15)

Here we see that the ratio of the moments of inertia of the two dominoes
is the important ingredient for the collision. It equals r�q�1 with q � 4 for
massive dominoes and q � 3 for hollow dominoes.

Now !0 must be large enough to get the combination of the two slid-
ing dominoes over the maximum of their combined potential energy, which
equals

V��� � 1
2
mgh�r�q�cos�1 � d sin�1�� cos� � d sin��: (16)

Note that domino 1 weighs by a factor r�q less in the sum. We get a con-
dition for the domino effect by requiring that the kinetic energy of the pair
1 and 0 must be larger than the potential barrier. With !1�0� � !0 the
condition reads

1
2
�I � I1�!2

0 � �V��m�� V�0��; (17)

where �m is the tilt angle where the maximum of P��� is reached. It will be
close the angle �u where domino 0 reaches its maximum potential energy,
but the contribution of domino 1 is decreasing at this point and so �m is
(slightly) smaller than �u (as the contribution of domino 1 only counts by a
factor r�q less).

We now have sufficient equations to determine maximum factor r still
allowing the domino 1 to topple over domino 2: the expression (9) for !1c,
the relation (15) between !0 and !1c and the condition (17) for !0. �1 is
related to � by

�2
1 � �2=r : (18)

6



0 0.2 0.4 0.6 0.8 1
domino separation s

0

0.5

1

1.5

2

2.5

m
ag

ni
fi

ca
tio

n 
fa

ct
or

 r

bound two dominoes
Settled domino effect

Maximum magnification factor for hollow dominoes

Figure 2: Bounds on the marginal domino effect for hollow dominoes.

The above equations impose on the parameter r a condition for given
s. The boundary, for which the domino effect becomes marginal, is given
by the equality in (17). Although the equations can written out explicitly,
their solution is too complicated to discuss analytically, because the angle
�m cannot be found analytically. However it is simple to do it numerically.
Start with a value of the separation s (well beyond the restriction (5)) and
a low value for r for which we are sure that the condition (17) is fulfilled.
Then determine �m by slowly raising � from � � 0 and see whether the
maximum V��� is reached. Once the V��� starts to decrease, one is beyond
the maximum. It may happen right away at � � 0 and then the maximum
is �m � 0, where (17) is surely fulfilled. Otherwise check whether (17) is
fulfilled and if so raise r . If not, one is beyond the boundary, which then can
be determined more accurately by interpolating beteen the present r and
the previous r . The outcome of this exercise is shown for hollow dominoes
in Fig. 2. The flank of the curve at the large-separation side is trivial: the
domino must be large enough to hit the next domino.

3 A general domino train

The discussion of the previous section suffers from the fact that we have
assumed that the initial push to domino 1 is marginal, i.e. just sufficient to
get it over its own potential barrier. The bound following from this condition
is too restrictive in practice. We now assume that the initial push is large
enough to set the train into motion and ask the question whether the train
can sustain itself, i.e. whether the total kinetic energy after collision with a

7



new domino, is large enough to get the enlarged collection over its potential
barrier. In every cycle the potential barrier can only shift to smaller angles
�, since at the tail, one more domino is in the train, which is already (long)
over its potential maximum. Once the maximum occurs at � � 0, there is
no question anymore whether the new train will make it, since it runs only
downhill.

The analysis of this problems runs to a large extent along the same lines
as in the previous section. We divide out the mass and are concerned about
the total height contribution to the potential energy of a train ofN dominoes
leaning on each other. It follows as the sum

H��� �
N�1X
i�0

r�qi �cos�i���� d sin�i����: (19)

Likewise the total kinetic energy can be represented by

J��� �
N�1X
i�0

r��q�1�i ��0i����
2: (20)

Here �i��� is the tilt angle of domino i as function of the tilt angle � of the
foremost and �0i��� is its derivative. In appendix B we derive that conserva-
tion of energy between collisions implies relation (51) or

J����2!2��� � H�0��H���� J�0� �2!2�0�: (21)

This enables to calculate !��� for given !�0�.
(21) also yields the initial value !�0� if we combine it with the collision

equation and the scale invariance. In appendix C we show that the angular
velocity !0 of the foremost domino, just after being hit, is related to the
angular velocity !1c of the hitting domino as

J�0�!�0� � �J�0�� 1�!1��c�: (22)

So far this is just a generalization from 2 dominoes to N dominoes in the
train. The new element is that we require that the cycles are self-similar.

�1!1��� � � !��� or !1��� �
p
r !��� (23)

The three equations (21-23) determine the values of !�0�.

�2!2�0� � P �J�0�� 1�
J�0��r qJ�0�� J�0�� 1�

; (24)

Here P is the “fuel” of the domino effect: the difference between the poten-
tial energy of an upright domino and a fallen domino.

P � P�h;d; s� � H�0��H��c� � 1� cos�f � d sin�f � 1� xf � dyf : (25)

The value of �f is given in (42) of Appendix A. In (24) we have eliminated
the value J��c� using relation (50).
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Figure 3: Magnification factor as function of the separation.

With these equations one can check whether the kinetic energy of the
train after collision, exceeds the potential increase from � � 0 to its maxi-
mum at �m

�2!2
0 � �H��m��H�0��; (26)

We now summarize the steps to find the maximum r with a domino effect as
function of s. In the Appendices the derivations and additional expressions
are given.

1. Compute for a given s and r the initial value of xf as given by (42) or
(40), given in Appendix A, depending on the condition (41).

2. Start the iteration scheme for the �i��� and �0i���, as described in Ap-
pendix A, for the angle � � 0. This yields the value of J�0�. Compute
with (25) the value of the fuel P and with (24) the initial angular velocity
of a cycle !�0�.

3. Then search with equation (19) for the value �m for which H��� is
maximal and find the corresponding minimal !��m� with (21).

4. If !��m� is still positive, raise the value of r and repeat the previous
steps 2-4 in order to find again the minimal angular velocity !��m�.
Keep raising r till the minimum becomes zero. This gives the maximum
magnification factor for the chosen value of s

5. Do this story for 0 < s < 1

The result of the calculation is shown in Fig. 3 for hollow and massive
dominoes. The curve consists of a rising part for s < 0:5 an a drop-off as r �
1=s for higher values. The latter part of the curve reflects the condition the
foremost domino must be hit by the previous in order to be toppled. This
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limit is fairly unrealistic, but follows from our condition that the dominoes
cannot slip over the ground but only topple. Near that line, the foremost
domino hits the next at a low point, such that the tendency to slip is larger
than to topple, as the moment arm becomes very small.

A Relations between the falling dominoes

This Appendix discusses the geometric relations between the row of falling
dominoes that lean on each other. In Section 2 we gave in equation (12) the
relation between the tilt angle �1 of domino 1 and the � of domino 0. The
successively higher numbered dominoes follow from the same relation as
domino i is related in exactly the same way to i� 1 as 1 to 0. In general

�i��� � �1��i�1� � �1��1��i�2� � �1��1��1�� � � ������ (27)

Thus equation (27) gives all the tilt angles of the followers in terms of �.
Rather then using the explicit relation

�i��� � �i�1���� arcsin��r=h���s � d� cos�i�1���� d��; (28)

we construct the relation in terms of a rotation in carthesian coordinates

xi � sin�i; yi � cos�i: (29)

With the definitions

Xi � sin��i�1 � �i� � �r=h���s � d�yi � d�; Yi � cos��i�1 � �i� �
q

1�X2
i ;

(30)
the rotation equations read (using �i�1 � �i � ��i�1 � �i�)

xi�1 � Yixi �Xiyi; yi�1 � �Xixi � Yixi: (31)

These equations are the same for every pair of successive dominoes. Note
that this scheme contains only multiplications and one square root and not
any goniometric function, which speeds up the iteration.

The function �1��� is the central ingredient for the calculations. So we
list a few more of its properties. As � � 0 corresponds to the collision angle
�c for domino 1 we have

�1�0� � �c: (32)

By differentiating (27) with respect to �, we construct a recursion relation
between the derivatives

�0i�1��� �
d�1��i�
d�i

�0i���: (33)

For the first factor we can use (14) in the form

d�1��i�
d�i

� �1=r�Yi � �s � d�xi
�1=r�Yi

� ai
bi
; (34)
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with the convention the indices 0 apply to the foremost. We cast the combi-
nation of (34) and (33) in the convenient recursive form

�0i�1 bi � �0i ai: (35)

As last useful formula we write (27) as

�i��� � �i�1��1���� (36)

and differentiate with respect to �, yielding for the derivative

�0i��� � �0i�1��1�����01���: (37)

We will use this expression for � � 0 with the result, using (32) and (14)

�0i�0� � �0i�1��c�: (38)

The derivatives of the �i are employed in the expression of the angular
velocities !i in terms of !

!i �
d�i
d�

d�
dt
� �0i!: (39)

This completes the discussion of the properties of the falling dominoes in
terms of the parameters � and! of the foremost. The transformations (31)
generate for a given � the sequence of �i or rather the sets xi; yi and Xi; Yi
and with these values we can iterate simultaneously the angular velocities
!i in terms of !. In principle we would have to iterate 1 many steps, but
the tilt angles rapidly approach the stacking angle �1, following as

y1 � cos�1 � d=�s � d�: (40)

The stacking angle is the angle in which a static row of dominoes leans on
each other for a given separation s. So a limited number of iteration steps
suffices. In fact for rather wide separation the stacking angle is not realized,
because the previous domino is too small to lean on the next. This happens
when

�1=r�2 < �s � d�2 � d2: (41)

The last tilt angle �f which enables leaning is given by

xf � sin�f �
�1=r�2 � �s � d�2 � d2

2�1=r��s � d� : (42)

As soon as xi exceeds xf , one must end the iteration, because for larger
angles the domino does not lean anymore, but falls free and does not con-
tribute to the mechanics of the domino effect. In case condition (41) is
fulfilled, we take x1 � xf .
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B The motion between collisions

The domino effect is a succession between tumbling and colliding. In this
Appendix we consider the phase of tumbling. As the dominoes slide fric-
tionless over each other, the motion is completely determined by the con-
servation of energy. Energy is lost in the collissions. The energy has a kinetic
and a potential part. The potential energy of domino i is given by

Vi �
1
2
mg �hyi � dxi� r�qi (43)

The power of r�qi comes in the expression because the mass goes down
with a factor r 1�q and the size with r�1 in every step backwards down the
train. The kinetic energy of domino I reads

Ki �
1
2
Ii!2

i (44)

with the moment of inertia Ii

Ii �mi �h2
i � d2

i �=3 �m�h2 � d2� r��q�1�i=3 � I r��q�1�i: (45)

The q � 1 power of the magnification factor follows from the mass and the
size squared. The total energy of the falling train then equals

E �
X
i

�Ki � Vi�: (46)

We make the energy dimensionless by dividing it by mgh=2 yielding

� � 2E
mgh

� H���� �2 J���!2; (47)

with the total dimensionless potential energy H

H��� �
X
i

�xi � �d=h�yi� r�qi � H��� (48)

and the total dimensionless moment of inertia is

J��� �
X
i

r��q�1�i ��0i����
2 � J���: (49)

For a given value of � all the ingredients for the functions H��� and J���
are well defined by the recursion relations of the previous section. We need
in Section 3 the values of J��� for the angles � � 0 and � � �c. Using (38)
one finds the relation

J�0� � 1� r��q�1� or J��c� � r q�1�J�0�� 1�: (50)

Conservation of energy implies that � is independent of time of the tilt
angle, such that we have

� � H�0�� J�0��2!2�0� � H���� J����2!2���:: (51)

This allows to find !��� for a given !�0�.
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C The collision equation

The stages of rotational motion are connected by collisions. In this Ap-
pendix we compute the initial value !�0� from the final value !��c� of the
previous cycle. As we mentioned in the introduction, we assume that the
two colliding dominoes stick together after the collision. That means that
in the in the center of mass system the relative kinetic energy is completed
dissipated. In other words the collision is fully inelastic. We assume that
we have a fully developed domino train such that the cycles are the similar
(upon a factor

p
r ): before the collision the hitting domino has an angular

velocity !1��c� �
p
r!��c� and the upright domino gets a velocity !�0�

after the collision.
The idea is that during the collision, forces are exerted in a very short

time span, such that the angles do not change during the collision. Instead
the angular velocities make a jump. When domino 1 hits 0, its own angu-
lar velocity is suddenly reduced and that of 0 jumps to the non-zero value
!�0�. The jumps in the angular velocity propagate downwards in magni-
tude, in order to keep the dominoes in contact. Therefore the impulses
have to propagate downwards in order to realize these jumps. The jump of
the foremost domino is from ! � 0 before the collision to !�0� after the
collision

I�!0 � I!�0� � F0a0 (52)

The second equality gives the integrated torque during the collision, which
is the impuls F0 exerted by domino 1 on domino 0 times the arm a0 with
respect to the rotation axis of 0. Likewise the domino 1 feels the impuls �F0

from domino 0 and F1 from domino 2.

I1�!1 � I1 ��01�0�!�0�� �00��c�!1��c�� � F1a1 � F0b0: (53)

The first term gives the value of!1 as calculated from the foremost domino
0. The second term is the angular velocity of 1 before the collision when
domino 1 was the foremost with angle �c. The factor �00��c� � 1 is there
for reason of generality and the index 1 in !1��c� is to indicate that here
domino 1 is seen as the foremost. In general domino i receives �Fi�1 from
i� 1 and Fi from i� 1. As general equation we get

Ii�!i � Ii ��0i�0�!�0�� �0i�1��c�!1��c�� � Fiai � Fi�1bi�1: (54)

We see that impuls Fi occurs in two equations: for domino i�1 with a minus
sign and for domino i with a plus sign. We can eliminate the impulses by
multiplying equation for domino i with the factor si and add them up. If si
has the property

siai � si�1bi (55)

the impulses drop out of the sum. We take s0 � 1. Comparing this recursion
for the si with the recursion (35) for the derivatives of the tilt angles we may
identify

si � �0i�0�: (56)

The argument � � 0 occurs in this formula, because the moment arms are
taken in the situation where the foremost domino is hit and thus still has a
tilt angle � � 0.
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Using (56) the coefficient of !�0� becomesX
i�0

Ii ��0i�0��
2 � I J�0�: (57)

The coefficient of !1��c� reads with (38)X
i�1

�0i�0�Ii �
0
i�1��c� �

X
i�1

Ii ��0i�0��
2 � I �J�0�� 1�; (58)

such that we obtain the collision law

J�0�!�0� � �J�0�� 1�!1��c�: (59)
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