July 4, 1984
Utrecht University
Thesis advisor: Gerard 't Hooft
CONTENTS
Parts not published elsewhere in italics;
available as scanned GIF files
- Chapter I: General Introduction ... 1
- Chapter II: Some results for SU(N) gauge fields on the hypertorus
... 17
Published as:
Comm. Math. Phys. 85 (1982) 529-548
- 1. Introduction ... 17
- 2. The structure of the gauge fields on the hypertorus ... 18
- 3. The Pontryagin number on T4 ... 21
- 4. Orthogonal twist, zero action configurations ... 27
- 5. Conclusions ... 30
- Appendix ... 31
- References ... 35
- Chapter III: The Hamiltonian formalism
for gauge fields on the hypertorus ... 36
- 1. Introduction ... 37
- 2. The Hamiltonian and the Hilbert space ... 38
- 3. The Wilson loop ... 44
- 4. The identification of e and m ... 47
- 5. Translational invariance ... 55
- 6. Finite temperature on the torus ... 58
- Appendix ... 61
- References ... 71
- Chapter IV: SU(N) Yang-Mills solutions with constant field strength on
T4 ... 72
Published
as: Comm. Math. Phys. 94 (1984) 397-419
- 1. Introduction ... 73
- 2. The solutions and their fluctuations ... 76
- 3. The fluctuation spectrum ... 83
- 4. Stability and selfduality ... 89
- 5. Discussion ... 97
- Appendix A ... 99
- Appendix B ... 105
- References ... 109
- Chapter V: Surviving extrema for the action on the twisted SU(infinity)
one point lattice ... 110
Published as: Comm. Math. Phys. 92
(1983) 1-18
- 1. Introduction ... 110
- 2. Construction of twist eating configurations ... 111
- 3. Examples ... 113
- 4. Extrema for the TEK-action ... 114
- 5. Applications ... 117
- 6. Discussion ... 120
- Appendix ... 121
- References ... 126
- Chapter VI: Instantons versus factorization in large-N field theories
... 128
Published as: Phys.
Lett. 140B (1984) 375-378
- Chapter VII: Hot twists for the single-point model of large-N QCD ... 146
Published as: Nucl. Phys. B237
(1984) 274-284, co-author F.R. Klinkhamer
- 1. Introduction ... 146
- 2. Reduction ... 147
- 3. Loop equations ... 149
- 4. Construction of hot twists ... 151
- 5. Planar graphs ... 154
- 6. Discussion ... 155
- References ... 156
A limited number of bound copies can still be requested from the
author