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I

The recently published Vol. 8 of Einstein’s 

 

Collected Papers

 

 brings together for the first time all
extant letters and postcards documenting the famous debate of 1916–18 between Einstein and the
Leyden astronomer Willem de Sitter (1872–1934), over, as they referred to it, the relativity of
inertia. It was in the course of this debate that the first two relativistic cosmological models were
proposed: the “Einstein cylinder world,” filled with a uniform static mass distribution; and the
completely empty “De Sitter hyperboloid world” (a name introduced in 

 

Weyl 1923

 

, p. 293). In dis-
cussing the latter, Einstein and De Sitter had difficulty distinguishing features of the model from
artifacts of its various coordinate representations. The situation was clarified in 1918 in correspon-
dence between Einstein and two of the greatest mathematicians of the era, Hermann Weyl (1885–
1955) in Zurich and Felix Klein (1849–1925) in Göttingen. (Thanks to Klein and David Hilbert
(1862–1943), Göttingen in those days was the math capital of the world.) Some of the issues that
Einstein discussed with De Sitter also come up in Einstein’s correspondence in 1918 with the Ger-
man physicist Gustav Mie (1868–1957).

The picture that emerges is one of Einstein holding on with great tenacity to two beliefs con-
cerning the universe that guided him in the construction of his cosmological model: first, that the
universe is static; and second, that its metric structure is fully determined by matter—in other
words, that its metric field
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 satisfies what, in 1918, he called “Mach’s principle.” De Sitter’s vac-
uum solution of Einstein’s field equations with cosmological term is a counterexample to this
principle, and, for this reason, Einstein tried to discard it on various grounds. Two main lines of
attack can be discerned: one was to argue that the De Sitter solution is not static; the other was to
argue that it has what today would be called an intrinsic singularity,
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 which in turn was used to
argue that it is not matter-free. In the end, Einstein had to acknowledge that the solution is fully
regular and matter-free and hence indeed a counterexample to Mach’s principle, but he could still
discard the solution as physically irrelevant because it is not globally static.

 

1. Secs. I–III of this handout are based on the editorial note, “The Einstein-De Sitter-Weyl-Klein Debate,” in 
Vol. 8 of 

 

The Collected Papers of Albert Einstein

 

, covering correspondence during period 1914–1918 
(

 

Schulmann et al. 1998

 

, pp. 351–357).
2. The following analogy should suffice to understand the notion of a 

 

metric field

 

 well enough to read this
handout. Consider a map of the earth (which is essentially a way of coordinatizing the globe). We cannot
simply take distances on the map (the coordinate distances) to represent distances on the globe (the actual
or proper distances). For instance, a horizontal line segment of two inches on the map near the equator
will correspond to a larger distance on the globe than a horizontal line segment of two inches on the map
near the poles. For every point on the map, we need to specify a set of numbers with which we have to
multiply distances on the map in the vicinity of that point (

 

coordinate distances

 

) to convert them to actual
distances (

 

proper distances

 

). (It will be clear that we need more than one number because the conversion
for north-south distances will be different from the conversion for east-west distances.) The numbers in
such a set are called the 

 

components of the metric

 

 at that point. The metric 

 

field

 

 is the collection of all
such sets of numbers for all points on the map. The same thing we do here with 2-dim. space (represent-
ing the 2-dim. curved surface of the earth on a 2-dim. Euclidean plane together with a specification of the
metric field to do all conversion from coordinate distances to proper distances) we can do with 4-dim.
space-time as well. There will now also be a number (the temporal component of the metric) by which we
have to multiply coordinate time differences to convert them to proper time differences. 
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II

The debate between Einstein and De Sitter began in the fall of 1916. This can be inferred from De
Sitter’s references, in the first letter of the debate of November 1, 1916 and in 

 

De Sitter 1916a

 

, to
conversations that they had during a recent visit of Einstein to the Netherlands. They agreed that
general relativity, as it stood, preserved a remnant of Newton’s absolute space and time, since
boundary conditions played a role alongside matter in determining the metric field and thereby the
inertial properties of the universe. De Sitter did not find this at all objectionable, but Einstein
wanted to eliminate this absolute element by postulating degenerate values for the metric field at
infinity—which he thought would ensure that the inertial mass of test particles at infinity vanishes
(see 

 

Einstein 1917

 

, pp. 145–146)—and the existence of distant masses that would somehow cause
these degenerate values at infinity to turn into Minkowskian values at large but finite distances. De
Sitter sharply criticized this proposal. He argued that Einstein’s distant masses would have to be
outside the visible part of the universe, and that an explanation of the origin of inertia invoking
such invisible masses was no more satisfactory than one invoking Newton’s absolute space and
time.

Einstein came to accept De Sitter’s criticism and abandoned the proposal. As he wrote to De
Sitter on February 2, 1917: “I have completely abandoned my views, rightfully contested by you,
on the degeneration of the . I am curious to hear what you will have to say about the some-
what crazy idea I am considering now.” In his famous paper “Cosmological Considerations on the
General Theory of Relativity” (

 

Einstein 1917

 

, see 

 

Lightman 1991

 

, p. 16) published later that
month, he circumvented the problem of boundary conditions at infinity simply by abolishing
infinity! That is to say, he introduced a spatially closed model of the universe. A new term involv-
ing the so-called cosmological constant had to be added to the field equations to allow this model
as a solution. As he emphasized in the final paragraph of the paper, however, the new term is
needed not so much to allow for a closed universe as to allow for a closed 

 

static

 

 universe (

 

Einstein
1917

 

, p. 152). Writing to De Sitter in early March, Einstein was careful to emphasize that his
model was intended primarily to settle the question “whether the basic idea of relativity can be
followed through to its conclusion, or whether it leads to contradictions,” and that whether the
model corresponds to reality was another matter. Nevertheless, in the next paragraph of the same
letter, he explored some physical consequences of the model.

As De Sitter went over Einstein’s calculations, he discovered another cosmological model. In
Einstein’s model, the spatial geometry is that of a 3-dimensional hypersphere embedded in a 4-
dimensional Euclidean space. Using an imaginary time coordinate, De Sitter considered an alter-
nate model, in which the space-

 

time

 

 geometry is that of a 4-dimensional hypersphere embedded in
a 5-dimensional Euclidean space, or, if the imaginary time coordinate is replaced by a real time
coordinate, a 4-dimensional hyper-hyperboloid in a 4+1-dimensional Minkowski space-time.
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3. A singularity here means that some component of the metric becomes either infinite or zero at some 
point. This can mean two things. (1) There is an 

 

intrinsic singularity

 

 at that point, reflecting a pathology 
of 

 

the space-time itsel

 

f (these are the type of singularities you have at the center of a black hole or at the 
origin of the universe in the standard big bang model). (2) There is a 

 

coordinate singularity

 

. The singular 
behavior reflects a pathology of 

 

the map of the space-time

 

. Consider the analogy with a map of the earth 
(see the preceding footnote). The north pole itself will actually be represented by a horizontal line at the 
top of the map. Any segment of that line corresponds to an actual distance of zero. Hence, the relevant 
component of the metric will vanish for points corresponding to the north pole (the finite coordinate dis-
tances at the top of the map need to be multiplied by zero to get the actual zero distance on the globe).

gµν
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Whereas Einstein’s model is a solution of the new field equations for a uniform static mass distri-
bution, De Sitter’s alternate model turns out to be a vacuum solution.

In late March 1917, De Sitter sent Einstein a side-by-side comparison of the two models,
which can be seen as a draft of the paper that he published shortly afterward in the Proceedings of
the Amsterdam Academy of Sciences (

 

De Sitter 1917a

 

). Einstein objected to De Sitter’s solution
because there was no matter producing the curvature of the space-time it described. In his reply of
March 24, 1917, Einstein wrote: “It would be unsatisfactory, in my opinion, if a world without
matter were possible. Rather, the -field
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 should 

 

be fully determined by matter and not be able
to exist without the latter

 

.” Einstein would later introduce the term “Mach’s principle” for this
requirement (

 

Einstein 1918a

 

).
Given this principle, Einstein understandably tried to find fault with De Sitter’s solution. His

first objection (in that same letter in late March 1917) was that in the so-called stereographic coor-
dinates that De Sitter had used to describe his solution there is a 3-dimensional hyper-hyperboloid
on which the values of all components of the metric go to infinity. De Sitter replied that this singu-
lar hypersurface corresponds to (temporal) infinity and that the reason the components of the met-
ric become infinite is simply that on this hypersurface finite coordinate distances correspond to
infinite proper distances. In Einstein’s next (surviving) letter (of June 14, 1917), two new objec-
tions were raised  to De Sitter’s model, namely that it is not static and that it has a preferred center.
It is unclear how much weight the first of these objections carried with De Sitter. De Sitter had
already objected strongly to Einstein’s assumption that on average the matter distribution of the
universe is static and homogeneous. As to the second objection, the allegedly preferred center
(like the singular hypersurface) turns out to be an artifact of the stereographic coordinates.

Meanwhile, De Sitter began to take his model more seriously as a possible description of the
actual universe. Originally, he had looked upon the discussion of the two new models merely as
idle speculation about how to extrapolate the approximately Minkowskian values of the metric
field beyond the visible part of the universe. By mid-1917, however, he was busy exploring the
physical consequences of three different options available for the global structure of space-time
(as can be gathered from what he wrote to Einstein on June 20, 1917 and from two papers he pub-
lished on the topic, 

 

De Sitter 1917b

 

, 

 

1917c

 

). He labeled these options A, B, C. They are: (A) Ein-
stein’s cylindrical space-time, (B) his own hyperboloid space-time, and (C) Minkowski space-
time. De Sitter, like Mie a year later, distinguished between a purely inertial and a gravitational
part of the metric field. The three alternatives above pertain to the purely inertial field. For these
three cases, De Sitter calculated the gravitational field, i.e., the deviations from the inertial field,
produced by a massive spherical body such as the sun. Einstein was pleased that De Sitter was
now willing to engage in the sort of speculation that he had rejected earlier. But he took exception
to De Sitter’s decomposition of the metric field into an inertial and a gravitational part,
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 and, in
particular, to the distinction it implied in model (A) between “world matter” generating the iner-
tial field and “ordinary matter” generating the gravitational field. Ordinary matter, Einstein
explained in his reply to De Sitter of June 22, 1917, should not be thought of as existing in addi-
tion to the uniform mass distribution of his cosmological model, but in terms of local condensa-

 

4. See below for a picture of this solution when 2 of its 3 spatial dimensions are suppressed. The picture
shows a 1+1 dimensional De Sitter space-time embedded in a 2+1 dimensional Minkowski space-time.

5. The standard notation for the metric field is  (pronounce: 

 

g-mu-nu

 

). In 

 

Surely you are joking, Mr. Fey-
nman

 

, Richard Feynman relates the story that he once found his way from the airport to the hotel where a 
general relativity conference was taking place by telling the cab driver: “take me to the place where you 
took all the other people going ‘

 

g-mu-nu g-mu-nu

 

’.”
6. It was probably is part in response to De Sitter and Mie distinguishing between an inertial and a gravita-

tional component of the metric field that Einstein in 1918 gave a new and more satisfactory formulation
of his equivalence principle, viz. that inertia and gravity are of the exact same nature.

gµν

gµν
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tions in this uniform mass distribution. The spatial geometry of a more realistic version of his
model with local inhomogeneities, he added, might resemble that of the “surface of a potato”
more than that of a perfect sphere. Einstein did not develop any such models. De Sitter’s calcula-
tions, and Mie’s a year later, made it doubtful that static inhomogeneous variants of Einstein’s
model could be constructed. Mie concluded on the basis of his calculations (which turned out to
be erroneous) that any inhomogeneous matter distribution in a more realistic variant of Einstein’s
model would quickly evolve back to the completely homogeneous distribution of the original
model.

In 1930, Sir Arthur Stanley Eddington (1882–1944), famous for his role in the eclipse expedi-
tions of 1919 that confirmed general relativity’s prediction of the bending of light, showed that the
situation is actually just the opposite of what Mie thought and that it is, in fact, much worse for
Einstein. Einstein’s model is not the stable equilibrium that the universe would never get away
from, as Mie believed. The model is unstable. It would fly apart.
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 But in 1917, the year to which
we now return, none of this was known.

To facilitate comparison with options (A) and (C), De Sitter had written the line element for
his own model (B) in new coordinates. In these coordinates, the components of the metric tensor
are time-independent. Einstein told De Sitter that he found this new form “very instructive,” and
the remainder of the exchange between Einstein and De Sitter during 1917–18 focused on this so-
called static form of the De Sitter solution. In this form, the spatial geometry of the De Sitter
model is the same as that of Einstein’s model, namely that of a hypersphere in a 4-dimensional
Euclidean space. Contrary to Einstein’s model, however, the temporal component of the static De
Sitter metric is variable and vanishes on the “equator” of this hyperspherical space. Einstein
argued that such singular behavior of the metric was unacceptable, and suggested that it indicated
the presence of matter on the equator. Careful not to make the same mistakes that he had made in
his analysis of De Sitter’s solution in stereographic coordinates, Einstein convinced himself that
the singularity of the metric in static coordinates occurred at a finite proper distance from an arbi-
trarily chosen point of the space-time and that it was not just an artifact of the coordinates used.
The threat that De Sitter’s solution posed to Mach’s principle thus finally seemed to be removed.
In early March 1918, Einstein completed two papers, 

 

Einstein 1918a

 

 introducing Mach’s princi-
ple, and 

 

Einstein 1918b

 

 presenting the argument outlined above for why the De Sitter solution is
not a counterexample to this principle. De Sitter’s defense of his solution (in a letter of April 10,
1918 and in 

 

De Sitter 1918

 

) was that the singular equator cannot be reached from any point in the
space-time, despite the fact that the proper distance from any point to the equator is finite. Only a
few months later, it became clear that both this peculiar property and the singularity itself are arti-
facts of the static coordinates used.

III

The discussion of the cosmological models of Einstein and De Sitter continued in Einstein’s cor-
respondence with Hermann Weyl and Felix Klein. The central issue in both exchanges was
whether or not antipodal points should be identified in spherically symmetric solutions of Ein-
stein’s field equations with cosmological term. This issue was also touched upon in the correspon-
dence with De Sitter. The most important results coming out of the discussion with Weyl and
Klein, however, concern the interpretation of the singular equator in the static form of the De Sit-

 

7. Eddington suggested that the actual universe might have started out in a state described by Einstein’s
model and then developed toward a state described by De Sitter’s model.
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ter solution. 
In the section on cosmology in the first edition of Weyl’s famous book

 

 Space-Time-Matter

 

(

 

Weyl 1918

 

), which Einstein read in proof, the author discussed various static spherically symmet-
ric solutions of the field equations with cosmological term. Although not identified as such, one of
these solutions is, in fact, the static form of the De Sitter solution. To turn this into a solution that
is regular everywhere, Weyl pieced together a complete solution out of the static form of the De
Sitter solution and the solution for an incompressible fluid. The resulting solution has a zone of
matter around the equator. Einstein pointed out (in two letter to Weyl in April 1918) that such
hybrid solutions need not be symmetric around the equator, a symmetry Weyl had emphasized and
used as an argument for identifying antipodal points. As Weyl was revising the page proofs in
response to Einstein’s criticism, he considered what would happen if he let the thickness of the
zone of matter around the equator go to zero in his combination of the De Sitter solution and the
solution for an incompressible fluid. He found that the resulting surface layer of matter has a finite
mass. This result, published the following year (

 

Weyl 1919

 

) and contested by several later authors,
initially seemed to vindicate Einstein’s hunch that the De Sitter solution describes a universe very
much like his own cylindrical universe, the only difference being that all mass is concentrated on
the equator. In his last letter to De Sitter (of April 15, 1918) just before this exchange with Weyl
began, Einstein had already announced that Weyl had found a proof for this conjecture. The corre-
spondence with Weyl contains only allusions to this implication of Weyl’s work. On May 19,
1918, Weyl wrote to Einstein that the result of the calculation mentioned above “might meet with
your approval.” Einstein wrote back on May 31 that he was happy that Weyl had finally resolved
the “zone issue,” and added: “Now the result of your calculation is just what one had to expect.”

Einstein’s satisfaction was short-lived. On the same day that he wrote these lines to Weyl,
Felix Klein sent him a letter, which states, among other things, that the singularity at the equator
in the static form of the De Sitter solution is an artifact of the way in which the time coordinate is
introduced (see also 

 

Klein 1918

 

, 

 

1919

 

). The main point of the letter is something different: Klein
wanted to retract his earlier objection (in a letter of April 25, 1918) that Einstein’s cosmological
model is not time-orientable if antipodal points are identified. Klein had come to realize that he
had been conflating the cosmological models of Einstein and De Sitter, and that his objection
applied to De Sitter’s model rather than Einstein’s. Partly because the result concerning the singu-
larity in the De Sitter solution was not emphasized in the letter and partly perhaps because the let-
ter relied heavily on notions from projective geometry (a subject Einstein had done poorly in as a
student), Einstein failed to appreciate that Klein’s analysis of the De Sitter solution showed that
the singularity at the equator can be transformed away and does not indicate the presence of mat-
ter after all. In his response, Einstein simply reiterated the argument of his critical note on the De
Sitter solution, for which Weyl, he thought, had just provided new support.

In his next letter on the topic (of June 16, 1918), Klein was more direct. As in his earlier letter,
he wrote the transformation from the pseudo-Cartesian coordinates of the De Sitter hyper-hyper-
boloid in 4+1-dimensional Minkowski space-time to the coordinates used to write the solution in
static form. This shows, Klein explicitly pointed out, that the singularity at the equator has to be
an artifact of the static coordinates. The point can be made more generally than Klein did. Since
the De Sitter solution can be represented geometrically as a fully regular hypersurface in a higher-
dimensional embedding space, 

 

any

 

 singularity in a coordinate representation of the solution must
be an artifact of the coordinates.
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Given Klein’s transformation from the pseudo-Car-
tesian coordinates of the embedding space to static
coordinates, the properties of such static coordinate
systems become fully perspicuous (see the figure to
the left: the surface of the hyperboloid represents a
1+1 dimensional [one spatial dimension and one
time dimension] De Sitter space-time embedded in
a 2+1 dimensional Minkowski space-time). Static
coordinates, it turns out, only cover a double-
wedge-shaped region of the hyper-hyperboloid (the
darkly shaded region), and the hypersurfaces of
simultaneity (the ellipses shown in the figure) all
intersect on the edge of this wedge, the region Ein-
stein and Weyl called the equator. The singular
behavior of the temporal component of the metric,
which vanishes on the equator, reflects the fact that

in the immediate vicinity of the equator, points infinitesimally close in proper time will be infi-
nitely far removed from one another in coordinate time.
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 The double-wedge-shaped region cov-
ered by static coordinates lies fully outside the light cones of points on the equator. This explains
why De Sitter concluded that the equator can never be reached.

This time Klein’s point was not lost on Einstein. He immediately wrote back to Klein to tell
him that he now accepted that the De Sitter solution is matter-free, fully regular, and homoge-
neous. This does not mean, however, that Einstein also accepted the De Sitter solution as a possi-
ble cosmological model. He still held that any acceptable cosmological model would have to be
static. Klein had shown that in the static form of the De Sitter solution, the time coordinate breaks
down on the equator. In Weyl’s hybrid static solution, on the other hand, which coincides with the
De Sitter solution outside a zone of matter around the equator, the time coordinate is well defined
everywhere. Only this hybrid solution, therefore, provides an acceptable static cosmological
model. Einstein thus had to accept that the De Sitter solution forms a counterexample to Mach’s
principle as he had formulated it in March 1918 and that his critical note on the De Sitter solution
stood in need of correction. His modified field equations did allow fully regular matter-free solu-
tions. He could still hold, however, that they did not allow 

 

globally static

 

 fully regular matter-free
solutions. From a letter from Weyl to Klein of February 1919, written after consultation with Ein-
stein, it can be inferred that this is the position to which Einstein retreated in response to Klein’s
analysis of the De Sitter solution. Although Einstein, in a letter of December 1918 to his friend
Paul Ehrenfest, one of De Sitter’s colleagues in Leyden, expressed his regret that he had unjustly
criticized De Sitter, he never published a correction to his critical note on the De Sitter solution.

IV

In the 1920s, the Russian mathematician Alexander Friedmann (1888–1925) and the Belgian
priest Georges Lemaître (1894–1966) (see 

 

Lightman 1991

 

, pp. 20–21) found solutions of Ein-
stein’s original field equations (the ones without the cosmological term) that describe an expand-

 

8. Recall that the temporal component of the metric is basically the number by which the difference in coor-
dinate time between two points or events has to be multiplied to get the difference in proper (physical,
real) time between those two events. 
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ing rather than a static universe. Einstein’s reaction to these developments was not unlike his
reaction to the De Sitter solution, a mixture of pointing to alleged mathematical difficulties with
these solutions (there were none) and of emphasizing that even if one could somehow overcome
these  difficulties, the solutions could not describe the actual universe. In the late 1920s, the Amer-
ican astronomer Edwin Hubble (1889–1953) (see

 

 Lightman 1991

 

, p. 27) found irrefutable evi-
dence that our actual universe is expanding. In 1931, Einstein finally accepted the non-static
character of the universe and abandoned the cosmological constant, which he later allegedly
called the biggest blunder of his life (an anecdote related by physicist George Gamov). Whether
or not this last element of the story is apocryphal or not, the development looks rather ironic in the
unkind glare of hindsight. If Einstein had stuck to his original field equations of November 1915,
he would have predicted that the only way in which his theory allows a spatially closed geometry
is through a model in which space-time is expanding. Hubble’s discovery would then have been
hailed as another triumph for Einstein. Purely on the strength of his conviction that the structure
of space-time would have to be fully determined by matter (Mach’s principle), he would have
made the astonishing prediction that the universe is expanding. As it happened, he not only tink-
ered with his gravitational field equations to ensure that they be compatible with a static universe,
his belief in Mach’s principle actually ended up reinforcing his belief in a static universe, since the
latter belief provided the only reason he had left for dismissing the anti-Machian De Sitter solu-
tion after the dust had settled in his debate of 1916–18 with De Sitter, Weyl, and Klein.

With the recent discovery that the universe is expanding at an accelerating rate, the cosmolog-
ical constant is once again making a remarkable comeback and this time it looks like it is here to
stay. So, as has happened so many times before, Einstein may have the last laugh after all.
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