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1. GROUPS

1.1. The definition of a group

DEFINITION: A nonempty set G is called a group iff it is provided with a
multiplication, i.e. a map

G x G =G,

written as
(91,92) — 9192,

which has the following properties:

1. Tt is associative, i.e. with g1(g293) = (9192)g3, for all g1, g2 and g3 in G.
2. It has a unit element, i.e. an element e such that ge = eg = g, for all g in G.
3. Each g € G has an inverse, i.e. an element ¢~' with g7 'g = gg~! =e.
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One shows easily that the unit element e and the inverse g7 are unique.

A group G is called abelian or commutative iff g199 = gog1, for all g and g-.
An abelian group is often written additively, with the multiplication g;g5 as
g1 + g2, with g~! as —g and e as 0.

1.2. Subgroups

DEFINITION: A subset H of G is a subgroup of G if it is closed under the

multiplication (g1, g2) — g192 and contains with each g its inverse g=1.

Note that this definition implies that H contains the unit element e of G| so the
set H 1s a group in itself.

DEFINITION: A subgroup H of G is called an invariant subgroup or a normal
subgroup if ghg~' is in H for all h in H and all g in G.

In an abelian group every subgroup is clearly an invariant subgroup. In general
non-abelian groups invariant subgroups are scarce; many groups have no (non-
trivial) invariant subgroups. Such groups are called simple. A group that has
no abelian invariant subgroups is called semisimple.

1.3. Morphisms of groups

DEFINITION: A map ® from a group (G; into a second group G- is called a
(group) homomorphism if it maps the identity element of G onto the identity
element of G5 and respects the multiplication, i.e. has ®(gg’) = ®(g)®(g’'), for
all g and ¢’ in Gy.

Note that this definition implies that ®(g~=1) = (®(g))~?!, for all g in G;. The
kernel of @ is the subset of G; mapped onto the unit element of G5. It is an
invariant subgroup of (G1, as one can check easily.

A homomorphism that is both injective and surjective is called an isomorphism .
An automorphism of a group G is an injective and surjective homomorphism
of G onto itself. The set of automorphisms of a group G is again a group; it is
usually denoted as Aut(G).



1.4. Examples of groups

Obvious examples of groups are transformation groups. Let X be a nonempty
set, and G(X) the set of all invertible maps of X onto itself. G(X) is a group
with the composition g1 o g5 as multiplication and the identity transformation
as unit element. One can show that an arbitrary group G is isomorphic to a
group of transformations of some set X. Nevertheless, one should see in this
general context groups in the first place as sets with a multiplication operation,
satisfying certain requirements.

Examples of finite groups:

1. The symmetric groups Sy, the groups of permutations of n objects. S, has
n! elements and is nonabelian for n > 4.

2. The groups Z, of cyclic permutations. Z, has n elements and is abelian for
all n.

There are many other more complicated finite groups. In physics one uses for ex-
ample the erystallographic groups for a systematic description of the properties
of crystalls.

For this course the important groups are infinite groups, in particular groups
of real or complex matrices, such as for example GL(n, R), the group of all
invertible n x n real matrices, O(n), the group of n x n orthogonal matrices
and SU(n), the group of unitary n x n matrices with determinant 1. As sets
GL(n,R), O(n) and SU(n) carry the structure of a (real) differentiable manifold,
of dimension n? | respectively %n(n — 1) and n? — 1; such groups are called
‘continuous’ groups, or — more properly — Lie groups, and will be treated more
extensively further on.

Remark: Matrix groups can of course be seen as groups of linear transformations
in a finite dimensional vector space in which a basis has been chosen.

The n-dimensional translation groups, the spaces R" with vector addition as
group multiplication and the zero element as identity, are examples of abelian
Lie groups. Elementary as these groups are, they are nevertheless of great im-
portance in physics: R? as the group of translations in space, R* as translations
in (relativistic) space-time.

1.5. Quotient, products and semidirect products of groups
There are various ways of constructing new groups from given groups:

1. Let G a group and H an invariant subgroup of (G. Define an equivalence
relation in G: g1 ~ g2 if and only if there is an element h in H such that
g1 = hgs. The space of equivalence classes is denoted as G/H. It is a group
with respect to the obvious multiplication [g1] [g2] = [¢192], for all g1 and g5 in
G, and with [e] as unit element. G/H is called a quotient group. Note that if
the subgroup H is not invariant, G/H is still defined as a space of equivalence
classes, but is not a group.



2. Consider groups G; and (5. The cartesian product G; x G2 has a natural
group multiplication

(91,92)(91,95) = (9191, 9295),

for all g1, g7 in G and all g4, ¢4 in G2, with (eq,, eg,) as unit element. Gy X Gy,
with this group structure, is called a (direct) product group.

3. There is a useful generalization of the notion of direct product group. Con-
sider two groups (G; and (5 together with an homomorphism ® from G5 into
Aut(Gq), the group of all automorphisms of G;. The product space G; x G
can be given a ®-dependent group structure, in general different from the direct
product group structure, by defining the multiplication

(91,92)(971,92) = (9:((®(g2))91), 9293),

for all g1, ¢} in G and g2, g4 in G5. The unit element is again (eq,, eq,). The
group defined in this manner is called the semi-direct product of G1 and G,
determined by @, and 1s usually denoted as G xg GG3. One verifies that the
inverse of an element is given by the formula

(91,92)7" = (P97 "))g7 ' 951

The elements of the form (g1, eq,), respectively (eg,,gz2), form a subgroup of
G1 x@ G2 isomorphic to (G, respectively Gy. The first subgroup is invariant;
the quotient of G xg Gg over it is isomorphic to G3. One has (g1,92) =
(91,€65)(ec,,92), so an arbitrary element of Gy xg G2 can be written as a
(unique) product of elements from both subgroups.

The semi-direct product multiplication rule is not very transparent at first sight.
Its meaning can be better understood from the example of the group of inho-
mogeneous linear transformations of a vectorspace. Let z be an element of
R™, with coordinates z1,...,%,, a also an element of R", with coordinates
ai,...,an, and T'= {T}z} an n X n matrix from GL(n, R). An inhomogeneous
linear transformations of R” onto itself is defined as

n

/

;= g Tjkmk%-aj
k=1

Such transformations are clearly invertible and form a group. It is a semi-direct
product Gy Xg Gq, with Gy = R, Gy = GL(R,n), and the homomorphism
®: Gy — Gy given by ®(T)x = Tz, i.e. by (Tz); =Y _, Tjrxr. Writing such
an inhomogeneous linear transformation as a pair (a,7T), with a in R” and T in
GL(n, R), we have as multiplication rule for two such transformations

(a,T)(a",T") = (a + Td', TT").

The identity transformation is (0,1) and the inverse transformation is written
as

(a,T)" ' = (=T a, T7Y).



2. REPRESENTATIONS OF GROUPS

2.1. Definition of representation

DEFINITION: Let G be a group and V a real or complex vector space. A
(linear) representation 11 of G in V is a homomorphism ® of G into the group
GL(V) of invertible linear transformations of V" onto itself.

We can state this in a somewhat more explicit fashion. A representation IT of
G in V assigns to every element g of G an invertible linear map TI(g) of V onto
itself such that Tl(eg) = 1y and TI(g1g92) = M(g1)TI(g2), for all g1 and g2 in G.
Note that this implies that TI(g~1) = (I1(g))~!.

If V is a vector space of finite dimension n, one can choose a basis. A represen-
tation II then assigns n x n matrices to elements of G. The representation II
becomes in this manner a matriz representation of G.

DEFINITION: A representation IT of a group GG in a complex Hilbert space is
called unitary if the operators TI(g) are unitary, for all g in G.

2.2. Equwalence of representations

A representation of a group is a homomorphism of that group onto a group of
linear transformations. For two injective representations of the same group these
groups of linear transformations are clearly isomorphic. They may however be
different as representations. What it means for representations to be the same
or different is expressed by the following definition:

DEFINITION: Two representations I1y and IIs of a group G, in vector spaces
V1, respectively Vs, are called equivalent iff there is an invertible linear map
S from V7 onto V3 such that Ty(g) = STI;(g)S™1!, for all g in G. For unitary
representations the linear map S is required to be unitary.

Two representations of a group in vector spaces of different dimensions are
obviously inequivalent. However, representations in vector spaces with the same
dimensions may be inequivalent.

2.3. Constructing new representations from given ones

Let IT; and I3 be representations of the group G in vector spaces V1, respectively
Va. There are two important ways of constructing a new representation from
H1 and HQ.

1. Direct sum: Consider the vector space V; @ V3, the direct sum of V; and V5.
Define for each g in G the linear operator (IT; @ T3)(g) in V1 & V5 as

(T © T2)(g)) (41, ¥2) 2= (T (g))¢hr, (Ma(g))b2),

for all #1 in V; and all 45 in V5. This defines the direct sum representation
1, @ Is.



2. Tensor product: Consider the vector space V4 ® Va, the tensor product of V4
and V,. Define for each g in G the linear operator (IT; ® 3)(g) in V4 ® V3 by
linear extension as

(T @ T2)(9)) (Y1 @ ¢a) 2= (i (g))¢r @ (M2(g))¢2,

for all 41 in V7 and all 45 in Va. This defines the tensor product representation
M, ® 5.

There are obvious generalizations to the notions of direct sum and tensor prod-
uct representations of a finite number of given representations Iy, ..., II,,. There
is also a technically more subtle generalization of the notion of direct sum to
certain infinite sets of representations: the direct integral .

2.4. Reducible and irreducible representations

DEFINITION: A representation IT of a group G in V is called reducible iff there
is a nontrivial linear subspace of V| i.e. not V itself and not {0}, which is
invariant under TI(g) for all g in G. The representation TI is called irreducible
if V' has no such subspace.

There is a stronger notion than reducibility:

DEFINITION: A representation Il of G in V' is called completely reducible iff
each invariant subspace has an invariant complement, i.e. if W is an invariant
subspace, then there exists a second invariant subspace W’ such that V can be
written as the direct sum V =W @ W',

Complete reducibility of a representation II in a finite dimensional vector space
V implies that it can be written as a direct sum representation IT = II; ©. . . @I,
inV =Vi@...@V,, with the I1; irreducible representations of GG in the invariant
subspaces V;. This reduction is unique up to equivalence.

2.5. The central problem of group representation theory

A central problem in the representation theory of groups is to find all repre-
sentations of a given group, or class of groups, up to equivalence. The case of
finite dimensional representations is the simplest. For many important groups
all finite dimensional representations are completely reducible. In that case the
irreducible representations are the building blocks of representation theory and
the problem of finding all representations reduces to finding all irreducible repre-
sentations. For large classes of groups this problem has been completely solved.
The problem is more difficult for infinite dimensional representations; the no-
tions of equivalence and irreducibility remain crucial in this case and much 1s
known.

An important problem in the application of group theory to physics is that
of finding explicitly the reduction of a given reducible representation into its
irreducible components. A standard example of this problem is the reduction of
a tensor product of two irreducible reprentations, which is in general reducible.



3. LIE GROUPS

3.1. Definition of a Lie group

DEFINITION: A group G is called an n-dimensional Lie group iff it is a n-
dimensional (real) differentiable manifold, with the group structure such that
the multiplication (g1,g2) — g1g2 is a differentiable map from G x G onto G
and the map g — g~ a differentiable map from G onto itself.

Note that this is the definition of a real Lie group. Complex Lie groups, with
underlying complex manifolds will not be discussed in this course.

One can prove that a closed subgroup of a Lie groups is again a Lie group. The
direct product G1 x G5 of two Lie groups G; and G5 is Lie group, and so is the
a semidirect product if appropriate conditions are put on the homomorhpism

D : G2 — Aut(Gl)

A Lie group 1s called compact if the underlying manifold is compact as a topo-
logical space. The theory of compact Lie groups and their representations is
much simpler than that of noncompact Lie groups, and is in many respect close
to the theory of finite groups.

3.2. Exzamples of Lie groups

For applications in physics the main examples of Lie groups are, apart from the
translation groups R", groups of real or complex matrices. Note in this respect
that a translation group can also be written as a matrix group, by writing an
element a = (a1, ...,a,) from R™ as the (n + 1) x (n + 1) matrix {A; x} with
the diagonal elements equal to 1, A; ,41 = a;, for j = 1,...,n, and the other
matrix elements equal to 0.

Groups of nxn matrices are subsets of R™ for real matrices, or R?’ for complex
matrices. Each of the following standard matrix Lie groups is defined either by
an inequality or as the null set of a system of simple algebraic expressions in R™
or R2"2, and has therefore in a natural way the structure of a (real) differentiable
manifold.

e The general linear group GL(n,R), consisting of all invertible real n x n
matrices. As a manifold it has clearly dimension n?, because it is defined by
restricting R by an inequality, n.l. the condition that the determinant of each
matrix is nonzero.

e The general linear group GL(n,C), consisting of all invertible complex n x n
matrices. As a real manifold it has dimension 2n?.

e The special linear group SL(n, R), consisting of all real n x n matrices with
determinant equal to 1. It has dimension n? — 1.

o The special linear group SL(n,C), consisting of all complex n x n matrices
with determinant equal to 1. As a manifold it has (real) dimension 2(n? — 1).

In physics: SL(2,C) is closely related to the Lorentz group (see below) and is
needed for the description of spin in relativistic physics.



e The orthogonal group O(n), consisting of the n x n orthogonal matrices.
Remember that a (real) matrix is orthogonal iff its transverse is equal to its
inverse. The determinant of an orthogonal matrix is equal to +1. As a linear
transformation in R™ it leaves the positive definite quadratic form 2% + ...+ 22

invariant. O(n) has dimension %n(n —1).

In physics: O(3) is the group of rotations and reflections in 3-dimensional phys-
ical space.

o The pseudo-orthogonal group O(m, n), consisting of (m+n) x (m+n) matrices
that, as linear operators in R", leave the indefinite quadratic form z? + z2 +
oo+ 2l —2l . —...— 22, invariant. Its dimension is $(m + n)(m+n — 1).

In physics: O(1,3) is the Lorentz group, the basic group of Special Relativity.

e The special orthogonal group SO(n), consisting of orthogonal matrices with
determinant equal to 1. Tts dimension is the same as that of O(n).

In physics: SO(3) is the group of rotations 3-dimensional physical space and is
as such the most important symmetry group in elementary quantum mechanics.

o The unitary group U(n), consisting of all (complex) unitary n x n matrices.
Remember that a matrix is unitary iff its inverse is equal to its hermitian adjoint.
Its dimension as a (real) manifold is n?.

o The special unitary group SU(n), consisting of all unitary n x n matrices with
the determinant equal to 1. Tt has real dimension n? — 1.

In physics: SU(2) is closely related to SO(3) and is needed for the description
of nonrelativistic spin in quantum mechanics. U(1), SU(2) and SU(3) play a
role in elementary particle physics.

e The inhomogenous linear groups which can be obtained as semi-direct product
from the translation groups R™ and the real matrix matrix groups, in the manner

described in 1.5.

In physics: The semi-direct product of R* and O(1,3) is called the inhomoge-
neous Lorentz group or Poincaré group. It is important in Special Relativity.

3.3. Infinitesimal characterization of Lie groups

A Lie group G can be generated from elements in a neighbourhood of the unit
element e. Because G is an n-dimensional differentiable manifold, such a neigh-
bourhood can be approximated in first order by T¢(G), the tangent space of
G at e. The group multiplication in G induces a bracket structure on T.(G),
which makes it into an n-dimensional Lie algebra. This Lie algebra structe in
turn characterizes the group G completely, up to a certain global topological
property. A consequence of this is that for many purposes one can use the Lie
algebra instead of the group itself. This may simplify matters because a Lie al-
gebra is a linear object. Before explaining the relation between a Lie group and
its associated Lie algebra, it is useful to discuss the properties of Lie algebras
in a general way. This is the subject of the next chapter.



4. LIE ALGEBRAS

4.1. Definition and basic properties

DEFINITION: A (real or complex) vector space L is called a (real or complex)
Lie algebra iff it is provided with a Lie bracket, i.e. a bilinear map

LxL—I,

written as
(u,v) = [u, o],

which has the following two properties:

1. Tt is antisymmetric, i.e. it has [u,v] = —[v, u], for all uw and v in L.
2. It satisfies the Jacob: identity, i.e.

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0,

for all u, v and w in L.

If the [u, v] = 0 for all w and v in L, satisfying in this trivial way the requirements
for a Lie bracket, L is called an abelian Lie algebra.

Let L be finite dimensional Lie algebra. Choose a basis u1,...,u, in L. The
Lie bracket of two basis elements, u; and wug, can be written as [uj, ux] =

le C']l»kul. The numbers le»k, called structure constants, determine the Lie
algebra L. They are of course basis dependent. It is easy to derive necessary
and sufficient conditions for a set of numbers {le»k} to be the set of structure
constants of a Lie group.

DEFINITION: A linear subspace K of the Lie algebra L is called a Lie subalgebra
iff it is closed under the operation of taking the bracket of two elements. K is
called an invariant Lie subalgebra or an ideal iff moreover [u, v] is in K, for all
u in K and all v in L. A Lie algebra is called simple iff it has no nontrivial
ideals, semisimple iff it has no nontrivial abelian 1deals.

DEFINITION: A map ¢ from a Lie algebra L; into a second Lie algebra Ly is
called a (Lie algebra) homomorphism iff it is linear and connects the brackets,

i.e. satisfies ¢([u,v]1) = [¢(u), ¢(v)]2, for all u and v in L;.

There are obvious definitions of the notions of isomorphism and automorphism .
The automorphisms of a Lie algebra I form a group denoted as Aut(L).

4.2. Constructing new Lie algebras from given ones
There are Lie algebra analogues for the group constructions discussed in 1.5:

1. For an ideal K in a Lie algebra L a quotient Lie algebra L/K is defined as
the quotient as a vector space, provided with the obvious Lie bracket in terms
of equivalence classes.

2. There is a direct sum L1 ® Lo of two Lie algebras L; and Ls. As a vector
space it 1s the vector space direct sum. This is made into a Lie algebra by



defining the Lie bracket as [(u1,ua), (v1,v2)] := ([u1, v1], [ua, va]), for all uy, vy
in L1 and usg, vg in Ly. This direct sum is sometimes called direct product and
then denoted as L1 x Lo.

3. There is also a semudirect product of two Lie algebras Ly and Ls, determined
by the choice of an automorpism ¢ : Ly — Aut(Ly). The definition of this
semidirect product is omitted.

4.3. Ezxamples of Lie algebras

An obvious example is the space of all linear operators in a vector space with the
commutator [S, 7] = ST — TS as Lie bracket. It may be denoted as g{/(V'). If V
has finite dimension n, one can choose a basis in V. This leads to a matrix Lie
algebra, denoted as gl(n, R) for real V and gl(n, C) for complex V. This notation
is of course suggestive of the connection of Lie algebras with Lie groups, to be
discussed further on. An example of an infinite dimensional Lie algebra is the
space of vector fields on a smooth manifold, with as Lie bracket the bracket of
vector fields. See for this Appendix A (Manifolds). Another infinite dimensional
Lie algebra is the space of smooth functions on a symplectic manifold, with as
Lie bracket the Poisson bracket, defined in the context of classical mechanics in
Part 11, 4.1.

In this course the discussion will be restricted to real finite dimensional Lie
algebras. In fact, all the Lie algebras needed in our presentation of quantum
theory are matriz Lie algebras with the usual matrix commutator as Lie bracket.
We have the following representative list:

e gl(n, R): all real n x n matrices; dimension n?.

e sl(n, R): the real n x n matrices with trace 0; dimension n? — 1.

e sl(n,C): the complex n X n matrices with trace 0; dimension as a real Lie
algebra 2(n? — 1).
e o(n) = so(n): the real antisymmetric n X n matrices; dimension %n(n —1).

e u(n): the complex antihermitian n x n matrices; real dimension n?.

e su(n): the complex antihermitian n x n matrices with trace 0; real dimension
2
n* — 1.

The notation for these Lie algebras are again suggestive for the relation with
the Lie groups listed in 3.2.

4.4. Representations of Lie algebras

DEFINITION: Let L be a Lie algebra and V' a real or complex vector space.
A representation m of L in V 1s a Lie algebra homomorphism of L into the Lie
algebra of linear operators in V', with the operator commutator as Lie bracket.
This can be stated in a more explicit fashion. A representation m of L in V
assigns to every element u of I a linear map m(u) of V into itself such that
7([u, v]) = [7(u), w(v)], for all w and v in L. The bracket on the left is the Lie
bracket in L, that on the right the commutator for operators in V.
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Let V' be finite dimensional. With a choice of basis in V' the operators m(u)
become matrices. This leads to the notion of matriz representation of a Lie
algebra.

DEFINITION: A representation 7 of the Lie algebra L in the Hilbert space H
is called unitary iff, for each u in I, the operator m(u) is antihermitian, i.e. iff
(m(u)p1, ¥2) = —(¢1, w(u)tpa), for all ¢¥1 and ¥y in H.

We leave aside here the additional technicalities connected with unbounded
operators, required by this definition in case the Hilbert space H is infinite
dimensional. It should also be remarked that the term ‘unitary’ looks a bit
strange at this point. It will become more meaningful after the discussion of
the relation between Lie groups and Lie algebras in the next chapter.

A representation 7 of a finite dimensional Lie algebra L is completely determined
by the representatives m(u1),. .., m(up) of a basis us,...,u, in L, because of the
fact that the homomorphism 7 i1s a linear map. For this reason applying the
representation theory of Lie algebras is much simpler than applying that of Lie
groups.

Let m; and w5 be representations of the Lie algebra L in Vi, respectively V5.
The definition of the direct sum representation is the same as in the group case,
n.l. as

((m1 @ m2)(u)) (1, 92) 1= ((m1(u)) ¢, (m2(u))i2),

for all w in L and all (¢1,%3) in V4 @ Va. The definition of the tensor product
representation is slightly different. It is by linear extension of

((m1 @ m2)(u)) (1 @ Y2) 1= (m1(u))h1 @ Y2 + 1 @ (m2(u))¥2,
for all 41 in V7 and 5 in V5.

The definitions of irreducibility, reducibility and complete reducibility are the
same as in the case of group representations.

5. THE RELATION OF LIE GROUPS TO LIE ALGEBRAS

5.1. The Lie algebra L(G) of a Lie group G

Define, for a fixed element gg of G, the map Ly, : G = G as Ly,9 = gog. This
map is called left translation over gg. Because of the manifold properties of
G, it is a diffeomorphism and induces therefore invertible linear maps between
tangent spaces, the differentials (dLg,)y : T4(G) — T4o4(G). Starting from a
single given tangent vector at an initial point, for which we may take the unit
element e, one can obtain unique tangent vectors in all other points g by using
the differentials of the left translation maps Lg4, for all g in G. In this way
one gets a vector field on G. This vector field 1s a left variant vector field,
i.e. it satisfies the condition (dLg2g1‘1)91X91 = X,, for all g1 and g5 in G. All
left invariant vector fields can be obtained in this manner. Restricting a left
invariant vector field to e gives a tangent vector at e. This together establishes
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a linear correspondence between the tangent space T.(G) and the space of left
invariant vector fields.

The space of all vector fields on G is an infinite dimensional Lie algebra with
respect to the commutator of vector fields. One can show that the commutator
of two left invariant vector field is again left invariant. This means that the left
invariant vector fields form a Lie subalgebra, of finite dimension, because of the
one-to-one linear correspondence with 7, (G), a vector space of finite dimension.
This linear correspondence induces a Lie algebra structure on T, (G).

Conclusion: The tangent space at the identity element e of an n-dimensional
Lie group G has the structure of a real n dimensional Lie algebra, with a bracket
induced by the commutator of left invariant vector fields on G. The tangent
space T, (G) with this structure is called the Lie algebra of G. Tt will be denoted
as L(G).

5.2. More about the relation between Lie groups and Lie algebras

The procedure outlined in the preceding section assigns to every Lie group G a
finite dimensional Lie algebra L(G). According to a classical theorem this has
a converse: every finite dimensional Lie algebra is the Lie algebra L(G) of a
Lie group . A stronger statement holds if we restrict the global topological
properties of G: every finite dimensional Lie algebra is the Lie algebra of a
unique simply connected Lie group G.

Remember that a manifold M is simply connectd iff every closed curve on M can
be contracted to a point. A connected Lie group has a universal covering group,
i.e. asimply connected Lie group together with a surjective homomorphism from
this covering group onto the given group. This covering group is in a certain
sense the ‘smallest’ Lie group with these properties. The Lie algebra of a Lie
group is isomorphic with the Lie algebra of the universal covering group.

Conclusion: There is a one-to-one correspondence between finite dimensional
Lie algebras and simply connected Lie groups.

FEzamples :

1. The 1-dimensional translation group R! is simply connected; it is the univer-
sal covering group of U(1) = SO(2), the group of rotations in the plane, which
is connected but not simply connected. The groups R and U (1) obviously have
the same (trivial) 1-dimensional abelian Lie algebra.

2. O(3), the group of rotations and reflections in 3-dimensional Euclidean space
is not connected. SO(3), the group of rotations only is connected but not simply
connected; SU(2) is its simply connected universal covering group. The groups

0(3), SO(3) and SU(2) have isomorphic 3-dimensional Lie algebras.

Let GG1 and G5 be Lie groups, with unit elements e; and es, and & : G; — G5 a
homomorphism. Note that in the definition of a homomorphism for Lie groups
one has to require that is a diffeomorphism. It can be shown that the differential
map, (d®)., : Te, (G1) = Te,(G2) is consistent with the Lie brackets on these
tangent spaces, i.e. (d®)., is a Lie algebra homomorphism.
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Conclusion: A homomorphism ® from a Lie group (1 into a second Lie group
G5 induces a Lie algebra homomrphism from L(G1) into L(G2).

This has important consequences for representation theory. A representation
IT of a Lie group G in a finite dimensional vector space V' is a homomorphism
of G into GL(V), the group of invertible linear operators in V. Tt induces a
homomorphism 7 from the Lie algebra L(G) into the Lie algebra L(GL(V)),
the Lie algebra of all linear operators in V, i.e. it induces a representation w
of L(G) in V. Tt will become clear in the next section that the original group
representation Il can in general be recovered by exponentiation from the Lie
algebra m. This means that the theory — and practice! — of representing Lie
groups, can to a large extent be reduced to representing Lie algebras, a reduction
of analysis and geometry to pure algebra.

5.3. Matriz Lie groups and matriz Lie algebras

An element a of the Lie algebra L(G) is a tangent vector of G, at the unit
element e. Tangent vectors at a point can be seen as equivalence classes of
smooth curves () through that point, with the same derivative at 7 = 0.
One can show that for each a in T, (G) there is among the curves which have
a as their tangent vector a unique curve y(r), defined for all 7 in R!, with the
property (7 + 1) = y(m1)y(m2), for all real 7 and 72, i.e. such that y(7) is a
1-parameter subgroup of G. This curve is symbolically written as y(7) = e7?.

In the case in which GG is a group of n x n matrices, v is a smooth matrix-valued
function, which can be differentiated at 7 = 0, giving (%7(7))720 =a, with a
an n x n matrix, in general not belonging to G, but of a different type. The
formula v(7) = €7 is no longer symbolic; it is a matrix formula with on the
right hand side a matrix exponential function, well-defined for an arbitrary nxn
matrix. The matrices @ obtained in this manner form in fact the Lie algebra
L(@), as a matrix Lie algebra, with the matrix commutator as Lie bracket.

With this in mind one may look at the examples of matrix Lie algebras given
in Section 3.2:

e Take y(7) in GL(n, R) or GL(n,C). Differentiation in 7 = 0 gives a general
n x n real or complex matrix. So the corresponding Lie algebras are the Lie
algebras of all n x n real or complex matrices, denoted as gl(n, R), respectively
gl(n, C).

e For a finite dimensional matrix b one has the well-known formula det ¢? = ¢tT?.

Using this one finds easily that differentiating a curve y(r) = ¢”® in SL(n, R)
at 7 = 0 gives an n x n matrix with trace 0. So L(SL(n, R)) = sl(n, R), the
Lie algebra of all n x n matrices with trace 0. Similarly one has L(SL(n,C)) =
sl(n, C).

e An orthogonal matrix O has the property OTO = 007 = 1, with O7 the
transverse of O. For a curve y(7) = ¢”* with values in O(n), differentiating the
left hand and the right hand side of the equation (y(7))Tv(7) = 1 at 7 = 0 gives
immediately a” + a = 0, i.e. a is antisymmetric. So L(O(n)) is the algebra of
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allantisymmetric n x n matrices, which was denoted as o(n) in Section 3.2. Note
that a smooth curve going through the identity element of O(n) has only values
in the connected part of O(n) which is SO(n). Moreover an antisymmetric
matrix has trace 0, so so(n) = o(n).

e Using the identity U*U = UU* = 1 for unitary matrices gives in a similar
way a* + a = 0, for the matrix a in a curve y(7) = €"® in U(n), so L(U(n))
is the Lie algebra of antihermitian matrices, which was denoted as u(n) in 3.2.
An antihermitian matrix does in general not have trace 0, so su(n) # u(n).

The remark about the importance of the relation between a representation IT
of a Lie group G and the induced representation 7 of the Lie algebra L(G)
made at the end of 3.2 can be expanded and made more explicit for the case in
which G is a matrix Lie algebra, and therefore L(G) a matrix Lie algebra. For
a representation in a finite dimensional vector space V one has the important
and very useful relation

This shows us in a very explicit way how the problem of finding representations
of a Lie group can be reduced to the purely algebraic problem of finding the
representations of the corresponding Lie algebra.
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