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1. DEFINITION OF A MANIFOLD

1.1. Introductory remarks

The simplest nontrivial example of a differential manifold is a 2-dimensional sur-
face in 3-dimensional Euclidean space. It can be obtained as the subset of points
(z,y,z) of R?, such that F(z,y, z) = 0, for a suitable differentiable function F.
The function F(z,y,z) = 22 + y*> + 2% gives in this manner the 2-sphere cen-
tered in the origin. Solutions of systems of m — n equations Fj(:bl, o,2™) =0,
j = 1,...,m — n, give differential manifolds of dimension n < m as subsets
of R™. In the development of differential geometry it was at a certain point
realized that it 1s possible and convenient to define a manifold not as a subset
of a higher dimensional Euclidian space, but in a more intrinsic manner as an
object on its own. In this picture an n-dimensional differentiable manifold can
be intuitively visualized as a space which is smoothly patched together from
open pieces of R”.

1.2. Topological manifolds

In the precise discussion that follows a manifold will be defined as a topological
space on which a differentiable structure 1s superimposed.

A topological space 1s a set X provided with a system of open sets. Any system
of subsets of X that i1s closed under arbitrary unions, finite intersections and
in addition contains X and the empty set (§, can be used as system as open
sets, 1.e. as defining a topology for X. Two topological spaces X and Y are
isomorphic if they are connected by a one-to-one correspondence which maps
open sets in X onto open sets in Y. Such a map is called a homeomorphism. The
notion of topological space makes it possible to speak of of limits, convergence
and continuity. An n-dimensional topological manifold is a topological space
which is locally homeomorphic with R™, i.e. in which every point has an open
neighbourhood homeomorphic with an open set in R™. For technical reasons
we include in this definition the requirement that X has the Hausdorff property
and the property of being second countable. (Hausdorff: two distinct points
can be separated by disjoint open sets. Second countable: each open set can be
written as the union of sets from a fixed countable system of open sets.)

A chart on M is a pair (U, ¢), consisting of an open set I in M and a homeo-
morphism ¢ from i/ onto an open subset of R”. Such a chart defines a system
of local coordinates, functions 2',..., 2" from U to R. An atlas is a collection
of charts {U,, ¢o}a such that the sets U, cover X.

1.3. Smooth manifolds

Let (Uy, do) and (Ug, ¢5) be two charts on M. The map ¢go = dgo ¢, is a
homeomorphism from ¢, (U, NUp), the image under ¢, of the overlap of U, and
Ug, onto the image of the same overlap set under ¢g. It is called the transition
function associated with the two charts. This map ¢, and its inverse ¢,z
are continuous functions of open sets of R™ onto open sets of R", i.e. real-
valued functions of real variables. Two charts (Ua, ¢o) and (Ug, ¢) are called
C°°-compatible if the transition functions ¢, and ¢g, are differentiable. Note



that in this context ‘differentiable’ will always mean ‘infinitely differentiable’.
(We will use the words ‘differentiable’, ‘infinitely differentiable’; ‘smooth’ and
‘C*’ interchangeably.) An atlas for which all the charts are C°°-compatible,
i.e. for which all the transition functions are differentiable, defines a C'*°- or
differentiable structure on M.

A differential manifold (C*- manifold, smooth manifold or just manifold) is a
topological manifold provided with a differential structure.

A real-valued function f on M is differentiable (smooth, etc) iff for all the
charts (Uy, o) of the atlas which defines the differentiable structure of M the
compositions f o ¢! are differentiable functions on the appropriate open sets
of R™, in the ordinary sense. A continuous map from an manifold M into
a second manifold My will be called differentiable iff the corresponding maps
from open sets in R™! to open sets in R™? are differentiable. If such a map has
a differentiable inverse it 1s called a diffeomorphism .

2. TANGENT VECTORS AND VECTOR FIELDS

2.1. The tangent space at a point of a manifold

An n-dimensional manifold M has in every point p a tangent space T,(M). If
one thinks of M as a submanifold of some R™, with n < m, it is intuitively
clear what 7}, (M) is: a first order approximation of M at p by an n-dimensional
linear space spanned by the tangents of all curves in M passing through p. We
make this precise in the picture in which a manifold is an intrinsic object, as
defined in the preceding chapter.

Consider curves in M, passing through the point p, i.e. smooth maps v from
a real interval (—g,+¢), for some ¢ > 0, into M, such that ¥(0) = p. On a
coordinate neighbourhood U of p, with local coordinates z!,..., 2", a curve 5
is given by n smooth functions 2! (t), ..., 2™ (t). There is an equivalence relation
between such curves: two curves 41 and «s are equivalent if and only if in some

system of local coordinates on has

(diu) - (diu)

for s = 1,...,n. One checks easily that this definition is independent of the
choice of coordinates. Curves through p cannot be added, but the equivalence
classes can. Choose again local coordinates and represent two curves v, and
v2 by functions z§(7) and z§(7). Define the curve 4; + 42 by the functions
(z14+22)* (1) = 23 (1) +25(7), for s = 1,...,n. The definition of y; +~2 depends
on the choice of the local coordinates, the equivalence class [y1 + 2] is however
intrinsic, as one easily verifies. One similarly defines scalar multiplication on
the equivalence classes. The tangent space T,(M) is defined as the space of
these equivalence classes. An equivalence class [v] represents the tangent of a
curve v at p. T,(M) is clearly a vector space of dimension n.



2.2. Tangent vectors as point deriwations

There is a useful alternative manner to represent elements of 7,(M). Consider
an open neighbourhood U of p. The algebra of smooth real functions on U is
denoted as C*°(U). Let [y] be an element of 7,,(M) and define a map X[, from
C*®(U) into R by the ‘directional derivative’

Xp(f) = (%f(v(r))) o

In local coordinates this is

Xp(f) = (%f(:ul(f), . ..,xn<T))>T:0 _
- Z (= rmeme)) ()

which shows that the definition of X[,; indeed depends on the equivalence class.
The map Xp,] has the property

Xp(fg) = (Xp1(9) 9(p) + F(p) Xpy(9),

for all f and g in C*(U). A linear map from C'*°(U) into R with this property
is called a point derivation of C*°(U) in p. Each [v] in T,(M) gives a point
derivation. One can show that each such point derivation comes from a unique
equivalence class [y]. The result is that there is a one-to-one correspondence
between the set of point derivations and T,(M), a correspondence which is
obviously a linear isomorphism with respect to the natural vector space structure
of the space of point derivations.

2.3. Vector fields

A vector field on M 1s defined as a map which assigns in a smooth manner
to each point p of M a tangent vector from T,(M). Smooth means here that
for a local coordinate neighbourhood a vector field X is given by n smooth
local functions X*(z!,... 2"). Each tangent vector can be represented as a
point derivation. This idea can be applied to vector fields; the action of the
derivations at each point as maps from functions to the real numbers can be
assembled to a single map from the algebra C'°° (M) of smooth functions into
itself. In local coordinates this map acts on a locally defined function f as a
first order linear differential operator as

N9
X(f)_;)( s

Tt is a derivation of the algebra C'*° (M), i.e. it is a linear map from this algebra
into itself which satisfies the relation

X(fg)=X(flg+ fX(9),



for all f and g in C*°(M). A nontrivial theorem states that each derivation,
i.e. each linear map from C'*°(M) in to itself which has this property comes
from a unique vector field. This important fact allows us to see and treat vector
fields as smooth assignments of tangent vectors to all points of the manifold, as
first order linear differential operators, or, in a completely equivalent manner,
as derivations of the algebra of smooth functions on the manifold, a simple,
purely algebraic characterization that has many advantages. Vector fields can
be added and multiplied by real numbers. They can also be multiplied by
functions, X — fX, or (fX)(g9) = f(X(g)), for all f and g from C*°(M). This
means that the space of vector fields is not only a real linear space but also a
module over the algebra C*(M). (The notion of a module over an algebra or
ring A is a generalization of that of a vector space over a field like R or C', with
elements of A playing the role of scalars.) The composition of two derivations
X and Y, X oY, or written simply as XY, is a linear map but not a derivation;
the commutator [X,Y] = XY —Y X is however again a derivation, as one easily
checks. This fact can be used to define the commutator of two vector fields.
The linear space of vector fields is an infinte dimensional Lie algebra. See for
the notion of ‘Lie algebra’ Appendix D (Lie groups and Lie algebras).

2.4. The tangent bundle

The set of all tangent vectors for all points of the n-dimensional manifold M
can be given in a natural way the structure of a 2n-dimensional manifold. This
manifold is called the tangent bundle of M, and is denoted as T'(M). A chart
(U,¢) on M, with ¢ a system of local coordinates z!,... 2", gives a chart
(U,¢) on T(M), with U the set of all tangent vectors at points of U/, and

¢ a system of coordinates z',...,2? ', ...,y*. The additional coordinates
y', ..., y" are defined as follows: A tangent vector at a point p of U can be
represented by a curve through p, which means in terms of the coordinates
zl, ..., z" by n functions z!(t),...,2"(t). The value of the coordinate 3 at

p is then y/(p) = (%Ij(t))tzo. A vector field Y, which assigns a tangent
vector to each point p, is in these coordinates given by n (smooth) functions
Yi(zl, ... z").

The manifold T'(M) of tangent vectors is called tangent bundle because it is
a particular example of a more general notion, that of a vector bundle over
a manifold. A vector field is then a section of this bundle. This will not be
discussed here.

3. COTANGENT VECTORS AND 1-FORMS
3.1. The cotangent space at a point of a manzifold

For each point p of an n-dimensional manifold M the tangent space T, (M) was
in the preceding chapter defined as an n-dimensional vector space ‘attached’ to
M in p. The dual of 7, (M), the n-dimensional vector space of linear maps
from T, (M) into R, is denoted as Ty (M), and is called the cotangent space at
the point p.



3.2. 1-forms

One can define a 1-form on M as a map which assigns in a smooth manner to
each point p of M a cotangent vector from T (M). It may also conveniently
be defined, without explicit reference to cotangent vectors at separate points,
as a single map from V (M), the space of vector fields, to C*® (M), the algebra
of smooth functions. According to this definition, a 1-form « is a map which is
linear in the sense of C'°°-modules, meaning that it is a linear map a : V(M) —
C*® (M) in the ordinary sense, with the additional property

a(fX) = fa(X),

for all X in V(M) and f in C°°(M). Multiplication of a 1-form by a function,
a— fa,or (fa)(X) = f(a(X)), gives again a 1-form, so the space of 1-forms is
a C*°(M)-module, in fact the dual of V(M) in the sense of C'*°(M)-modules.
It is denoted as Q'(M).

3.3. The exterior deriwative

For each function f in C*® (M) we define the 1-form df as (df)(X) = X(f), for
each X in V(M), with X(f) the action of X as a derivation on f, as defined
in the preceding chapter. This gives a map d : C* — Q!(M) which has the
Leibniz property d(fg) = (df) g + f dg, for all f and g in C*°(M) and is called
the exterior derivative. One can show that an arbitrary 1-form can be written
— nonuniquely — as a finite sum ), f-dg,.

3.4. The cotangent bundle

The tangent bundle T'(M) was defined as set of all tangent vectors on M made
into a manifold. We similarly define a 2n-dimensional manifold consisting of
all cotangent vectors at all points of M. It is called the cotangent bundle of
M and is denoted as T*(M). Tt is also an example of the general notion of
vector bundle, with the 1-forms as sections. A chart (U, ¢) on M, with ¢
represented by local coordinates z', ..., 2", induces a chart (U, q;) on T*(M),
with U the set of all cotangent vectors at points of U and the map q~5 given
by coordinates 2',..., 2", y1,...,yn. The additional coordinates w1, ..., y, are
defined as follows: A cotangent vector a, at p is a vector from the dual 7} (M)
of T,(M) and as such a linear map from T,(M) to R. The value of the j**
coordinate y; at p is the value of a, on the tangent vector in 7, (M) for which
the j** coordinate 3 is 1 and the others 0. A 1-form a, which assigns a cotangent
vector a, to each point p, is in these coordinates locally described by n (smooth)
functions a;(z!,..., 2").

4. GENERAL DIFFERENTIAL FORMS

4.1. Definition of a general k-form

Consider in each point p of M the linear space A* iy (M), the k-fold exterior
power of Tp*(M). This can be also defined as the space of k-linear antisymmetric
maps from 7, (M) into R. A k-form wy on M is a map which assigns in a smooth



manner to every point p of M an element from A* T5 (M). This can be seen as
a single map

wi VM) x ... x V(M) = C®(M),

ktimes

which is k-linear and antisymmetric in the sense of C'*®(M)-modules, i.e. it
i1s k-linear and antisymmetric in the sense of real vector spaces and satisfies in
addition

wk(Xl,...,sz,...,Xk) :fwk(X1;~~~,Xs,~~~;Xk),

for all Xq,..., Xy in V(M), all f in C®(M), and for s = 1,..., k. k-forms
can be multiplied by functions in an obvious manner; the space of k-forms is a
C*(M)-module, which is denoted as Q*(M). For k > n the space Q¥ (M) =

(0), because of antisymmetry. We define the direct sum
QM) = QM) Q' (M) D ...3 Q" (M),
with Q°(M) = C*(M). The space Q(M) of all forms is again a C'*(M)-

module. Tt is also an (associative) algebra; the antisymmetry properties can be
used to define a product of forms. The product of a k-form w and a I-form o
is a (k 4 {)-form and is denoted as wg A 07. One has wi A oy = (—1)* oy A wg.
An arbitrary k-form can be written — nonuniquely — as a finite sum of products
fANfa AN S

4.2. The exterior derivative (continued)

The exterior derivative d, introduced in 3.3 as a map from C*®(M) = Q°(M)
into Q1 (M), can be extended to a map d from Q(M) into itself, carrying each
QF (M) into Q*T1(M). It is completely determined by the requirement that it
satisfies the generalized Leibniz property

d(wg A oy) = (dwi) Aoy + (—l)kwk Adoy,

for all k-forms wy, and /-forms o;. We defined d in 3.3 on 0-forms (= functions)
as

(df)(X) = X(f),

for all vector fields X, with X (f) the action of X as a derivation on f. On
1-forms d is now defined as

(dwn)(X,Y) = X(w1 (V) = Y(w1(X)) —wn([X, Y]),

and on 2-forms as



for all vector fields X, Y and Z. The definition for general k-forms is

(dwk)(Xl, . ~~,Xk+1) =
= > (U)X (kX K Kegr) +
J=1,..,..k+1

+ E wk([XSaXt]aXla"‘a)/asa'~'15(\ta"~an+1)a
sit=1,... k+1;s<¢t

with a hat over a variable meaning that this variable is omitted. From this
definition one derives the two main properties of the exterior derivative:

a. The exterior derivative is nilpotent | i.e.
d*=0.

b. It is what is called a ‘graded derivation’, i.e. 1t satisfies a generalized Leibniz
condition
d(ws A oy) = dws or + (—l)t ws doy,

for all w, in Q°(M) and oy in Q4 (M).

Remark: A k-form wyg is called closed iff dw = 0; it is called exact iff there
exists a (k — 1)-form oj_1 such that wy = dok_1. An exact form is closed; the
converse does not need to be true.

Forms in local coordinates

Suppose that we have on an open set U of M a system of coordinates z!, ..., n",

with corresponding 1-forms dz!,... dz™. An arbitrary 1-form w (or rather the
restriction of such a form to U) can be written uniquely as w = E;zl wjdrj,
with the w; smooth functions in C*°(U), written in terms of the coordinates
as wj(z',...,2"). We can use the Einstein convention, a shorthand notation
for this sum, and write w = Z?Il wjd:vj = wjd:cj. An arbitrary 2-form can be
written — with the Einstein summation convention — as wy = %wj1j2 dzit A dxiz,
with a system of functions {w;,;,} in C°°(U), antisymmetric in the indices j;
and js. The formula for a general k-form is

n
WE = 2 Wiy gk dx’? A.../\dm‘”,
J1,-dk=1

TO BE COMPLETED

6. RIEMANNIAN MANIFOLDS

6.1. Introductory remarks

The basic idea in defining the notion of an n-dimensional manifold M is to see
it as a space which is in every point approximated by a copy of R™. This gives



first the topological and then the differential structure of M. One can go one
step further and introduce a metric structure by looking at R” as an Euclidean
space. How could one go about in defining in this spirit the distances between
two nearby points of M7 Let p be a point of M and p’ a second point close
to p. The distance from p to p’ should be given by a lenght along a curve v
passing through p and p’ and this should be aproximately given by a length
along the tangent line along v at p, in the direction from p to p’, i.e. defined
on the tangent vector at p defined by 4. This leads to the idea of a metric or
distance on each tangent space 7, (M), given by a quadratic form @, on 7, (M),
or equivalently, by a symmetric bilinear form g,, with g,(ap,ap) = @Qp(ap), for
all ap in T, (M). The metrics g, for different points p should then be smoothly
assembled to a notion of a metric on the manifold itself.

6.2. Definition of a Riemannian metric

The intuitive ideas from the preceding section suggest a precise definition:

A Riemannian metric ¢ on a manifold M is a smooth assignment to each point
p of M of a positive definite symmetric bilinear form g, on 7, (M), i.e. a bilinear
map
gp(+) + Tp(M) x T (M) — R,
with the properties
9p(ap, bp) = g(by, as),
for all a, and b, in T,(M), and

gp(ap; ap) >0,

for all a, in T, (M), with g,(ap,a,) = 0 if and only if a, = 0.

It is clear that such a g is in the terminology of Chapter 5 a covariant tensor field
of rank 2. This observation leads to an equivalent alternative definition, geomet-
rically less intuitive but mathematically more convenient, with less emphasis on
the points of M, and more in terms of linear algebra of C*°(M)-modules:

A Riemannian metric on M is a symmetric C* (M)-bilinear map
g: V(M) x V(M) = C®(M),

which is definite positive in the sense that, for each vector field X, g(X, X) is
a function in C'°°(M), which is nonnegative at each point of M vanishes at a
point if and only if the vector field X vanishes at that point.

A Riemannian metric gives an ‘infinitesimal’ distance between two neighbouring
points. It als gives a finite distance between arbitrary points along a curve: Let
p1 and py be two point of M and 5 be a curve through p; and ps, with p; = ()
and ps = v(72). The distance between p; and ps along v is defined as the integral

TO BE CONTINUED



