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Overview
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The field of elasticity is concerned with the mechanical response of 
“solid” bodies.  It is an old subject that has its roots in work by 
Euler, Lagrange, and others in the 18th century.  This work is based 
on the idea that extended matter is a mathematical continuum of 
mass points with preferred relative positions that stretch or 
compress in response to stress.  This is the approach that will be 
followed in most of these lectures.  It should be noted, however, 
that there is another, more restrictive but nonetheless very useful, 
approach to  elasticity, namely one in which elastic distortions are 
viewed as Goldstone modes associated with the formation of 
periodic crystalline states. In the description, elasticity arises from 
spatial variation of phases of mass density waves.   



Course Outline
(subject to change as lectures progress)
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I. Preliminaries
A. Mapping from reference to target space
B. Deformation and Strain
C. Cauchy-Green tensors and nonlinear strain
D. Eulerian Strain

II. Elastic energy
A. Elastic moduli
B. Isotropic and uniaxial solids
C. Voight notation

III. Force and stress
A. First and second Pila-Kirchhoff stress tensor
B. The Cauchy stress tensor

IV. Polar Decomposition Theorem and target-reference conversion.
V. Nonaffine Response
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Classical Lagrangian Description

Reference material in D 
dimensions described by a 
continuum of mass points x.  
Neighbors of points do not 
change under distortion

Material distorted to new positions 
R(x) in d ≥D dimensions.

( ) ( )= +R x x u x

Cauchy deformation tensor

x
¢x

( )R x

( )¢R x

Engineering 
notation: x->X
R->x
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Linear and Nonlinear Elasticity
Linear: Small deformations – Λ near 1

Nonlinear: Large deformations – Λ >>1

Why nonlinear?
• Systems can undergo large deformations – rubbers, polymer 
networks , …
• Non-linear theory needed to understand properties of statically 
strained materials
• Non-linearities can renormalize nature of elasticity
• Elegant an complex theory of interest in its own right

Why now:
• New interest in biological materials under large strain
• Liquid crystal elastomers – exotic nonlinear behavior
• Old subject but difficult to penetrate – worth a fresh look
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Deformations and Strain
Complete information about shape of body in R(x)= x +u(x);
u= const. – translation no energy.  
No energy cost unless u(x) varies in space.  
For slow variations, use the Cauchy deformation tensor

Volume preserving stretch along z-axis: This is pure shear
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Simple shear strain Constant Volume, but note 
stretching of sides originally 
along x or y.

Rotate

Not equivalent to

Note: Λ is not symmetric
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More Complex Shear
Shear: symmetric deformation tensor with unit 
determinant – equivalent to stretch along 45 deg.

Again volume preserving: 
All nonlinear shears 
preserve volume.
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Cauchy-Green Tensors
R=Reference space

T=Target space

Metric tensor: Right Cauchy-Green tensor (Cαβ): Invariant under any U

Left Cauchy-Green tensor (Bij) (or Finger 
tensor): Invariant under any V

Standard Engineering notation 
in blue: ΛiaàFiα



Nonlinear Strain

uαβ is invariant under rotations in the target space but 
transforms as a tensor under rotations in the reference space.  
It contains no information about orientation of object.  This is 
the strain physicists use.

Symmetric!

vij is invariant under symmetry operations in the reference space, 
but it transforms as a tensor in the target space.
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Assumes flat 
reference 
metric with 
dx2=dR2



Eulerian Strain
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Treat x as a function of R rather than R as a function of x
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Elastic energy
The elastic energy should be invariant under rigid rotations in the 
target space (unless there are externals fields): it is if it is a 
function of uαβ.

This energy is automatically invariant under rotations in 
target space.  It must also be invariant under the point-
group operations of the reference space. These place 
constraints on the form of the elastic constants.
Note there can be a linear “stress”-like term.  This can be 
removed (except for transverse random components) by 
redefinition of the reference space 
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Elastic modulus tensor/isotropic solid
Kαβχδ is the elastic constant or elastic modulus tensor.  It has 
inherent symmetry and symmetries of the reference space.

Isotropic system

µ = shear modulus; B =λ+2µ/D= bulk modulus
Isotropic: free energy density f has two harmonic elastic constants
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Uniaxial Solid

Uniaxial: five harmonic elastic constants

Uniaxial (n = unit vector along uniaxial direction) 

Summation convention on 
repeated ν and τ 
understood.



Voigt  Notation
Because the strain matrix is symmetric, it has only D(D+1)/2 
independent components: 

The elastic energy can then be written in matrix form

K
!

must be positive definite for 
mechanical stability: 3 positive 
eigenvalues in 2D and 6 in 3D.
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Force and stress I: Lagrangian Picture

fiL : internal “Lagrangian” force density in reference space–
vector in target space. 

The stress tensor σΙiα is mixed.  This is the engineering or 1st

Piola-Kirchhoff stress tensor = force per area of reference 
space.  It is not necessarily symmetric!

L I
i ia as= ¶f forced L

i id x= =òF f

The first integral is over all 
space because fiL is zero 
outside matter, the surface 
integral is zero because the 
stress outside matter. D is 
the volume of the sample



Force and Stress II

σαβII is the second Piola-Kirchhoff stress tensor - symmetric 

Note:  In a linearized 
theory, σΙiα = σiαII
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Cauchy stress
The Cauchy stress is the familiar force per unit area in the 
target space.  It is a symmetric tensor in the target space. 

Symmetric as required
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Coupling to other fields
We are often interested in the coupling of target-space vectors like 
an electric field or the nematic director to elastic strain.  How is this 
done?  The strain tensor uαβ is a scalar in the target space, and it can 
only couple to target-space scalars, not vectors.

Answer lies in the polar decomposition theorem

g u

O
!!

!

 is symmetric and depends on  only.
 is an orthogonal, unimodular rotation matrix
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Target-reference conversion

i

O

E Ea

!
!

The rotation matrix  converts target-space

vectors  to reference-space vectors  and vice-versa

To linear order in u, Oiα has a term proportional to the 
antisymmetric part of the strain matrix.
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Sample couplings
Coupling of electric field to strain

Free energy no longer depends on the strain uαβ only. The 
electric field defines a direction in the target space as it 
should

i i ia a ad h¢ ¢L = +

Energy depends on both 
symmetric and anti-
symmetric parts of η’



Nonaffine response 

Kijkl and σij are random variables.  Chose u so that the system is 
in equilibrium at u=0. Thus the local force must be zero.

Linear term in u does not survive.
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B. A. DiDonna and TCL, PRE 72 (6), 
066619 (2005).



Deviations from Affine Response
xB: boundary sites

u’: Nonaffine response
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Response to Strain with Random K
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Nonaffine correlator: 
average over random 
modulus and internal 
stress



Nonaffine Correlations
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Map of Nonaffine Displacement 
Directions
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Numerical Calculations of G
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“Relaxed” Elastic Moduli
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Elastic moduli are reduced by nonaffine relaxation
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Example: Incompressible Rubber

2 2
0
R Nb=

Purely entropic force

Average is over the end-to-end 
separation in a random walk: random 
direction, Gaussian magnitude

Probability distribution of a 
random walk of N steps of 
length b.
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Rubber : Incompressible Stretch

Unstable: nonentropic forces between atoms needed 
to stabilize; Simply impose incompressibility constraint.
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Rubber: stress -strain

Engineering stress

Physical Stress

AR= area in 
reference space

A = AR/Λ = Area in 
target space 
Y=Young’s modulus: 
Λ=1+γ



Rubber elasticity: Neo-Hookean Model
Add nonlinear 
compression energy to 
rubber entropic part: 
linear term: compression 
of crosslinked system

Neo-Hookean model: No linear term: most common of many semi-
empirical theories for nonlinear elasticity in the engineering 
literature.  Note isotropy in the reference space means g can be 
replace by h anywhere.
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