
Methods to simulate fermions
on quantum computers with

hardware limitations

PROEFSCHRIFT

TER VERKRIJGING VAN

DE GRAAD VAN DOCTOR AAN DE UNIVERSITEIT LEIDEN,
OP GEZAG VAN RECTOR MAGNIFICUS PROF. MR. C.J.J.M. STOLKER,

VOLGENS BESLUIT VAN HET COLLEGE VOOR PROMOTIES

TE VERDEDIGEN OP WOENSDAG 20 NOVEMBER 2019
KLOKKE 15.00 UUR

DOOR

Mark Steudtner

GEBOREN TE LÖBAU, DUITSLAND IN 1991

Promotores: prof. dr. S. D. C. Wehner (TU Delft)
prof. dr. C. W. J. Beenakker

Promotiecommissie: dr. J. D. Whitfield (Dartmouth College, VS)
dr. ir. M. Veldhorst (TU Delft)
prof. dr. K. J. Schoutens (UvA)
prof. dr. E. R. Eliel
prof. dr. K. E. Schalm

Casimir PhD Series Delft-Leiden 2019-33
ISBN 978-90-8593-416-5
An electronic version of this thesis can be found
at https://openaccess.leidenuniv.nl
This work was supported by the Netherlands Organization for Scientific
Research (NWO/OCW) and an ERC Synergy Grant.

https://openaccess.leidenuniv.nl

Contents

1 Introduction 1

1.1 Preface . 1
1.2 Fermion-to-qubit mappings 4
1.3 Quantum error correction 9
1.4 This thesis . 15

1.4.1 Chapter two . 15
1.4.2 Chapter three . 16
1.4.3 Chapter four . 19

2 Saving qubits with classical codes 21

2.1 Background . 21
2.2 Results . 23
2.3 Encoding the entire Fock space 27

2.3.1 Jordan-Wigner, Parity and Bravyi-Kitaev transform 29
2.4 Encoding only a subspace 30

2.4.1 Saving qubits by exploiting symmetries 30
2.4.2 General transforms 31
2.4.3 Particle number conserving codes 36

2.5 Examples . 40
2.5.1 Hydrogen molecule 40
2.5.2 Fermi-Hubbard model 41

2.6 Conclusion . 44
2.7 Supplement . 46

2.7.1 General operator mappings 46
2.7.2 Transforming particle-number conserving Hamil-

tonians . 52
2.7.3 Multi-weight binary addressing codes based on dis-

sections . 55

iv CONTENTS

2.7.4 Segment codes . 60
2.8 Notations . 64
2.9 Further work . 66

3 Embedding simulations with quantum codes 69

3.1 Background . 69
3.2 Results . 72
3.3 Preliminaries . 78

3.3.1 Simulating a qubit Hamiltonian 80
3.3.2 S-pattern Jordan-Wigner transform 82

3.4 Techniques . 86
3.4.1 Motivation . 86
3.4.2 Definitions . 88

3.5 Auxiliary qubit mappings 89
3.5.1 E-type AQM . 89
3.5.2 Square lattice AQM 91
3.5.3 Sparse AQM . 94

3.6 Example: Fermi-Hubbard lattice model 97
3.6.1 Second quantization and Jordan-Wigner transform 97
3.6.2 Square lattice and sparse AQM 99
3.6.3 VCT and BKSF . 102

3.7 Comparison of AQM, VCT and BKSF 104
3.8 Conclusion . 111
3.9 Supplement . 112

3.9.1 Auxiliary Qubit codes 112
3.9.2 Tree-based transforms 122
3.9.3 Technical details . 126

3.10 Notations . 149
3.11 Further work . 152

4 Quantum error correction in Crossbar architectures 155

4.1 Background . 155
4.2 Results . 156
4.3 The quantum dot processor 159

4.3.1 Layout . 160
4.3.2 Control and addressing 161
4.3.3 Elementary operations 162

4.4 Parallel operation of a crossbar architecture 170
4.4.1 Parallel shuttle operations 173

CONTENTS v

4.4.2 Parallel two-qubit gates 175
4.4.3 Parallel Measurements 175
4.4.4 Some useful grid configurations 182

4.5 Error correction codes . 184
4.5.1 Surface code . 184
4.5.2 2D color codes . 185
4.5.3 Surface code mapping 187
4.5.4 Color code mapping 191

4.6 Discussion . 195
4.6.1 Practical implementation of the surface code 196
4.6.2 Decoherence induced errors 196
4.6.3 Operation induced errors 198
4.6.4 Surface code logical error probability 199

4.7 Conclusion . 201
4.8 Supplement: surface code operation counts 204
4.9 Notations . 207

Publications and Preprints 209

Summary 211

Samenvatting 215

Curriculum vitae 219

Bibliography 221

vi CONTENTS

Chapter 1

Introduction

1.1 Preface

It is believed that quantum computers will help to increase our knowl-
edge about large molecules and strongly correlated materials. There are
many systems in those classes that we do not understand to this day, not
for an inability to comprehend their physics, but because we lack compu-
tational power. In fact, we have accurate models describing the interac-
tions of electrons in molecules, but classical computers are incompatible
in dealing with the quantum properties. While we can easily formulate
the Hamiltonians describing the systems, their spectrum and eigenstates
(in particular, their ground state), that would allow us insight into their
nature, can only be obtained with tremendous efforts. The issue is that
with electrons being quantum-mechanical particles, their eigenstates are
superpositions of all their possible configurations within the host system.
As a consequence, any computer would need to have enough memory
to encode the entirety of the electronic Hilbert space. Since the number
of configurations is typically exponential in the size of the considered
system, the same scaling applies to the resources required for classical
simulation. This is a prohibitive overhead that not only places a cap on
the number of active electrons we are able to simulate, but also on the
simulation accuracy, since increasing the basis set is a means to make a
simulation more precise. Fortunately, electronic systems can be stored
differently on quantum computers, and so Abrams, Lloyd and Feynman
suggested their use as universal quantum simulators [1–3].
A quantum computer is a device with a controllable quantum system as a

2 Chapter 1. Introduction

memory. As such, the memory spans an exponential Hilbert space which
can imitate the exponential Hilbert space of an arbitrary electronic sys-
tem. The required memory, which is the minimum number of qubits in
the quantum computer, is thus only linear in the size of the problem. Not
only are quantum states stored more adequately in qubits, but their ma-
nipulation by quantum gates, the elementary operations of the quantum
computer, allows simulating arbitrary quantum-mechanical time evolu-
tions. This approach, in which quantities of interest are calculated using
gate operations rather than only the time evolution of the parent sys-
tem, is commonly referred to as digital quantum simulation. While be-
ing technically more challenging than its analogue counterpart, it allows
us to employ powerful quantum algorithms for the simulation and is
compatible with techniques of quantum error mitigation and correction.
However, since quantum devices have stricter limitations than classical
computers, the feasibility of these amazing algorithms is determined by
the right ‘programming’ of the quantum computer, which leads us to the
subject matter of this thesis. Within these pages, we are going to deal
with three limitations of quantum computing hardware in particular.
Firstly, there is the issue of memory size. Being controllable quantum
systems, qubits are not easy to fabricate (or find) and must therefore be
regarded as a rare commodity. The era of noisy intermediate scale quan-
tum (NISQ) computers, for instance, is said to open with the arrival of
devices containing only around fifty qubits [4]. While the amount of
classical memory required to store the Hilbert space of those devices is
enormous, the amount of qubits is not. Note also that many promising
platforms are currently far from this intermediate scale.

Another issue is the qubit lifetime. Since quantum information can
only be stored fleetingly before its decoherence, feasible algorithms have
to be short. Quantum computation is thus strongly dependent on our
ability to reduce the runtime of quantum algorithms by applying differ-
ent parts of them in parallel. Not only has the need for parallelization
an impact on algorithm design and compilation, but also on the device
itself. Quantum algorithms are often expressed as quantum circuit dia-
grams, in which gate sequences can be grouped into parallel layers, but
there is no guarantee that the parallel execution of such a layer is actually
possible on the hardware level. Even in fault tolerant quantum comput-
ers, where the effect of decoherence is often argued to be diminished,

1.1 Preface 3

it never really vanishes. These devices, that are further developed than
NISQ computers, continuously run cycles of error correction algorithms
that would allow for longer algorithms and so seemingly relax the need
for a parallel operation. However, since the cycles are not exempt from
noise, they also benefit from parallelization. In fact, when error correc-
tion cycles cannot be run within a certain time span, they cause errors
rather than correct them.

Lastly, a quantum device has much stricter geometric constraints.
This is due to the fact that the actual qubit part of the quantum computer
has to be placed inside a dilution refrigerator shielding it from thermal
fluctuations. Geometrical constraints not only limit the number of qubits,
but also their connectivity and control.

Running a simulation algorithm, all of these peculiarities of quantum
hardware need to be taken into account. Let us take a look on how these
constraints can enter and influence a computation. Quantum computing
is conceptually different from its classical counterpart, even though there
are similarities in the way they are applied: for a classical computation,
a user would pass problem-specific arguments to pre-existing, standard
routines to obtain a result. When concerned with a ground state problem,
for instance, a user would initially choose a matrix representation of the
Hamiltonian in order to pass it to a diagonalization routine.

The situation is quite similar for digital quantum simulation, where
algorithms like quantum phase estimation or the variational quantum eigen-
solver [5–7] can be regarded as predefined routines a user has to feed with
problem-specific input. Since the problem is finding the ground state the
input is, like in the classical case, a representation of the Hamiltonian. It
can however not be a matrix, since its sheer dimension would not make
it through classical preprocessing. Instead, the Hamiltonian is submitted
in a form that the quantum computer can process, as a sum of operators
acting on the exponential Hilbert space. To run quantum algorithms,
the computer must be able to implement those operations as black box
routines on its qubits and they therefore take the form of low-level quan-
tum gates. Typically, the input Hamiltonian is a sum of weighted Pauli
strings, where each of them is a product of Pauli operators on different
qubits with a real coefficient. Note that with this construction the quan-
tity preventing us from simulating arbitrarily-sized systems is no longer
the matrix dimension, but the number of terms in the qubit Hamilto-

4 Chapter 1. Introduction

nian. The Pauli strings and their associated coefficients are subsequently
turned into gate instructions in the quantum algorithm approximating
the ground state. Algorithms based on Trotterization or qubitization, for
instance, require that Pauli strings of the Hamiltonian are applied to the
system directly [8–10], while in variational quantum eigensolvers they
are measured on the memory. In this way, the input Hamiltonian will
determine the performance of the applied algorithm, and the number
of qubits required for the computation. In order to gain control over
those quantities, an amount of pre-processing is required. A visualiza-
tion of the entire quantum simulation process can be found in Figure 1.1,
starting from a fermionic Hamiltonian in second quantization. Consid-
erations about the basis set and truncation of the problem are inherent
in this operator, which is to be regarded as a fixed quantity. However, as
long as it is a valid representation of the fermionic Hamiltonian, the qubit
Hamiltonian can be chosen freely. With that choice, we can influence the
performance and requirements of the quantum algorithm that the qubit
Hamiltonian feeds into. The transform between the fermionic operators
and gate instructions, as well as the correspondence between fermionic
occupations and qubit configurations, will be referred to as fermion-to-
qubit mapping. Since a mapping directly relates the fermionic problem to
the computer’s memory, it would ideally be tailored to its device. The
transform of the Hamiltonians, depicted in Figure 1.1, can be done using
classical software readily available [11–13].

1.2 Fermion-to-qubit mappings

Definitions – Qubit basis and Pauli operators

§1 The state of a single qubit shall be a linear combination of the basis states |0⟩
and |1⟩, which we will also refer to as computational basis. The (single-
qubit) Pauli operators 𝑋 , 𝑌 and 𝑍 shall be defined such that they are
hermitian and unitary.

𝑍 = |0⟩⟨0| − |1⟩⟨1| (1.1)
𝑋 = |1⟩⟨0|+ |0⟩⟨1| (1.2)
𝑌 = 𝑖 |1⟩⟨0| − 𝑖 |0⟩⟨1| (1.3)

§2 To characterize the basis of 𝑛 qubits, we are going to introduce binary vectors
𝜔 = (𝜔1, 𝜔2, ... , 𝜔𝑛)

⊤, where each component 𝜔𝑖 is a binary number:

1.2 Fermion-to-qubit mappings 5

𝜔𝑖 ∈ {0, 1} =: Z2. We thus write 𝜔 ∈ Z⊗𝑛
2 . For convenience, we are

going to use a binary (modular) addition when adding two such binary
vectors: 𝜔+𝜇 =

⨂︀𝑛
𝑖=1(𝜔𝑖+𝜇𝑖 mod2). The modulus shall be implicitly

applied also to matrix and scalar products of binary vectors. Within this
thesis we use those vectors to define the multi-qubit computational basis
states as

|𝜔⟩ =

𝑛⨂︁
𝑖=1

|𝜔𝑖⟩ = |𝜔1⟩ ⊗ |𝜔2⟩ ⊗ · · · ⊗ |𝜔𝑛⟩ , (1.4)

such that an 𝑛-qubit quantum state |𝜙⟩ takes the generic form

|𝜙⟩ =
∑︁

𝜔∈Z⊗𝑛
2

𝑎𝜔 |𝜔⟩ , (1.5)

where there are 2𝑛 complex, normalized coefficients 𝑎𝜔:
∑︀

𝜔 |𝑎𝜔|2 = 1.

§3 Products of Pauli operators will be referred to as Pauli strings. To distinguish
operators (1.1)-(1.3) acting on different qubits, we brand them with qubit
indices. The operator 𝑋𝑖 for instance acts as an 𝑋-operator on qubit 𝑖,
and as the identity (I) on the rest. In general, we want to omit single-qubit
identities and use the following shorthand for Pauli strings 𝑍 ⊗ I⊗ 𝑍 =
𝑍1 ⊗ 𝑍3 =

⨂︀
𝑖∈{1,3} 𝑍𝑖, though we will use I for the identity operation

on the entire system. A qubit Hamiltonian is typically a weighted sum of
Pauli strings. In the second chapter, for instance, we find the following
Hamiltonian for the hydrogen molecule in a minimal basis (for atoms at
their bond distance, in units of Hartree):

𝐻 = − 0.34 I + 0.18129𝑋1 ⊗𝑋2 + 0.394𝑍1

+ 0.0112𝑍1 ⊗ 𝑍2 + 0.394𝑍2 . (1.6)

Definitions – Fermionic operators

§4 Within this thesis, we denote fermionic creation and annihilation operators
by 𝑐†𝑗 and 𝑐𝑗 , where 𝑗 denotes the index of the fermion orbital, the combi-
nation of spatial wave function and spin indices. When speaking outside
a context of electrons, we also refer to orbitals as fermionic modes, in par-
ticular when we replace those indices with coordinates on a hypothetical,
two-dimensional embedding of the system. To account for their fermionic

6 Chapter 1. Introduction

nature, creation and annihilation operators satisfy the following anticom-
mutation relations:[︁

𝑐𝑖 , 𝑐𝑗

]︁
+
= 0,

[︁
𝑐†𝑖 , 𝑐

†
𝑗

]︁
+
= 0,

[︁
𝑐𝑖 , 𝑐

†
𝑗

]︁
+
= 𝛿𝑖𝑗 , (1.7)

where [𝐴,𝐵]+ = 𝐴𝐵 +𝐵𝐴.

§5 To avoid confusion with qubit configurations, we will denote the vacuum
state, in which all fermion modes (orbitals) are unoccupied, by |Θ⟩. States
are subsequently defined as products like 𝑐†𝑖1𝑐

†
𝑖2
...𝑐†𝑖𝑀 |Θ⟩.

§6 While second quantization makes for some redundancy in the ordering of
the creation operators, it allows us to express many-body Hamiltonians in
a concise form. The Hamiltonians of the electronic structure problem, that
we are interested in, are following the pattern of∑︁

𝑖𝑗

𝑡𝑖𝑗 𝑐
†
𝑖𝑐𝑗⏟ ⏞

kinetic / hopping

and nuclear terms

+
∑︁
𝑖𝑗𝑘𝑙

𝑉𝑖𝑗𝑘𝑙 𝑐†𝑖𝑐
†
𝑗𝑐𝑘𝑐𝑙 ,⏟ ⏞

two-body interactions

(1.8)

where the sums extend over all mode indices. The coefficients 𝑡𝑖𝑗 and 𝑉𝑖𝑗𝑘𝑙

are numbers (integrals depending on the chosen basis) that are generally
complex, but related with respect to their indices such that the Hamilto-
nian is hermitian. Note that by the structure of (1.8), all of its terms
conserve the number of particles of a state 𝑐†𝑖1𝑐

†
𝑖2
... 𝑐†𝑖𝑀 |Θ⟩, and most of

the terms commute with one another.

∙

Let us take the qubit requirements as an example of mappings dealing
with hardware limitations. The number of qubits storing the problem’s
Hilbert space is determined by the Hamiltonian: to solve a problem, we
need as many qubits as the Hamiltonian acts on. For devices with few
(logical) qubits, we are interested in keeping these qubit requirements to
a minimum which is determined by the problem’s degrees of freedom.
Neglecting symmetries like the conservation of particles, mappings typ-
ically use more qubits than absolutely necessary. Indeed we need mini-
mally 16 qubits to encode all possible occupations of 16 fermionic modes,

1.2 Fermion-to-qubit mappings 7

Fermion-to-qubit mapping

Simulation algorithm

∑︀
𝑖𝑗 𝑡𝑖𝑗 𝑐

†
𝑖𝑐𝑗 +

∑︀
𝑖𝑗𝑘𝑙 𝑉𝑖𝑗𝑘𝑙 𝑐†𝑖𝑐

†
𝑗𝑐𝑘𝑐𝑙

. .
Fermionic Hamiltonian

𝐻 = 0.18129𝑋1 ⊗𝑋2

+ 0.394𝑍1 + ...
. .

Qubit Hamiltonian

∙ 𝑉 ∙

𝑈1 𝑈2

. .
Quantum circuit

Quantum computer

|GS⟩ , ⟨GS|𝐻 |GS⟩
. .

Approx. ground state/ spectrum

Figure 1.1. Simulating fermions on a quantum computer, depicted as a flow
chart. The process starts with a problem Hamiltonian and results in the ground
state and its energy being approximated by a quantum computer. However,
that ground state problem refers not to the initial Hamiltonian, but rather to a
prudently chosen qubit version of it. In combination with the simulation algo-
rithm, the qubit Hamiltonian then determines the quantum circuit, that can be
compiled into a program that the quantum computer runs.

8 Chapter 1. Introduction

but typically not all of those configurations are relevant. Information
about the number of fermions in the system is usually given besides the
Hamiltonian as either a constraint or from real-life observation of the sys-
tem. Let us say there is only one particle hopping around in the system
given, then the basis of the problem is spanned by 16 configurations with
the fermion sitting in a different mode in every basis state. Following
combinatorial arguments, these degrees of freedom could be encoded by
4 qubits, and so 12 qubits saved. This of course just an example, but a
relevant one since for all particle-number conserving problems, modes
are at most half filled (with particles or holes). While encoding all par-
ticle numbers usually yields a, in some sense, simpler Hamiltonian, one
might be interested in bringing the required number of qubits closer to
the minimum. This is the subject of the second chapter of this thesis,
in which we consider the impact of classical code layers on fermion-to-
qubit mappings. Typically, improvements in the qubit number will have
some negative influence on the Hamiltonian. As we will see in the sec-
ond chapter, this manifests in the choice between either making the gates
in the Hamiltonian terms more complex, or accepting a larger number
of Pauli string terms instead. Clearly, trading qubits is expensive in the
runtime of the simulation algorithm. In fact, one might even consider
employing more qubits if only the algorithmic performance could be im-
proved. At least to some degree, this turns out to be possible. While it
seems difficult to reduce the number of terms in a Hamiltonian, we can
at least make sure they act on the qubit system in a way that would allow
us to parallelize the algorithm.
This path is taken in the third chapter, where fermion-to-qubit mappings
are enhanced by adding a quantum code layer, for which a number of
additional qubits is required. While in the second chapter we have been
considering small quantum devices, the focus is now shifted to devices
with a larger number of qubits. However we do not want to forgo the
aforementioned limitations and assume those devices to contain an un-
limited amount of qubits. Instead, let us think of them as being from
the NISQ era. With that in mind we will cling to two reasonable strate-
gies. Firstly, we have to compromise between resource requirements and
parallelization. With additional qubits to spare, one might for instance
be tempted to encode the interactions of the fermionic Hamiltonian di-
rectly, but the problem with that is their number, and therefore the num-
ber of qubits, usually grows much faster with the system size. Secondly,

1.3 Quantum error correction 9

due to the connectivity, the quantum device is not going to be able to
perform operations between any two qubits. Thus simulated Hamilto-
nians should ideally only have terms involving coupled qubits, that can
be entangled without disturbing others. The quantum codes used in the
fermion-to-qubit mappings should thus be defined locally on a realistic
layout for a quantum device.
The quantum codes found in the third chapter incorporate both of these
strategies: they are local and planar on a square lattice and require a
number of qubits that scales with the system size, rather than the Hamil-
tonian. Note that the square lattice appears to be a natural choice, as it is
also the canvas for surface code spurring efforts to build transmon chips
in this layout. While we focus on mappings that provide a geometrical
embedding of qubit Hamiltonians, their codes would also allow for the
application of error mitigation techniques. While those strategies might
help improve results in the short term, scalable simulation algorithms
are believed to require quantum error correction. The difference between
the two is that error mitigation is aiming to filter noise from the obtained
data, whereas with error correction, one is aiming to prevent errors dur-
ing the computation. Practically, quantum error correction codes would
constitute a code layer that is unlike the codes in the third chapter. In
quantum error correction, physical gate instructions are replaced with
their logical counterparts and quantum circuits with their fault-tolerant
versions. The entire computation embedded in error correction cycles, in
which stabilizers are measured and syndromes are extracted. The prob-
lem is that running such cycles is technically challenging even without a
computation happening in between.

1.3 Quantum error correction

Definitions – Quantum error correction codes

§7 A quantum stabilizer code is a mapping between two systems with a different
qubit number, where the smaller system is encoded by the larger one. Let
us say that the smaller system has 𝑛1 qubits, and the larger one 𝑛2, then
a [[𝑛2, 𝑛1, 𝑑]] quantum code maps every state of the former system |𝜙⟩
to a state on the larger system |𝜙⟩: |𝜙⟩ ↦→ |𝜙⟩. The integer 𝑑 is called
code distance, and will be explained in §10. For the encoding to be a one-

10 Chapter 1. Introduction

to-one mapping, these quantum codes constrain 𝑛2 − 𝑛1 qubits worth of
degrees of freedom by so-called stabilizer conditions. That is, there is a set
of commuting Pauli strings such that for each member 𝑆 we find

𝑆 |𝜙⟩ = |𝜙⟩ , (1.9)

for all encoded states |𝜙⟩. 𝑆 is called a stabilizer. Considering that the
identity is part of the stabilizer set, it forms a group generated by 𝑛2 − 𝑛1

Pauli strings (using the operator product).

§8 Not just the states, but also the operators of the smaller system are encoded.
For every physical operator 𝒪 in the smaller, there exist ‘logical’ operators
𝒪 in the larger system, such that

𝒪 |𝜙⟩ ↦→ 𝒪 |𝜙⟩ . (1.10)

Note that there are several logical operators for one physical operator, since
their action on the code space is equivalent by the multiplication with sta-
bilizers, i.e. 𝒪 and 𝑆 · 𝒪 have the same effect. Logical operators generally
preserve the encoded subspace, i.e. they commute with the stabilizers.

§9 Stabilizer codes are the workhorse of quantum error correction, since Pauli
errors that might occur in a noisy device can either be identified when
they anticommute with stabilizers, or are stabilizers themselves and their
action therefore trivial. Continuously measuring stabilizers, the system
is projected into the subspaces corresponding to outcomes ⟨𝑆⟩ = ±1.
Flipped expectation values, referred to as syndromes, can then be attempted
to be corrected.

§10 With [[𝑛2, 𝑛1, 𝑑]] error correction codes, one can correct for all conceivable
Pauli errors up to a certain weight (the number of nontrivial Pauli oper-
ators in the string). Assuming that lower-weight Pauli errors occur with
a much higher rate, quantum information is preserved by being stored
nonlocally. It is thus unsurprising that the maximal weight of correctable
Pauli errors is connected to the minimal weight of logical operators, which
is the code distance 𝑑. While we can always correct for errors of weight up
to (𝑑 − 1)/2, they can be detected up to a weight of 𝑑 − 1. In the latter
case, the errors that occurred can no longer be discerned, but syndromes
may still serve as an indication to discard the outcome of this particular
computation. In an error correction setting, Pauli errors with a weight
higher than (𝑑− 1)/2 will generally cause an error on the logical system,

1.3 Quantum error correction 11

such that the physical error rate is translated into a logical one. An error
correction code is of course only useful if the latter is lower then the for-
mer, but there is a threshold of physical errors above which the code causes
the rate to increase. Is the noise of a device above this threshold, the goal
of fault tolerance, to decrease the logical noise until it becomes negligible,
cannot be achieved.

Definitions – Surface code

§11 An important example of quantum error correction codes is the surface
code. The code is popular due to its high threshold [14] and the availability
of efficient decoding algorithms [15]. Surface code is the planar version of
Kitaev’s toric code [16], that in its ‘rotated’ version [17], is an [[𝑑2, 1, 𝑑]]
code for an arbitrary odd-valued distance. The 𝑑 = 3 and 𝑑 = 5 version of
the code, as well as the logical operators are depicted in Figure 1.2(b)-(d).
Excluded from that count are 𝑑2 − 1 measurement qubits, that can help
perform the syndrome measurements fault-tolerantly, see Figure 1.2(a).
The code is planar on a square lattice, where the stabilizer generators are
overlapping plaquettes that have the structure of 𝑍⊗4 and 𝑋⊗4. With the
logical operators 𝑋 and 𝑍 being defined as 𝑍- and 𝑋-strings from one
boundary to the other, the protection of the logical qubit increases with the
diameter of the code patch.

∙

Quantum error correction not only requires many physical qubits, but
also precise operations on all of them in parallel. At this point, engi-
neering problems clash with theoretical proposals. In the third chapter
we consider two operations parallelizable if they do not use common re-
sources like qubits and couplers (or whatever mediates two-qubit gates),
but for real quantum devices, even that is not entirely true. In reality, pro-
cesses (that for instance implement quantum gates) might not just share
quantum resources, but also their control elements: let us say that the
qubits are connected to their classical control by some sort of lines. While
there has to be a method to select one individual qubit for a quantum
gate, it is naı̈ve to assume that a line would not be connected to a number

12 Chapter 1. Introduction

(b)
Z Z

X

XX

X Z

ZZ

Z

X

XX

XZ

ZZ

Z

Z Z

X

X

X

X

(c)

X

XX

X Z

ZZ

Z

X

XX

XZ

ZZ

Z

X

XX

X Z

ZZ

Z

X

XX

XZ

ZZ

Z

X

XX

X Z

ZZ

Z

X

XX

XZ

ZZ

Z

X

XX

X Z

ZZ

Z

X

XX

XZ

ZZ

Z

Z Z Z Z

Z Z Z Z

X

X

X

X

X

X

X

X

(a)

ZZ

X X

X X

(d)

X X X X

Z

Z

Z

Z

Z

Figure 1.2. Rotated surface code. (a) Connectivity graph of the distance-three
code. Two stabilizers are highlighted, where for each stabilizer the parity of
the involved physical qubits (white), in Z- or X-basis, is collected on the mea-
surement qubit (gray). For that purpose, two-qubit gates have to be performed
along the highlighted edges. (b) & (c) Stabilizer tiles for the distance three and
five code, where every tile is a separate stabilizer with the Pauli operators close
to the location of the physical qubits. (d) Logical operators of the distance-five
code. For rotated surface code, logical operators are Pauli strings across the code
patch. 𝑋 and 𝑍 operators in the figure overlap on exactly one qubit, on which
one acts as 𝑋 , the other as 𝑍 such that the logicals anticommute with each other,
but commute with all stabilizers.

1.3 Quantum error correction 13

of qubits at once. Given the sheer amount of qubits, not all of them can
possibly be wired individually. In a more realistic scheme, each qubit
would have several line contacts and an individual interaction would
take place only when multiple of them are operated, see Figure 1.3(a).
This allows for individual qubit control, but ultimately has repercussions
on parallelization. Imagine two operations in different places where the
control lines used for the first and second operation happen to interface at
another qubit that is to be left unaffected. Unfortunately, this is only guar-
anteed as long as the two operations are done sequentially, as paralleliz-
ing them will have spurious effects on the qubit at the crossing, shown in
Figure 1.3(b). This example is not only far from being unlikely but gen-
eralizes into a major drawback of the scheme. However, the reduction of
classical control architecture on the quantum device could be regarded
as more important. A scalable architecture is a prerequisite for bringing
as many qubits as possible onto the same device and into a fridge. As
long as those refrigerators do not grow substantially in size over the next
years, it will not alone be the amount of control elements to determine
whether fault tolerance can be achieved, but also the spatial size of the
qubits. The qubit density is of course specific to each platform, and while
transmons are a popular technology at the moment, they might eventu-
ally be made obsolete by spin qubits in semiconductor quantum dots, for
which a much higher density is expected to be achieved [18].

To make use of this density, a crossbar architecture for shared con-
trol of spin qubits in silicon quantum dots is proposed in [18]. As we
show in the fourth chapter, its limited control mechanisms are sufficient
to run quantum error correction cycles without spurious effects. For that
purpose we introduce a model of how the quantum dot processor can
be controlled from the periphery of the chip. With the focus on bridg-
ing the gap between device operations (like control pulses) and quantum
circuits, irrelevant details about the device physics are omitted in this
model. Taking into account the peculiarities of the system, we discuss
parallelization of the available gate operations while providing program-
matic steps for the native implementation of surface and color codes. To
achieve high fidelity gates, we even restrict the parallelization further.
Still, our estimates suggest that a large enough system will be able to
suppress the error such that it does not fail more often than a classical
memory.

14 Chapter 1. Introduction

(a)

(b)

spurious

intended
intended

Figure 1.3. Shared control of elements on a chip. (a) Each control line connects
to several elements. From the periphery, two lines (thickened) are operated to
address a single element at their crossing. (b) When attempting to address two
elements in parallel, the operated lines cross and can cause spurious effects at
an unintended crossing.

1.4 This thesis 15

1.4 This thesis

In this section, we will give a description of the objective in each chapter,
and summarize our methods and findings. Each chapter’s main contri-
bution is specified. Before we start however, a few words on the structure
of this thesis: the individual chapters are opened with a Background sec-
tion and a more detailed discussion about its results. Each chapter’s main
text is followed by a section called Supplement holding additional infor-
mation referenced in the text, and a table of relevant notations. Scientific
progress does not stop while students write their theses, and so a Fur-
ther work section is added to the second and third chapter, describing the
latest developments on their respective subjects. This thesis ends with a
Summary in english and in dutch, the Curriculum Vitae of its author and a
list of publications.

1.4.1 Chapter two

In the second chapter, we will get in touch with the Jordan-Wigner trans-
form [19] in its function as a fermion-to-qubit mapping. It is a simple
method, in which each mode is assigned a qubit, indicating fermionic
occupation when in the configuration |1⟩. Let us consider the example
of Figure 1.4(a), where the modes are represented by small bins and the
balls that fill them represent fermions. Beneath the modes, a register of
six qubits is shown encoding the state 𝑐†1𝑐

†
2𝑐

†
5 |Θ⟩. With the Jordan-Wigner

transform, the entire Fock space of six orbitals can be encoded in states
|𝜈⟩ where 𝜈 is any binary vector with, in this case, six components. How-
ever, a mere subset of vectors 𝜈 is usually needed to describe the system,
which means the Jordan-Wigner transform is inviting unphysical states.
In fact, with only the physical states, a number of qubits could be saved.
With the resource requirements in mind, we develop a framework for
classical encodings of the Jordan-Wigner transform: the idea is to repre-
sent only the set of physical configurations 𝜈, but use all possible config-
urations |𝜔⟩ to do so. Encoding fewer degrees of freedom, such a map-
ping requires fewer qubits. Mathematically, it is defined by an encoding
function 𝑒(𝜈) = 𝜔 and its inverse, the decoding. Since, in particular, the
decoding function can be nonlinear with respect to its input 𝜔, the op-
erator transform is re-expressed in terms of a superoperator X, that can
output gate instructions even for those codes. On code examples, we dis-
cuss the trade-offs between resource requirements and Hamiltonian size.

16 Chapter 1. Introduction

The main contribution of this chapter is a general approach for fermion-
to-qubit mapping using classical codes.

1.4.2 Chapter three

In the third chapter, we touch upon the subject of the Jordan-Wigner
transform of operators. We remark that physical Hamiltonians like (1.8)
are build from products 𝑐†𝑖𝑐𝑗 , through which they conserve the number
of particles. What terms like 𝑐†𝑖𝑐𝑗 do is to move fermions from mode 𝑗 to
mode 𝑖, so the way to imitate this behavior for the Jordan-Wigner trans-
form is to flip the corresponding qubits. However, since the 𝑐†𝑖𝑐𝑗 may an-
ticommute with creation operators of 𝑐†𝑖1𝑐

†
𝑖2
...𝑐†𝑖𝑀 |Θ⟩, and so minus signs

have to be accounted for. It follows that Pauli strings, translated from
hopping terms like 𝑐†𝑖𝑐𝑗 , not only flip qubits 𝑖 and 𝑗, but also scan for
anticommutations using 𝑍 operators on all qubits in between them. In
Figure 1.4(b) it is shown how a fermion hopping from modes 1 to 6 ac-
quires two minus signs from passing particles in modes 2 and 5.
The Pauli string encoding this event is 𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗ 𝑍5 ⊗ 𝑋6.
Note that this substring of 𝑍-operators does not occur in local hoppings.
However, this is a statement about locality in one dimension. In the
third chapter, we are interested in harnessing the connectivity of two-
dimensional qubit arrays for quantum simulation – a domain in which
the Jordan-Wigner transform fails to map local interactions into local
gates. A nonlocal string that results from a hopping interaction crossing
several rows (when the modes are ordered along a winding pattern from
row to row) is shown in Figure 1.4(c). As a one-dimensional fermion-
to-qubit mapping, the Jordan-Wigner transform is bound to have non-
local connections in two dimensions. However, two-dimensionality can
be achieved by concatenation with a suitable quantum code. By adding
auxiliary qubits and re-constraining them in stabilizers 𝑆, an arbitrary
state of the memory (1.5) is mapped into something proportional to
[
∏︀

𝑆(1 + 𝑆)] |𝜙⟩ ⊗ |𝜒⟩. Since the stabilizers 𝑆 have an effect on |𝜒⟩, the
configuration of the auxiliary qubits, one could argue that they store the
effect 𝑆 on |𝜙⟩. By the non-uniqueness of logical operators, we multiply
nonlocal strings with stabilizers 𝑆, which, if the stabilizers are chosen
appropriately, leads to the cancellation of the entire 𝑍-substring. What
remains of the logical operator is a local term on the original qubits and a
contribution on the auxiliaries. Ensuring these remainders are local is one

1.4 This thesis 17

of the many tasks covered in the third chapter, in which we also general-
ize the notion of locality to long-range interactions. The main contribu-
tion of this chapter is a novel fermion-to-qubit mapping using quantum
codes to manipulate operators.

Z
X

X
X

X
X

X
X

X
X

X
Z

|1
⟩

|1
⟩

|0
⟩

|0
⟩

|1
⟩

|0
⟩

−
1

+
1

+
1

−
1

Z
X

X
X

X
Z

(a
)

(b
)

(c
)

Fi
gu

re
1.

4.
Jo

rd
an

-W
ig

ne
r

tr
an

sf
or

m
.T

he
bi

ns
re

pr
es

en
tf

er
m

io
ni

c
m

od
es

,t
he

ba
lls

fe
rm

io
ns

.T
he

m
ap

pi
ng

to
qu

bi
ts

on
a

ch
ip

is
sh

ow
n.

(a
)B

as
is

tr
an

sf
or

m
w

it
h

re
sp

ec
tt

o
a

ce
rt

ai
n

fe
rm

io
ni

c
oc

cu
pa

ti
on

.(
b)

O
pe

ra
to

r
m

ap
pi

ng
.A

n
ex

ch
an

ge
te

rm
,i

n
w

hi
ch

a
fe

rm
io

n
ch

an
ge

s
m

od
e

is
m

ap
pe

d
to

a
Pa

ul
is

tr
in

g
in

w
hi

ch
th

e
co

rr
es

po
nd

in
g

qu
bi

ts
ar

e
fli

pp
ed

.T
he

fe
rm

io
n’

s
an

ti
co

m
m

ut
at

io
ns

ar
e

de
no

te
d

by
‘−

1
’s

ig
ns

an
d

ac
co

un
te

d
fo

rb
y
𝑍

-o
pe

ra
to

rs
in

th
e

st
ri

ng
.(

c)
N

on
lo

ca
lP

au
li

st
ri

ng
s

re
su

lt
in

g
fr

om
a

ve
rt

ic
al

ho
pp

in
g

te
rm

in
an

S-
pa

tt
er

n
ve

rs
io

n
of

th
e

Jo
rd

an
-W

ig
ne

rt
ra

ns
fo

rm
in

tw
o

di
m

en
si

on
s.

1.4 This thesis 19

1.4.3 Chapter four

In the fourth chapter, we adapt surface and color code algorithms to the
proposed architecture of [18], consisting of a grid of quantum dots on a
silicon substrate and physical gates as sketched in Figure 4.1. A quan-
tum dot is a physical site that can confine a single electron serving as a
qubit. A square lattice of them is steered by shared control elements con-
tacted from the grid’s perimeter. Adjacent dots, for instance, are isolated
by barrier gates extending horizontally and vertically over the grid. In
this way, one barrier is shared by an entire row or column of dot pairs.
To perform a two-qubit quantum gate, the barrier voltage on the barrier
between the corresponding dot pairs must be changed, but the operation
also affects all parallel dot pairs. This is however not all, since for two-
qubit gates, the potential of one of the dots must be changed. The dot
potential is manipulated via a type of physical gate, connecting quan-
tum dots diagonally with respect to the direction of the barriers. Only
where the diagonal crosses with the barrier, the two-qubit gate is per-
formed. Also, the type and fidelity of the gates varies with the direction
the dot pair is aligned. Fortunately, qubit positions can be changed by co-
herent shuttling [20], such that we can solely rely on high-fidelity gates.
The shuttling is instigated by the manipulation of barrier and potentials,
such that it can be performed by using the barrier and diagonal gate lines.
Shuttling also has a part in performing single-qubit quantum gates at an
individual address, since the system only allows to perform these opera-
tions globally, on exactly half of the dots. These operations are sufficient
to run quantum error correction codes in a highly parallelized fashion,
but a higher fidelity is expected when the operation are performed such
that parallel two-qubit gates can have individual durations. All of these
considerations are considered in the logical error analysis. The main con-
tribution of this chapter is a road map for scalable quantum error correc-
tion in silicon quantum dots.

20 Chapter 1. Introduction

Chapter 2

Saving qubits with classical
codes

2.1 Background

One essential component in realizing simulations of fermionic models
on quantum computers is the representation of such models in terms
of qubits and quantum gates. Following initial simulation schemes for
fermions hopping on a lattice [3], more recent proposals used the Jordan-
Wigner [19] transform [21–24], the Verstraete-Cirac mapping [25], or the
Bravyi-Kitaev transform [26] to find a suitable representation. Specifi-
cally, the task of all such representations is two-fold. First, we seek a
mapping from states in the fermionic Fock space of 𝑁 sites to the space
of 𝑛 qubits. The fermionic Fock space is spanned by 2𝑁 basis vectors
|𝜈1, . . . , 𝜈𝑁 ⟩ where 𝜈𝑗 ∈ {0, 1} indicates the presence (𝜈𝑗 = 1) or absence
(𝜈𝑗 = 0) of a spinless fermionic particle at orbital 𝑗. Such a mapping
e : Z⊗𝑁

2 ↦→ Z⊗𝑛
2 is also called an encoding [27]. An example of such an en-

coding is the trivial one in which 𝑛 = 𝑁 and qubits are used to represent
the binary string 𝜈 = (𝜈1, ... , 𝜈𝑁)⊤. That is,

|𝜔⟩ = |e (𝜈)⟩ =
𝑛⨂︁

𝑗=1

|𝜔𝑗⟩ , (2.1)

where 𝜔𝑗 = 𝜈𝑗 in the standard basis {|0⟩ , |1⟩}.
Second, we need a way to simulate the dynamics of fermions on

these 𝑁 orbitals. These dynamics can be modeled entirely in terms of

22 Chapter 2. Saving qubits with classical codes

the annihilation and creation operators 𝑐𝑗 and 𝑐†𝑗 that satisfy the anti-
commutation relations (1.7). Following these relations, the operators act
on the fermionic Fock space as

𝑐†𝑖𝑚 𝑐†𝑖1 ... 𝑐
†
𝑖𝑚−1

𝑐†𝑖𝑚𝑐
†
𝑖𝑚+1

... 𝑐†𝑖𝑀 |Θ⟩ = 0 (2.2)

𝑐𝑖𝑚 𝑐†𝑖1 ... 𝑐
†
𝑖𝑚−1

𝑐†𝑖𝑚+1
... 𝑐†𝑖𝑀 |Θ⟩ = 0 (2.3)

𝑐𝑖𝑚 𝑐†𝑖1 ... 𝑐
†
𝑖𝑚−1

𝑐†𝑖𝑚𝑐
†
𝑖𝑚+1

... 𝑐†𝑖𝑀 |Θ⟩

= (−1)𝑚−1 𝑐†𝑖1 ... 𝑐
†
𝑖𝑚−1

𝑐†𝑖𝑚+1
... 𝑐†𝑖𝑀 |Θ⟩ (2.4)

𝑐†𝑖𝑚 𝑐†𝑖1 ... 𝑐
†
𝑖𝑚−1

𝑐†𝑖𝑚+1
... 𝑐†𝑖𝑀 |Θ⟩

= (−1)𝑚−1 𝑐†𝑖1 ... 𝑐
†
𝑖𝑚−1

𝑐†𝑖𝑚𝑐
†
𝑖𝑚+1

... 𝑐†𝑖𝑀 |Θ⟩ , (2.5)

where |Θ⟩ is the fermionic vacuum and {𝑖1, ... , 𝑖𝑀} ⊆ {1, ... , 𝑁}. Map-
pings of the operators 𝑐𝑗 to qubits typically use the Pauli matrices 𝑋 , 𝑍,
and 𝑌 acting on one qubit, characterized by their anti-commutation rela-
tions [𝑃𝑖, 𝑃𝑗]+ = 2 𝛿𝑖𝑗 I, for all 𝑃𝑖 ∈ 𝒫 = {𝑋,𝑌, 𝑍}. An example of such
a mapping is the Jordan-Wigner transform [19] given by

𝑐𝑗 =̂ 𝑍⊗𝑗−1 ⊗ 𝜎− ⊗ I⊗𝑛−𝑗 (2.6)

𝑐†𝑗 =̂ 𝑍⊗𝑗−1 ⊗ 𝜎+ ⊗ I⊗𝑛−𝑗 (2.7)

where

𝜎− = |0⟩⟨1| = 1

2
(𝑋 + 𝑖𝑌) , (2.8)

𝜎+ = |1⟩⟨0| = 1

2
(𝑋 − 𝑖𝑌) . (2.9)

It is easily verified that together with the trivial encoding (2.1) this trans-
formation satisfies the desired properties (2.2)-(2.5) and can hence be
used to represent fermionic models with qubit systems.

In order to assess the suitability of an encoding scheme for the simu-
lation of fermionic models on a quantum computer, a number of param-
eters are of interest. The first is the total number of qubits 𝑛 needed in
the simulation. Second, we may care about the gate size of the opera-
tors 𝑐𝑗 and 𝑐†𝑗 when mapped to qubits. In its simplest form, this prob-
lem concerns the total number of qubits on which these operators do not

2.2 Results 23

act trivially, that is, the number of qubits 𝐿, on which an operator acts
as 𝑃𝑗 ∈ 𝒫 instead of the identity I, sometimes called the Pauli length.
Different transformations can lead to dramatically different performance
with respect to these parameters. For both the Jordan-Wigner as well as
the Bravyi-Kitaev transform 𝑛 = 𝑁 , but we have 𝐿 = 𝑂(𝑛) for the first,
while 𝐿 = 𝑂(log 𝑛) for the second. We remark that in experimental im-
plementations we typically do not only care about the absolute number
𝐿, but rather the specific gate size and individual difficulty of the qubit
gates each of which may be easier or harder to realize in a specific exper-
imental architecture. For error-corrected quantum simulation, the cost in
T-gates is as important to optimize as the circuit depth [28], and quan-
tum devices with restricted connectivity even require mappings tailored
to them [29, 30]. Finally, we remark that instead of looking for a mapping
for individual operators 𝑐

(†)
𝑗 we may instead opt to map pairs (or higher

order terms) of such operators at once, or even look to represent sums of
such operators.

2.2 Results

Here, we propose a general family of mappings of fermionic models
to qubit systems and quantum gates that allow us to trade off the nec-
essary number of qubits 𝑛 against the difficulty of implementation as
parametrized by 𝐿, or more complicated quantum gates such as CPHASE.
Ideally, one would of course like both the number of qubits, as well as the
gate size to be small. We show that our mappings can lead to significant
savings in qubits for a variety of examples (see Table 2.1) as compared
to the Jordan-Wigner transform for instance, at the expense of greater
complexity in realizing the required gates. The latter may lead to an in-
creased time required for the simulation depending on which gates are
easy to realize in a particular quantum computing architecture.

At the heart of our efforts is an entirely general construction of the
creation and annihilation operators in (2.2) given an arbitrary encoding e
and the corresponding decoding d. As one might expect, this construc-
tion is not efficient for every choice of encoding e or decoding d. How-
ever, for linear encodings e, but possibly nonlinear decodings d, they can
take on a very nice form. While in principle any classical code with the
same properties can be shown to yield such mappings, we provide an
appealing example of how a classical code of fixed Hamming weight [31]

24 Chapter 2. Saving qubits with classical codes

can be used to give an interesting mapping.
Two other approaches allow us to be more modest with the algorith-

mic depth in either accepting a qubit saving that is linear with 𝑁 , or just
saving a fixed amount of qubits for hardly any cost at all.
In previous works, trading quantum resources has been addressed for
general algorithms [32], and quantum simulations [33–35]. In the two
works of Moll et al. and Bravyi et al., qubit requirements are reduced
with a scheme that is different from ours. A qubit Hamiltonian is first
obtained with e.g. the Jordan-Wigner transform, then unitary operations
are applied to it in order taper qubits off successively. The paper by
Moll et al. provides a straightforward method to calculate the Hamil-
tonian, that can be used to reduce the amount of qubits to a minimum,
but the number of Hamiltonian terms scales exponentially with the par-
ticle number. The notion that our work is based on, was first introduced
in [34] by Bravyi et al., for linear en- and decodings. With the generaliza-
tion of this method, we hope to make the goal of qubit reduction more
attainable in reducing the effort to do so. The reduction method is medi-
ated by nonlinear codes, of which we provide different types to choose
from. The transform of the Hamiltonian is straight-forward from there
on, and we give explicit recipes for arbitrary codes. We can summarize
our contributions as follows.

• We show that for any encoding e : Z⊗𝑁
2 ↦→ Z⊗𝑛

2 there exists a map-
ping of fermionic models to quantum gates. For the special case
that this encoding is linear, our procedure can be understood as
a slightly modified version of the perspective taken in [27]. This
gives a systematic way to employ classical codes for obtaining such
mappings.

• Using particle-conservation symmetry, we develop 3 types of codes
that save a constant, linear and exponential amount of qubits (see
Table 2.1 and Sections 2.4.3.1-2.4.3.3). An example from classical
coding theory [31] is used to obtain significant qubit savings (here
called the binary addressing code), at the expense of increased gate
difficulty (unless the architecture would easily support multi-controlled
gates).

• The codes developed are demonstrated on two examples from quan-
tum chemistry and physics.

2.2 Results 25

- The Hamiltonian of the well-studied hydrogen molecule in
minimal basis is re-shaped into a two-qubit problem, using
a simple code.

- A Fermi-Hubbard model on a 2×5 lattice and periodic bound-
ary conditions in the lateral direction is considered. We parametrize
and compare the sizes of the resulting Hamiltonians, as we
employ different codes to save various amounts of qubits. In
this way, the trade-off between qubit savings and gate com-
plexity is illustrated (see Table 2.2).

M
ap

pi
ng

En
-/

D
ec

od
in

g
ty

pe
Q

ub
it

s
sa

ve
d

𝑛
(𝑁

,𝐾
)

R
es

ul
ti

ng
ga

te
s

O
ri

gi
n

Jo
rd

an
-W

ig
ne

r
|P

ar
it

y
tr

.
lin

ea
r/

lin
ea

r
no

ne
𝑁

le
ng

th
-𝑂

(𝑛
)

Pa
ul

is
tr

in
gs

[1
9,

27
]

Br
av

yi
-K

it
ae

v
tr

an
sf

or
m

lin
ea

r/
lin

ea
r

no
ne

𝑁
le

ng
th

-𝑂
(l
o
g
𝑛
)

Pa
ul

is
tr

in
gs

[2
6]

C
he

ck
su

m
co

de
s

lin
ea

r/
af

fin
e

lin
ea

r
𝑂
(1
)

𝑁
−

1
le

ng
th

-𝑂
(𝑛

)
Pa

ul
is

tr
in

gs
[3

6]
Bi

na
ry

ad
dr

es
si

ng
co

de
s

no
nl

in
ea

r/
no

nl
in

ea
r

𝑂
(2

𝑛
/
𝐾
)

lo
g
(︀ 𝑁𝐾

/
𝐾
!)︀

(𝑂
(𝑛

))
-c

on
tr

ol
le

d
ga

te
s

[3
6]

Se
gm

en
tc

od
es

lin
ea

r/
no

nl
in

ea
r

𝑂
(𝑛

/
𝐾
)

𝑁
/
(1

+
1

2
𝐾
)

(𝑂
(𝐾

))
-c

on
tr

ol
le

d
ga

te
s

[3
6]

Ta
bl

e
2.

1.
O

ve
rv

ie
w

of
m

ap
pi

ng
s

pr
es

en
te

d
in

th
is

pa
pe

r,
lis

te
d

by
th

e
co

m
pl

ex
it

y
of

th
ei

r
co

de
fu

nc
ti

on
s,

th
ei

r
qu

bi
t

sa
vi

ng
s,

qu
bi

tr
eq

ui
re

m
en

ts
(𝑛

),
pr

op
er

ti
es

of
th

e
re

su
lt

in
g

ga
te

s
an

d
fir

st
ap

pe
ar

an
ce

.M
ap

pi
ng

s
ca

n
be

co
m

pa
re

d
w

it
h

re
sp

ec
tt

o
th

e
si

ze
of

pl
ai

n
w

or
ds

(𝑁
)a

nd
th

ei
r

ta
rg

et
ed

H
am

m
in

g
w

ei
gh

t𝐾
.W

e
al

so
re

fe
r

to
di

ff
er

en
tm

et
ho

ds
th

at
ar

e
no

tl
is

te
d,

as
th

ey
do

no
tr

el
y

on
co

de
s

in
an

y
w

ay
[3

3,
34

].

2.3 Encoding the entire Fock space 27

2.3 Encoding the entire Fock space

To illustrate the general use of (possibly nonlinear) encodings to repre-
sent fermionic models, let us first briefly generalize how existing map-
pings can be phrased in terms of linear encodings in the spirit of [27]. Un-
der consideration in representing the dynamics is a mapping for second-
quantized Hamiltonians of the form

𝐻 =
∞∑︁
𝑙=0

∑︁
𝑎∈[𝑁]⊗𝑙

𝑏∈Z⊗𝑙
2

ℎ𝑎𝑏

𝑙∏︁
𝑖=1

(𝑐†𝑎𝑖)
𝑏𝑖(𝑐𝑎𝑖)

1+𝑏𝑖 mod 2

=
∑︁
𝑙

∑︁
𝑎,𝑏

with ℎ𝑎𝑏 ̸=0

̂︀ℎ𝑎𝑏 , (2.10)

where ℎ𝑎𝑏 are complex coefficients, chosen in a way as to render 𝐻 her-
mitian. For our convenience, we use length-𝑙 𝑁 -ary vectors
𝑎 = (𝑎1, ... , 𝑎𝑙)

⊤ ∈ [𝑁]⊗𝑙 to parametrize the orbitals on which a term̂︀ℎ𝑎𝑏 is acting, and write [𝑁] = {1, ... , 𝑁}. A similar notation will be
employed for binary vectors of length 𝑙, with 𝑏 = (𝑏1, ... , 𝑏𝑙)

⊤ ∈ Z⊗𝑙
2 ,

Z2 = {0, 1}, deciding whether an operator is a creator or annihilator by
the rules (𝑐(†)𝑖)1 = 𝑐

(†)
𝑖 and (𝑐

(†)
𝑖)0 = 1.

Every term ̂︀ℎ𝑎𝑏 is a linear operation ℱ𝑁 ↦→ ℱ𝑁 , with ℱ𝑁 being the Fock
space restricted on 𝑁 orbitals, the direct sum of all possible anti-symmetrized
𝑀 -particle Hilbert spaces ℋ𝑀

𝑁 : ℱ𝑁 =
⨁︀𝑁

𝑚=0ℋ𝑚
𝑁 . Conventional map-

pings transform states of the Fock space ℱ𝑁 into states on 𝑁 qubits, car-
rying over all linear operations as well ℒ(ℱ𝑁) ↦→ ℒ((C2)⊗𝑁).
Before we start presenting conventional transformation schemes, we need
to make a few remarks on transformed Hamiltonians and notations per-
taining to them. First of all, we identify the set of gates {𝒫, I}⊗𝑛 =
{𝑋,𝑌, 𝑍, I}⊗𝑛 with the term Pauli strings (on 𝑛 qubits). The previously
mentioned Jordan-Wigner transform, obviously has the power to trans-
form (2.10) into a Hamiltonian that is a weighted sum of Pauli strings
on 𝑁 qubits. General transforms, however, might involve other types of
gates. We however have the choice to decompose these into Pauli strings.
One might want to do so when using standard techniques for Hamilto-
nian simulation. In the following, we will denote the correspondence of
second quantized operators or states 𝐵 to their qubit counterparts 𝐶 by:
𝐵 =̂ 𝐶. For convenience, we will also omit identities in Pauli strings and

28 Chapter 2. Saving qubits with classical codes

rather introduce qubit labels, e.g. 𝑋 ⊗ I⊗𝑋 = 𝑋1 ⊗𝑋3 = (
⨂︀

𝑖∈{1,3}𝑋𝑖)

and write I⊗𝑛 = I. A complete table of notations can be found in Section
2.8.

Consider a linear encoding of 𝑁 fermionic sites into 𝑛 = 𝑁 qubits
given by a binary matrix 𝐴 such that

|𝜔⟩ = |e (𝜈)⟩ = |𝐴𝜈⟩ =̂

⎛⎝ 𝑁∏︁
𝑗=1

(𝑐†𝑗)
𝜈𝑗

⎞⎠ |Θ⟩ (2.11)

and 𝐴 is invertible, i.e.
(︀
𝐴𝐴−1 mod 2

)︀
= I. Note that in this case, the

decoding given by 𝜈 = d(𝜔) =
(︀
𝐴−1𝜔

)︀
is also linear. It is known that

any such matrix 𝐴, subsequently also yields a mapping of the fermionic
creation and annihilation operators to qubit gates [27]. To see how these
are constructed, let us start by noting that they must fulfill the properties
given in (2.2)-(2.5) and (1.7), which motivates the definition of a parity, a
flip and an update set below:

1. 𝑐
(†)
𝑖𝑚

anticommutes with the first 𝑚 − 1 operators and thus acquires
the phase (−1)𝑚−1.

2. A creation operator 𝑐†𝑖𝑚 might be absent (present) in between 𝑐†𝑖𝑚−1

and 𝑐†𝑖𝑚+1
, leading the rightmost operator 𝑐(†)𝑖𝑚

to map the entire state

to zero since 𝑐𝑖𝑚 |Θ⟩ = 0
(︁
𝑐†𝑖𝑚𝑐

†
𝑖𝑚

= 0
)︁

.

3. Given that the state was not annihilated, the occupation of site 𝑖𝑚
has to be changed. This means a creation operator 𝑐†𝑖𝑚 has to be
added or removed between 𝑐†𝑖𝑚−1

and 𝑐†𝑖𝑚+1
.

These rules tell us what the transform of an operator 𝑐(†)𝑗 has to inflict on
a basis state (2.11). In order to implement the phase shift of the first rule,
a series of Pauli-𝑍 operators is applied on qubits, whose numbers are in
the parity set (with respect to 𝑗 ∈ [𝑁]), 𝑃 (𝑗) ⊆ [𝑁]. Following the second
rule we project onto the ±1 subspace of the 𝑍-string on qubits indexed
by another [𝑁] subset, the so-called flip set of 𝑗, 𝐹 (𝑗). The update set of 𝑗,
𝑈(𝑗) ⊆ [𝑁] labels the qubits to be flipped completing the third rule using

2.3 Encoding the entire Fock space 29

an 𝑋-string.

(𝑐†𝑗)
𝑏(𝑐𝑗)

𝑏+1mod 2 =̂

1

2

⎛⎝ ⨂︁
𝑘∈𝑈(𝑗)

𝑋𝑘

⎞⎠⎛⎝I− (−1)𝑏
⨂︁

𝑙∈𝐹 (𝑗)

𝑍𝑙

⎞⎠ ⨂︁
𝑚∈𝑃 (𝑗)

𝑍𝑚 , (2.12)

with 𝑏 ∈ Z2. 𝑃 (𝑗), 𝐹 (𝑗) and 𝑈(𝑗) depend on the matrices 𝐴 and 𝐴−1

as well as the parity matrix 𝑅. The latter is a (𝑁 × 𝑁) binary matrix
which has its lower triangle filled with ones, but not its diagonal. For the
matrix entries this means 𝑅𝑖𝑗 = 𝜃𝑖𝑗 , with 𝜃𝑖𝑗 as the discrete version of the
Heaviside function

𝜃𝑖𝑗 =

{︃
0 𝑖 ≤ 𝑗

1 𝑖 > 𝑗 ,
𝑅 =

⎡⎢⎢⎢⎢⎣
0
1 0
1 1 0
1 1 1 0
...

...
...

.

⎤⎥⎥⎥⎥⎦ . (2.13)

The set members are obtained in the following fashion:

1. 𝑃 (𝑗) contains all column numbers in which the 𝑗-th row of matrix
𝑅𝐴−1 has non-zero entries.

2. 𝐹 (𝑗) contains the column labels of non-zero entries in the 𝑗-th row
of 𝐴−1.

3. 𝑈(𝑗) contains all row numbers in which the 𝑗-th column of 𝐴 has
non-zero entries.

Note that this definition of the sets differs from their original appear-
ance in [27, 37], where diagonal elements are not included. In this way,
our sets are not disjoint, which leads to 𝑍-cancellations and appearance
of Pauli-𝑌 operators, but we have generalized the sets for arbitrary in-
vertible matrices, and provided a pattern for other transforms later.

2.3.1 Jordan-Wigner, Parity and Bravyi-Kitaev transform

As an illustration, we present popular examples of these linear transfor-
mations, note again that all of these will have 𝑛 = 𝑁 . The Jordan-Wigner

30 Chapter 2. Saving qubits with classical codes

transform is a special case for 𝐴 = I, leading to the direct mapping. The
operator transform gives 𝐿 = 𝑂(𝑁) Pauli strings as

(𝑐†𝑗)
𝑏(𝑐𝑗)

𝑏+1mod 2 =̂
1

2

(︁
𝑋𝑗 + 𝑖(−1)𝑏 𝑌𝑗

)︁⨂︁
𝑚<𝑗

𝑍𝑚 . (2.14)

In the parity transform [27], we have 𝐿 = 𝑂(𝑁) 𝑋-strings:

𝐴−1 =

⎡⎢⎢⎢⎣
1
1 1

.
1 1

⎤⎥⎥⎥⎦ , 𝐴 =

⎡⎢⎢⎢⎣
1
1 1
...

...
. . .

1 1 · · · 1

⎤⎥⎥⎥⎦ , (2.15)

(𝑐†𝑗)
𝑏(𝑐𝑗)

𝑏+1mod 2 =̂
1

2

(︁
𝑍𝑗−1 ⊗𝑋𝑗 − 𝑖(−1)𝑏 𝑌𝑗

)︁ 𝑁⨂︁
𝑚=𝑗+1

𝑋𝑚 . (2.16)

The Bravyi-Kitaev transform [26] is defined by a matrix 𝐴 [27, 37] that
has non-zero entries according to a certain binary tree rule, achieving
𝐿 = 𝑂(log𝑁).

2.4 Encoding only a subspace

2.4.1 Saving qubits by exploiting symmetries

Our goal is to be able to trade quantum resources, which is done by re-
ducing degrees of freedom by exploiting symmetries. For that purpose,
we provide a theoretical foundation to characterize the latter.
Parity, Jordan-Wigner and Bravyi-Kitaev transforms encode all ℱ𝑁 states
and provide mappings for every ℒ (ℱ𝑁) operator. Unfortunately, they
require us to own a 𝑁 -qubit quantum computer, which might be unnec-
essary. In fact, the only operator we want to simulate is the Hamilto-
nian, which usually has certain symmetries. Taking these symmetries
into account enables us to perform the same task with 𝑛 ≤ 𝑁 qubits in-
stead. Symmetries usually divide the ℱ𝑁 into subspaces, and the idea
is to encode only one of those. Let ℬ be a basis spanning a subspace
span(ℬ) ⊆ ℱ𝑁 be associated with a Hamiltonian (2.10), where for ev-
ery 𝑙, 𝑎, 𝑏; ̂︀ℎ𝑎𝑏 : span(ℬ) ↦→ span(ℬ). Usually, Hamiltonian symme-
tries generate many such (distinct) subspaces. Under consideration of

2.4 Encoding only a subspace 31

additional information about our problem, like particle number, parity
or spin polarization, we select the correct subspace. Note that particle
number conservation is by far the most prominent symmetry to take into
account. It is generated by Hamiltonians that are linear combinations
of products of 𝑐†𝑖𝑐𝑗 | 𝑖, 𝑗 ∈ [𝑁]. These Hamiltonians, originating from
first principles, only exhibit terms conserving the total particle number;̂︀ℎ𝑎𝑏 : ℋ𝑀

𝑁 ↦→ ℋ𝑀
𝑁 . From all the Hilbert spaces ℋ𝑀

𝑁 , one considers the
space with the particle number matching the problem description.
These symmetries will be utilized in the next section: we develop a lan-
guage that allows for encodings 𝑒 that reduce the length of the binary
vectors 𝑒(𝜈) as compared to 𝜈. This means that the state 𝜈 will be en-
coded in 𝑛 ≤ 𝑁 qubits, since each bit saved corresponds to a qubit elim-
inated. As suggested by Bravyi et al. [34], qubit savings can be achieved
under the consideration of non-square, invertible matrices 𝐴. However,
we will see below that using transformations based on nonlinear encod-
ings and decodings 𝑑 (the inverse transform defined by 𝐴−1 before), we
can eliminate a number of qubits that scales with the system size. For
linear codes on the other hand, we find a mere constant saving.

2.4.2 General transforms

We here show how second-quantized operators and states, Hamiltonian
symmetries and the fermionic basis ℬ are fused into a simple descrip-
tion of occupation basis states. While in this section all general ideas
are presented, we would like to refer the reader to the appendices for
details: to Section 2.7.1 in particular, which holds the proof of the un-
derlying techniques. Fermionic basis states are represented by binary
vectors 𝜈 ∈ Z⊗𝑁

2 , with its components implicating the occupation of
the corresponding orbitals. Basis states inside the quantum computer,
on the other hand, are represented by binary vectors on a smaller space
𝜔 ∈ Z⊗𝑛

2 . These vectors are code words of the former 𝜈, where the bi-
nary code connecting all 𝜈 and 𝜔 is possibly nonlinear. In the end, an
instance of such a code will be sufficient to describe states and operators,
in a similar way than the matrix pair (𝐴, 𝐴−1) governs the conventional
transforms already presented. We now start by defining such codes and
connect them to the state mappings.
Let span (ℬ) be a subspace of ℱ𝑁 , as defined previously. For 𝑛 ≥ log |ℬ|,
we define two binary vector functions 𝑑 : Z⊗𝑛

2 ↦→ Z⊗𝑁
2 , 𝑒 : Z⊗𝑁

2 ↦→ Z⊗𝑛
2 ,

32 Chapter 2. Saving qubits with classical codes

where we regard each component 𝑑 = (𝑑1, ... , 𝑑𝑁)⊤ as a binary function
𝑑𝑖 : Z⊗𝑛

2 ↦→ Z2. Furthermore we introduce the binary basis set 𝒱 ⊆ Z⊗𝑁
2 ,

with

𝜈 ∈ 𝒱, only if

(︃
𝑁∏︁
𝑖=1

(𝑐†𝑖)
𝜈𝑖

)︃
|Θ⟩ ∈ ℬ . (2.17)

All elements in ℬ shall be represented in 𝒱 . If for all 𝜈 ∈ 𝒱 the binary
functions 𝑒 and 𝑑 satisfy 𝑑 (𝑒 (𝜈)) = 𝜈, and for all 𝜔 ∈ Z⊗𝑛

2 : 𝑑 (𝜔) ∈ 𝒱 ,
then we call the two functions encoding and decoding, respectively. An
encoding-decoding pair (𝑒, 𝑑) forms a code.
We thus have obtained a general form of encoding, in which qubit states
only represent the subspace span (ℬ). The decoding, on the other hand,
translates the qubit basis back to the fermionic one:

|𝜔⟩ =
𝑛⨂︁

𝑗=1

|𝜔𝑗⟩ =̂

(︃
𝑁∏︁
𝑖=1

(𝑐†𝑖)
𝑑𝑖(𝜔)

)︃
|Θ⟩ . (2.18)

We intentionally keep the description of these functions abstract, as the
code used might be nonlinear, i.e. it cannot be described with matrices
𝐴, 𝐴−1. Nonlinearity is thereby predominantly encountered in decoding
rather than in encoding functions, as we will see in the examples obtained
later.
For any code (𝑒, 𝑑), we will now present the transform of fermionic op-
erators into qubit gates. Before we can do so however, two issues are to
be addressed. Firstly, one observes that we cannot hope to find a trans-
formation recipe for a singular fermionic operator 𝑐

(†)
𝑗 . The reason for

this is that the latter operator changes the occupation of the 𝑗-th orbital.
As a consequence, a state with the occupation vector 𝜈 is mapped to
𝜈 + 𝑢𝑗 , where 𝑢𝑗 is the unit vector of component 𝑗; (𝑢𝑗)𝑖 = 𝛿𝑖𝑗 . The
problem is that since we have trimmed the basis, 𝜈 + 𝑢𝑗 will proba-
bly not be in 𝒱 , which means this state is not encoded1. The action
of 𝑐

(†)
𝑗 is, thus, not defined. We can however obtain a recipe for the

non-vanishing Hamiltonian terms ̂︀ℎ𝑎𝑏 as they do not escape the encoded
space being (span(ℬ) ↦→ span(ℬ))-operators. Note that this issue is never

1‘Unencoded state’ is actually a slightly misleading term: when we say a state 𝜆 ∈
Z⊗𝑁
2 is not encoded, we actually mean that it cannot be encoded and correctly decoded,

so 𝑑 (𝑒 (𝜆)) ̸= 𝜆.

2.4 Encoding only a subspace 33

encountered in the conventional transforms, as they encode the entire
Fock space.
Secondly, we are yet to introduce a tool to transform fermionic operators
into quantum gates. The structure of the latter has to be similar to the
linear case, as they mimic the same dynamics as presented in Section 2.3.
In general, a gate sequence will commence with some kind of projectors
into the subspace with the correct occupation, as well as operators imple-
menting parity phase shifts. The sequence should close with bit flips to
update the state. The task is now to determine the form of these opera-
tors. The issue boils down to finding operators that extract binary infor-
mation from qubit states, and map it onto their phase. In other words, we
need to find linear operators associated with e.g. the binary function 𝑑𝑗 ,
such that it maps basis states |𝜔⟩ ↦→ (−1)𝑑𝑗(𝜔) |𝜔⟩. In any case, we must
recover the case of Pauli strings on their respective sets when consider-
ing linear codes. For our example, this means the linear case yields the
operator (

⨂︀
𝑚∈𝐹 (𝑗) 𝑍𝑚). Using general codes, we are lead to define the

extraction superoperation X, which maps binary functions to quantum
gates on 𝑛 qubits:

X :
(︀
Z⊗𝑛
2 ↦→ Z2

)︀
↦→ ℒ

(︀
(C2)⊗𝑛

)︀
. (2.19)

The extraction superoperator is defined for all binary vectors 𝜔 ∈ Z⊗𝑛
2

and binary functions 𝑓, 𝑔 : Z⊗𝑛
2 ↦→ Z2 as:

X[𝑓] |𝜔⟩ = (−1)𝑓(𝜔) |𝜔⟩
(Extraction property) (2.20)

X [𝜔 ↦→ 𝑓 (𝜔) + 𝑔 (𝜔)] = X[𝑓] X[𝑔]

(Exponentiation identity) (2.21)

X [𝜔 ↦→ 𝑏] = (−1)𝑏 I | 𝑏 ∈ Z2

(Extracting constant functions) (2.22)

X [𝜔 ↦→ 𝜔𝑗] = 𝑍𝑗 | 𝑗 ∈ [𝑛]

(Extracting linear functions) (2.23)

34 Chapter 2. Saving qubits with classical codes

X

⎡⎣𝜔 ↦→
∏︁
𝑗∈𝒮

𝜔𝑗

⎤⎦ = C𝑘 PHASE(𝑖1, ... , 𝑖𝑘+1)

with 𝒮 = {𝑖𝑠}𝑘+1
𝑠=1 ⊆ [𝑛], 𝑘 ∈ [𝑛− 1]

(Extracting nonlinear functions). (2.24)

Note that the first two properties imply that the operators X[𝑓], X[𝑔] com-
mute and all operators are diagonal in the computational basis. Given
that binary functions have a polynomial form, we are now able to con-
struct operators by extracting every binary function possible, for example

X[𝜔 ↦→ 1 + 𝜔1 + 𝜔1𝜔2]

= X [𝜔 ↦→ 1] X [𝜔 ↦→ 𝜔1] X [𝜔 ↦→ 𝜔1𝜔2] (2.25)
= −𝑍1 CPHASE(1, 2) . (2.26)

We firstly we have used (2.21) to arrive at (2.25), and then reach (2.26)
by applying the properties (2.22)-(2.24) to the respective sub-terms. This
might however not be the final Hamiltonian, since the simulation al-
gorithm might require us to reformulate the Hamiltonian as a sum of
weighted Pauli strings [38, 39]. In that case, need to decompose all con-
trolled gates. The cost for this decomposition is an increase in the num-
ber of Hamiltonian terms, for instance we find CPHASE(𝑖, 𝑗) = 1

2(I+𝑍𝑖+
𝑍𝑗 −𝑍𝑖⊗𝑍𝑗). In general, (2.23) and (2.24) can be replaced by an adjusted
definition:

X

⎡⎣𝜔 ↦→
∏︁
𝑗 ∈𝒮

𝜔𝑗

⎤⎦ = I− 2
∏︁
𝑗 ∈𝒮

1

2
(I− 𝑍𝑗)

⃒⃒⃒⃒
⃒⃒ 𝒮 ⊆ [𝑛]

(Extracting non-constant functions). (2.27)

We will be able to define the operator mappings introducing the parity
and update functions, 𝑝 and 𝜀 𝑞:

𝑝 : Z⊗𝑛
2 ↦→ Z⊗𝑁

2 , 𝑝𝑗 (𝜔) =

𝑗−1∑︁
𝑖=1

𝑑𝑖 (𝜔) , (2.28)

𝜀 𝑞 : Z⊗𝑛
2 ↦→ Z⊗𝑛

2 , with 𝑞 ∈ Z⊗𝑁
2

𝜀 𝑞 (𝜔) = 𝑒 (𝑑 (𝜔) + 𝑞) + 𝜔 . (2.29)

2.4 Encoding only a subspace 35

Finally, we have collected all the means to obtain the operator mapping
for weight-𝑙 operator sequences as they occur in (2.10):

𝑙∏︁
𝑖=1

(𝑐†𝑎𝑖)
𝑏𝑖(𝑐𝑎𝑖)

1+𝑏𝑖 mod 2 =̂ 𝒰 𝑎

(︃
𝑙−1∏︁
𝑣=1

𝑙∏︁
𝑤=𝑣+1

(−1)𝜃𝑎𝑣𝑎𝑤

)︃

×
𝑙∏︁

𝑥=1

1

2

⎛⎝I−

⎡⎣ 𝑙∏︁
𝑦=𝑥+1

(−1)𝛿𝑎𝑥𝑎𝑦

⎤⎦ (−1)𝑏𝑥 X [𝑑𝑎𝑥]

⎞⎠X [𝑝𝑎𝑥] (2.30)

where 𝜃𝑖𝑗 is defined in (2.13) and 𝛿𝑖𝑗 is the Kronecker delta. In this expres-
sion, we find various projectors, parity operators with corrections for oc-
cupations that have changed before the update operator is applied. The
update operator 𝒰 𝑎, is characterized by the Z⊗𝑁

2 -vector 𝑞 =
∑︀𝑙

𝑖=1 𝑢𝑎𝑖 .

𝒰 𝑎 =
∑︁

𝑡∈Z⊗𝑛
2

[︃
𝑛⨂︁

𝑖=1

(𝑋𝑖)
𝑡𝑖

]︃
𝑛∏︁

𝑗=1

1

2

(︁
I+ (−1)𝑡𝑗 X

[︁
𝜀 𝑞
𝑗

]︁)︁
. (2.31)

This is a problem: when summing over the entire Z⊗𝑛
2 , one has to ex-

pect an exponential number of terms. As a remedy, one can arrange the
resulting operations into controlled gates, or rely on codes with a linear
encoding. If the encoding can be defined using a binary (𝑛 × 𝑁)-matrix
𝐴, 𝑒 (𝜈) = 𝐴𝜈, the update operator reduces to

𝒰 𝑎 =
𝑛⨂︁

𝑖=1

(𝑋𝑖)
∑︀

𝑗 𝐴𝑖𝑗𝑞𝑗 . (2.32)

In Section 2.7.1, we show that (2.30)-(2.32) satisfy the conditions (1.7)-
(2.5). Note that the update operator is also important for state prepara-
tion: let us assume that our qubits are initialized all in their zero state,
(
⨂︀

𝑖∈[𝑛] |0⟩), then the fermionic basis state associated with the vector 𝜈
is obtained by applying the update operator 𝒰𝑎. Here the vector 𝑎 con-
tains all occupied orbitals, such that 𝑞 = 𝜈. Even for nonlinear encodings
the state preparation can done with Pauli strings: as the initial state is a
product state of all zeros, we can replace operators X[𝜔 ↦→

∏︀
𝑖∈𝒮⊆[𝑛] 𝜔𝑖]

by I.
In the following we will turn our attention to the most fruitful sym-

metry to take into account: particle conservation symmetry. While code
families accounting for this symmetry are explored in the next subsec-
tion, alternatives to the mapping of entire Hamiltonian terms are dis-
cussed for such codes in Section 2.7.2.

36 Chapter 2. Saving qubits with classical codes

2.4.3 Particle number conserving codes

In the following, we will present three types of codes that save qubits
by exploiting particle number conservation symmetry, and possibly the
conservation of the total spin polarization. Particle number conserving
Hamiltonians are highly relevant for quantum chemistry and problems
posed from first principles. We therefore set out to find codes in which
𝜈 ∈ 𝒱 have a constant Hamming weight wH (𝜈) = 𝐾. Since the Ham-
ming weight is defined as wH (𝜈) =

∑︀
𝑚 𝜈𝑚, where the sum is defined

without the modulus, it yields the total occupation number for the vec-
tors 𝜈. In order to simulate systems with a fixed particle number, we
are thus interested to find codes that implement code words of constant
Hamming weight. Note that the fixed Hamming weight 𝐾 does not nec-
essarily need to coincide with the total particle number 𝑀 . A code with
the such a property might also be interesting for systems with additional
symmetries. Most importantly, we have not taken into account the spin
multiplicity yet. As the particles in our system are fermions, every spa-
tial site will typically have an even number of spin configurations as-
sociated with it. Orbitals with the same spin configurations naturally
denote subsets of the total amount of orbitals, much like the suits in a
card deck. An absence of magnetic terms as well as spin-orbit interac-
tions leaves the Hamiltonian to conserve the number of particles inside
all those suits. Consequently, we can append several constant-weight
codes to each other. Each of those subcodes encodes thereby the orbitals
inside one suit. In electronic system with only Coulomb interactions for
instance, we can use two subcodes (𝑒♢, 𝑑♢) and (𝑒♠, 𝑑♠), to encode
all spin-up, and spin-down orbitals, respectively. The global code (𝑒, 𝑑),
encoding the entire system, is obtained by appending the subcode func-
tions e.g. 𝑑

(︀
𝜔1 ⊕ 𝜔2

)︀
= 𝑑♢(𝜔1) ⊕ 𝑑♠(𝜔2). Appending codes like this

will help us to achieve higher savings at a lower gate cost.
The codes that we now introduce (see also again Table 2.1), fulfill the task
of encoding only constant-weight words differently well. The larger 𝒱 ,
the less qubits will be eliminated, but we expect the resulting gate se-
quences to be more simple. Although not just words of that weight are
encoded, we treat 𝐾 as a parameter - the targeted weight.

2.4 Encoding only a subspace 37

2.4.3.1 Checksum codes

A slim, constant amount of qubits can be saved with the following 𝑛 =
𝑁 − 1, affine linear codes. Checksum codes encode all the words with
either even or odd Hamming weight. As this corresponds to exactly half
of the Fock space, one qubit is eliminated. This means we disregard the
last component when we encode 𝜈 into words with one digit less. The
decoding function then adds the missing component depending on the
parity of the code words. The code for 𝐾 odd is defined as

𝑑 (𝜔) =

⎡⎢⎢⎢⎣
1

. . .
1

1 · · · 1

⎤⎥⎥⎥⎦𝜔 +

⎛⎜⎜⎜⎝
0
...
0
1

⎞⎟⎟⎟⎠ , (2.33)

𝑒 (𝜈) =

⎡⎢⎣1 0
. . .

...
1 0

⎤⎥⎦𝜈 . (2.34)

In the even-𝐾 version, the affine vector 𝑢𝑁 , added in the decoding, is
removed. Since encoding and decoding function are both at most affine
linear, the extracted operators will all be Pauli strings, with at most a
minus sign. The advantage of the checksum codes is that they do not
depend on 𝐾. They can be used even in cases of smaller saving opportu-
nities, like 𝐾 ≈ 𝑁/2. We can employ these codes even for Hamiltonians
that conserve only the fermion parity. This makes them important for
effective descriptions of superconductors [40].

2.4.3.2 Codes with binary addressing

We present a concept for heavily nonlinear codes for large qubit savings,
𝑛 = ⌈log(𝑁𝐾/𝐾!)⌉, [31]. In order to conserve the maximum amount
of qubits possible, we choose to encode particle coordinates as binary
numbers in 𝜔. To keep it simple, we here consider the example of weight-
one binary addressing codes, and refer the reader to Section 2.7.3 for 𝐾 >
1. In 𝐾 = 1, we recognize the qubit savings to be exponential, so consider
𝑁 = 2𝑛. Encoding and decoding functions are defined by means of the

38 Chapter 2. Saving qubits with classical codes

binary enumerator, bin : Z⊗𝑛
2 ↦→ Z, with bin (𝜔) =

∑︀𝑛
𝑗=1 2

𝑗−1𝜔𝑗 .

𝑑𝑗 (𝜔) =
𝑛∏︁

𝑖=1

(︁
𝜔𝑖 + 1 + 𝑞 𝑗

𝑖

)︁
, (2.35)

𝑒 (𝜈) =

⎡⎣ 𝑞1 𝑞2 · · · 𝑞
2𝑛

⎤⎦𝜈 , (2.36)

where 𝑞 𝑗 ∈ Z⊗𝑛
2 is implicitly defined by bin(𝑞𝑗) + 1 = 𝑗. An input 𝜔 will

by construction render only the 𝑗-th component of (2.35) non-zero, when
𝑞 𝑗 = 𝜔.
The exponential qubit savings come at a high cost: the product over each
component of 𝜔 implies multi-controlled gates on the entire register. This
is likely to cause connectivity problems. Note that decomposing the con-
trolled gates will in general be practically prohibited by the sheer amount
of resulting terms. On top of those drawbacks, we also expect the encod-
ing function to be nonlinear for 𝐾 > 1.

2.4.3.3 Segment codes

We introduce a type of scaleable 𝑛 = ⌈𝑁/(1 + 1
2𝐾)⌉ codes to eliminate a

linear amount of qubits. The idea of segment codes is to cut the vectors 𝜈
into smaller, constant-size vectors ̂︀𝜈𝑖 ∈ Z⊗ ̂︀𝑁

2 , such that 𝜈 =
⨁︀

𝑖 ̂︀𝜈𝑖. Each
such segment ̂︀𝜈𝑖 is encoded by a subcode. Although we have introduced
the concept already, this segmentation is independent from our treatment
of spin ‘suits’. In order to construct a weight-𝐾 global code, we append
several instances of the same subcode. Each of these subcodes codes is
defined on ̂︀𝑛 qubits, encoding ̂︀𝑁 = ̂︀𝑛 + 1 orbitals. We deliberately have
chosen to only save one qubit per segment in order to keep the segment
size ̂︀𝑁(𝐾) small.
We now turn our attention to the construction of these segment codes.
As shown in Section 2.7.4, the segment sizes can be set to ̂︀𝑛 = 2𝐾 and̂︀𝑁 = 2𝐾 + 1. As the global code is supposed to encode all 𝜈 ∈ Z⊗𝑁

2 with
Hamming weight 𝐾, each segment must encode all vectors from Ham-
ming weight zero up to weight 𝐾. In this way, we guarantee that the
encoded space contains the relevant, weight-𝐾 subspace. This construc-
tion follows from the idea that each block contains equal or less than 𝐾

2.4 Encoding only a subspace 39

particles, but might as well be empty. For each segment, the following
de- and encoding functions are found for ̂︀𝜔 ∈ Z⊗̂︀𝑛

2 , ̂︀𝜈 ∈ Z⊗ ̂︀𝑁
2 :

̂︀𝑑 (̂︀𝜔) =

⎡⎢⎢⎢⎣
1

. . .
1

0 . . . 0

⎤⎥⎥⎥⎦ ̂︀𝜔 + 𝑓 (̂︀𝜔)

⎛⎜⎜⎜⎜⎝
1
...
...
1

⎞⎟⎟⎟⎟⎠ (2.37)

̂︀𝑒 (̂︀𝜈) =
⎡⎢⎣1 1

. . .
...

1 1

⎤⎥⎦ ̂︀𝜈 , (2.38)

where 𝑓 : Z⊗̂︀𝑛
2 ↦→ Z2 is a binary switch. The switch is the source of non-

linearity in these codes. On an input ̂︀𝜔 with wH (̂︀𝜔) > 𝐾, it yields one,
and zero otherwise.
There is just one problem: segment codes are not suitable for particle-
number conserving Hamiltonians, according to the definition of the ba-
sis ℬ, that we would have for segment codes. The reason for this is that
we have not encoded all states with wH (𝜈) > 𝐾. In this way, Hamil-
tonian terms ̂︀ℎ𝑎𝑏 that exchange occupation numbers between two seg-
ments, can map into unencoded space. We can, however, adjust these
terms, such that they only act non-destructively on states with at most
𝐾 particles between the involved segment. This does not change the
model, but aligns the Hamiltonian with the necessary condition that we
have on ℬ, ̂︀ℎ𝑎𝑏 : span(ℬ) ↦→ span(ℬ). This is discussed in detail Section
2.7.4, where we also provide an explicit description of the binary switch
mentioned earlier.

Using segment codes, the operator transforms will have multi-controlled
gates as well: the binary switch is nonlinear. However, gates are con-
trolled on at most an entire segment, which means there is no gate that
acts on more than 2𝐾 qubits. This an improvement in gate locality, as
compared to binary addressing codes.

40 Chapter 2. Saving qubits with classical codes

2.5 Examples

2.5.1 Hydrogen molecule

In this subsection, we will demonstrate the Hamiltonian transformation
on a simple problem. Choosing a standard example, we draw compar-
ison with other methods for qubit reduction. As one of the simplest
problems, the minimal electronic structure of the hydrogen molecule has
been studied extensively for quantum simulation [23, 38] already. We de-
scribe the system as two electrons on 2 spatial sites. Because of the spin-
multiplicity, we require 4 qubits to simulate the Hamiltonian in conven-
tional ways. Using the particle conservation symmetry of the Hamilto-
nian, this number can be reduced. The Hamiltonian also lacks terms that
mix spin-up and -down states, with the total spin polarization known to
be zero in the ground state. Taking into account these symmetries, one
finds a total of 4 fermionic basis states:
𝒱 = {(0, 1, 0, 1) , (0, 1, 1, 0) , (1, 0, 0, 1) , (1, 0, 1, 0)}. These can be encoded
into two qubits by appending two instances of a (𝑁 = 2, 𝑛 = 1, 𝐾 = 1)-
code. The global code is defined as :

𝑑 (𝜔) =

⎡⎢⎢⎣
1
1

1
1

⎤⎥⎥⎦𝜔 +

⎛⎜⎜⎝
1
0
1
0

⎞⎟⎟⎠ (2.39)

𝑒 (𝜈) =

[︂
0 1 0 0
0 0 0 1

]︂
𝜈 . (2.40)

The physical Hamiltonian,

𝐻 = − ℎ11

(︁
𝑐†1𝑐1 + 𝑐†3𝑐3

)︁
− ℎ22

(︁
𝑐†2𝑐2 + 𝑐†4𝑐4

)︁
+ ℎ1331 𝑐

†
1𝑐

†
3𝑐3𝑐1 + ℎ2442 𝑐

†
2𝑐

†
4𝑐4𝑐2

+ ℎ1221

(︁
𝑐†1𝑐

†
4𝑐4𝑐1 + 𝑐†3𝑐

†
2𝑐2𝑐3

)︁
+ (ℎ1221 − ℎ1212)

(︁
𝑐†1𝑐

†
2𝑐2𝑐1 + 𝑐†3𝑐

†
4𝑐4𝑐3

)︁
+ ℎ1212

(︁
𝑐†1𝑐

†
4𝑐3𝑐2 + 𝑐†2𝑐

†
3𝑐4𝑐1

)︁
+ ℎ1212

(︁
𝑐†1𝑐

†
3𝑐4𝑐2 + 𝑐†2𝑐

†
4𝑐3𝑐1

)︁
, (2.41)

2.5 Examples 41

is transformed into the qubit Hamiltonian

𝑔1 I+ 𝑔2 𝑋1 ⊗𝑋2 + 𝑔3 𝑍1 + 𝑔4 𝑍2 + 𝑔5 𝑍1 ⊗ 𝑍2 . (2.42)

The real coefficients 𝑔𝑖 are formed by the coefficients ℎ𝑖𝑗𝑘𝑙 of (2.41). After
performing the transformation, we find

𝑔1 = −ℎ11 − ℎ22 +
1

2
ℎ1221 +

1

4
ℎ1331 +

1

4
ℎ2442 (2.43)

𝑔2 = ℎ1212 (2.44)

𝑔3 = 𝑔4 =
1

2
ℎ11 −

1

2
ℎ22 +−1

4
ℎ1331 +

1

4
ℎ2442 (2.45)

𝑔5 = −1

2
ℎ1221 +

1

4
ℎ1331 +

1

4
ℎ2442 . (2.46)

In previous works, conventional transforms have been applied to that
problem Hamiltonian. Afterwards, the resulting 4-qubit-Hamiltonian
has been reduced by hand in some way. In [41], the actions on two
qubits are replaced with their expectation values after inspection of the
Hamiltonian. In [33], on the other hand, the Hamiltonian is reduced to
two qubits in a systematic fashion. Finally, the case is revisited in [34],
where the problem is reduced below the combinatorial limit to one qubit.
The latter two attempts have used Jordan-Wigner, the former the Bravyi-
Kitaev transform first.

2.5.2 Fermi-Hubbard model

We present another example to illustrate the trade-off between qubit num-
ber and gate cost as well as circuit depth. For that purpose, we consider
a simple toy Hamiltonian and demonstrate that a reduction of qubit re-
quirements is theoretically possible. Although we do not want to claim
that this scenario is realistic, we present a simple cost model with it, that
hints the potential up-scaling of circuit depth and simulation cost, as the
number of qubits decreases: we therefore consider the total sum of Pauli
lengths of every term, which gives us an idea of the number of two-qubit
gates required, and the number of Hamiltonian terms, as we decompose
controlled gates (2.27), which should give us an idea of possible T-gate re-
quirements and simulation depth. Let us start now to describe the model.
We consider a small lattice with periodic boundary conditions in the lat-
eral direction. The system shall contain 10 spatial sites, doubled by the

42 Chapter 2. Saving qubits with classical codes

spin-multiplicity. The problem Hamiltonian is

𝐻 =− 𝑡
∑︁

⟨𝑖,𝑗⟩∈𝐸

(︁
𝑐†𝑖𝑐𝑗 + 𝑐†𝑗𝑐𝑖

)︁

+ 𝑈
10∑︁
𝑗=1

𝑐†𝑗𝑐𝑗 𝑐
†
10+𝑗𝑐10+𝑗 , (2.47)

with its real coefficients 𝑡, 𝑈 . It exhibits hopping terms along the edges
𝐸 of the graph in Figure 2.1. The sketch on the left of this figure shows
the connection graph of the first 10 orbitals. The other 10 orbitals are
connected in the same fashion, and each such site is interacting with its
counterpart from the other graph. We aim to populate this model with
four fermions, where the total spin polarization is zero. Two conven-
tional transforms and two transforms based on our codes are compared
by the amount of qubits necessary, as well as the size of the transformed
Hamiltonian. Note that besides eigenenergies, one might also be inter-
ested in obtaining the values of correlation functions, e.g. ⟨𝑐†𝑖𝑐𝑗⟩, which is
done by measuring (qubit) operators obtained with the transform (2.47).
The only difference is that if a correlator maps into unencoded space, it
is to be set to zero. As benchmarks, we decompose controlled gates and
count the number of resulting Pauli strings. The sum of their total weight
constitutes the gate count. Having these two disconnected graphs is an
invitation to us to append two codes acting on sites 1 − 10 and 11 − 20
respectively. For this example, we consider the following codes:

1. Jordan-Wigner and Bravyi-Kitaev transform: for comparison, we
employ these conventional transforms on our system, with which
we do not save qubits. The resulting terms are best obtained by
the transforming every fermion operator in (2.47) by (2.12), where
the flip, parity and update sets, 𝐹 (𝑗), 𝑃 (𝑗), 𝑈(𝑗) are determined by
the choice of matrices 𝐴 and 𝐴−1, which are binary-tree matrices in
the case of the Bravyi-Kitev transform, and identity matrices for the
Jordan-Wigner transform.

2. Checksum code ⊕ checksum code: knowing that the particle num-
ber is conserved, and that spin cannot be flipped, we are free to
save 2 qubits in constraining the parity of both, spin-up and -down
particles, alike. This is done in appending two (N=10) checksum
codes, where each that acts on only spin-up (spin-down) orbitals,

2.5 Examples 43

so indices 1 to 10 (11 to 20). The code resulting from appending two
even checksum codes is linear, and encoding and decoding func-
tion feature the matrices 𝐴, 𝐴−1 as

⎡⎢⎢⎢⎢⎢⎢⎣

1 0

. . .
...

1 0

1 0

. . .
...

1 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

. . .
1

1 · · · 1

1

. . .
1

1 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.48)

However, as not the entire Fock-space is encoded, we need to per-
form the operator transform according to (2.30), where the update
operator is defined by (2.32), where 𝐴 refers here to the first matrix.

3. Segment code ⊕ segment code: Knowing the particle number in
one ‘spin suite’ to be 2, we can for both, spin-up and -down orbitals,
append two 𝐾 = 2 segment codes to each other. This equals a
total of 4 segment codes, saving 4 qubits. The resulting global code
(𝑒, 𝑑) is defined by

𝑒

(︃
4⨁︁

𝑖=1

̂︀𝜈𝑖

)︃
=

4⨁︁
𝑖=1

̂︀𝑒(̂︀𝜈𝑖), (2.49)

𝑑 (𝜔) =

⎛⎜⎝
⎡⎢⎣1 1

1
1

⎤⎥⎦⊗

⎡⎣1 1

. . .
...

1 1

⎤⎦
⎞⎟⎠𝜔 , (2.50)

where ̂︀𝑒 are the encodings of the subcodes (2.38), and ̂︀𝜈𝑖 are occu-
pations on the segments of the total orbital vector 𝜈 =

⨁︀
𝑖 ̂︀𝜈𝑖. These

segments are formed as suggested by the right-hand side of Figure
2.1. For details on the decoding functions and Hamiltonian adjust-
ments, please consider Section 2.7.4. The Hamiltonian transform is
in the end carried out again by (2.30) and (2.32).

4. Checksum code ⊕ segment code: a compromise between the above,
in which the spin-up orbitals are transformed via a checksum code,
and the spin-down orbitals are transformed via two segment codes.
The global code used for the Hamiltonian transformation is the

44 Chapter 2. Saving qubits with classical codes

1 2 3 4 5

6 7 8 9 10

Figure 2.1. Left: illustration of the Fermi-Hubbard model considered. Lines
between two sites, like 1 and 2, indicate the appearance of the term 𝑡(𝑐†1𝑐2+𝑐†2𝑐1)
in the Hamiltonian (2.47). Periodic boundary conditions link sites 1 and 5 as well
as 6 and 10. Sites 11-20 follow the same graph. Right: segmenting of the system;
the two blocks are infringed. The gray links are to be adjusted.

appendage of an (even-weight, 𝑁 = 10) checksum code and two
(𝐾 = 2) segment codes, including Hamiltonian adjustments on the
spin-down orbitals.

Note that from the combinatorial perspective, we could encode the
problem with 11 qubits. However, if we append two 𝐾 = 2 binary ad-
dressing codes to each other, the resulting Hamiltonian is on 14 qubits al-
ready. The problem is that the resulting Hamiltonian for this case cannot
be expressed with decomposed controlled gates due to the high number
of resulting terms.

Indeed, Table 2.2 suggests that decomposing the controlling gates
might easily lead to very large Hamiltonians with a multitude of very
small terms. The gate decomposition appears therefore undesirable. We
in general recommend to rather decompose large controlled gates as shown
in [42]. However, one also notices that an elimination of up to two qubits
comes at a low cost: the amount of gates is not higher than in the Bravyi-
Kitaev transform. As soon as we employ segment codes on the other
hand, the Hamiltonian complexity rises with the amount of qubits elimi-
nated.

2.6 Conclusion

In this chapter, we have introduced new methods to reduce the number
of qubits required for simulating fermionic systems in second quantiza-
tion. We see the virtue of the introduced concepts in the fact that it takes
into account symmetries on a simple but non-abstract level. We merely

2.6 Conclusion 45

Mapping Qubits Weight Terms
Jordan-Wigner transform 20 232 74
Bravyi-Kitaev transform 20 278 74
Checksum code ⊕ Checksum code 18 260 74
Checksum code ⊕ Segment code 17 4425 876
Segment code ⊕ Segment code 16 9366 1838

Table 2.2. Relaxing the qubit requirements for the Hamiltonian (2.47), where
various mappings trade different amounts of qubits. The notation ⊕ is used as
two codes for different graphs are appended. We compare different mappings
by the amount of qubits. We make comparrisons by the number of Hamiltonian
terms and the total weight of the resulting Pauli strings.

concern ourselves with objects as simple as binary vectors, but attribute
the physical interpretation of orbital occupations to them. At this level,
the mentioned symmetries are easy to apply and exploit. The accounting
for the complicated antisymmetrization of the many-body wave function
on the other hand is done in the fermionic operators, which to transform
we have provided recipes for. In these operator transforms we see room
for improvement: we for instance lack a proper gate composition for up-
date operators of nonlinear encodings at this point. We on the other hand
have the extraction superoperator X return only conventional (multi)-
controlled phase gates. Nonlinear codes would on the other hand ben-
efit from a gate set that includes gates with negative control, i.e. with
the (−1) eigenvalue conditioned on |0⟩ eigenspaces of certain qubits in-
volved. We consider our work to be relevant for quantum simulation
with near-term devices, with a limited number of qubits at disposal. Re-
marks about asymptotic scaling are thus missing in this work, but would
be interesting. Also, we have centered our investigations around quan-
tum computers with qubits. The idea behind the generalized operator
transforms, however, can possibly be adapted to multi-level systems (qu-
dits). The operator transforms of segment and binary addressing codes,
for instance, might simplify in such a setup, if generalized Pauli opera-
tors are available in some form.
Apart from the codes presented, we have laid the foundation for the
reader to invent their own. For that purpose, we have added the func-
tionality of defining and using binary code transforms (with linear en-
coding functions 𝑒) to the OpenFermion software package [11].

46 Chapter 2. Saving qubits with classical codes

2.7 Supplement

2.7.1 General operator mappings

The goal of this section is to verify that the fermionic mode is accurately
represented by our qubit system. This is divided into three steps: step
one is to analyze the action of Hamiltonian terms on the fermionic basis.
In the second step, we verify parity and projector parts of (2.30) to work
like the original operators in step one, disregarding the occupational up-
date for a moment. Conditions for this state update are subsequently
derived. The update operator (2.31) is shown to fulfill these conditions
in the third step, thus concluding the proof.

2.7.1.1 Hamiltonian dynamics

In order to verify that the gate sequences (2.30) are mimicking the Hamil-
tonian dynamics adequately, we verify that the resulting terms have the
same effect on the Hamiltonian basis. This is done on the level of second
quantization with respect to the notation (2.17): no transition into a qubit
system is made. This step serves the sole purpose to quantify the effect
of the Hamiltonian terms on the states. To that end, we begin by study-
ing the effect of a singular fermionic operator 𝑐(†)𝑗 on a pure state, before
considering an entire term ̂︀ℎ𝑎𝑏 on a state in ℬ. As a preliminary, we note
that (2.2)-(2.5) follow directly from (1.7), when considering that

𝑐𝑗𝑐𝑗 = 𝑐†𝑗𝑐
†
𝑗 = 𝑐𝑗 |Θ⟩ = 0 . (2.51)

The relations (2.2)-(2.5) indicate how singular operators act on pure states
in general. We now become more specific and apply these rules to a
state (

∏︀
𝑖(𝑐

†
𝑖)

𝜈𝑖) |Θ⟩, that is not necessarily in ℬ, but is described by an
occupation vector 𝜈 ∈ Z⊗𝑁

2 . The effect of an annihilation operator on

2.7 Supplement 47

such a state is considered first:

𝑐𝑗

[︃
𝑁∏︁
𝑖=1

(︁
𝑐†𝑖

)︁𝜈𝑖

]︃
|Θ⟩ =

⎡⎣∏︁
𝑖<𝑗

(︁
−𝑐†𝑖

)︁𝜈𝑖

⎤⎦ 𝑐𝑗

(︁
𝑐†𝑗

)︁𝜈𝑗

⎡⎣∏︁
𝑘>𝑗

(︁
𝑐†𝑘

)︁𝜈𝑘

⎤⎦ |Θ⟩ (2.52)

=

⎡⎣∏︁
𝑖<𝑗

(︁
−𝑐†𝑖

)︁𝜈𝑖

⎤⎦ 1

2
[1− (−1)

𝜈𝑗]

⎡⎣∏︁
𝑘>𝑗

(︁
𝑐†𝑘

)︁𝜈𝑘

⎤⎦ |Θ⟩ (2.53)

=

⎡⎣∏︁
𝑖<𝑗

(−1)
𝜈𝑖

⎤⎦ 1

2
[1− (−1)

𝜈𝑗]

[︃
𝑁∏︁

𝑘=1

(︁
𝑐†𝑘

)︁𝜈𝑘+𝛿𝑗𝑘 mod 2
]︃
|Θ⟩ (2.54)

A short explanation on what has happened: in (2.52), 𝑐𝑗 has anticom-
muted with all creation operator 𝑐†𝑖 that have indexes 𝑖 < 𝑗. Depending
on the component 𝜈𝑗 , a creation operator 𝑐†𝑗 might now be to the right of
the annihilator 𝑐𝑗 . If the creation operator is not encountered, we may
continue the anticommutations of 𝑐𝑗 until it meets the vacuum and an-
nihilates the state by 𝑐𝑗 |Θ⟩ = 0. Using the anticommutation relations
(1.7), we therefore replace 𝑐𝑗(𝑐

†
𝑗)

𝜈𝑗 with 1
2 [1− (−1)𝜈𝑗] when going from

(2.52) to (2.53). Finally, the terms are rearranged in (2.54): conditional
sign changes of the anticommutations are factored out of the new state
with an occupation that is now described by the binary vector (𝜈 + 𝑢𝑗)

rather than 𝜈. When considering to apply a creation operator 𝑐†𝑗 on the
former state, the result is similar. Alone at step (2.53), we have to replace
𝑐†𝑗(𝑐

†
𝑗)

𝜈𝑗 by 1
2 [1 + (−1)𝜈𝑗] instead, as now the case of appearance of the

creation operator leads to annihilation: 𝑐†𝑗𝑐
†
𝑗 = 0. We thus find

𝑐†𝑗

[︃
𝑁∏︁
𝑖=1

(︁
𝑐†𝑖

)︁𝜈𝑗

]︃
|Θ⟩ =

⎡⎣∏︁
𝑖<𝑗

(−1)
𝜈𝑖

⎤⎦ 1

2
[1 + (−1)

𝜈𝑗]

[︃
𝑁∏︁

𝑘=1

(︁
𝑐†𝑘

)︁𝜈𝑘+𝛿𝑗𝑘 mod 2
]︃
|Θ⟩ .

(2.55)

We now turn our attention to the actual goal, the effect that a Hamil-
tonian term from (2.10) has on a state in ℬ (this means its occupation
vector 𝜈 is in 𝒱). We therefore consider a generic operator sequence∏︀𝑙

𝑖=1(𝑐
†
𝑎𝑖)

𝑏𝑖(𝑐𝑎𝑖)
1+𝑏𝑖 mod 2, parametrized by some 𝑁 -ary vector 𝑎 ∈ [𝑁]⊗𝑙

and a binary vector 𝑏 ∈ Z⊗𝑙
2 , for some length 𝑙. With (2.54) and (2.55), we

now have the means to consider the effect such a sequence of annihila-
tion and creation operators. The two relations will be repeatedly utilized
in an inductive procedure, as every single operator (𝑐†𝑎𝑖)

𝑏𝑖(𝑐𝑎𝑖)
1+𝑏𝑖 mod 2

48 Chapter 2. Saving qubits with classical codes

of
∏︀𝑙

𝑖=1(𝑐
†
𝑎𝑖)

𝑏𝑖(𝑐𝑎𝑖)
1+𝑏𝑖 mod 2 will act on a basis state, one after another.

The state’s occupation is updated after every such operation. For con-
venience, we define:

𝜈(𝑖) ∈ Z⊗𝑁
2

⃒⃒⃒
𝑖 ∈ {0, . . . , 𝑙} (2.56)

𝜈(𝑙) = 𝜈 ∈ 𝒱 (2.57)

𝜈(𝑖−1) = 𝜈(𝑖) + 𝑢𝑎𝑖 . (2.58)

Now, the procedure starts:[︃
𝑙∏︁

𝑖=1

(𝑐†𝑎𝑖
)𝑏𝑖(𝑐𝑎𝑖

)1+𝑏𝑖 mod 2

]︃ [︃
𝑁∏︁

𝑘=1

(𝑐†𝑘)
𝜈𝑘

]︃
|Θ⟩ (2.59)

=

[︃
𝑙−1∏︁
𝑖=1

(𝑐†𝑎𝑖
)𝑏𝑖(𝑐𝑎𝑖

)1+𝑏𝑖 mod 2

]︃
1

2

[︁
1− (−1)

𝑏𝑙 (−1)𝜈𝑎𝑙

]︁
× (−1)

∑︀
𝑗<𝑎𝑙

𝜈𝑗

[︃
𝑁∏︁

𝑘=1

(︁
𝑐†𝑘

)︁𝜈𝑘+𝛿𝑎𝑙𝑘
mod 2

]︃
|Θ⟩ (2.60)

=

[︂
1

2

[︁
1− (−1)

𝑏𝑙 (−1)𝜈
(𝑙)
𝑎𝑙

]︁
(−1)

∑︀
𝑗<𝑎𝑙

𝜈
(𝑙)
𝑗

]︂
×

[︃
𝑙−1∏︁
𝑖=1

(︀
𝑐†𝑎𝑖

)︀𝑏𝑖
(𝑐𝑎𝑖

)1+𝑏𝑖 mod 2

]︃ [︃
𝑁∏︁

𝑘=1

(𝑐†𝑘)
𝜈
(𝑙−1)
𝑘

]︃
|Θ⟩ (2.61)

=

[︃
𝑙∏︁

𝑖=1

1

2

[︁
1− (−1)

𝑏𝑖 (−1)𝜈
(𝑖)
𝑎𝑖

]︁
⏟ ⏞

projector eigenvalues

(−1)
∑︀

𝑗<𝑎𝑖
𝜈
(𝑖)
𝑗⏟ ⏞

parity signs

]︃ [︃
𝑁∏︁

𝑘=1

(𝑐†𝑘)
𝜈
(0)
𝑘

]︃
|Θ⟩⏟ ⏞

updated state

(2.62)

We again explain what has happened: first, the rightmost operator, which
is either 𝑐𝑎𝑙 or 𝑐†𝑎𝑙 depending on the parameter 𝑏𝑙, acts on the state accord-
ing to either (2.54) or (2.55). We therefore combine the two relations for
the absorption of this operator (𝑐†𝑎𝑙)

𝑏𝑙(𝑐𝑎𝑙)
1+𝑏𝑙 mod 2 in (2.60). In the same

fashion, all the remaining operators of the sequence are one-after-another
absorbed into the state. The new state is described by the vector 𝜈(𝑙−1) af-
ter the update. And the cycle begins anew with (𝑐†𝑎𝑙−1)

𝑏𝑙−1(𝑐𝑎𝑙−1
)1+𝑏𝑙−1 mod 2.

From (2.61) on, we use the notations (2.56)-(2.58) to describe partially up-
dated occupations. By the end of this iteration, the occupation of the state
is changed to 𝜈(0) = 𝜈 + 𝑞, with the total change 𝑞 =

∑︀
𝑖 𝑢𝑎𝑖 . Also, the

coefficients of (2.62) take into account sign changes from anticommuta-
tions (“parity signs” in (2.62)) and the eigenvalues of the applied projec-

2.7 Supplement 49

tions. In its entirety, (2.62) denotes the resulting state, and is the main
ingredient for the next step.

2.7.1.2 Parity operators and projectors

We are given the operator transform (2.30) and the state transform (2.18).
We want to show the that the fermion system is adequately simulated,
which means to show that the effect (2.62) is replicated by (2.30) acting
on |𝑒(𝜈)⟩. This is the goal of the next two steps. We start by evaluating
the application of (2.30) on that state, up to the update operator 𝒰 𝑎. This
means that the operators applied implement two things only: the par-
ity signs of (2.62), and the projection onto the correct occupational state.
Note that these parity operators and projectors are applied before the up-
date operator in (2.30):

update operator

𝒰 𝑎

parity signs(︃
𝑙−1∏︁
𝑣=1

𝑙∏︁
𝑤=𝑣+1

(−1)
𝜃𝑎𝑣𝑎𝑤

)︃

×
𝑙∏︁

𝑥=1

1

2

(︃
I−

[︃
𝑙∏︁

𝑦=𝑥+1

(−1)𝛿𝑎𝑥𝑎𝑦

]︃
(−1)𝑏𝑥 X [𝑑𝑎𝑥]

)︃
projectors

X [𝑝𝑎𝑥]

parity operators

. (2.63)

We now commence our evaluation:

𝒰 𝑎

[︃(︃
𝑙−1∏︁
𝑣=1

𝑙∏︁
𝑤=𝑣+1

(−1)
𝜃𝑎𝑣𝑎𝑤

)︃
𝑙∏︁

𝑥=1

1

2

(︃
I−

[︃
𝑙∏︁

𝑦=𝑥+1

(−1)𝛿𝑎𝑥𝑎𝑦

]︃
(−1)𝑏𝑥 X [𝑑𝑎𝑥

]

)︃
X [𝑝𝑎𝑥

]

]︃
|𝑒 (𝜈)⟩ (2.64)

= 𝒰 𝑎

[︃(︃
𝑙−1∏︁
𝑣=1

𝑙∏︁
𝑤=𝑣+1

(−1)
𝜃𝑎𝑣𝑎𝑤

)︃
𝑙∏︁

𝑥=1

1

2

(︃
1−

[︃
𝑙∏︁

𝑦=𝑥+1

(−1)𝛿𝑎𝑥𝑎𝑦

]︃
(−1)𝑏𝑥 (−1)

𝑑𝑎𝑥 (𝑒(𝜈))

)︃
(−1)

𝑝𝑎𝑥 (𝑒(𝜈))

]︃
|𝑒 (𝜈)⟩

(2.65)

50 Chapter 2. Saving qubits with classical codes

= 𝒰 𝑎

[︃(︃
𝑙−1∏︁
𝑣=1

𝑙∏︁
𝑤=𝑣+1

(−1)
𝜃𝑎𝑣𝑎𝑤

)︃
𝑙∏︁

𝑥=1

1

2

(︃
1−

[︃
𝑙∏︁

𝑦=𝑥+1

(−1)𝛿𝑎𝑥𝑎𝑦

]︃
(−1)𝑏𝑥 (−1)

𝜈𝑎𝑥

)︃
(−1)

∑︀
𝑗<𝑎𝑥

𝜈𝑗

]︃
|𝑒 (𝜈)⟩ (2.66)

= 𝒰 𝑎

[︃
𝑙∏︁

𝑥=1

1

2

(︁
1− (−1)𝑏𝑥 (−1)

𝜈𝑎𝑥+
∑︀𝑙

𝑦=𝑥+1 𝛿𝑎𝑥𝑎𝑦

)︁
(−1)

∑︀
𝑗<𝑎𝑥

𝜈𝑗+
∑︀𝑙

𝑦=𝑥+1 𝜃𝑎𝑥𝑎𝑦

]︃
|𝑒 (𝜈)⟩ (2.67)

=

[︃
𝑙∏︁

𝑥=1

1

2

(︁
1− (−1)𝑏𝑥 (−1)

𝜈(𝑥)
𝑎𝑥

)︁
(−1)

∑︀
𝑗<𝑎𝑥

𝜈
(𝑥)
𝑗

]︃
𝒰 𝑎 |𝑒 (𝜈)⟩ . (2.68)

Let us describe what has happened: in (2.65), the extraction property
(2.20) is used, and we arrive at (2.66) after using the property 𝑑 (𝑒 (𝜈)) =
𝜈 and the definition of the parity function. From there we go to (2.67)
when we merge the two products and perform rearrangements that make
it easy to cast all delta and theta functions into the components of the par-
tially updated occupations 𝜈(𝑖), (2.68).
Comparing (2.68) to (2.62), we notice to have successfully mimicked the
same sign changes and and projections, as the coefficients in both rela-
tions match. Now it is only left to show that the state update is executed
correctly. Naively, one would think that we would need to show that

𝒰 𝑎 |𝑒 (𝜈)⟩ =̂

[︃
𝑁∏︁
𝑘=1

(︁
𝑐†𝑘

)︁𝜈(0)𝑘

]︃
|Θ⟩ , (2.69)

but this is too strong a statement. It is in fact sufficient to demand

𝒰 𝑎 |𝑒 (𝜈)⟩ =
⃒⃒⃒
𝑒
(︁
𝜈(0)

)︁⟩
= |𝑒 (𝜈 + 𝑞)⟩ . (2.70)

For 𝜈(0) ∈ 𝒱 , (2.69) and (2.70) is equivalent. However, it might be the case
that 𝜈(0) /∈ 𝒱 , so 𝜈(0) is not encoded. This mean that (2.69) is not fulfilled,
since 𝑑(𝑒(𝜈(0))) ̸= 𝜈(0). It is however not necessary to include 𝜈(0) in the
encoding, as for 𝜈(0) /∈ 𝒱 , the state will vanish anyways: we know from̂︀ℎ𝑎𝑏 : span(ℬ) ↦→ span(ℬ), that in this case ̂︀ℎ𝑎𝑏 must act destructively on

2.7 Supplement 51

that basis state, ̂︀ℎ𝑎𝑏 (∏︀𝑘(𝑐
†
𝑘)

𝜈𝑘) |Θ⟩ = 0. This detail is implemented by the
projector part of the transformed sequence (2.30). These projectors are,
as we have just shown, working faithfully like (2.62), for the transformed
sequence acting on every |𝜈⟩ with 𝜈 ∈ 𝒱 . Hence (2.70) is a sufficient con-
dition for the updated state. The proof is completed once we have veri-
fied that (2.70) is satisfied with the update operator defined as in (2.31).
This is done during the next step.

2.7.1.3 Update operator

The missing piece of the proof is to check that (2.31) and (2.32) fulfill
the condition (2.70). We start by verifying the condition (2.70) for (2.32),
which we have presented as special case of (2.31) for linear encoding
functions: 𝑒 (𝜈 + 𝜈′) = 𝑒 (𝜈) + 𝑒 (𝜈′). Using that property, one can in
fact derive (2.32) from (2.31) directly. We now apply (2.32) to |𝑒(𝜈)⟩, but
firstly we note that

𝑋𝑗 |𝜔⟩ = |𝜔 + 𝑢𝑗⟩ , (2.71)

where 𝑢𝑗 is the 𝑗-th unit vector of Z⊗𝑛
2 . Using (2.71) and the linearity of

𝑒, we find:

𝒰 𝑎 |𝑒 (𝜈)⟩ =

[︃
𝑛⨂︁

𝑖=1

(𝑋𝑖)
∑︀

𝑗 𝐴𝑖𝑗𝑞𝑗

]︃
|𝑒(𝜈)⟩ (2.72)

=

[︃
𝑛⨂︁

𝑖=1

(𝑋𝑖)
𝑒(𝑞)

]︃
|𝑒(𝜈)⟩ (2.73)

= |𝑒(𝜈) + 𝑒(𝑞)⟩ (2.74)
= |𝑒(𝜈 + 𝑞)⟩ , (2.75)

which shows (2.70) for linear encodings.
We now turn our attention to general encodings and prove the same ex-

52 Chapter 2. Saving qubits with classical codes

pression for update operators as defined in (2.31):

𝒰 𝑎 |𝑒 (𝜈)⟩

=

⎛⎝ ∑︁
𝑡∈Z⊗𝑛

2

[︃
𝑛⨂︁

𝑖=1

(𝑋𝑖)
𝑡𝑖

]︃
𝑛∏︁

𝑗=1

1

2

(︁
I+ (−1)𝑡𝑗 X

[︁
𝜀 𝑞
𝑗

]︁)︁⎞⎠ |𝑒 (𝜈)⟩ (2.76)

=

⎛⎝ ∑︁
𝑡∈Z⊗𝑛

2

[︃
𝑛⨂︁

𝑖=1

(𝑋𝑖)
𝑡𝑖

]︃
𝑛∏︁

𝑗=1

1

2

(︁
1 + (−1)𝑡𝑗+𝜀 𝑞

𝑗 (𝑒(𝜈))
)︁

⏟ ⏞
𝛿
𝑡
𝑗
𝜀
𝑞
𝑗
(𝑒(𝜈))

⎞⎠ |𝑒 (𝜈)⟩ (2.77)

=

(︃
𝑛⨂︁

𝑖=1

(𝑋𝑖)
𝜀 𝑞
𝑖 (𝑒(𝜈))

)︃
|𝑒 (𝜈)⟩ (2.78)

= |𝑒 (𝜈) + 𝜀 𝑞 (𝑒 (𝜈))⟩ (2.79)
= |𝑒 (𝜈) + 𝑒 (𝜈) + 𝑒 (𝑑 (𝑒 (𝜈)) + 𝑞)⟩ (2.80)
= |𝑒 (𝜈 + 𝑞)⟩ , (2.81)

which completes the proof. We swiftly recap what has happened: in
(2.76), we have plugged the definition of(2.31) into the left-hand side of
(2.70). In between this equation and (2.77), we have evaluated the expec-
tation values of the extracted operators X[𝜀𝑞𝑗]. From that line to the next,
the Z⊗𝑛

2 -sum is collapsed over the condition 𝑡 = 𝜀 𝑞(𝑒(𝜈)). We go from
(2.78) to (2.79) by applying (2.71). Once we insert the definition (2.29)
into (2.79), it becomes obvious that the condition (2.70) is fulfilled. Thus,
the entire operator transform is now proven.

2.7.2 Transforming particle-number conserving Hamiltonians

In this section, we examine the richest symmetry to exploit for qubit
savings: particle conservation. We begin by introducing the most rel-
evant class of Hamiltonians that exhibit this symmetry, but ultimately
the main goal of this section is to simplify the operator transform for all
such Hamiltonians. Motivated by the compartmentalized recipes of the
conventional mappings, (2.12), we suggest alternatives to the transform
(2.30), that do not depend on the sequence length 𝑙.
Let us start by noting how easy it is to state that a Hamiltonian the total
number of particles: a Hamiltonian like (2.10), conserves the total num-
ber of particles when every term ̂︀ℎ𝑎𝑏 has as many creation operators as

2.7 Supplement 53

it has annihilation operators. The lengths 𝑙, implicit in the sequences ̂︀ℎ𝑎𝑏
that occur in the Hamiltonian, are thereby determined by the field the-
ory or model, that underlies the problem. The coefficients ℎ𝑎𝑏, on the
other hand, are determined by the set of basis functions used. For first-
principle problems in quantum chemistry and solid state physics, we
usually encounter particle-number-conserving Hamiltonians with terms
of weight that is at most 𝑙 = 4 (1.8). In the notation of (2.10), these coeffi-
cients 𝑉𝑖𝑗𝑘𝑙 and 𝑡𝑖𝑗 correspond to ℎ(𝑖,𝑗,𝑘,𝑙)(1,1,0,0) and ℎ(𝑖,𝑗)(1,0). The (𝑙 = 4)
interaction terms usually originate from either magnetism and/or the
Coulomb interaction. Even for these (𝑙 = 4)-terms, the operator trans-
form (2.30) is quite bulky, and we in general would like to have a trans-
form that is independent of 𝑙. Before we begin to discuss such transform
recipes however, we need to set up some preliminaries. First of all, we
need to find a suitable code (𝑒, 𝑑), as discussed in the main part. Ide-
ally, we would encode only the Hilbert space with the correct number of
particles, 𝑀 , but Hilbert spaces of other particle numbers can also be in-
cluded. Assuming that the Hamiltonian visits every state with the same
particle number, we must encode entire Hilbert spaces ℋ𝑚

𝑁 only. Sec-
ondly, we need to reorder the fermionic operators inside the Hamilto-
nian terms ̂︀ℎ𝑎𝑏. The reason for this is, that our goal can only be achieved
by finding recipes for smaller sequences of constant length. In order to
transform the Hamiltonian terms then, we need to invoke the anticom-
mutation relations (1.7) to introduce an order in ̂︀ℎ𝑎𝑏, such that these small
sequences appear as consecutive, distinct blocks. As we shall see, these
blocks will have the shape 𝑐†𝑖𝑐𝑗 . So every ̂︀ℎ𝑎𝑏 needs to be reordered, such
that every even operator is a creation operator, and every odd opera-
tor an annihilator. For the (𝑙 = 4)-terms in (1.8), this reordering means
𝑐†𝑖𝑐

†
𝑗𝑐𝑘𝑐𝑙 ↦→ 𝑐†𝑖𝑐𝑙 𝑐

†
𝑗𝑐𝑘 − 𝛿𝑗𝑙 𝑐

†
𝑖𝑐𝑘.

Let us quickly sketch the idea behind that reordering and introduce some
nomenclature: instead of considering Hamiltonian terms, we realize that
also the terms 𝑐†𝑖𝑐𝑗 also conserve the particle number: ℋ𝑚

𝑁 ↦→ ℋ𝑚
𝑁 . Let

us act with 𝑐†𝑖𝑐𝑗 on an encoded state. We consider a state that is not an-
nihilated by 𝑐†𝑖𝑐𝑗 . Its particle number is reduced by one through 𝑐𝑗 , but
then immediately restored by 𝑐†𝑖 . In fact, for a general sequence of that ar-
rangement, every even operator restores the particle number in this way
and every odd reduces it. We therefore call the subspace, in which we
find the state after an even (odd) number of operators, the even (odd)

54 Chapter 2. Saving qubits with classical codes

subspace. Since all 𝑙 must be even for the Hamiltonian to have particle
conservation symmetry, the even subspace is the one encoded. The odd
subspace, on the other hand, has one particle less, so it is ℋ(𝑀−1)

𝑁 , if the
even one is ℋ𝑀

𝑁 .

2.7.2.1 Encoding the two spaces separately

In this ordering, one can find a recipe for a singular creation or annihi-
lation operator. The strategy is to consider a second code for the odd
subspace. As before (𝑒, 𝑑) denotes the code for the even subspace, and
now (𝑒′, 𝑑′) is encoding the odd subspace. The idea is that after an odd
operator (which in this ordering is an annihilation operator), the state is
updated into the odd subspace. With every even operator (which is a
creation operator), the state is updated from the odd subspace back into
the even one. We find:

𝑐†𝑗 =̂
1

2
𝒰 (𝑗) (I+ X [𝑑𝑗]) X [𝑝𝑗] , (2.82)

𝑐𝑗 =̂
1

2
𝒰 (𝑗)

(︀
I− X

[︀
𝑑′𝑗
]︀)︀

X
[︀
𝑝′𝑗
]︀
. (2.83)

In (2.83), 𝒰 (𝑗) is defined as in (2.31), but its counterpart from (2.82) is
defined by

𝒰 (𝑗) =
∑︁

𝑡∈Z⊗𝑛
2

[︃
𝑛⨂︁

𝑖=1

(𝑋𝑖)
𝑡𝑖

]︃
𝑛∏︁

𝑖=1

1

2

(︁
I+ (−1)𝑡𝑖 X

[︁
𝜀
′ 𝑢𝑗

𝑘

]︁)︁
, (2.84)

with the primed functions 𝜀′ 𝑞, 𝑝′ defined like (2.29) and (2.28), but with
(𝑒′, 𝑑′) in place of (𝑒, 𝑑).
This method relies on 𝑛 qubits being feasible to simulate the odd sub-
space in. That is, however, not always the case. The basis set of ℋ𝑀−1

𝑁

is in general larger than ℋ𝑀
𝑁 , when 𝑀 > 𝑁/2. In this way, the odd sub-

space can also be larger and even be infeasible to simulate with just 𝑛
qubits. As a solution, one changes the ordering into odd operators being
creation operators, and even ones being annihilators, like 𝑐𝑘𝑐

†
𝑖 𝑐𝑙 𝑐

†
𝑗 . This

causes the odd subspace to become ℋ(𝑀+1)
𝑁 , which has a smaller basis set

than ℋ𝑀
𝑁 . For that case (𝑒, 𝑑) become the code for the odd subspace, and

(𝑒′, 𝑑′) will be associated to the even subspace in (2.82) and (2.83).
The obvious disadvantage is that two codes have to be employed at once.

2.7 Supplement 55

However, the checksum code for instance (Section2.4.3.1 in the main part),
comes in two different flavors already, which can be used as codes for
even and odd subspaces, respectively.

2.7.2.2 Encoding the building blocks

The building blocks 𝑐†𝑖𝑐𝑗 are guaranteed to conserve the particle number,
so the even subspace is conserved. As a consequence, one may consider
the possibility to transform the operators as the pairs we have rearranged
them into. In this way, we still have a certain compartmentalization of
(2.30). Two special cases are to be taken into account: when 𝑖 > 𝑗, an
additional minus sign has to be added, as compared to the 𝑖 < 𝑗 case.
Also, when 𝑖 = 𝑗, all parity operators cancel and the projectors coincide.
We find:

𝑐†𝑖𝑐𝑗 =̂

⎧⎪⎨⎪⎩
1
4 (−1)𝜃𝑖𝑗 𝒰 (𝑖,𝑗) X [𝑝𝑖 + 𝑝𝑗] (I+ X [𝑑𝑖]) (I− X [𝑑𝑗]) 𝑖 ̸= 𝑗

1
2 (1− X [𝑑𝑗]) 𝑖 = 𝑗 ,

(2.85)

with 𝒰 (𝑖,𝑗) being the 𝑙 = 2 version of (2.31), and 𝑝 and 𝜀 𝑞 defined as
usual by (2.28) and (2.29).

2.7.3 Multi-weight binary addressing codes based on dissec-
tions

With binary addressing codes, that is codes that are similar to the one
presented in Section 2.4.3.2 in the main part, even an exponential amount
of qubits can be saved for systems with low particle number, but at the
expense of complicated gates. For this section, we firstly recap the situa-
tion of Section 2.4.3.2 and clarify what binary addressing means. Firstly,
some nomenclature is introduced. We then generalize the concept of bi-
nary addressing codes to weight-𝐾 codes, using results from [31]. As an
example, we explicitly obtain the 𝐾 = 2 code.
Suppose we have a system with 𝑁 = 2𝑟 orbitals, and one particle in
it. Our goal is to encode the basis state, where the particle is on or-
bital 𝑦 ∈ [2𝑟], as a binary number in 𝑟 qubits. In this way, the state
with occupational vector 𝑢𝑦 is encoded as |𝑞𝑦,𝑟⟩, with 𝑞𝑦,𝑟 ∈ Z⊗𝑟

2 and

56 Chapter 2. Saving qubits with classical codes

𝑦 = bin(𝑞𝑦,𝑟) + 1. Probing an unknown basis state, a decoding will now
have components of the form

𝜔 ↦→
∏︁
𝑖∈[𝑟]

(𝜔𝑖 + 𝑞𝑦,𝑟𝑖 + 1) . (2.86)

Such binary functions output 1 only when 𝜔 = 𝑞𝑦,𝑟. In our nomencla-
ture, we say that in the basis state |𝑞𝑦,𝑟⟩, the particle has the coordinate 𝑦.
We refer to codes that store particle coordinates in binary form, as binary
addressing codes.

In the 𝐾 = 1 case from the main part, the code words just contain
the binary representation of one coordinate. The question is now how to
generalize the binary addressing codes. For multi-weight codes, we have
to have 𝐾 sub-registers to store the addresses of 𝐾 particles. Naively, one
would want to store the coordinate of each particle in its respective sub-
register in binary form, as we have done for 𝐾 = 1. This however, holds
a problem. As the particles are indistinguishable, the stored coordinates
would be interchangeable, the code would not be one-to-one. For the
binary numbers 𝜔 1 and 𝜔 2, that represent a coordinate each, this would
mean 𝑑(𝜔 1 ⊕ 𝜔 2) = 𝑑(𝜔 2 ⊕ 𝜔 1). That strategy not only complicates
the operator transform, it also leads to a certain qubit overhead, as each
plain word has as many code words as there are permutations of 𝐾 items.
Since this naı̈ve idea leaves us unconvinced, we abandon it and search for
one-to-one codes instead. The key is to consider the coordinates to be in
a certain format and this is where [31] comes into play. We proceed by
using some relevant concepts of that paper.
Let us consider the coordinates of 𝐾 particles to be given in the 𝑁 -ary
vector 𝑥 = (𝑥1, . . . , 𝑥𝐾). Between those coordinates, we have imposed
an ordering 𝑥𝑖 > 𝑥𝑗 as 𝑖 > 𝑗. Particles cannot share the same orbital,
so we are excluding the cases where two coordinates are equal. Using
results from [31], we transform the latter into coordinates that lack such
an ordering, and where each component is an integer from a different
range:

𝑥 ↦→ 𝑦 = (𝑦1, . . . , 𝑦𝐾)⊤ with 𝑦 ∈
𝐾⨂︁

𝑚=1

[︂⌈︂
𝑁

𝑚

⌉︂]︂
. (2.87)

Through that transform, each vector 𝑦 corresponds to a valid vector 𝑥,

2.7 Supplement 57

and there is no duplication. We now represent the 𝑦-coordinates by bi-
nary numbers in the code words 𝜔 ∈ Z⊗𝑛

2 , where 𝑛 =
∑︀𝐾

𝑚=1

⌈︀
log 𝑁

𝑚

⌉︀
:

𝜔 =

𝐾⨁︁
𝑚=1

𝑞 𝑦𝑚,⌈𝑁
𝑚⌉ with 𝑞𝑖,𝑗 ∈ Z⊗𝑗

2 and bin
(︀
𝑞𝑖,𝑗

)︀
+ 1 = 𝑖 . (2.88)

A geometric interpretation of the process portrays the vector 𝑥 as a set
of coordinates in a 𝐾-dimensional, discrete vector space. The vectors
allowed by the ordering form thereby a multi-dimensional tetrahedron.
The states outside the tetrahedron do not correspond to a valid 𝒱 vector,
so encoding each coordinate 𝑥𝑖 in ⌈log𝑁⌉ qubits would be redundant.
We therefore dissect the tetrahedron, and rearrange it into a brick, as it
is referred to in [31]. What is actually done is to apply symmetry oper-
ations (like point-reflections) on the vector space until the tetrahedron is
deformed into the desired shape a 𝐾-dimensional, rectangular volume.
The fact that the vectors to encode are now all inside a hyper-rectangle
is what we wanted to achieve. We can now clip the ranges of the coor-
dinate axes (to [⌈log 𝑁

𝑚⌉]) to exclude vectors the vectors outside the brick.
As the values on the axes correspond to non-binary addresses, this means
that the qubit space is trimmed as well, and we have eliminated all states
based on not-allowed coordinates. This is where we now reconnect to our
task of finding a code: the 𝑒- and 𝑑-functions have to take into account
the reshaping process, as only the coordinates 𝑥 have a physical inter-
pretation and can be decoded. The binary addresses in the code words,
on the other hand, are representatives of 𝑦. With binary logic, the two
coordinates have to be reconnected. We illustrate this abstract process on
the example of the (𝐾 = 2)-code.

Weight-two binary addressing code

As an example, we present the weight-two binary addressing code on
𝑁 = 2𝑟 orbitals. The integer 𝑟 will determine the size of the entire qubit
system 𝑛 = 2𝑟 − 1, with two registers of size 𝑟 and 𝑟 − 1.

With the two registers, a binary vector 𝜔 = 𝛼 ⊕ 𝛽 with 𝛼 ∈ Z⊗𝑟
2 and

𝛽 ∈ Z⊗(𝑟−1)
2 is defining the qubit basis. In two dimensions, the brick turns

into a rectangle and the tetrahedron into triangle. The decoding function
takes binary addresses of the rectangular 𝑦, and transforms them into co-
ordinates in the triangle 𝑥. The ordering condition implies hereby where
to dissect the rectangle: Figure 2.2 may serve as a visual aid, disregard-

58 Chapter 2. Saving qubits with classical codes

1
2

𝑁/2

1 +𝑁/2

𝑁

𝑥2
1
2

𝑁/2

𝑦2

1 2 𝑁
2

𝑁

𝑥1 = 𝑦1

Figure 2.2. Visualization of the 2-dimensional vector space: a valid vector is
represented as a colored tile. The left gray tiles and the black ones constitute the
triangle, defining all valid vectors 𝑥 = (𝑥1, 𝑥2)

⊤. The marked diagonal tiles are
to be excluded from the encoded space. The black tiles and the gray ones on the
right of this diagonal form the brick, containing all 𝑦 = (𝑦1, 𝑦2)

⊤ vectors.

ing the excluded cases of 𝑦1 = 𝑦2, we find for 𝑦1 ∈ [𝑁], 𝑦2 ∈ [𝑁/2] and
𝑥 ∈ [𝑁]⊗2:

(𝑥1, 𝑥2) =

{︃
(𝑦1, 𝑁/2 + 𝑦2) for 𝑦1 < 𝑁/2 + 𝑦2

(𝑦1, 𝑁/2− 𝑦2 + 1) for 𝑦1 > 𝑁/2 + 𝑦2 .
(2.89)

This decoding is translated into a binary functions as follows: the coor-
dinate 𝑦1 is represented by the binary vector 𝛼 and 𝑦2 by 𝛽. For each
component defined by the binary vector 𝑏 ∈ Z⊗𝑟

2 , we have

𝑑𝑗 (𝛼⊕ 𝛽) = 𝑆 (𝛼,𝛽)

𝑟∏︁
𝑖=1

(︁
𝛼𝑖 + 𝑞 𝑗,𝑟

𝑖 + 1
)︁

+ (1 + 𝑆 (𝛼,𝛽)) (1 + 𝑇 (𝛼,𝛽))
𝑟∏︁

𝑖=1

(︁
𝛼𝑖 + 𝑞 𝑗,𝑟

𝑖

)︁
+ (1 + 𝑆 (𝛼,𝛽)) (1 + 𝑇 (𝛼,𝛽))

𝑟−1∏︁
𝑘=1

(︁
𝛽𝑘 + 𝑞 𝑗,𝑟

𝑘

)︁
+ 𝑆 (𝛼,𝛽)

𝑟−1∏︁
𝑘=1

(︁
𝛽𝑘 + 𝑞 𝑗,𝑟

𝑘 + 1
)︁
, (2.90)

2.7 Supplement 59

with 𝑞 𝑗,𝑟 = (𝑞 𝑗,𝑟
1 , 𝑞 𝑗,𝑟

2 , . . . , 𝑞 𝑗,𝑟
2𝑟) as defined in (2.88) and we have em-

ployed two binary functions 𝑆 and 𝑇 : (Z⊗𝑟
2 ,Z⊗(𝑟−1)

2) ↦→ Z2. Here, 𝑆
compares the binary numbers to determine if the coordinates are left of
the dissection (a black tile in Figure 2.2).

𝑆 (𝛼,𝛽) = 𝛼𝑟

𝑟−1∑︁
𝑗=1

⎡⎣ ∏︁
𝑟−1≥𝑖>𝑗

(𝛼𝑖 + 𝛽𝑖 + 1)

⎤⎦ (1 + 𝛼𝑗)𝛽𝑗 + 1 + 𝛼𝑟 (2.91)

The binary function 𝑇 , on the other hand, is checking whether a set of
coordinates is on a diagonal position (diagonally marked tiles). These
excluded cases are mapped to (0)⊗𝑟 altogether.

𝑇 (𝛼,𝛽) =
∏︁
𝑖

(𝛼𝑖 + 𝛽𝑖) (2.92)

This concludes the decoding function. Unfortunately, the amount of logic
elements in the decoding will complicate the weight-two codes quite a
bit, and the encoding function is hardly better. The reason for this is to
find in the ordering condition: the update operations are conditional on
whether we change the ordering of the coordinates represented by 𝛼 and
𝛽. This is reflected in a nonlinear encoding function: we remind us that
the encoding function is a map 𝑒 : Z⊗2𝑟

2 ↦→ Z⊗(2𝑟−1)
2 , and with 𝜈 ∈ Z⊗2𝑟

2

we find

𝑒 (𝜈) =

2𝑟−1∑︁
𝑗=2

𝑗−1∑︁
𝑖=1

(︁
𝑞 𝑖,𝑟 + 𝐼 𝑟

)︁
⊕
(︁
𝑞 𝑗,𝑟−1 + 𝐼 𝑟−1

)︁
𝜈𝑖𝜈𝑗

+

2𝑟∑︁
𝑗=2𝑟−1+1

2𝑟−1∑︁
𝑖=1

(︁
𝑞 𝑖,𝑟 + 𝐼 𝑟

)︁
⊕
(︁
𝑞 𝑗−2𝑟−1,𝑟−1

)︁
𝜈𝑖𝜈𝑗

+

2𝑟∑︁
𝑗=2𝑟−1+2

𝑗−1∑︁
𝑖=2𝑟−1+1

(︁
𝑞 𝑖,𝑟

)︁
⊕
(︁
𝑞 𝑗−2𝑟−1,𝑟−1

)︁
𝜈𝑖𝜈𝑗 ,

with 𝑞 𝑖,𝑗 as defined in (2.88), and 𝐼 𝑗 = (1)⊗𝑗 = 𝑞2
𝑗, 𝑗 .

The dissecting of tetrahedrons can be generalized for codes of weight
larger than two (see again [31]), but as one increases the number of dis-
sections, the code functions are complicated even further.

60 Chapter 2. Saving qubits with classical codes

2.7.4 Segment codes

In this section, we provide detailed information on the segment codes.
We firstly concern ourselves with the segmentation of the global code,
including a derivation of the segment sizes. In another subsection we
construct the segment codes themselves. The last subsection is dedicated
to the adjustments one has to make to Hamiltonian, such that segment
codes become feasible to use.

2.7.4.1 Segment sizes

At this point we want to sketch the idea behind the segment sizes (̂︀𝑁 , ̂︀𝑛)
stated during Section 2.4.3.3 in the main part, but first of all we would
like to clearly set up the situation.

We consider vectors 𝜈 ∈ Z⊗𝑁
2 to consist of ̂︀𝑚 smaller vectors ̂︀𝜈𝑖 of

length ̂︀𝑛 + 1, such that 𝜈 =
⨁︀̂︀𝑚

𝑖=1 ̂︀𝜈𝑖. We call those vectors ̂︀𝜈𝑖 segments
of 𝜈. The goal is now to find a code (𝑒, 𝑑) to encode a basis 𝒱 which
contains all vectors 𝜈 with Hamming weight 𝐾. For that purpose we
relate the segment ̂︀𝜈𝑖 to a segment of the code space, ̂︀𝜔𝑖, for all 𝑖 ∈ [𝑁].
The code space segments constitute the code words in a fashion similar
to the previous segmentation of 𝜈: 𝜔 =

⨁︀̂︀𝑚
𝑖=1 ̂︀𝜔𝑖. However, the length of

those binary vectors ̂︀𝜔𝑖 is ̂︀𝑛, such that with 𝑛 = ̂︀𝑚̂︀𝑛 and 𝑁 = ̂︀𝑚(̂︀𝑛+1), the
problem is reduced by ̂︀𝑚 qubits as compared to conventional transforms.
We now introduce the subcodes (̂︀𝑒 : Z⊗(̂︀𝑛+1)

2 ↦→ Z⊗̂︀𝑛
2 , ̂︀𝑑 : Z⊗̂︀𝑛

2 ↦→ Z⊗(̂︀𝑛+1)
2),

with which we encode the 𝑖-th segment ̂︀𝜈𝑖 as ̂︀𝜔𝑖 (see Figure 2.3). Note
that we require the subcodes to inherit all the code properties. In this way
we guarantee the code properties of the global code (𝑒, 𝑑) when appendinĝ︀𝑚 instances of the same subcode:

𝑑

(︃ ̂︀𝑚⨁︁
𝑖=1

̂︀𝜔𝑖

)︃
=

̂︀𝑚⨁︁
𝑖=1

̂︀𝑑(︁̂︀𝜔𝑖
)︁
, 𝑒

(︃ ̂︀𝑚⨁︁
𝑖=1

̂︀𝜈𝑖

)︃
=

̂︀𝑚⨁︁
𝑖=1

̂︀𝑒(︁̂︀𝜈𝑖
)︁
. (2.93)

The orbital number being an integer multiple of the block size is of
course an idealized scenario. One will probably have to add a few other
components in order to compensate for dimensional mismatches.
We now set out to find the smallest segment size ̂︀𝑛. It should be clear that̂︀𝑛 is a function of the targeted Hamming weight 𝐾: this means 𝐾 deter-
mines which segment codes are suitable for the system. The reason for

2.7 Supplement 61

̂︀𝜈1 ̂︀𝜈2 ̂︀𝜈̂︁𝑚

𝑒 𝑑 ̂︀𝑒 ̂︀𝑑 ̂︀𝑒 ̂︀𝑑 ̂︀𝑒 ̂︀𝑑
𝜈 = ̂︀𝜈11 , ̂︀𝜈12 , ̂︀𝜈13 , ̂︀𝜈14 , ̂︀𝜈15 , ̂︀𝜈21 , ̂︀𝜈22 , ̂︀𝜈23 , ̂︀𝜈24 , ̂︀𝜈25 , ̂︀𝜈 ̂︀𝑚

1 ,̂︀𝜈 ̂︀𝑚
2 , ̂︀𝜈 ̂︀𝑚

3 , ̂︀𝜈 ̂︀𝑚
4 , ̂︀𝜈 ̂︀𝑚

5· · ·
𝜔 = ̂︀𝜔1

1 , ̂︀𝜔1
2 , ̂︀𝜔1

3 , ̂︀𝜔1
4̂︀𝜔1 ̂︀𝜔2 ̂︀𝜔̂︁𝑚

̂︀𝜔2
1 , ̂︀𝜔2

2 , ̂︀𝜔2
3 , ̂︀𝜔2

4 ̂︀𝜔 ̂︀𝑚
1 , ̂︀𝜔 ̂︀𝑚

2 , ̂︀𝜔 ̂︀𝑚
3 , ̂︀𝜔 ̂︀𝑚

4, , · · ·
Figure 2.3. Visualization of (2.93) for ̂︀𝑛 = 4. The global code (𝑒, 𝑑) relates the
occupation vectors to the global code words 𝜈 ↔ 𝜔. The an instance of the
subcode (̂︀𝑒, ̂︀𝑑) relates 𝑖-th block in 𝜈, ̂︀𝜈𝑖, to the 𝑖-th segment in the code words,̂︀𝜔𝑖.

this is that we need to encode all vectors with weight 0 to 𝐾 inside every
segment, taking into account for the up to 𝐾 particles on the orbitals in-
side one segment. In order to include weight-𝐾 vectors, the size of each
segment must be at least 𝐾. If the segment size would be exactly 𝐾, on
the other hand, we end up encoding the entire Fock space again. In do-
ing so, we are not making any qubit savings. The segments must thus be
larger than 𝐾. In other words, we look for an integer ̂︀𝑛 > 𝐾, where the
sum of all combinations ̂︀𝜈 ∈ Z⊗(̂︀𝑛+1)

2 with wH (̂︀𝜈) ≤ 𝐾 is smaller equal
2̂︀𝑛.

2̂︀𝑛 ≥
𝐾∑︁
𝑘=0

(︂̂︀𝑛+ 1

𝑘

)︂
(2.94)

In the case ̂︀𝑛 = 2𝐾, the condition is fulfilled as identity, since exactly half
of all 2̂︀𝑛+1 combinations are included in the sum.

2.7.4.2 Subcodes

This subsection offers a closer look at the construction of the segment
subcodes (̂︀𝑒, ̂︀𝑑). Let us start by considering the decoding ̂︀𝑑 in order to
explore the nature of the binary switch 𝑓(̂︀𝜔), that occurs in (2.37). One

62 Chapter 2. Saving qubits with classical codes

observes the two (affine) linear
(︁
Z⊗̂︀𝑛
2 ↦→ Z⊗(̂︀𝑛+1)

2

)︁
-maps

̂︀𝜔 ↦→

⎡⎢⎢⎢⎣
1

. . .
1

0 . . . 0

⎤⎥⎥⎥⎦ ̂︀𝜔 , ̂︀𝜔 ↦→

⎡⎢⎢⎢⎣
1

. . .
1

0 . . . 0

⎤⎥⎥⎥⎦ ̂︀𝜔 +

⎛⎜⎜⎜⎜⎝
1
...
...
1

⎞⎟⎟⎟⎟⎠ . (2.95)

to produce together all the vectors with weight equal or smaller than 𝐾,
if we input all ̂︀𝜔 with wH (̂︀𝜔) ≤ 𝐾 into the first, and the remaining cases
with wH (̂︀𝜔) > 𝐾 into the second one. Note that the last component is
always zero in outputs of the first function and one in the second. There-
fore, the inverse of both maps is always a linear map with the matrix
[I | 𝐼 ̂︀𝑛]︀. We take this inverse as encoding (2.38), and the two maps (2.95)
are merged into the decoding (2.37). In order to switch between these
two maps we define the binary function 𝑓(̂︀𝜔) : Z⊗̂︀𝑛

2 ↦→ Z2 such that

𝑓(̂︀𝜔) =

{︃
1 for wH (̂︀𝜔) > 𝐾

0 otherwise .
(2.96)

In general, one can define this binary switch in a brute-force way by

𝑓 (̂︀𝜔) =
2𝐾∑︁

𝑘=𝐾+1

∑︁
𝑡∈Z⊗2𝐾

2

wH(𝑡)=𝑘

2𝐾∏︁
𝑚=1

(̂︀𝜔𝑚 + 1 + 𝑡𝑚) . (2.97)

For the case 𝐾 = 1 (̂︀𝑛 = 2), the switch equals 𝑓(𝜔) = 𝜔1𝜔2, and for the
code we recover a version of binary addressing codes, where the vector
(0, 0, 0) is encoded.

̂︀𝑑 (̂︀𝜔) =

⎛⎝̂︀𝜔1 (̂︀𝜔2 + 1)
(̂︀𝜔1 + 1) ̂︀𝜔2̂︀𝜔1̂︀𝜔2

⎞⎠ , ̂︀𝑒 (̂︀𝜈) = [︂1 0 1
0 1 1

]︂ ̂︀𝜈 . (2.98)

In the 𝐾 = 2 (̂︀𝑛 = 4) case, this binary switch is found to be 𝑓 (̂︀𝜔) =̂︀𝜔1̂︀𝜔2̂︀𝜔3 + ̂︀𝜔1̂︀𝜔2̂︀𝜔4 + ̂︀𝜔1̂︀𝜔3̂︀𝜔4 + ̂︀𝜔2̂︀𝜔3̂︀𝜔4 + ̂︀𝜔1̂︀𝜔2̂︀𝜔3̂︀𝜔4.

2.7.4.3 Hamiltonian adjustments

As mentioned in Section 2.4.3.3, in the main part, segment codes are not
automatically compatible with all particle-number-conserving Hamilto-
nians. We show here, how certain adjustments can be made to these

2.7 Supplement 63

· · ·· · · 𝑖 𝑗

Segment A Segment B

Figure 2.4. (Filled) Circles represent (occupied) fermionic orbitals, where 𝐾 = 2
segment codes are used in the indicated blocks. This occupational case is prob-
lematic for the codes, as the operator 𝑐†𝑖 𝑐𝑗 acting on this state leaves the encoded
space.

Hamiltonians, such that their action on the space ℋ𝐾
𝑁 is not changed,

but segment codes become feasible to describe them with. In order to
understand this issue, we begin by examining the encoded space. For
that purpose we reprise the situation of (2.93), where we have appended̂︀𝑚 instances of the same subcode. With segment codes, the basis 𝒱 con-
tains vectors with Hamming weights from 0 to ̂︀𝑚𝐾. We have encoded
all possible vectors 𝜈 with 0 ≤ wH (𝜈) ≤ 𝐾, but although we have some,
not all vectors with wH (𝜈) > 𝐾 are encoded. We can illustrate that point
rather quickly: each segment has length 2𝐾+1, but the subcode encodes
vectors ̂︀𝜈 with only wH (̂︀𝜈) ≤ 𝐾. The (global) basis 𝒱 is thus deprived of
vectors 𝜈 = (

⨁︀
𝑖 ̂︀𝜈𝑖) where for any segment 𝑖, wH

(︀̂︀𝜈𝑖
)︀
> 𝐾.

We now turn our attention to terms, which, when present in a Hamilto-
nian, make segment codes infeasible to use. Note, that 𝒱-vectors with
wH (𝜈) ̸= 𝐾, are not corresponding to fermionic states we are interested
in. In particular it is a certain subset of states with wH (𝜈) > 𝐾, which
can lead out of the encoded space (into the states previously mentioned)
when acted upon with certain fermionic operators. Let us consider the
operator 𝑐†𝑖𝑐𝑗 as an example, where 𝑖 and 𝑗 are in different segments (let
us call these segments A and B). Now a basis state as depicted in Figure
2.4, is not annihilated by 𝑐†𝑖𝑐𝑗 , and leads into a state with 3 particles in
segment A. The problem is that the initial state is encoded in the (𝐾 = 2)
segment codes, whereas the updated state (with the 3 particles in A) is
not. In general, operators ̂︀ℎ𝑎𝑏, that change occupations in between seg-
ments, will cause some basis states with wH (𝜈) > 𝐾 to leave the en-
coded space. We can however adjust these terms ̂︀ℎ𝑎𝑏 → ̂︀ℎ′𝑎𝑏, such that̂︀ℎ′𝑎𝑏 : span(ℬ) ↦→ span(ℬ), where ℬ is the basis encoded by the segment
codes. We now sketch the idea behind those adjustments, before we re-
consider the situation of Figure 2.4. Note that after these adjustments

64 Chapter 2. Saving qubits with classical codes

have been made to all Hamiltonian terms in question, the segment codes
are compatible with the new Hamiltonian. The idea is to switch those
terms off for states, that already have 𝐾 particles inside the segments, to
which particles will be added. We have to take care to do this in a way
that leaves the Hamiltonian hermitian on the level of second quantiza-
tion, i.e. we have to adjust the terms ̂︀ℎ𝑎𝑏 and ̂︀ℎ†𝑎𝑏 into ̂︀ℎ′𝑎𝑏 and (̂︀ℎ†𝑎𝑏)′,
such that ̂︀ℎ′𝑎𝑏 + (̂︀ℎ†𝑎𝑏)′ is hermitian. For the 𝐾 = 2 code of Figure 2.4, we
can make the following adjustments:

𝑐†𝑖𝑐𝑗 ↦→

⎛⎝1−
∑︁

𝑙,𝑘<𝑙∈ B

𝑐†𝑘𝑐𝑘𝑐
†
𝑙 𝑐𝑙

⎞⎠ 𝑐†𝑖𝑐𝑗

⎛⎝1−
∑︁

𝑤,𝑣<𝑤∈ A

𝑐†𝑣𝑐𝑣𝑐
†
𝑤𝑐𝑤

⎞⎠ . (2.99)

2.8 Notations

[...] The set of integers from 1 to the argument.

=̂

Relation used to express the correspondence between fermionic
operators/states to qubit counterparts (according to some
fermion-to-qubit mapping).

𝑎
Element of [𝑁]⊗𝑙. Length-𝑙 𝑁 -ary vector parametrizing orbitals in
the Hamiltonian terms ̂︀ℎ𝑎𝑏.

𝐴(−1)
A (𝑁 × 𝑁) binary matrix defining a conventional encoding (de-
coding).

𝑏
Element of Z⊗𝑙

2 . A length-𝑙 binary vector determining operator
types in ̂︀ℎ𝑎𝑏.

ℬ
The basis of a space of fermions on 𝑁 orbitals, which is possibly
smaller than the Fock-space basis.

𝑐
(†)
𝑗

An element of ℒ(ℱ𝑁). A fermionic annihilation (creation) opera-
tor.

(C2)⊗𝑛
The vector space of 𝑛-qubit states.

𝑑 A binary vector function Z⊗𝑛
2 ↦→ Z⊗𝑁

2 . The decoding function.

𝑒 Binary vector function Z⊗𝑁
2 ↦→ Z⊗𝑛

2 . The encoding function.

𝜀𝑞
A binary vector function Z⊗𝑛

2 ↦→ Z⊗𝑛
2 . The update function which

plays a role for nonlinear encodings, see (2.29).

2.8 Notations 65

ℱ𝑁 The fermionic Fock space restricted on 𝑁 orbitals.

𝐹 (𝑗) A Subset of [𝑛] The flip set with respect to orbital 𝑗, see (2.12).

̂︀ℎ𝑎𝑏 A fermion operator span(ℬ) ↦→ span(ℬ). A generic term in a
fermionic Hamiltonian, see (2.10).

ℋ𝑀
𝑁

The antisymmetrized Hilbert space of 𝑀 indistinguishable
fermions on 𝑁 orbitals.

I The identity operator on arbitrary spaces.

𝐾
An element of [𝑁] The targeted Hamming weight of the vectors
encoded in a binary code.

𝑙 The length of a sequence of fermionic operators in ̂︀ℎ𝑎𝑏.

𝐿 The weight of a Pauli string.

ℒ(...) Denotes linear operators on the argument vector space.

𝑀 The total number of particles in a system of 𝑁 orbitals.

𝑛 The number of qubits.

𝑁 The number of fermionic orbitals.

𝜈
An element of 𝒱 ⊆ Z⊗𝑁

2 . The 𝑁 -orbital occupation vector repre-
senting a fermionic basis state, see (2.17).

𝜔
An element of Z⊗𝑛

2 . A binary vector representing a product state
in the 𝑛-qubit basis, see (2.18).

𝑝 Binary vector function Z⊗𝑛
2 ↦→ Z⊗𝑁

2 The parity function,used for
the parity operators.

𝑃 (𝑗) A subset of [𝑛]. The parity set of orbital 𝑗, see (2.12).

𝒫 Set of single-qubit Pauli operators {𝑋, 𝑌, 𝑍}.

𝑞 An element of Z⊗𝑁
2 . Binary vector denoting the occupational

change of a vector 𝜈 by a term ̂︀ℎ𝑎𝑏.

𝑅
A binary (𝑁 ×𝑁) matrix, where the lower triangle (excluding the
diagonal) is filled with ones, see (2.13).

𝜃𝑖𝑗
A function [𝑁]⊗2 ↦→ Z2. The discrete version of the Heaviside
function, see (2.13).

𝑢𝑗
A binary vector in Z⊗𝑁

2 or Z⊗𝑛
2 . The 𝑗-th unit vector, in which just

component 𝑗 is one.

66 Chapter 2. Saving qubits with classical codes

𝑈(𝑗) A subset of [𝑛] The update set of orbital 𝑗, see (2.12).

𝒰𝑎 A linear operator: ℒ
(︀
(C2)⊗𝑛

)︀
. Update operator with respect to an

occupation of 𝑎, see (2.31) and (2.32).

𝒱 A subset of Z⊗𝑁
2 . The set of all allowed occupation vectors 𝜈,

implementing the basis ℬ, see (2.17).

wH (·) A function Z⊗𝑁
2 ↦→ [𝑁] ∪ {0}. The Hamming weight of a binary

vector, which is the sum of its components.

X

A map
(︀
Z⊗𝑛
2 ↦→ Z2

)︀
↦→ ℒ

(︀
(C2)⊗𝑛

)︀
. The extraction superopera-

tor, which relates binary functions to quantum gates, see (2.19) -
(2.27).

Z2 The set of binary digits: {0, 1}.

2.9 Further work

Tapering qubits off

There is another approach that can help reducing the number of qubits by
exploiting symmetries. Let us consider that a qubit Hamiltonian has a set
of stabilizers. As stabilizer conditions constrain degrees of freedom, they
can be taken into account to eliminate an equivalent number of qubits.
In fact, we find that per stabilizer condition eliminated one qubit can be
tapered off, which means removing a number of qubits equivalent to the
number of stabilizer generators. In [34], where this idea was developed, a
quantum algorithm is devised to render the action of the problem Hamil-
tonian trivial on the qubits to be removed. However, in the wake of [43],
we have developed a perhaps simpler method, with which qubits can be
tapered off a Hamiltonian 𝐻 , given only the generating set of stabilizers.
While those stabilizers have to take the form of Pauli strings, we might
have to simulate the system in the negative subspace of some of them,
which effectively corresponds to those stabilizers being defined with a
minus sign: 𝑆 ∈ ±{I, 𝑋, 𝑌, 𝑍}⊗𝑛. Note that those stabilizers might
not be a product of natural symmetries. Our original motivation was
to test logical Hamiltonians, as they appear in the next chapter. These
are Hamiltonians of systems in which stabilizer conditions are defined as
part of a quantum code, but like before we can regard the stabilizers as

2.9 Further work 67

𝜏∖𝜎 𝑋 𝑌 𝑍

I ℎ ℎ ℎ
𝑋 ±ℎ · 𝑝 ±𝑖ℎ · 𝑝 ℎ
𝑌 ∓𝑖ℎ · 𝑝 ±ℎ · 𝑝 ±𝑖ℎ · 𝑝
𝑍 ℎ ℎ ±ℎ · 𝑝

Table 2.3. Removing one qubit from a Pauli string 𝜏 ⊗ ℎ, by eliminating a stabi-
lizer generator ±𝜎⊗𝑝. Here 𝑝 and ℎ are Pauli strings on 𝑛−1 qubits, and 𝜎, 𝜏 are
Pauli operators on an isolated qubit. The entries of the table show the (𝑛 − 1)-
qubit equivalents of 𝜏 ⊗ ℎ for various instances of 𝜏 (rows) and 𝜎 (columns).

boundary conditions imposed on a physical system of spins. Testing the
Hamiltonian spectra, and thus the code space, is therefore not possible
unless we somehow include these conditions. At this point, qubit taper-
ing can be used to eliminate all stabilizer conditions and turn a logical
Hamiltonian into a physical one. The spectrum of the latter can then be
matched with its expectation to verify the subspace.
We will now describe our procedure in detail. It relies on a routine that ta-
pers off one qubit for each stabilizer generator so the following scheme is
to be repeated until no stabilizers are left. In the beginning, we isolate one
qubit on which the selected stabilizer acts non-trivially as 𝜎 ∈ {𝑋, 𝑌, 𝑍}.
Let us write the stabilizer as 𝑆 = ±𝜎 ⊗ 𝑝, where the first register denotes
the isolated qubit, and the second register is comprised of the remain-
ing qubits, on which the stabilizer acts as the Pauli string ±𝑝. We now
replace all logical operators (and remaining stabilizers), 𝜏 ⊗ ℎ, with the
entries (corresponding to the concrete instances of 𝜏 and 𝜎) in Table 2.3.

Obviously, the isolated qubit has been removed, and the stabilizer 𝑆
is discarded. Let us prove this method. The idea is that by the stabi-
lizer, a Pauli string 𝜏 ⊗ ℎ is re-expressed as either I⊗ ℎ′ or 𝜋 ⊗ ℎ′′, where
𝜋 ∈ {𝑋, 𝑌, 𝑍}/{𝜎}. In the table, we have have conventionally chosen to
fixed 𝜋 = 𝑍 in cases 𝜎 ∈ {𝑋, 𝑌 } and 𝜋 = 𝑋 for the case 𝜎 = 𝑍. This
is achieved by multiplying 𝜏 ⊗ ℎ with 𝜎 ⊗ 𝑝 in case 𝜏 /∈ {I, 𝜋}. Since
now each term is acting on the isolated qubit as either 𝜋 or I, it can be
disregarded from the underlying eigenvalue problem, as it must be in
the ±-eigenstate of 𝜋. To save qubits, we just replace it with its eigen-
value ±1: I ⊗ ℎ′ ↦→ ⊗ℎ′ and 𝜋 ⊗ ℎ′′ ↦→ ±ℎ′′. Note that the concrete
choice between the two eigenvalues is irrelevant: the case in which the
tapering is performed within the (−1) eigenspace produces a Hamilto-

68 Chapter 2. Saving qubits with classical codes

nian 𝐻 ↦→ 𝐻−, that is related to its (+1) counterpart, 𝐻+, by the unitary
transform: 𝐻+ = 𝑝 𝐻−𝑝, which means 𝐻+ and 𝐻− are isospectral.

Term reduction

When applying the tapering, the number of Hamiltonian terms is not
increased by the procedure outlined above. However, it can very well
decrease. Two Hamiltonian terms, ℎ0 and ℎ1, can for instance be related
by the condition ℎ1 = ±ℎ0 · 𝑆. After 𝑆 is eliminated by tapering, the
two terms will not stay distinct, but rather be added or subtracted ac-
cording to the sign, meaning that at least one or even both terms vanish.
Even without eliminating qubits, this feature can be utilized to reduce
the number of Hamiltonian terms. This is particularly useful for logical
Hamiltonians, since for transforms concatenated with quantum codes,
the number of terms tends to proliferate.2 The problem is that while
many of those terms are equivalent up to the multiplication by stabiliz-
ers, however they are not identical, such that classical software cannot
merge or cancel them. We have defined a classical routine to eliminate
redundant terms while maintaining the code space. Like before, we be-
gin by choosing a qubit on which the first stabilizer acts as 𝜎1, and by
multiplication fix each logical term as well as the remaining stabilizer
generators to act on it as 𝜋1 ̸= 𝜎1 or I, the identity. However, while dis-
carding the first stabilizer we are not going to remove the selected qubit –
a procedure that is repeated for every stabilizers in the list of generators.
Note that we always have to select a qubit that is distinct from the ones
already fixed. For a total of 𝑟 stabilizer generators, we end up with each
logical Pauli string ℎ transformed into 𝜆ℎ ⊗ 𝜂ℎ, where 𝜆ℎ ∈

⨂︀𝑟
𝑖=1{I, 𝜋𝑖}

is a fixed string on the 𝑟 qubits selected, and 𝜂ℎ the ‘free’ remainder of ℎ
on the 𝑛− 𝑟 qubits left. When every Hamiltonian string ℎ is brought into
this form, redundant terms cancel or merge. However, the Hamiltonian
strings probably had an optimized Pauli weight as ℎ, that is likely to be
not conserved in 𝜆ℎ ⊗ 𝜂ℎ. To keep the weight optimized, we perform the
above procedure within a table, such that in the end each original string
ℎ is stored together with its fixed form. We have thus obtained a look-up
table with which every remaining string 𝜆ℎ ⊗ 𝜂ℎ of the Hamiltonian can
be mapped back to ℎ, retrieving its optimized weight.

2Unpublished observations.

Chapter 3

Embedding simulations with
quantum codes

3.1 Background

While small quantum simulations have been performed on few-qubit de-
vices across all platforms [24, 41, 44–48], and efforts are undertaken to
scale devices up, the quantum simulation of larger fermionic systems is
still a challenge. Critical factors that determine the feasibility of an algo-
rithm would be its qubit requirements, its gate cost (in terms of magic
states when error-corrected, and in terms of two-qubit gates when noisy)
[28, 49] and circuit depth (a measure of the algorithm run time, where
each time step is the duration of one quantum gate). Quantum algo-
rithms are generally to be kept shallow to ensure that they can be run
before the qubit system has decohered. It is thus in our interest to de-
compose the algorithms into many parts that can be run in parallel, i.e. at
the same time. Obviously, one can hope for parallelization if the algo-
rithm is comprised of gate sequences that act on subsets of as few qubits
as possible and these subsets do not overlap much. Another factor is
that actual quantum devices can have geometric limitations which neg-
atively influence the circuit depth. In a practical setting not every qubit
can reach every other qubit, i.e. they cannot be entangled with a single
two-qubit gate. To entangle distant qubits, it takes additional efforts in
gates and time. Thus another criterion for the reduction of the circuit
depth is that gate sequences only act on qubits adjacent on a certain con-
nectivity graph. Although this graph depends on the actual quantum

70 Chapter 3. Embedding simulations with quantum codes

device, we can make an educated guess: devices on which surface code
can be run, require a square lattice connectivity graph.
Unfortunately, it is nontrivial to embed fermionic problems in those lat-
tices, which opposes shallow-depth quantum simulation. Let us illus-
trate the exact issue. In order to bring the problem into a form the quan-
tum computer can process, the fermionic modes need to be embedded
into a (two-dimensional) lattice structure related to the qubit connec-
tivity graph. After that, a fermion-to-qubit mapping translates the in-
teractions of those system to a qubit Hamiltonian fit to be simulated.
It is this last step in which the problem lies, as simulating the interac-
tion between as little as two fermionic modes usually requires gates act-
ing on large subsets of qubits. This is a consequence of the fermionic
wave functions being antisymmetric under particle permutations, which
causes the interaction of two fermionic modes to also be sensitive to the
occupation of seemingly uninvolved modes, turning into gates on the
qubits representing them. This is the same issue that prohibits us from
describing fermions on (two-dimensional) lattices in terms of bosons,
which could be simulated more easily. In fact, the problems are some-
what intertwined considering that those bosonic descriptions can dou-
ble as fermion-to-qubit mappings. The Jordan-Wigner transform for in-
stance is widely used as a fermion-to-qubit mapping [24, 45, 46, 48] to-
day, but its appearance in 1928 [19] predates the work of Feynman by
half a century. The original work of Jordan and Wigner was rather meant
to compare fermionic operators to the operators of (hard-core) Bosons,
which are easily mapped to (1/2)-spins. For our purposes, the spins are
immediately identified as qubits, rendering the transform a default for
fermion-to-qubit mappings. However, the Jordan-Wigner transform is
effectively one-dimensional and exhibits large deficits in the treatment
of two-dimensional systems. In particular it fails to map a fermionic
lattice model with local interactions (meaning their interaction range is
bounded by a constant) to a model of locally interacting spins. In con-
trast to that, locally interacting spins on a lattice can be mapped to a
locally interacting Boson lattice, due to the bosonic wave function not
being antisymmetric [50]. While there are tricks and generalizations to
circumvent the deficits of the Jordan-Wigner transform [51–54], not all of
them are useful for its role in quantum simulation: there is no ultimate
choice for a two-dimensional fermion-to-qubit mapping. However, there
is a mapping with which locally interacting fermion and qubit lattices can

3.1 Background 71

be related: the Verstraete-Cirac transform (VCT) [25] also known as Aux-
iliary fermion mapping [29, 55, 56], can be regarded as a manipulation of
the Jordan-Wigner transform, in which additional auxiliary particles are
added, hence the name. Other works on fermion-to-qubit mappings [27,
29, 37, 57] are based on two transforms proposed by Bravyi and Kitaev in
[26]. First, there is the already mentioned Bravyi-Kitaev transform, that,
compared to the Jordan-Wigner transform, exhibits an up to exponen-
tial improvement on the number of qubits that each fermionic interac-
tion term acts on. The Bravyi-Kitaev transformation however demands a
qubit connectivity that is higher than what a square lattice can offer. Sec-
ond, the mapping referred to as ‘Superfast simulation of fermions on a graph’
(BKSF) has the power to map local fermion lattices to local qubit lattices,
but the square lattice connectivity is generally only sufficient when the
underlying model is an interacting square lattice as well: to make inter-
actions local, the mapping requires a qubit connectivity graph set by the
Hamiltonian. When the given connectivity turns into a limitation, classi-
cal tools like sorting networks might be applied [58]. Most notably, there
are recent attempts to incorporate swapping networks into the fermion-
to-qubit mapping. With so-called fermionic swaps [26], not only qubits
are swapped but also fermionic modes, in the sense that swapping oper-
ations can change the locality of their interactions in the Jordan-Wigner
transform. This effectively eliminates the contribution of the fermion-
to-qubit mapping to the gate cost and algorithmic depth which is then
dominated by the swapping network alone [30, 59].

In this chapter, we want to abstain from swapping and sorting net-
works to make use of the (two-dimensional) geometric proximity of qubits
inside the quantum device. In this way, the gate cost is determined by the
range of interactions on the fermionic lattice and distant interactions can
be simulated in parallel. For this purpose, we define two-dimensional
(nonperturbative) fermion-to-qubit mappings that generalize the Jordan-
Wigner transform on the square lattice. We here not only demand that
local Hamiltonians of fermions are mapped to local qubit Hamiltonians
but want to go beyond nearest neighbor interactions. The exchange inter-
action between two (distant) modes should involve only the two qubits
that these modes correspond to, and some chain of qubits that connects
them geometrically. This means that when we imagine the system as a
fermion lattice with dimension (ℓ1 × ℓ2), we want an interaction term of
any two modes to transform into a term acting on 𝑂(𝑚) qubits, when

72 Chapter 3. Embedding simulations with quantum codes

the modes have a Manhattan distance of 𝑚. As a consequence, we can
bound the weight of the largest terms by 𝑂(ℓ1+ℓ2), rather than 𝑂(ℓ1×ℓ2)
as in the case of the Jordan-Wigner transform. In this way the entire sim-
ulation only considers operators acting on the shortest possible strings
along adjacent qubits, fostering parallelization.

3.2 Results

In this chapter, we introduce a class of fermion-to-qubit mappings, that
are two-dimensional generalizations of the Jordan-Wigner transform on
a ℓ1×ℓ2 lattice of fermionic sites. The Auxiliary qubit mappings (AQMs) are
based on the (one-dimensional) Jordan-Wigner transform, concatenated
with specific quantum (stabilizer) codes. Stabilizer codes, which play an
important role in quantum error correction, encode a logical basis of 2𝑁

degrees of freedom (here 𝑁 = ℓ1 × ℓ2) in a subspace of a larger system
with 𝑛 > 𝑁 qubits. The degrees of freedom left are constrained with so-
called stabilizer conditions, which means there are 𝑛 −𝑁 (independent)
qubit operators {𝑆𝑖}𝑖 that stabilize this basis, i.e. in the logical subspace
the expectation value of all stabilizers is one, ⟨𝑆𝑖⟩ = 1. In our case, the
logical basis encoded is the one of the Jordan Wigner transform, to which
𝑟 = 𝑛 − 𝑁 auxiliary qubits have been added and constrained. The en-
tire procedure is illustrated in Figure 3.1, where the AQM performs the
transition from layer (a) to (c), effectively avoiding the nonlocal interac-
tions on layer (b). The codes used for AQMs are planar on the square
lattice, and we devise a unitary quantum circuit that switches in between
the layers (b) and (c). This circuit has an algorithmic depth that scales
with ℓ1, the length of one of the lattice sides. There is no such opera-
tion for mappings found in prior works, the Verstraete-Cirac transform
and Superfast simulation. To compare them with the AQMs, we modify
the VCT and BKSF, rendering them planar codes with the Manhattan-
distance property. The contributions of this chapter

• We introduce three types of Auxiliary Qubit Mappings, each re-
quiring a different amount of auxiliary qubits. Our main result of
this paper is the square lattice AQM, which uses 2𝑁−ℓ1 qubits in to-
tal. Note that in general, mappings with more auxiliary qubits will
in some sense deal better with the second dimension, but none of
the mappings generalizing the Jordan-Wigner transform has a total
qubit number exceeding 2𝑁 . However, one might be interested in

3.2 Results 73

𝑁 fermion modes

𝑁 physical qubits

𝑁 logical qubits

A
Q

M

Jordan-Wigner transform

Auxiliary qubit code

(a)

(b)

(c)

Figure 3.1. Visualizing an Auxiliary Qubit Mapping (AQM) as a concatenation
of the Jordan-Wigner transform and a particular quantum code. The three layers
represent the lattices of fermions and qubits. We have highlighted the same
three exchange terms on each lattice, so their transformation can be observed.
(a) The starting point: a fermionic lattice or two-dimensional embedding of a
fermion system with ℓ1 × ℓ2 modes. The three (local) interactions highlighted
are brought via the Jordan-Wigner transform onto the (data) qubit layer. (b) The
data qubit layer, in which two of the formally local interactions now assume a
nonlocal form. To restore locality, we need to define a quantum code on the data
qubits register and some auxiliary qubits, added to the next layer. (c) The final
layer: a composite system of 𝑛 qubits, where we have placed 𝑛 − 𝑁 auxiliary
qubits in between the data qubits. By the Auxiliary Qubit code, interactions
that were local in the top layer can now be made local again. Note also that
the interaction in the center of the lattice, which has involved many qubits in
the middle layer, is now reduced to act on few qubits again by the Manhattan-
distance property.

74 Chapter 3. Embedding simulations with quantum codes

using fewer auxiliary qubits: this can be the case for instance when
simulating lattice models, where we would like to make the phys-
ical lattice as large as possible and ‘being on a fixed qubit budget’
accept a trade-off between circuit depth and the number of auxil-
iary qubits. A qubit-economic version of this mapping would be
the sparse AQM, which introduces the parameter ℐ to regulate the
trade-off. Furthermore, with adding only a few qubits we can al-
ready obtain a modified version of this mapping which has easy-to-
prepare logical states and is called E-type AQM. A comprehensive
list of all considered fermion-to-qubit mappings, that allows us to
compare their properties, is compiled into Table 3.1. For all Auxil-
iary Qubit Mappings, we provide the initialization circuits of 𝑂(ℓ1)
depth.

• We demonstrate the Auxiliary Qubit Mappings on the Fermi-Hubbard
model, decreasing its algorithmic depth from being linear with the
number of data qubits, 𝑂(𝑁), to being constant, 𝑂(1). This is an im-
portant step towards making its simulation scalable (at the expense
of more qubits). Lattice models are in general not just interesting
by themselves, but also test on how a fermion-to-qubit mapping
deals with the second dimension, i.e. the criteria mentioned in the
introduction, in a minimal fashion. We explicitly show how the
mappings transform the Fermi-Hubbard model into a model of lo-
cal qubit interactions on the lattice.

• We compare our work, the Auxiliary Qubit Mappings, to the Verstraete-
Cirac transform [25] and the Superfast simulation [26] from the lit-
erature. As indicated above, we adjust the latter two slightly to
make all three mappings comparable. Advantages and disadvan-
tages of each mapping eventually lead us to conclude which of
them to recommend for different situations.

While these contributions are covered in Sections 3.5, 3.6 and 3.7, the rest
of the paper is organized as follows: in Section 3.3, we provide a more
structured introduction to the layout of the quantum device and the es-
tablished fermion-to-qubit mappings. We discuss criteria for a ‘good’
mapping in detail and that the Jordan-Wigner transform has deficits in
those regards. In Section 3.4, we illustrate the effect of quantum codes,
such as the ones that are the blueprint for the AQMs, on a given Hamil-
tonian. While the AQMs are an original idea, we cannot claim the same

3.2 Results 75

about their theoretical backbone: the foundations for Auxiliary Qubit
codes are basically used in [60], although there the stabilizer formalism
was not employed. As a consequence, one auxiliary qubit would have
to be added for each term in the Hamiltonian, which is a large overhead
that can be avoided by using the underlying principle to define quan-
tum codes. We derive these codes from scratch in Section 3.9.1. Some
minor contributions are provided outside the main text of this chapter.
In Section 3.9.2, we study the class of tree-based mappings, to which
the Bravyi-Kitaev transform belongs. The Bravyi-Kitaev transform itself
does not do well with the square lattice, but we provide a general method
to tailor and embed similar mappings to arbitrary two-dimensional se-
tups. Section 3.9.3 is mostly providing details on the Verstraete-Cirac
transform and Superfast simulation, but we also tackle some side issues
by deriving the logical basis of both mappings.

Jo
rd

an
-W

ig
ne

r
(S

-p
at

te
rn

)
Ve

rs
tr

ae
te

-C
ir

ac
tr

an
sf

or
m

Su
pe

rf
as

t
si

m
ul

at
io

n
Sq

ua
re

la
tt

ic
e

A
Q

M
E-

ty
pe

A
Q

M
Sp

ar
se

A
Q

M
O

ri
gi

n
[1

9]
[2

5]
[2

6]
[4

3]
[4

3]
[4

3]

A
ux

.q
ub

it
s

0
ℓ 1
ℓ 2

ℓ 1
ℓ 2
−

ℓ 1
−

ℓ 2
ℓ 1
ℓ 2
−

ℓ 1
ℓ 2

(ℓ
2
−

1
)(

ℓ
1
−
1

ℐ
+

1
)

St
ri

ng
le

ng
th

(g
en

er
al

)
𝑂
(ℓ

1
ℓ 2
)

𝑂
(2
ℓ 1

+
ℓ 2
)

𝑂
(2
ℓ 1

+
2
ℓ 2
)

𝑂
(ℓ

1
+

2
ℓ 2
)

𝑂
(2
ℓ 1

+
ℓ 2
)

𝑂
(ℓ

1
+

2
ℓ 2
)

M
an

ha
tt

an
-

di
st

an
ce

pr
op

er
ty

?
7

3
3

3
7

ap
pr

ox
im

at
el

y

St
ri

ng
le

ng
th

(l
at

ti
ce

)
𝑂
(ℓ

1
)

𝑂
(1
)

𝑂
(1
)

𝑂
(1
)

𝑂
(ℓ

1
)

𝑂
(ℐ

)

Si
m

ul
at

io
n

ti
m

e
(l

at
ti

ce
)

𝑂
(ℓ

1
ℓ 2
)

𝑂
(1
)

𝑂
(1
)

𝑂
(1
)

𝑂
(ℓ

1
ℓ 2
)

𝑂
(ℐ

2
)

+
ca

nc
el

la
ti

on
s

𝑂
(ℓ

1
)

𝑂
(1
)

𝑂
(1
)

𝑂
(1
)

𝑂
(ℓ

1
)

𝑂
(ℐ

)

R
es

to
re

s
lo

ca
lit

y?
7

3
3

3
7

ap
pr

ox
im

at
el

y

Ta
bl

e
3.

1.
A

ll
fe

rm
io

n-
to

-q
ub

it
m

ap
pi

ng
s

di
sc

us
se

d
in

th
is

w
or

k.
W

e
co

ns
id

er
a
𝑁

=
(ℓ

1
×

ℓ 2
)

sq
ua

re
la

tt
ic

e
bl

oc
k

of
fe

rm
io

ni
c

m
od

es
,a

nd
co

m
pa

re
th

e
nu

m
be

r
of

au
xi

lia
ry

qu
bi

ts
,o

r
m

or
e

ge
ne

ra
lly

th
e

to
ta

ln
um

be
r

of
qu

bi
ts

m
in

us
𝑁

.
W

e
al

so
co

m
pa

re
th

e
sc

al
in

g
of

th
e

nu
m

be
r

of
qu

bi
ts

in
vo

lv
ed

in
tw

o
ty

pe
s

of
H

am
ilt

on
ia

ns
:

ge
ne

ri
c

on
es

,
in

w
hi

ch
w

e
ex

pe
ct

in
te

ra
ct

io
ns

be
tw

ee
n

ev
er

y
m

od
e,

an
d

la
tt

ic
e

m
od

el
s,

w
it

h
on

ly
ne

ar
es

t-
ne

ig
hb

or
in

te
ra

ct
io

ns
.

Fo
r

th
e

fo
rm

er
,

w
e

al
so

as
k

w
he

th
er

lo
ng

-r
an

ge
in

te
ra

ct
io

ns
ca

n
be

m
ap

pe
d

to
op

er
at

or
s

in
vo

lv
in

g
qu

bi
ts

al
on

g
a

di
re

ct
pa

th
(M

an
ha

tt
an

-d
is

ta
nc

e
pr

op
er

ty
).

Fo
r

th
e

la
tt

ic
e

m
od

el
s,

w
e

sp
ec

if
y

th
e

ex
pe

ct
ed

al
go

ri
th

m
ic

de
pt

h
fo

r
si

m
ul

at
in

g
th

e
en

ti
re

H
am

ilt
on

ia
n

by
e.

g.
Tr

ot
te

ri
za

ti
on

an
d

w
he

th
er

th
ei

r
lo

ca
lit

y
is

re
st

or
ed

af
te

r
th

e
tr

an
sf

or
m

at
io

n.
N

ot
e

th
at

th
e

si
m

ul
at

io
n

ti
m

e
is

ob
ta

in
ed

us
in

g
si

m
ul

at
io

n
ga

dg
et

s
th

at
ad

he
re

to
th

e
sq

ua
re

la
tt

ic
e

co
nn

ec
ti

vi
ty

of
th

e
qu

bi
ts

,
ho

w
ev

er
,w

e
ta

ke
in

to
ac

co
un

tt
ha

ts
om

e
si

m
ul

at
io

n
al

go
ri

th
m

s
al

lo
w

fo
rp

ar
ti

al
ca

nc
el

la
ti

on
of

ov
er

la
pp

in
g

Pa
ul

is
tr

in
gs

in
th

e
H

am
ilt

on
ia

n.
N

ot
e

al
so

th
at

ℐ
is

a
pa

ra
m

et
er

of
th

e
la

st
m

ap
pi

ng
th

at
ca

n
be

ch
os

en
as

so
m

e
in

te
ge

r
nu

m
be

r:
1
≤

ℐ
≤

ℓ 1
−

1.
Th

is
pa

ra
m

et
er

de
te

rm
in

es
ho

w
w

el
lt

he
M

an
ha

tt
an

-d
is

ta
nc

e
pr

op
er

ty
an

d
lo

ca
lit

y
is

ap
pr

ox
im

at
ed

.

78 Chapter 3. Embedding simulations with quantum codes

3.3 Preliminaries

In this section, we describe the influence of fermion-to-qubit mappings
on the algorithmic depth of quantum simulation in a setup of square-
lattice qubit-connectivity. In particular, we will discuss criteria which
render mappings ‘good’ in the sense that they allow for parallelization
and low gate costs. For that purpose, we will give a theoretical descrip-
tion of the qubit layout and sketch the simulation algorithms. Let us start
however by stating the role of fermion-to-qubit mappings for quantum
simulation in general. We generally advise the reader familiar with the
subject to skip ahead to Section 3.4, and if necessary use the table of no-
tations offered in Section 3.10.

The goal of quantum simulation is to approximate the ground state
and the ground-state energy of a given Hamiltonian. When the Hamil-
tonian acts on a space of fermions, a fermion-to-qubit mapping serves
as translator between the quantum system to be simulated and the qubit
system inside the quantum computer. That not only entails a correspon-
dence of basis states, but also a transformation of the Hamiltonian. The
Hamiltonian after its transformation with the mapping, is henceforward
acting on the qubits inside the quantum computer. We here consider the
case where the qubit system underlies architectural constraints, that we
want to abstract with the following model.

Our setup is a two-dimensional quantum device that we describe
with a planar graph, where each of the 𝑛 vertices is a qubit. In this model,
it is assumed that we can individually and simultaneously perform Pauli-
rotations on every single qubit. However, entangling gates can only be
applied between two qubits that share an edge in the graph. We assume
that we can perform two-qubit gates individually per edge, but qubits
involved in one gate cannot be part in another at the same time. Al-
though we do not want to specify which kind of two-qubit gate is native
to the quantum device, we want to assume that we can do CNOT-gates
in 𝑂(1) time using only a few native gates. The full qubit connectivity
graph will furthermore be assumed to be a square lattice, so we can only
perform entangling gates between qubits that are nearest neighbors, see
Figure 3.2(a). Note that the individual connectivity graphs, that every
fermion-to-qubit mapping in this chapter comes with, are subgraphs of
Figure 3.2(a), such that every mapping can be embedded in the consid-
ered qubit system.

3.3 Preliminaries 79

(a) (b)

X

ZZ

Z

ZZ

Z

X

(c)

H ∙ ∙ H

∙ ∙
∙ ∙

∙ ∙
𝑍(𝜑)

∙ ∙
∙ ∙

H ∙ ∙ H

Figure 3.2. Simulation of Pauli strings in a system with limited connectivity.
(a) Qubit connectivity graph: the vertices are qubits. Two-qubit gates can be
performed only between qubits coupled by an edge. (b) Simulating some Pauli
string (𝑋 ⊗ 𝑍⊗6 ⊗ 𝑋) on the quantum device: the qubits involved, and the
edges along which entangling gates are performed, are highlighted. Inscriptions
X, Y and Z indicate which Pauli operator acts on each qubit. (c) Simulating a
Pauli string, here we simulate the propagator exp(𝑖 𝜑𝑋 ⊗ 𝑍⊗6 ⊗ 𝑋), where 𝜑
is an angle. The Pauli string could be the one in (b). In general, this circuit
stores the parity information of the involved qubits on one of them, which is
done by chains of CNOT-gates. The inscriptions X, Z and Y determine for each
individual qubit whether it is in the Hadamard, computational or Y-basis in the
process. Note that it does not play a role on which of the qubits the parity of
the others is collected, but to optimize the simulation time, a qubit in the middle
of the chain is chosen. On that qubit the phase rotation 𝑍(𝜑) = exp(𝑖 𝜑𝑍) is
performed, after which the chains are uncomputed.

80 Chapter 3. Embedding simulations with quantum codes

3.3.1 Simulating a qubit Hamiltonian

In order to elucidate the connection between the mapping and the depth
and cost of the simulation algorithms, we need to understand these algo-
rithms better. Let us assume the fermion-to-qubit mapping transforms a
Hamiltonian into the form of Pauli strings, i.e. the sum 𝐻 =

∑︀
ℎ Γℎ · ℎ,

where {Γℎ} are real coefficients associated to a Pauli string on 𝑛 qubits,
ℎ ∈ {𝑋, 𝑌, 𝑍, I}⊗𝑛. Note that we will refer to the number of qubits, that
a string ℎ acts on nontrivially, as (operator) weight and (string) length,
interchangeably.
Quantum simulation algorithms have different ways to search for the
ground state of 𝐻 . Depending on which algorithm is used, the Pauli
strings ℎ have to be either measured, or their propagator simulated (con-
ditionally) [5, 6]. With a propagator we mean the operator exp(𝑖 𝜑 ℎ),
where 𝜑 is an angle that typically is some function of Γℎ. Using CNOT-
gates, we simulate such a propagator with the gadget like in Figure 3.2(c),
where chains of these gates copy parity information across the lattice
onto a single qubit, on which then a 𝑍-rotation around the angle 𝜑 is
performed and afterwards the CNOT-chain is uncomputed. For quan-
tum eigensolvers, this qubit will be measured instead. Often we need
the rotation to be conditional on the state of another qubit, so conven-
tionally the 𝑍-rotation, 𝑍(𝜑) = exp(𝑖 𝜑𝑍), is to be replaced with a con-
trolled rotation, I ⊗ |0⟩⟨0| + 𝑍(𝜑) ⊗ |1⟩⟨1| where the first qubit is the one
that holds the parity information, and the second is the control, typically
an auxiliary qubit of a phase estimation procedure. Alternatively, the
quantum phase estimation algorithm can be adapted to include control
qubits in the string, namely to simulate the propagator exp(−𝑖 𝜑

2 ℎ⊗𝑍) =

exp(−𝑖 𝜑
2 ℎ)⊗ |0⟩⟨0|+ exp(𝑖 𝜑

2 ℎ)⊗ |1⟩⟨1| instead.
For phase estimation-based algorithms, the propagator of the entire

Hamiltonian, exp(𝑖𝐻𝜑) needs to be simulated, which invokes the prop-
agator of each string at least once (e.g. [61, 62]). Other algorithms in-
voke each string multiple times: Trotterization [8, 9] approximates the
Hamiltonian propagator as repeating sequences of all string propagators
exp(𝑖 𝜑 ℎ), and in iterative phase estimation [23], a repeated application of
exp(𝑖𝐻𝜑) increases the accuracy of the computed energy. In general, 𝐻
does not even have to be a Hamiltonian: it could also be an operator that
prepares a trial state with Givens rotations [30] or implements a unitary
coupled-cluster operator [63]. In any case, we will expect there to be a
large number of strings in 𝐻 so we would like to apply the gadgets 3.2(c)

3.3 Preliminaries 81

in parallel to keep the simulation shallow whenever possible. Let us co-
ordinate the simulation of all those propagators by switching to layout
diagrams like the one in Figure 3.2(b), instead of using circuit diagrams
like in panel (c). This gives us an idea of all the qubits involved and how
they are coupled, but leaves out certain details about for instance the
specific simulation algorithm. Our ability to parallelize the simulation is
determined by the fermion-to-qubit mapping, in particular in the shape
of the strings that it outputs. In regard of our connectivity setup 3.2(c),
we consider a fermion-to-qubit mapping as good, if it outputs Hamilto-
nians 𝐻 with Pauli strings that are short, continuous and non-overlapping.
We will now explain these criteria:

short - The length of a Pauli string is the number of qubits that it acts
on nontrivially. While the gadget in Figure 3.2(c) implements a propa-
gator in a number of time steps that scales linearly with the amount of
qubits involved, other implementations have been conceived. As can
be seen in [39, 64], the gadget can be replaced with one that performs
the same operation with an up to exponential improvement in the cir-
cuit time, so at most 𝑂(log 𝑛). However, taking into account the (limited)
qubit connectivity of the square lattice, we want to stick to the gadget of
Figure 3.2(c). Although a time reduction can be achieved for Pauli strings
acting on a nonlinearly distributed subset of qubits, we generally expect
a time scaling linear in the string length. As the number of time steps
is interchangeably connected to the circuit depth, we have an interest in
keeping the Pauli strings as short as possible.

continuous - In general, Pauli strings in 𝐻 will not only act on near-
est neighbors, this means we cannot connect the qubits involved along
shared edges as it is done in Figure 3.2(b). Connectivity problems are
symptomatic for layouts like this, in which only nearest-neighbors are
coupled. Let us assume that two qubits need to be connected in a gad-
get like 3.2(c), but they do not share an edge and the shortest path along
edges encompasses a number of 𝑚 uninvolved qubits. In order to skip
these qubits, 𝑂(𝑚) additional two-qubit gates and time steps are required.
In case the native two-qubit gates are either 𝑖SWAP or

√
SWAP, the outer

qubits can be connected by a chain of SWAP gates, which costs 2𝑚 native
gates in the former case and 4𝑚 in the latter. For systems with native
CNOT-gates the formation SWAP gates with three CNOTs is unnecessar-

82 Chapter 3. Embedding simulations with quantum codes

ily expensive, so instead we amend gadgets like in Figure 3.2(c) with a
construction that includes the 𝑚 inner qubits in the CNOT-chains, but
compensates for their contribution. We present two versions of such a
compensation circuit in Figure 3.3, where the left panel shows us the gate
that we would like to perform but cannot: we would like the configura-
tion of the first qubit to be added to the last qubit by a nonlocal CNOT-
gate. In the end, the circuits in the center and on the right achieve that
task but render the 𝑚 uninvolved qubits useless until the circuit is un-
computed. The additional cost in time and gates is 4𝑚, which means that
it is cheaper to include a qubit in a string than to skip it. In conclusion,
compensating or swapping of qubits is possible, but we would prefer to
avoid the additional cost and rather deal with continuous strings.

non-overlapping - The overlap of two (or more) Pauli strings is the
number of qubits in the intersection of the sets of qubits the strings act on.
Two Pauli strings that are both acting nontrivially on a common subset of
qubits are hard to simulate in parallel, as these qubits get parity informa-
tion attached to them like in Figure 3.2(c). Unless these qubits are located
at the beginning of a chain or if one string is a substring of the other,
this parity would have to be corrected for. Later, we will briefly discuss
the possibility of gate cancellations between similar, overlapping strings.
While this has been suggested for Trotterization in [39], its impact on
the approximation error is not well understood yet. Product formula ap-
proaches based on coalescing or randomization offer little or no choice in
the term ordering [49, 65–67]. Thus, avoiding the need for cancellations,
we ideally would like our mapping to transform all pairs of commuting
fermionic operators into non-overlapping Pauli strings.

3.3.2 S-pattern Jordan-Wigner transform

Based on the insights of the previous sections, we will now review what
is probably the standard fermion-to-qubit mapping [19]. In case of the
Jordan-Wigner transform, the transformation matrix 𝐴 can be regarded
as the identity: 𝐴 = 𝐴−1 = I. From (2.14), we derive the number opera-
tors

𝑐†𝑗𝑐𝑗 =̂
1

2
(I− 𝑍𝑗) (3.1)

3.3 Preliminaries 83

𝜔1 ∙ 𝜔1 𝜔1 ∙ 𝜔1 + 𝜔2 𝜔1 ∙ 𝜔1

𝜔2 𝜔2 𝜔2 ∙ ∙ 𝜔1 + 𝜔3 𝜔2 ∙ ∙ 𝜔1 + 𝜔2

𝜔3 𝜔3 𝜔3 ∙ ∙ 𝜔1 + 𝜔4 𝜔3 ∙ ∙ 𝜔1 + 𝜔3

𝜔4 𝜔4 𝜔4 ∙ ∙ 𝜔1 + 𝜔5 𝜔4 ∙ ∙ 𝜔1 + 𝜔4

𝜔5 𝜔5 𝜔5 ∙ ∙ 𝜔1 𝜔5 ∙ ∙ 𝜔1 + 𝜔5

𝜔6 𝜔1 + 𝜔6 𝜔6 𝜔1 + 𝜔6 𝜔6 𝜔1 + 𝜔6

Figure 3.3. Skipping several qubits in a CNOT-chain. Here we consider the
effect of the circuits on a computational basis state (

⨂︀
𝑖 |𝜔𝑖⟩), mapping it to a

state (
⨂︀

𝑖 |𝜔′
𝑖⟩). We denote the qubit values 𝜔𝑖 and 𝜔′

𝑖 on the left and right side of
each circuit. Left: The desired circuit, a CNOT-gate that adds the parity from the
first qubit to the last. For connectivity reasons, this gate is not possible: we can
only connect adjacent qubits. Center/Right: Two circuits in which the middle
qubits are compensated for in order to entangle the first and last qubit. To get
rid of the effect on qubits 2 - 5, the gadgets have to be partially uncomputed, but
in propagators like in Figure 3.2(c), this is not necessary.

and hopping terms (for 𝑖 < 𝑗)

h𝑖𝑗 𝑐
†
𝑖𝑐𝑗 + (h𝑖𝑗)

* 𝑐†𝑗𝑐𝑖 =̂
1

2
Re(h𝑖𝑗)

(︃
𝑗−1⨂︁

𝑘=𝑖+1

𝑍𝑘

)︃
(𝑋𝑖 ⊗𝑋𝑗 + 𝑌𝑖 ⊗ 𝑌𝑗)

+
1

2
Im(h𝑖𝑗)

(︃
𝑗−1⨂︁

𝑘=𝑖+1

𝑍𝑘

)︃
(𝑌𝑖 ⊗𝑋𝑗 −𝑋𝑖 ⊗ 𝑌𝑗) .

(3.2)

While the number operator is transformed into just a constant term
and a term that acts on one qubit only, the hopping terms are transformed
into a string that exhibits long substrings of 𝑍-operators, (

⨂︀𝑗−1
𝑘=𝑖+1 𝑍𝑘),

sometimes called parity (sub-)strings. The right-hand side of (3.2), which
describes an interaction of the fermionic modes 𝑖 and 𝑗, translates into
several strings with 𝑋- and 𝑌 -operators on the corresponding qubits of
𝑖 and 𝑗, and all qubits of indices 𝑘, with 𝑖 < 𝑘 < 𝑗, are part of the parity
substring. Although the parity string does us the service of connecting
the qubits 𝑖 and 𝑗 in that way, it is also the reason that Pauli strings pro-
duced by the Jordan-Wigner transform are of length 𝑂(𝑁).
While the nature of our problem determines the Hamiltonian coefficients
(such as h𝑖𝑗) with respect to the fermionic wave functions, it is up to us to
label each fermionic mode such that we minimize the appearance of long

84 Chapter 3. Embedding simulations with quantum codes

Pauli strings in 𝐻 . While problems that are intrinsically one-dimensional
can be mapped to local Hamiltonians, long strings can generally not be
avoided for systems in higher spatial dimensions.

The question is how to incorporate the Jordan-Wigner transform into
the square lattice layout. There is a natural solution: given a 𝑁 = (ℓ1×ℓ2)-
matrix of qubits, we need to use only 𝑁 − 1 edges to connect them in
canonical order like beads on a string, see Figure 3.4(a). Due to the wind-
ings of the pattern on the block boundaries, we will refer to this particular
way of using the Jordan-Wigner transform on a square lattice as S-pattern
Jordan-Wigner transform. Let us now describe its properties in order to
assert how good a mapping it is. The mapping produces strings that are
continuous: although arbitrary terms (like 𝑐†𝑖𝑐

†
𝑗𝑐𝑘𝑐𝑙) will in general not be

transformed into continuous Pauli strings, creation/annihilation opera-
tor pairs 𝑐†𝑖𝑐𝑗 will. Unfortunately the resulting Pauli-strings are neither
short nor non-overlapping. As the parity strings encompass all the qubits
in between 𝑖 and 𝑗, the string can even span several rows, see Figure
3.4(b). This leads not just to a high gate count and algorithmic depth,
but also occupies a large portion of qubits at once, effectively hindering
parallelization.

Let us consider an illustrative example: if we want our quantum de-
vice to simulate a two-dimensional lattice of sites with fermionic occu-
pation and nearest-neighbor hopping, we encounter two kinds of terms.
Short ones, where the exchange between nearest-neighbors 𝑐†𝑖𝑐𝑖+1 + h.c.
yields the Pauli strings (𝑋𝑖 ⊗𝑋𝑖+1 + 𝑌𝑖 ⊗ 𝑌𝑖+1)/2, and long ones, as the
nearest-neighbor hoppings in the vertical direction will result in strings
that can be seen in Figure 3.4(c). Although these are nearest-neighbor in-
teractions, they use all qubits around the winding linking the two rows,
so all vertical hopping terms between two sites in the same two rows will
overlap. The S-pattern Jordan-Wigner transform thus has the property to
transform operators, that are geometrically local in second quantization
into nonlocal Pauli strings on the lattice. In Section 3.6, we will learn that
it is those vertical hopping terms, that prevent us from simulating lattice
models efficiently.

The verdict for the S-pattern Jordan-Wigner transform is that it is not
good in the sense of our criteria, but good enough to serve as a founda-
tion for better mappings. In the following, we will introduce mappings
modifying the Jordan-Winger transform in using quantum codes to can-
cel nonlocal parity strings, which will make the resulting strings short

3.3 Preliminaries 85

(a)

1 2 3 4

5678

9 10 11 12

13141516

17 18 19 20

(b)

X Z Z

ZZZZ

Z Z Z Z

ZZZZ

X

𝑖

𝑗

(c)

X Z Z Z Z

X Z Z Z Z

Figure 3.4. (a) The connectivity graph for the S-pattern Jordan-Wigner trans-
form. (b) Simulating a Pauli string (𝑋𝑖 ⊗ 𝑍𝑖+1 ⊗ · · · ⊗ 𝑍𝑗−1 ⊗ 𝑋𝑗), that can be
considered half of a hopping term. The string is highlighted on the device in
the same way as in Figure 3.2(b). (c) Simulation of a Pauli string associated with
a fermionic hopping between the two encircled qubits (dotted line). The hop-
ping is in the vertical direction (diagonal to the S-pattern) which unfortunately
involves gates on all qubits on the S-pattern between the two qubits.

and non-overlapping. This will lead to a certain overhead in auxiliary
qubits, placed along with the original (ℓ1 × ℓ2)-block of data qubits on a
square lattice. In contrast to the S-pattern Jordan-Wigner transform, the
mappings to follow embrace the second dimension as a useful tool.

Note that there are other alternatives to the Jordan-Wigner transform.
The Bravyi-Kitaev transform [26, 27, 29, 37] is known to produce Pauli
strings of weight 𝑂(log𝑁) instead of 𝑂(𝑁). For 𝑁 > 16 it can however
be rather difficult to embed the mapping into a square lattice such that it
outputs continuous strings. For a geometric interpretation of the Bravyi-
Kitaev transform and related mappings we would like to refer the reader
to Appendix 3.9.2.

86 Chapter 3. Embedding simulations with quantum codes

3.4 Techniques

3.4.1 Motivation

Here we motivate the general concept of Auxiliary Qubit Mappings. The
starting point will be a nonlocal Hamiltonian obtained by transformation
with some linear mapping from Section 2.3. We then define quantum
codes in order to restore operator locality. These codes will act on the
original system extended by several ‘auxiliary’ qubits. The effect of such
codes on the Hamiltonian will be studied.

Consider that we have an 𝑁 -qubit Hamiltonian 𝐻dat,

𝐻dat =
∑︁
ℎ∈𝒮

Γℎ · ℎdat , (3.3)

where 𝒮 is the set of all Pauli strings occurring in the Hamiltonian, 𝒮 ⊆
{𝑋,𝑌, 𝑍, I}⊗𝑁 with all Γℎ being real, non-zero coefficients. Let us omit
the qubit subscripts for now. Although we want to remain fairly general
at this point, the reader can already think of (3.3) as the result of a Jordan-
Wigner-transformed Hamiltonian (1.8). In general, the problem with this
Hamiltonian is that 𝒮 contains variations of Pauli strings that are either
too long, discontinuous or otherwise inconvenient to us. Thus we would
like to somehow replace these strings inside the Hamiltonian, even if it
means that we need to add qubits to the system. Let us first consider a
naı̈ve approach which indicates the challenges of the method. We then
tackle these challenges with a more sophisticated proposal. For the mo-
ment, let there be for exactly one inconvenient string 𝑝 ∈ {𝑋,𝑌, 𝑍, I}⊗𝑁 ,
that either appears in the Hamiltonian directly, or is the nonlocal sub-
string of some Hamiltonian strings {ℎ′} ⊂ 𝒮. To bring the Hamiltonian
in a convenient form, we would like to multiply every such string ℎ′ with
𝑝. Now we entangle an additional qubit to the system. Ideally, we would
like to find the Pauli operator 𝜎 ∈ ±{𝑋,𝑌, 𝑍}, acting on the added qubit,
such that for every state |𝜙⟩ on the original system of 𝑁 qubits, there ex-
ists a state |̃︀𝜙⟩ on the system extended by the (𝑁 + 1)-th qubit, on which
𝐻 has the same effect as on |𝜙⟩, but (𝑝⊗ 𝜎) is a stabilizer:

(𝑝⊗ 𝜎) |̃︀𝜙⟩ = |̃︀𝜙⟩ implying (𝑝⊗ I) |̃︀𝜙⟩ =
(︀
I⊗𝑁 ⊗ 𝜎

)︀
|̃︀𝜙⟩ . (3.4)

If this was true, then every time 𝑝 appears as a string in the Hamiltonian
we could just replace it with 𝜎, or multiply inconvenient strings (ℎ′ ⊗ I)

3.4 Techniques 87

by (𝑝 ⊗ 𝜎) to cancel the nonlocal substrings. However, this is generally
not possible: when there are terms in 𝒮 that anticommute with 𝑝, then 𝐻
will destroy the stabilizer state |̃︀𝜙⟩. This means that the state is altered in
a way that (3.4) is no longer valid. The simulation of the adjusted Hamil-
tonian on such a broken stabilizer state subsequently no longer describes
the correct time evolution of the underlying 𝑁 -qubit system. We thus
need to adjust the Hamiltonian 𝐻 → 𝐻(𝜅), where 𝐻(𝜅) generally acts on
𝑁 + 1 qubits even without having its terms multiplied by stabilizers yet.
This has to be done in a way as to ensure that the time evolution of |̃︀𝜙⟩
according to 𝐻(𝜅) can be mapped back to the time evolution of |𝜙⟩ ac-
cording to 𝐻 . At the same time we need to demand [𝐻(𝜅), 𝑝⊗𝜎] = 0 and
that (𝑝 ⊗ 𝜎) is a stabilizer like in (3.4). Only then we can use (𝑝 ⊗ 𝜎) to
cancel 𝑝 inside the terms of 𝐻(𝜅), and so obtain a convenient Hamiltoniañ︀𝐻 .

We now refine our approach accordingly, considering also the appear-
ance of multiple strings 𝑝 (and picking up qubit subscripts as well). In
𝐻dat, we identify 𝑟 Pauli strings 𝑝𝑖dat (for 𝑖 ∈ [𝑟]) that we would like to
cancel as we have done with a single string 𝑝 above. Furthermore, we
would like to have the option for every Hamiltonian term ℎdat to multi-
ply it with either several, one or none of the strings {𝑝𝑖dat}. This is done by
repeating the above procedure for each of the 𝑟 strings. To that end, we
add 𝑟 qubits to the system: grouping them together we introduce the 𝑟-
qubit auxiliary register aux = {𝑁+1, 𝑁+2, . . . , 𝑁+𝑟}. We assume that
at the beginning, the aux-register is initialized in the state |0𝑟⟩ = |0⟩⊗𝑟.
Our goal is to cancel the 𝑖-th string 𝑝𝑖dat with a single Pauli operator on the
(𝑁 + 𝑖)-th qubit: 𝜎𝑖

𝑁+𝑖. Thus we need to find a unitary quantum circuit
which entangles the aux-register with the data qubits in a certain way: it
has to implement a unitary 𝑉aux dat, such that for every state |𝜙⟩dat (1.5),
we have a state in the composite system, |̃︀𝜙⟩aux dat with

𝑉aux dat |𝜙⟩dat ⊗ |0𝑟⟩aux = |̃︀𝜙⟩aux dat

and (𝑝𝑖dat ⊗ 𝜎𝑖
𝑁+𝑖) |̃︀𝜙⟩aux dat = |̃︀𝜙⟩aux dat , (3.5)

for all 𝑖 ∈ [𝑟]. To make this work even on a conceptual level, we need
to demand that all 𝑝𝑖dat commute pairwise, otherwise there cannot be a
common stabilizer state of all (𝑝𝑖dat ⊗ 𝜎𝑖

𝑁+𝑖). Once the stabilizer state is
obtained, we maintain it by adjusting every term of Hamiltonian (3.3)
with a Pauli string on the auxiliary register. This is done in a way such

88 Chapter 3. Embedding simulations with quantum codes

that the action of the adjusted term on the enlarged system is the same as
the action of the original term on the original system. The adjustments
are:

ℎdat ↦→ (ℎdat ⊗ 𝜅ℎaux) with

𝑉 †
aux dat (ℎdat ⊗ 𝜅ℎaux) |̃︀𝜙⟩aux dat = ℎdat |𝜙⟩dat ⊗ |0𝑟⟩aux , (3.6)

where 𝜅ℎaux is the Pauli substring on the auxiliary register that is correct-
ing ℎdat. Note that in case ℎdat already commutes with all the stabiliz-
ers, 𝜅ℎaux is the identity. Of course we would like the above relation to
hold for every string in the Hamiltonian, ℎdat ∈ 𝒮 , but as we have ef-
fectively defined a quantum code encoding the entire Hilbert space of
the 𝑁 data qubits, ℎdat can be an arbitrary 𝑁 -qubit Pauli string. Now
by virtue of the stabilizer conditions (3.5), we can multiply the adjusted
terms (ℎdat ⊗ 𝜅ℎaux) by any of the operators (𝑝𝑖dat ⊗ 𝜎𝑖

𝑁+𝑖), and thus get rid
of their detrimental parts. The resulting logical operators ̃︀ℎaux dat define a
convenient (logical) Hamiltoniañ︀𝐻aux dat =

∑︁
ℎ∈𝒮

Γℎ · ̃︀ℎaux dat . (3.7)

3.4.2 Definitions

Generally, the auxiliary qubits can be added in the computational basis
to cancel strings 𝑝𝑖dat ∈ {I, 𝑍}⊗𝑁 with 𝑍-operators 𝜎𝑖

𝑁+𝑖 = 𝑍𝑁+𝑖. As an
enhancement of the Jordan-Wigner transform, codes like this can be used
to cancel nonlocal parity strings. The adjustment strings (of a term ℎdat)
𝜅ℎaux would then for all 𝑘 ∈ [𝑟] contain 𝑋𝑁+𝑘 if ℎdat anticommutes with
𝑝𝑘dat. Note that the codes defined in this way (with only 𝑍-stabilizers)
have the property to map 𝑁 -qubit computational basis states to states in
the computational basis on 𝑛 qubits, a trait that is useful for state prepa-
ration. These codes however have their limitations, as they can easily
demand adjustment strings 𝜅ℎaux of weight 𝑂(𝑟).

Other schemes specifically minimize the weight of 𝜅ℎaux . The methods
of Subaşı and Jarzynski [60] effectively define codes with auxiliary qubits
in Hadamard basis that allow for an arbitrary choice of Pauli strings 𝑝𝑖dat,
as long as all 𝑟 strings commute pairwise. The 𝑝-strings are subsequently
replaced with 𝑋-operators, 𝜎𝑖

𝑁+𝑖 = 𝑋𝑁+𝑖, and the adjustments 𝜅ℎaux con-
tain 𝑍𝑁+𝑘 for every string 𝑝𝑘dat, that anticommutes with ℎdat. In [60] some

3.5 Auxiliary qubit mappings 89

concern is expressed that the operator weight might generally scale with
the number of auxiliary qubits added - a key problem addressed by our
work. We will in the following pick a set of strings {𝑝𝑖dat} such that every
term ℎdat ∈ 𝒮, resulting from any fermionic Hamiltonian, anticommutes
with only a small number of stabilizers.

In Appendix 3.9.1 we give more details about these Auxiliary Qubit
codes, such as their logical basis and the derivation of their stabilizers,
adjustment terms as well as of the initialization unitaries 𝑉aux dat. There
are a few ways to extend the Auxiliary Qubit Mappings. In replacing the
Pauli operators {𝜎𝑖

𝑁+𝑖} with a set of Pauli strings {𝛾𝑖aux}, we can even
stabilize Pauli strings {𝑝𝑖dat} that anticommute. In a similar vein, we can
express the Verstraete-Cirac transform as a quantum code, which allows
us to make modifications and to verify its operator transforms, see Ap-
pendix 3.9.3.

3.5 Auxiliary qubit mappings

3.5.1 E-type AQM

Here we present a mapping that remedies the biggest drawback of the S-
pattern Jordan-Wigner transform under a moderate overhead of qubits.
Given a (ℓ1 × ℓ2) block of data qubits, we are going to add ℓ2 qubits
as auxiliaries in computational basis. With this overhead, we will not
manage to achieve any advantage for lattice models, but the scaling of
long-range interactions (on the fermionic lattice) is improved. The fol-
lowing mapping will be referred to as E-type AQM. We will first illus-
trate its graph, along with instructions on how to initialize the stabilizer
state from |𝜙⟩dat ⊗ |0𝑟⟩aux. Afterwards, a discussion of the resulting Pauli
strings will elucidate the advantages of the E-type AQM.
The idea of the E-type AQM is to store the parity of distinct data-qubit
subsets permanently on auxiliary qubits. As we will see shortly, choosing
to attach an auxiliary qubit to each of the ℓ2 data-qubit rows is providing
us with a geometric interpretation of the resulting strings. The result is
shown in Figure 3.5(a). Note that two things are different between the
S-pattern Jordan-Wigner transform and the E-type AQM: firstly, the con-
nectivity graph has changed. A row of qubits is now coupled to one aux-
iliary qubit, and only those auxiliary qubits are coupled together, data

90 Chapter 3. Embedding simulations with quantum codes

(a)

Z Z Z Z Z

1 2 3 4

8765

9 10 11 12

16151413

20191817

21

22

23

24

25 (b) 16 ∙ ∙

15 ∙ ∙

14 ∙ ∙

13 ∙

24

(c)

Y Z Y

Z

Z

Z

X Z Z Z X

XZX

Figure 3.5. E-type AQM. (a) A block of (4 × 5) data qubits (white) enhanced
with 5 auxiliary qubits (gray). A single stabilizer is highlighted in the graph.
All qubits are labeled, where numberes 1-20 indicate the canonical ordering. (b)
Initializing one of the stabilizers (

⨂︀16
𝑖=13 𝑍𝑖) ⊗ 𝑍24. (c) Simulating Pauli strings̃︀ℎaux dat that are logical versions of ℎdat = (𝑋 ⊗ 𝑍 ⊗ · · · ⊗ 𝑍 ⊗ 𝑋). The strings

are highlighted as explained in Figure 3.2(b). While long strings are rerouted to
skip rows, extending along the corresponding auxiliary qubits instead, shorter
strings that do not switch rows can be simulated in parallel.

qubits in different rows are not coupled anymore. Although such con-
nections between data qubits might be useful for simulating many-body
terms, they are not necessarily required. Secondly, we have also changed
the labeling of the qubits: the indices 𝑖 ∈ [ℓ1ℓ2] still correspond to the in-
dices attached to fermion operators in (2.11), but their order in the graph
does no longer resemble an S-pattern of the canonical indices.
From |𝜙⟩dat ⊗ |0𝑟⟩aux the logical state |̃︀𝜙⟩aux dat can be initialized in 𝑂(ℓ1)-
time and a total of 𝑂(ℓ1ℓ2) gates. Here a chain of CNOTs is used to mirror
the collective parity information of an entire row of qubits on the attached
auxiliary. The scaling in time is due to the fact that the preparation cir-
cuit in Figure 3.5(b), can theoretically be implemented on every row in

3.5 Auxiliary qubit mappings 91

parallel. The stabilizers of the system are(︃ ⨂︁
𝑖∈ row 𝑘

𝑍𝑖

)︃
⊗ 𝑍𝑁+𝑘 , (3.8)

for all rows 𝑘 ∈ [ℓ2] in the data qubit block. We now turn to describe
the resulting Pauli strings, for which we need to discuss the adjustments
𝜅ℎaux. Diagonal terms (3.2) in the Hamiltonian do not influence the sta-
bilizer state, as well as hopping terms (3.1) between qubits in the same
row. Our attention is thus focused on Pauli strings of the form ℎdat =
(𝑋𝑖 ⊗ 𝑍𝑖+1 ⊗ · · · ⊗ 𝑍𝑗−1 ⊗ 𝑋𝑗), where qubits 𝑖 and 𝑗 are situated in dif-
ferent rows 𝑘 and 𝑙, where 𝑘 < 𝑙. Those Pauli strings are subsequently
adjusted by 𝜅ℎaux = (𝑋𝑁+𝑘 ⊗𝑋𝑁+𝑙).

In order to make these terms more convenient, we multiply the ad-
justed strings with the corresponding stabilizers (3.8) of rows 𝑘′, for all
𝑘 ≤ 𝑘′ < 𝑙. Here we discover the benefit of this mapping: wherever Pauli
strings act as 𝑍-strings on entire rows, the parity is inferred instead from
the auxiliary qubits attached. This limits the length of parity substrings
and so Pauli strings (originating from hopping terms) have a maximal
length 2ℓ1+ ℓ2, instead of ℓ1ℓ2. This is not just a benefit in time and gates,
but also allows us to simulate single-row strings at the same time as long
strings spanning these rows, see Figure 3.5(c).
Although we expect the E-type AQM to be useful for problems long-
range interactions, it has no advantage compared to the S-pattern Jordan-
Wigner transform if one considers locally-interacting lattice Hamiltoni-
ans. With only single-row Pauli strings or strings between adjacent rows,
no savings in gates and algorithmic depth can be anticipated. In the fol-
lowing, we will define a mapping that can transform those models into
local qubit-Hamiltonians.

3.5.2 Square lattice AQM

Our main result, the square lattice AQM, is a mapping that requires a
square lattice connectivity graph of ℓ1 × (2ℓ2 − 1) qubits for a (ℓ1 × ℓ2)
fermionic lattice. With the large amount of ℓ1(ℓ2 − 1) qubits added, we
make sure that the code space can be initialized in 𝑂(ℓ1) time steps; a
time frame that is better than linear in the total number of data qubits.
In the resulting mapping, we will be able to reroute and deform Pauli

92 Chapter 3. Embedding simulations with quantum codes

strings, such that strings originating from hopping terms have an opera-
tor weight of the order of the Manhattan distance between the two qubits
on the lattice. The implication of this mapping for lattice Hamiltonians is
that vertical hopping terms have a constant weight, and the algorithmic
depth required to simulate such a model (after the stabilizer state is pre-
pared) is constant, i.e. independent of the lattice dimension.
Before we start describing the mapping, we want to introduce some help-
ful notation concerning qubit labeling. For the sake of a geometric inter-
pretation, we will migrate to a geometric labeling, where each qubit in-
dex denotes its coordinate on a grid. In the following, qubits in the data
register will bear labels (𝑖, 𝑗) ∈ [ℓ1]⊗ [ℓ2], so each data qubit sits on inte-
ger positions of a grid and the qubit in the south-west corner of the block
has coordinate (1, 1). Beginning from that very qubit, the index of each
qubit is given according to the canonical order of the S-pattern in Figure
3.4.
We will now describe the placement of the auxiliary qubits on the lat-
tice. The idea of the square lattice AQM is to insert auxiliary qubits in
between data qubits of different rows, so in between (𝑖, 𝑗) and (𝑖, 𝑗 + 1)
into half-integer positions (𝑖, 𝑗 + 1

2), in order to cancel the parity strings
in between those qubits. However, we also want the 𝑝-strings to have
(anti-)commutation relations like Majorana-pair operators. This is an in-
tegral ingredient to avoid long adjustments substrings 𝜅ℎaux. To that end,
we use a Hadamard-basis Auxiliary Qubit code with stabilizers

𝑝
(𝑖, 𝑗+ 1

2
)

dat ⊗𝑋(𝑖, 𝑗+ 1
2
) , (3.9)

which act on the data qubits at (𝑖, 𝑗) and (𝑖, 𝑗 + 1) as 𝑋- or 𝑌 -operators
and as 𝑍-operators on all other data qubits along the S-pattern in be-
tween them. The position of the auxiliary qubits and the choice of stabi-
lizers can be seen in Figure 3.6. Note that it is unnecessary for the aux-
iliary qubits to be connected to each other in the horizontal direction,
although it might come in handy in the process of initializing the code
space. As indicated in the figure, the Pauli terms on (𝑖, 𝑗) and (𝑖, 𝑗 + 1)
in the stabilizers of qubits (𝑖, 𝑗 + 1

2) are different for even and odd rows
numbers 𝑗. The sole reason for this decision is to render both terms of
the vertical hopping terms with real coefficients (3.2) of the same weight.
For every vertical connection (𝑖, 𝑗 + 1

2), the 𝑝-substrings of the stabilizers

3.5 Auxiliary qubit mappings 93

Z

Z

Y Z Z Z

X Z Z Z

X

Z Z Z X

Z Z Z Y

X

(1, 1)

(1, 1 + 1
2)

(1, ℓ2)
(ℓ1 − 1, ℓ2) (ℓ1, ℓ2)

𝑝
(4,4+ 1

2
)

dat ⊗ 𝑋(4,4+ 1
2
)

𝑝
(2,1+ 1

2
)

dat ⊗ 𝑋(2,1+ 1
2
)

Figure 3.6. Square lattice AQM, defined on a ℓ1×(2ℓ2−1) square lattice of qubits,
here ℓ1 = ℓ2 = 6. The gray qubits form the aux-register. Some qubits are labeled
with their coordinates (dotted lines), where the auxiliary qubits generally sit on
half-integer positions. The dashed lines do not couple qubits, but only indicate
the windings of the S-pattern of the underlying Jordan-Wigner transform. The
highlighted qubits and edges are two examples of stabilizers for odd and even
rows, respectively, labeled in bold.

(3.9) are defined as:

𝑝
(𝑖, 𝑗+ 1

2)

dat =

(︃
ℓ1⨂︁

𝑘=𝑖+1

𝑍(𝑘, 𝑗)

)︃(︃
𝑖+1⨂︁
𝑙=ℓ1

𝑍(𝑙, 𝑗+1)

)︃
⊗ 𝑌(𝑖, 𝑗) ⊗𝑋(𝑖, 𝑗+1) , for odd 𝑗,

(3.10)

=

(︃
1⨂︁

𝑘=𝑖−1

𝑍(𝑘, 𝑗)

)︃(︃
𝑖−1⨂︁
𝑙=1

𝑍(𝑙, 𝑗+1)

)︃
⊗𝑋(𝑖, 𝑗) ⊗ 𝑌(𝑖, 𝑗+1) , for even 𝑗.

(3.11)

Now we are going to give instructions on how to initialize the state |̃︀𝜙⟩
within 𝑂(ℓ1) depth, starting from a disentangled state |𝜙⟩dat ⊗ |0𝑟⟩aux.
First we apply Hadamard gates on all auxiliary qubits. In all rows with
odd [even] row numbers 𝑗, we then simultaneously apply the strings
(𝑌(ℓ1, 𝑗)⊗𝑋(ℓ1, 𝑗+1))

[︀
(𝑋(1, 𝑗) ⊗ 𝑌(1, 𝑗+1))

]︀
conditional on the qubit at (ℓ1, 𝑗+

1
2)
[︀
(1, 𝑗 + 1

2)
]︀
. Entangling these auxiliaries is easy as the stabilizers are

at the windings and therefore local, the operation can be performed in
𝑂(1) time steps. We then proceed by applying the strings

𝑋(ℓ1−𝑠+1, 𝑗) ⊗ 𝑌(ℓ1−𝑠+1, 𝑗+1) ⊗ 𝑌(ℓ1−𝑠, 𝑗) ⊗𝑋(ℓ1−𝑠+1, 𝑗+ 1
2
) ⊗𝑋(ℓ1−𝑠, 𝑗+1)[︁

𝑌(𝑠, 𝑗) ⊗𝑋(𝑠, 𝑗+1) ⊗𝑋(𝑠+1, 𝑗) ⊗𝑋(𝑠, 𝑗+ 1
2
) ⊗ 𝑌(𝑠+1, 𝑗+1)

]︁
(3.12)

94 Chapter 3. Embedding simulations with quantum codes

conditionally on the qubits (ℓ1 − 𝑠, 𝑗 + 1
2) [(𝑠 + 1, 𝑗 + 1

2)]. We do this
sequentially from 𝑠 = 1 to 𝑠 = (ℓ1 − 1), which means we require 𝑂(ℓ1)
time steps in total. This concludes the definition 𝑉aux dat, as can be ver-
ified considering its formal definition in Appendix 3.9.1, and where we
use that (3.12) is obtained from the multiplication of a 𝑝-string with the
closest stabilizer. A measurement-based approach for state preparation
is discussed in Section 3.7.
We are now going to describe the logical operators of the code space
defined. In Figure 3.7(a), the adjusted term ̃︀ℎaux dat to a string ℎdat =
(𝑋 ⊗ 𝑍 ⊗ · · · ⊗ 𝑍 ⊗ 𝑋) is presented. In Section 3.9.3.1 we will show
that for Pauli strings originating from hopping terms (3.2) between two
sites (𝑖, 𝑗) and (𝑘, 𝑙), it is sufficient to check for adjustments on only the
auxiliary qubits at (𝑖, 𝑗 ± 1

2) and (𝑘, 𝑙 ± 1
2). If 𝑗 and 𝑙 are different rows,

it follows that the string is not continuous, see Figure 3.7(a). We then
choose to multiply the adjusted term with the stabilizers involving the
auxiliary qubits on which we wish the string to cross rows. For verti-
cal hoppings of lattice Hamiltonians, this choice is trivial. For arbitrary
hoppings however it is not. Considering that we likely have several such
terms inside one Hamiltonian, we want commuting strings not to over-
lap so we would deform them (by multiplying other stabilizers) to go
around each other. This allows us to simulate them in parallel. In Fig-
ure 3.7, panels (b)-(d), different paths have been chosen for the logical
operator ̃︀ℎaux dat to run along. Only deformed by the multiplication of
stabilizers, all of those choices are in fact equivalent. Note that taking
a direct path, the resulting strings will always be of roughly the same
length, as every direct path connecting two nodes on a square lattice has
the same distance: the Manhattan distance.
In the following, we will generalize this mapping to yield an AQM-version
that requires fewer auxiliary qubits.

3.5.3 Sparse AQM

The sparse AQM is a modification of the square lattice AQM that allows
us to make a trade-off between the number of auxiliary qubits required
and the locality in the resulting strings. The latter directly influences the
performance of any quantum simulation algorithm.

In the square lattice AQM, each data qubit (of the interior) has two
nonlocal connections in the vertical direction. This can be regarded as

3.5 Auxiliary qubit mappings 95

(a)

X

Z

Z Z Z Z Z Z

Z Z Z Z Z Z

Z Z Z Z X

Z

(b)

Y

Z

X

Z

X

X Z Z Z X

Z

(c)

Z

Y Z Z Z X

X

Z

X

Z

X

Z

Z

(d)

Y

X X

X

X Z X

X

X X

Z

Figure 3.7. Depicted are logical representatives of the same hopping term
ℎdat = (𝑋 ⊗𝑍 ⊗ · · · ⊗𝑍 ⊗𝑋) spanning several rows and columns in the square
lattice. The depiction of all strings follows the explanation in Figure 3.2(b). (a)
Adjusted term (ℎdat⊗𝜅ℎ

aux), not yet multiplied with any stabilizer. Note that this
string is not connected on the lattice, and the windings on which the string is
disconnected are highlighted. (b)-(d) Pauli strings ̃︀ℎaux dat that are equivalent to
(ℎdat ⊗ 𝜅ℎ

aux) by multiplication with stabilizers. All those strings are continuous
on the connectivity graph. The strings in (b) and (d) have the same weight (and
the string in (c) is just slightly longer) which is determined by the Manhattan
distance of the string endpoints.

96 Chapter 3. Embedding simulations with quantum codes

quite wasteful, as a mapping with fewer vertical connections would work
in the same way while effectively reducing the number of auxiliary qubits.
Here we introduce the sparse AQM, in which vertical connections have
a certain distance from each other. Let us say vertical connections are al-
ways placed ℐ qubits apart. The periodicity ℐ thus becomes a parameter
of the mapping and is generally an integer number ℐ ∈ [ℓ1 − 1], where
the case ℐ = 1 reproduces the square lattice AQM. We have excluded
the case in which we have only one vertical connection between every
pair of rows, as it is covered by the E-type AQM already. For conve-
nience let us say that (ℓ1 − 1)/ℐ is an integer such that we can place ver-
tical connections at the right and left boundary of the grid without spac-
ing unequally. The connectivity graph that puts auxiliary qubits on half
integer positions along ℐ-spaced columns can be seen in Figure 3.8(a),
along with the typical stabilizers. In this mapping the auxiliary register
holds 𝑟 = (ℓ2 − 1) · (ℓ1−1

ℐ +1) qubits, which is somewhere in between the
square lattice and E-type AQM. For the initialization circuit, 𝑉aux dat, the
sequence (3.12) has to be changed into applying the strings(︂

𝑋(ℓ1−𝑠+ℐ, 𝑗+ 1
2
) ⊗ 𝑝

(ℓ1−𝑠+ℐ, 𝑗+ 1
2
)

dat

)︂
· 𝑝(ℓ1−𝑠, 𝑗+ 1

2
)

dat[︂(︂
𝑋(𝑠+1−ℐ, 𝑗+ 1

2
) ⊗ 𝑝

(𝑠+1−ℐ, 𝑗+ 1
2
)

dat

)︂
· 𝑝(𝑠+1, 𝑗+ 1

2
)

dat

]︂
(3.13)

conditionally on qubits (ℓ1 − 𝑠, 𝑗 + 1
2) [(𝑠+ 1, 𝑗 + 1

2)]
for 𝑠 = ℐ, 2ℐ, 3ℐ, . . . , ℓ1 − 1. All those strings in the sequence are of
weight 𝑂(ℐ), but there are just (ℓ1−1)/ℐ of them, which brings the depth
of the entire circuit to 𝑂(ℓ1).
Figure 3.8(b) shows some output strings of this mapping. While crossing
rows works like in the square lattice AQM, the sparsity of vertical con-
nections makes for a more limited choice on where the strings can run
along. As a consequence, hopping terms between modes with a horizon-
tal distance smaller than ℐ will transform into strings like in the E-type
mapping. The effect of sparsity on simulations of a lattice model is dis-
cussed in the following section.

Note that we have made two arbitrary design choices for the connec-
tivity graph of this mapping: firstly, we have chosen for the auxiliary
qubits to be situated in between rows of data qubits. In order to fit this
mapping to a compact square lattice, we can take the auxiliary qubits

3.6 Example: Fermi-Hubbard lattice model 97

from in between the rows and insert them into the rows, so e.g. take
them from (𝑖, 𝑗 + 1

2) and insert them at (𝑖 + 1
2 , 𝑗). Then, the auxiliaries

have to be connected to the data qubits (𝑖, 𝑗) and (𝑖 + 1, 𝑗), as well as
the auxiliary qubits at (𝑖 + 1

2 , 𝑗 ± 1). In the end, no qubits will be in the
spaces between rows - this makes the array more dense and we can map
it to a square lattice, but also requires us to skip auxiliary qubits in some
horizontal hopping strings. Secondly, we have decided to place auxil-
iary qubits inside the same column of every other vertical connection.
Alternatively, the vertical connections could be arranged in a brickwork
pattern in order to minimize the weight of the adjustments 𝜅ℎaux, but then
vertical connections along a straight line are no longer possible.

3.6 Example: Fermi-Hubbard lattice model

3.6.1 Second quantization and Jordan-Wigner transform

Here we demonstrate the use of AQMs on the Fermi-Hubbard model. In
this model, we describe spin-12 fermions hopping on a square lattice, with
a repulsion term whenever spin-up and -down particles are present on
the same site. In the following, we will describe the Hamiltonian in both,
second quantization and in terms of Pauli strings after Jordan-Wigner
transform. Investigating the shortcomings of this mapping with respect
to circuit depth will be the motivation for the application of AQMs in
the next step. Let us consider an (𝐿 × 𝐿)-site square lattice of spatial
sites populated by spin-(1/2) fermions: as every such site hosts a spin-
up and -down mode, a total of 𝑁 = 2𝐿2 qubits are minimally required.
For convenience, the spin-up and -down modes of the fermionic site with
the physical location (𝑥, 𝑦) shall be placed at the coordinates (2𝑥, 𝑦) and
(2𝑥 − 1, 𝑦) in the two-dimensional embedding. This means the spin-
partners are horizontal neighbors, which is advantageous for the Jordan-
Wigner transform (and square lattice AQM). The Fermi-Hubbard Hamil-

98 Chapter 3. Embedding simulations with quantum codes

X Z Z Z Z Z

Y Z Z Z Z Z

X

Z Z Y

Z Z X

X

Z

Z

Z

Z

Y Z Y X

X Z Y Z

X X Z Y

X Y

X

X

Z

Y

(c)

(b)

(a)
(d)

X

X

Y

X

Figure 3.8. Sparse AQM with a periodicity of three (ℐ = 3). Top: Structure
and stabilizers. The gray qubits are auxiliaries, placed sparsely on half-integer
positions, connecting different rows. We depict one of the stabilizers in an odd
and an even row, respectively. Bottom: Logical equivalents ̃︀ℎaux dat of various
strings ℎdat = (𝑋 ⊗ 𝑍 ⊗ · · · ⊗ 𝑍 ⊗ 𝑋), that originate from vertical hopping
terms. (a) A vertical hopping along a vertical connection. The mapping yields
the same (𝑍 ⊗ 𝑍 ⊗ 𝑌)-string as we would expect from the square lattice AQM.
(b) The string is connecting (3, 3) and (3, 4). This example shows the virtue
of the sparse AQM: the parity string takes a shortcut along the closest vertical
connection. (c) Here we connect the qubits on (6, 1) and (6, 2) from the other
direction: over the vertical connection between (4, 1) and (4, 2). (d) A next-
nearest-neighbor vertical hopping term between (9, 1) and (9, 3).

tonian is defined as

horizontal hoppings⏞ ⏟ ∑︁
(𝑖,𝑗)

(︁
𝑡↔𝑖𝑗 𝑐†(𝑖, 𝑗)𝑐(𝑖+2, 𝑗) + h.c.

)︁
+

vertical hoppings⏞ ⏟ ∑︁
(𝑖, 𝑗)

(︁
𝑡
↕
𝑖𝑗 𝑐

†
(𝑖, 𝑗)𝑐(𝑖, 𝑗+1) + h.c.

)︁
+
∑︁
(𝑖, 𝑗)

𝜖𝑖𝑗 𝑐
†
(𝑖, 𝑗)𝑐(𝑖, 𝑗)⏟ ⏞

on-site detunings

+
∑︁
(2𝑖, 𝑗)

𝑈𝑖𝑗 𝑐
†
(2𝑖, 𝑗)𝑐(2𝑖, 𝑗)𝑐

†
(2𝑖−1, 𝑗)𝑐(2𝑖−1, 𝑗)⏟ ⏞

Hubbard interactions

, (3.14)

3.6 Example: Fermi-Hubbard lattice model 99

where 𝑡↔𝑖𝑗 , 𝑡↕𝑖𝑗 , 𝜖𝑖𝑗 and 𝑈𝑖𝑗 are real parameters. In this particular exam-
ple sums run over all possible coordinates (𝑖, 𝑗), (2𝑖, 𝑗) respectively, but
implement open boundary conditions. With an S-pattern Jordan-Wigner
transform, the Hamiltonian can now be mapped onto an (2𝐿×𝐿) square
lattice of qubits:

𝐻 =
∑︁
(𝑖, 𝑗)

𝑡↔𝑖𝑗
2

(︀
𝑋(𝑖, 𝑗) ⊗ 𝑍(𝑖+1, 𝑗) ⊗𝑋(𝑖+2, 𝑗) + 𝑌(𝑖, 𝑗) ⊗ 𝑍(𝑖+1, 𝑗) ⊗ 𝑌(𝑖+2, 𝑗)

)︀
+

∑︁
(𝑖, 𝑗), odd 𝑗

𝑡
↕
𝑖𝑗

2

(︃
2𝐿⨂︁

𝑘=𝑖+1

𝑍(𝑘, 𝑗)

)︃(︃
𝑖+1⨂︁
𝑙=2𝐿

𝑍(𝑙, 𝑗+1)

)︃(︀
𝑋(𝑖, 𝑗) ⊗𝑋(𝑖, 𝑗+1) + 𝑌(𝑖, 𝑗) ⊗ 𝑌(𝑖, 𝑗+1)

)︀
+

∑︁
(𝑖, 𝑗), even 𝑗

𝑡
↕
𝑖𝑗

2

(︃
1⨂︁

𝑘=𝑖−1

𝑍(𝑘, 𝑗)

)︃(︃
𝑖−1⨂︁
𝑙=1

𝑍(𝑙, 𝑗+1)

)︃(︀
𝑋(𝑖, 𝑗) ⊗𝑋(𝑖, 𝑗+1) + 𝑌(𝑖, 𝑗) ⊗ 𝑌(𝑖, 𝑗+1)

)︀
+
∑︁
(𝑖, 𝑗)

𝜖𝑖𝑗
2

(︀
I− 𝑍(𝑖, 𝑗)

)︀
+
∑︁
(2𝑖, 𝑗)

𝑈𝑖𝑗

4

(︀
I− 𝑍(2𝑖, 𝑗)

)︀ (︀
I− 𝑍(2𝑖−1, 𝑗)

)︀
. (3.15)

Let us discuss the terms of this Hamiltonian, and finally arrive at the
shortcomings of the mapping applied. We note that the vertical hopping
terms are different with respect to even and odd columns, due to differ-
ent directions of the S-pattern. All terms but the vertical hoppings have a
constant weight and can be simulated in 𝑂(1) time: only the latter can as-
sume a length of up to 4𝐿. Unfortunately, we have 𝑂(𝐿) terms of weight
𝑂(𝐿) per row pair. Although these strings commute, they do overlap,
which means we cannot simulate them in parallel: if no cancellations are
possible, then the entire algorithm has an algorithmic depth of 𝑂(𝐿2), so
it scales with the lattice area. In this case the simulation time and the
gate count cannot be better than being proportional to the total number
of qubits, which renders increasing lattice size expensive. If the simula-
tion algorithm allows us to cancel substrings of consecutively simulated
Pauli strings (see for instance [39]), the algorithmic depth can improve to
up to 𝑂(𝐿). To achieve even better scalings, we will employ the square
lattice AQM and sparse AQM on (3.14). A detailed consideration of the
E-type AQM is omitted, as it does not improve upon the scaling in case
of lattice models.

3.6.2 Square lattice and sparse AQM

With the square lattice AQM, the Fermi-Hubbard Hamiltonian can be
simulated in constant time, neglecting the algorithmic depth necessary
to initialize the code space, which is 𝑂(𝐿) or 𝑂(1) depending on the ex-

100 Chapter 3. Embedding simulations with quantum codes

act method used. We will now describe how the square lattice AQM
modifies the terms of the Hamiltonian (3.15), after which we will discuss
the sparse AQM in that regard.

We now use the square lattice AQM to render the vertical hopping
terms local: after adjusting each term of (3.15) by ℎdat → ℎdat ⊗ 𝜅ℎaux,
the multiplication of adjusted hopping terms between (𝑖, 𝑗) and (𝑖, 𝑗 +

1) with stabilizers (𝑝
(𝑖, 𝑗+ 1

2
)

dat ⊗ 𝑋(𝑖, 𝑗+ 1
2
)) is resulting in local operators of

weight 3. While the hopping terms in (3.14) only have real coefficients,
the operator weight of more general vertical hopping terms varies, but
remains 3 on average. For complex hopping amplitudes 𝑡↕𝑖𝑗 , we find

𝑡
↕
𝑖𝑗 𝑐

†
(𝑖, 𝑗)𝑐(𝑖, 𝑗+1) + (𝑡

↕
𝑖𝑗)

*
𝑐†(𝑖, 𝑗+1)𝑐(𝑖, 𝑗) =̂

(−1)𝑗

2
Re(𝑡

↕
𝑖𝑗)
(︁
𝑍(𝑖, 𝑗− 1

2
) ⊗ 𝑍(𝑖, 𝑗) ⊗ 𝑌(𝑖, 𝑗+ 1

2
)

)︁
− (−1)𝑗

2
Re(𝑡

↕
𝑖𝑗)
(︁
𝑌(𝑖, 𝑗+ 1

2
) ⊗ 𝑍(𝑖, 𝑗+1) ⊗ 𝑍(𝑖, 𝑗+ 3

2
)

)︁
+

(−1)𝑗

2
Im(𝑡

↕
𝑖𝑗)
(︁
𝑍(𝑖, 𝑗− 1

2
) ⊗ 𝑍(𝑖, 𝑗) ⊗𝑋(𝑖, 𝑗+ 1

2
) ⊗ 𝑍(𝑖, 𝑗+1) ⊗ 𝑍(𝑖, 𝑗+ 3

2
)

)︁
− (−1)𝑗

2
Im(𝑡

↕
𝑖𝑗) 𝑋(𝑖, 𝑗+ 1

2
) . (3.16)

The improvements that we make on vertical terms come at the cost of
the adjustments 𝜅ℎaux to other terms in (3.15). However, as already men-
tioned, the structure of the strings {𝑝𝑖dat} guarantees to keep those other
terms local. For horizontal hopping terms that are (like the vertical strings)
of the form ℎdat = (A𝑖 ⊗ 𝑍𝑖+1 ⊗ ...⊗ 𝑍𝑗−1 ⊗ B𝑗), with A,B ∈ {𝑋, 𝑌 }, the
substrings 𝜅ℎaux invoke 𝑍-operators at the end of the strings which makes
for an additional weight of 2. On the other hand, if A,B = 𝑍, 𝜅ℎaux fea-
tures 𝑍-operators along the entire string. This means that while single 𝑍-
operators are in this way adjusted to 𝑍(𝑖, 𝑗) ↦→ 𝑍(𝑖, 𝑗− 1

2
) ⊗𝑍(𝑖, 𝑗) ⊗𝑍(𝑖, 𝑗+ 1

2
),

the two-qubit Hubbard terms gain 4 qubits worth of weight.
With the square lattice AQM, we have thus managed to reduce the weight
of every term to a constant independent of the system size. A list of rel-
evant terms, that compares Jordan-Wigner and square lattice AQM can
be found in Tables 3.2 and 3.3. Having achieved locality of every Hamil-
tonian term, we can trotterize ̃︀𝐻aux dat by for instance applying all hor-
izontal hopping terms in 𝑂(1) time, then continue with a time slice in

3.6 Example: Fermi-Hubbard lattice model 101

which we simulate all vertical hoppings, follow-up with all on-site in-
teractions and Hubbard terms, and so on. Alternatively, one may apply
Hamiltonian simulation strategies to simulate patches of the lattice more
accurately and then interweave these patches with the HHKL algorithm,
[68].

With the square lattice AQM, we have made the simulation scalable in
terms of algorithmic depth and gate count. The requirement on the qubit
number has however almost doubled. In order to be more economic with
the number of auxiliary qubits, we consider the sparse AQM, which will
help us to maximize the size of the simulated lattice on a fixed qubit bud-
get. Placing vertical connections ℐ qubits apart, the required number of
auxiliary qubits is 𝑟 =

(︁
2𝐿2−2𝐿+1

ℐ + 𝐿− 1
)︁

. The weight of vertical hop-
ping strings now largely depend upon their distance to the next vertical
connection: let us say there is a vertical connection across (𝑖, 𝑗 + 1

2), then
the vertical hoppings between (𝑖, 𝑗) and (𝑖, 𝑗+1) are of (constant) weight
3, like in the square lattice AQM, while the vertical hoppings of modes to
their left and right rather resemble the strings of E-type AQM. The worst
case is certainly met for vertical hoppings in the middle of two vertical
connections, so between (𝑖± 1

2ℐ, 𝑗) and (𝑖± 1
2ℐ, 𝑗 +1). Thus per vertical

connection, there are 𝑂(ℐ) strings of weight 𝑂(ℐ) overlapping with one
another. The simulation time is thus 𝑂(ℐ) if we allow cancellations and
𝑂(ℐ2) in the general case.

102 Chapter 3. Embedding simulations with quantum codes

Jordan-Wigner transform Square lattice AQM

X Z Z Z Z

X Z Z Z Z

Z

Y

Z

(︁⨂︀2𝐿
𝑘=𝑖+1 𝑍(𝑘, 𝑗)

)︁(︁⨂︀𝑖+1
𝑙=2𝐿 𝑍(𝑙, 𝑗)

)︁
⊗ 𝑋(𝑖, 𝑗) ⊗𝑋(𝑖, 𝑗+1)

↦→ −
(︁
𝑍(𝑖, 𝑗− 1

2
) ⊗ 𝑍(𝑖, 𝑗) ⊗ 𝑌(𝑖, 𝑗+ 1

2
)

)︁

Y Z Z Z Z

Y Z Z Z Z Z

Y

Z

(︁⨂︀2𝐿
𝑘=𝑖+1 𝑍(𝑘, 𝑗)

)︁(︁⨂︀𝑖+1
𝑙=2𝐿 𝑍(𝑙, 𝑗)

)︁
⊗ 𝑌(𝑖, 𝑗) ⊗ 𝑌(𝑖, 𝑗+1)

↦→ 𝑌(𝑖, 𝑗+ 1
2
) ⊗ 𝑍(𝑖, 𝑗+1) ⊗ 𝑍(𝑖, 𝑗+ 3

2
)

Table 3.2. Comparing the Jordan-Wigner transform (3.15) to square lattice AQM
when applied to the Hubbard model (3.15). In this table we present vertical hop-
ping terms – the strings of which the nonlocal part is canceled. We generally
compare Jordan-Wigner strings, ℎdat (left), to their logical equivalents ̃︀ℎaux dat
(right) in the AQM. The strings are depicted geometrically (following the expla-
nation of Figure 3.2(b)) and symbolically (below the drawings). Note that we
display hoppings between odd rows 𝑗 and even rows 𝑗 + 1 only. For 𝑗 even, the
two ̃︀ℎaux dat-terms are exchanged.

3.6.3 VCT and BKSF

The Fermi-Hubbard model can also be made local by the Verstraete-Cirac
transform or Superfast simulation. In this section, we will compare the
weights of Pauli strings appearing in those cases to the strings result-
ing from transforming the Hubbard model with the square lattice AQM.
We have compiled a list of the operator weights in Table 3.4, and the
interested reader may find a visual representation of the strings from

3.6 Example: Fermi-Hubbard lattice model 103

Jordan-Wigner transform Square lattice AQM

X Z X X Z X

Z

Z

𝑋(𝑖,𝑗) ⊗ 𝑍(𝑖+1, 𝑗) ⊗𝑋(𝑖+2, 𝑗) ↦→
𝑍(𝑖, 𝑗− 1

2
) ⊗𝑋(𝑖, 𝑗) ⊗ 𝑍(𝑖+1, 𝑗)

⊗ 𝑋(𝑖+2, 𝑗) ⊗ 𝑍(𝑖+2, 𝑗+ 1
2
)

Y Z Y Y Z Y

Z

Z

𝑌(𝑖,𝑗) ⊗ 𝑍(𝑖+1, 𝑗) ⊗ 𝑌(𝑖+2, 𝑗) ↦→
𝑍(𝑖+2, 𝑗− 1

2
) ⊗𝑋(𝑖, 𝑗) ⊗ 𝑍(𝑖+1, 𝑗)

⊗ 𝑋(𝑖+2, 𝑗) ⊗ 𝑍(𝑖, 𝑗+ 1
2
)

Z Z Z

Z

Z

Z

Z

Z

𝑍(𝑖,𝑗) ⊗ 𝑍(𝑖+1 𝑗) ↦→
⨂︀

𝑘∈{0,1}

(︁
𝑍(𝑖+𝑘, 𝑗− 1

2
)

⊗𝑍(𝑖+𝑘,𝑗) ⊗ 𝑍(𝑖+𝑘, 𝑗+ 1
2
)

)︁

Table 3.3. Comparing the Jordan-Wigner transform (3.15) to square lattice AQM
when applied to the Hubbard model (3.15). In this table, we present the hori-
zontal hopping and Hubbard terms – all the Pauli strings that gain in weight.
However, the addition in weight is constant and local, as shown in 3.9.3. We
generally compare Jordan-Wigner strings, ℎdat (left), to their logical equivalents̃︀ℎaux dat (right) in the AQM. The strings are depicted geometrically (following
the explanation of Figure 3.2(b)) and symbolically (below the drawings). Not
on display are the on-site terms and single-qubit contributions from Hubbard
interactions, 𝑍(𝑖, 𝑗), which are adjusted into (𝑍(𝑖, 𝑗− 1

2)
⊗ 𝑍(𝑖, 𝑗) ⊗ 𝑍(𝑖, 𝑗+ 1

2)
).

104 Chapter 3. Embedding simulations with quantum codes

BKSF and VCT in Appendix 3.9.3. Let us briefly discuss how the weights
of the terms come to be. The VCT and AQM are quite similar in the
sense that both concatenate the Jordan-Wigner transform with a quan-
tum code. However, the data-qubit substrings of the VCT stabilizers just
consist of 𝑍-strings, which has two consequences: firstly, the stabilizers
commute with diagonal terms like on-site detunings and Hubbard inter-
actions, leaving them unadjusted and without any gain of weight. With
this feature, the VCT distinguished itself from the other mapping in pro-
ducing strings of the lowest weight. Secondly, while in the AQM a hop-
ping string would just be adjusted on its end points, adjustments have
to be made all along the strings in the VCT: fortunately, the auxiliary-
qubit substring of the VCT stabilizers cancel these adjustments, causing
this mapping to have shorter strings in the vertical direction (see Section
3.7). We thus place spin-up and -down modes of the same spatial site
vertically adjacent, like we have placed them horizontally adjacent in the
AQM. This leads to the weights of horizontal and vertical hoppings to
be interchanged between VCT and AQM (on average). The stabilizers of
both mappings can be made local with a weight of 6 (and weight-3 sta-
bilizers at the boundaries), which is also the weight of stabilizers in the
BKSF. The BKSF, defined on the least amount of qubits, has surprisingly
the longest strings. The reason for this is that logical 𝑍-operators have
weight 4 - a consequence of the square lattice connectivity. With this, the
BKSF has also the largest variety of weights in hopping strings, while
in the VCT, there is no variety at all among strings in the same direction.
While the VCT appears to be the favorable option when comparing string
lengths (followed by the AQM), it also uses the most qubits, as becomes
apparent in Appendix 3.9.3.

3.7 Comparison of AQM, VCT and BKSF

In this section, we will compare the Auxiliary Qubit Mapping, Super-
fast simulation and Verstraete-Cirac transform. Not only can the latter
two be used to simulate the Hubbard model with local interactions, but
we can also give them the Manhattan-distance property to align them
with our notions of a good mapping for square lattices of qubits. This
is done in Appendix 3.9.3. The reader completely unfamiliar with those
mappings may also find an introduction reviewing the original propos-
als [25, 26]. Let us here compare AQM, VCT and BKSF regarding state

3.7 Comparison of AQM, VCT and BKSF 105

Square lattice
AQM VCT BKSF

Stabilizer (interior) 6 6 6
Vertical hoppings

𝑋𝑋 |𝑌 𝑌 |𝑋𝑌 |𝑌 𝑋
3|3|5|1 5|5|5|5 2|6|5|4

Horizontal hoppings
𝑋𝑋 |𝑌 𝑌 |𝑋𝑌 |𝑌 𝑋

5|5|5|5 3|3|3|3 8|4|5|7

Two-qubit Hubbard terms 6 2 6 + 2
On-site terms 3 1 4

Table 3.4. String lengths of the Fermi-Hubbard model transformed by all three
mappings. We compare the weight of the Pauli strings, that originate from the
square lattice AQM, the Verstraete-Cirac transform and the Superfast simula-
tion. For hopping terms, we consider the strings ℎdat = (A𝑖⊗𝑍𝑖+1⊗· · ·⊗𝑍𝑗−1⊗
B𝑗), with all variations of A,B ∈ {𝑋, 𝑌 }. For vertical hoppings (in the AQM)
we fix the case of 𝑗 being in an even row. Two-qubit Hubbard terms are of the
form ℎdat = (𝑍 ⊗ 𝑍), and on-site terms are singular 𝑍-operators. In the BKSF
it is required to skip a qubit, which we penalize with an additional cost of two
gates. In conclusion, the Verstraete-Cirac transform seems to exhibit the short-
est strings, with the weights of the hopping terms being the same for all A𝑖, B𝑗 .
Regarding string lengths, the square lattice AQM is in between the Verstraete-
Cirac transform and the Superfast simulation, where the latter has the longest
strings and largest variations in length.

106 Chapter 3. Embedding simulations with quantum codes

preparation, qubit requirements, Manhattan-distance property and the
possibility of error mitigation. Afterwards, we can conclude and identify
cases in which each mapping is advantageous.

State preparation - As we have shown, there is a unitary quantum cir-
cuit for the AQM to elevate an 𝑁 -qubit state to its equivalent in the logi-
cal basis. The VCT on the other hand has a logical basis that is entangled
in a more complicated way, such that we cannot find a unitary quantum
circuit of the same simplicity. Although the BKSF has no clear distinc-
tion between data and auxiliary qubits, there is a set of 𝑁 − 1 qubits that
is only relevant for an S-pattern and one could argue that only vertical
connections add the remaining qubits and introduce stabilizers. As each
connection is implemented by just one entangled qubit, we believe that
there might be a unitary circuit as simple as 𝑉aux dat. As of now, we would
have to resort to syndrome measurements to initialize the code space of
VCT and BKSF. By syndrome measurements, we mean the measurement
and readout of a generating set of stabilizers and correct for outcomes
inconsistent with the code space. While measurement and readout-times
of state-of-the-art quantum devices might make this strategy challenging
at present, we can at least arrange for local stabilizers such that the time
overhead per measurement cycle is constant. In Figure 3.9(c)-(d) the local
stabilizer tilings of VCT and BKSF are shown. A planar tiling for stabi-
lizers of square lattice and sparse AQM follows from multiplication of
adjacent stabilizer generators

(︂
𝑝
(𝑖,𝑗+ 1

2
)

dat ⊗𝑋(𝑖, 𝑗+ 1
2
)

)︂
·
(︂
𝑝
(𝑖+1, 𝑗+ 1

2
)

dat ⊗𝑋(𝑖+1, 𝑗+ 1
2
)

)︂
and(︂

𝑝
(𝑖, 𝑗+ 1

2
)

dat ⊗𝑋(𝑖, 𝑗+ 1
2
)

)︂
·
(︂
𝑝
(𝑖+ℐ, 𝑗+ 1

2
)

dat ⊗𝑋(𝑖+ℐ, 𝑗+ 1
2
)

)︂
, (3.17)

excluding the stabilizers at the windings, which are local already. The
result is a repeating pattern of tiles with ears at the windings, shown
in Figure 3.9(a)-(b). Note that we have implicitly used these tilings al-
ready in the respective definitions of 𝑉aux dat. While with the unitary
quantum circuit we can prepare the state on only the data qubits be-
fore encoding it into the logical basis, the same thing seems impossible
with syndrome measurements. Even if the protective operations would
not change the data-qubit state, there is still an ambiguity in the logical

3.7 Comparison of AQM, VCT and BKSF 107

bases of VCT and AQM, that we now want to discuss. As can be seen
in Appendix 3.9.1, the quantum code layer included in these mappings
transform any computational basis state |𝜔⟩dat into a logical basis state[︁∏︀

𝑖∈[𝑟]
1√
2
(I+ 𝑆𝑖

aux dat)
]︁
|𝜔⟩dat ⊗ |𝜒⟩aux, where {𝑆𝑖

aux dat}𝑖 is a generating

set of stabilizers and 𝜒 = (𝜒1, 𝜒2, ... , 𝜒𝑟)
⊤ ∈ Z⊗𝑟

2 is a constant binary vec-
tor. While in the VCT, the set of stabilizers limit (not constrain) the choice
of 𝜒, (square lattice and sparse) AQMs are properly stabilized for all pos-
sible 𝜒 ∈ Z⊗𝑟

2 . However, for both mappings the (signs of) adjustments
made to operators ℎdat depend on 𝜒. For AQMs we rely on 𝜒 = (0)⊗𝑟

for the substrings 𝜅ℎaux to be free of signs. Obviously, for any basis with
an unintended 𝜒-shift, the logical Hamiltonian ̃︀𝐻aux dat will not replicate
the action of 𝐻dat. As we cannot detect this 𝜒-offset, we have to ignore it,
e.g. pretend that |𝜒⟩ = |0𝑟⟩ in AQMs: this effectively means that the state
|̃︀𝜙⟩aux dat, which is created with an unknown 𝜒-shift in the aux-register,
becomes a state [

∏︀
𝑖 (𝑝

𝑖
dat)

𝜒𝑖] |̃︀𝜙⟩aux dat without shift, a state we have not
intended to prepare. To combat ambiguities in all mappings, the system
has to be constrained to the correct subspace before any state preparation
can happen. This means we have to measure not only the stabilizers, but
also logical operators until all degrees of freedom are eliminated. Apart
form the tiles, we could measure all logical 𝑍-operators, i.e. all logical
encodings of (2𝑐†𝑗𝑐𝑗 − 1). When all measurement outcomes yield ‘+1’,

we have prepared the logical zero state, |̃︁0𝑁 ⟩aux dat. From there on, we
directly prepare |̃︀𝜙⟩aux dat by e.g. Givens rotations [30, 69] using logical
operators. This strategy appears to be the only option for measurement-
based preparation of states in any mapping, although practically one will
certainly want to perform only one cycle of measurements form the out-
come of which the logical state and the (signs of the) stabilizers are de-
fined. For the modest E-type AQM on the other hand, neither syndrome
measurements nor unitary quantum circuits are necessary to prepare a
logical state. Due to the fact that its logical basis is in the computational
basis, the product state (|0𝑁 ⟩dat ⊗ |0𝑟⟩aux) is in fact the logical zero state,
even though the two registers are obviously not entangled. Initializing
all qubits in zero at first is thus a sufficient preliminary to prepare the
state |̃︀𝜙⟩aux dat with logical operators.

Qubit requirements - For all mappings we find the highest number of
qubits they require to be ≤ 2𝑁 , in fact only the VCT demands exactly

108 Chapter 3. Embedding simulations with quantum codes

(a)

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y
Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y
Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y
Y

X

X

X

X

Y

Y

X

X

X

X

Y
Y

X

X

Y

X

X

X

X

Y

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X
X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

(b)

Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

Y
Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

X

Y
Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

X

X

Y

Y

X

X

Y

X

X

Y

X

X
X

X

Y

X

X

Y

Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

Y
Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

X

Y
Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

X

Y

(c)

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Y
Y

X
X

Y
Y

X
X

Y
Y

X
X

Y
Y

X
X

Y
Y X
X

Z

Z

Z

Z

Z Z Z Z

(d)

Y

Y

Z

Z

Y

Y

X

X

Z

Z

X

X

Y

Y

Z

Z

Y

Y

X

X

Z

Z

X

X

Y

Y

Z

Z

Y

Y

X

X

Z

Z

X

X

Y

Y

Z

Z

Y

Y

X

X

Z

Z

X

X

Y

Y

Z

Z

Y

Y

X

X

Z

Z

X

X

Y

Y

Z

Z

Y

Y

X

X

Z

Z

X

X

Y

Y

Z

Z

Y

Y

X

X

Z

Z

X

X

Y

Y

Z

Z

Y

Y

X Z

X

X Z

X

X Z

X

YZ

Y

YZ

Y

X Z X X Z X

X Z X X Z X X Z X

X Z X

Y

Y

Z

Z

Y

Y

Y

Y

Z

Z

Y

Y

Y

Y

Z

Z

Y

Y

Y

Y

Z

Z

Y

Y

Y

Y

Z

Z

Y

Y

X

X

Z

Z

X

X

X

X

Z

Z

X

X

X

X

Z

Z

X

X

X

X

Z

Z

X

X

X

X

Z

Z

X

X

Figure 3.9. Tilings of local stabilizers for square lattice and sparse AQMs,
BKSF and VCT. Every tile represents a local stabilizer involving qubits along
its perimeter. Inside the tiles, X, Y and Z indicate the Pauli operators that ev-
ery qubit contributes to the corresponding stabilizer. We have shaded the tiles
to as a visual aid for error mitigation. (a) Square lattice AQM with dimensions
ℓ1 = ℓ2 = 6. The stabilizers of all tiles are the same, except at the windings.
(b) Sparse AQM with dimensions ℓ1 = 7, ℓ2 = 6 and ℐ = 2. (c) BKSF of a
ℓ1 = ℓ2 = 6 fermionic lattice. The tiling is a three-colorable brickwork pattern.
(d) VCT with dimensions ℓ1 = ℓ2 = 6. The stabilizer tiles are alternating in
a checkerboard pattern, that resembles the rotated surface code except for the
𝑍-operators on the data qubits.

3.7 Comparison of AQM, VCT and BKSF 109

2𝑁 qubits, the square lattice AQM on the other hand requires ℓ1 qubits
less, and the BKSF requires even ℓ2 less than the AQM. As for the AQM,
we can think about reducing the amount of qubits with sparse AQMs.
For the VCT such a modification is discussed in Appendix 3.9.3. As the
qubits added to the VCT are generally added into the rows, its sparse ver-
sion can be mapped back to a compact square lattice more easily than the
AQM. In the BKSF, we can also make vertical connections more sparse,
but as its layout is rotated, mapping the sparse BKSF to a compact square
lattice requires changes in the connectivity graph, which will influence
the continuity of resulting strings.

Manhattan-distance property - With all mappings we manage to trans-
form long-range hopping terms of a ℓ1×ℓ2 fermionic lattice to continuous
Pauli strings on a qubit lattice, that can be deformed by the multiplica-
tion of stabilizers. For all mappings, the shortest version of those strings
involve a number of qubits scaling with the Manhattan distance of the
fermionic modes on their lattice, but their exact weight differs from map-
ping to mapping - and is an interesting figure of merit. Let us say that on
the fermionic lattice we have a hopping term

𝑡 𝑐†(𝑖, 𝑗)𝑐(𝑖+𝑥, 𝑗+𝑦) + 𝑡* 𝑐†(𝑖+𝑥, 𝑗+𝑦)𝑐(𝑖, 𝑗) , (3.18)

where 𝑡 and 𝑡* is a complex coefficient and its Hermitian conjugate. Here
the shortest path connecting those modes is over 𝑥 modes in horizontal
and 𝑦 in vertical direction, the Manhattan distance is 𝑥+𝑦. Transforming
a string with such a distance by one of the three mappings, the connecting
string is supported on roughly 𝑂(𝑥+ 𝑦) qubits, but its operator weight is
not going to be 𝑥+ 𝑦 exactly. In the case of the AQM, we will have twice
the number of qubits per mode in the vertical direction, which means
that overcoming a vertical distance is more difficult, the string has the
weight 𝑥 + 2𝑦. In the VCT, the situation is exactly opposite and the hor-
izontal distance is more costly to overcome due to the adjustment costs
of the auxiliary modes: the operator weight of the connecting string is
2𝑥 + 𝑦. For the BKSF, we find that horizontal and vertical paths are of
equal weight, unfortunately the cost is doubled, so 2(𝑥 + 𝑦). Note that
different versions of the BKSF exist, where the one version that yields
these results is similar to the mapping in [54] - others produce strings of
higher weight, for some they are even disconnected.
Note that so far we have omitted the discussion of constant weight over-

110 Chapter 3. Embedding simulations with quantum codes

heads, that can arise at the end points of each string, and as such they
are just relevant for small Manhattan distances. Around the modes la-
beled (𝑖, 𝑗) and (𝑖+ 𝑥, 𝑗 + 𝑦), BKSF and AQM can yield additional terms
that matter predominantly for the local hoppings. As discussed, strings
in the AQM can have one additional 𝑍-operator around each end-mode,
due to costs of the adjustments 𝜅ℎaux. In the BKSF, the strings might differ
by up to one logical 𝑍-operator on each end, meaning there can be an ad-
ditional cost of up to three (physical) 𝑍-operators per end. Most notably,
the VCT does not have such additional costs making it attractive for the
simulation of lattice models, where 𝑥+ 𝑦 is small.

Error mitigation - The reduction of the algorithmic depth, that all three
mappings aim at, is the main tool in the reduction of noise. However,
as the mappings can be regarded as stabilizer codes, it is fair to ask if
they can be used for mitigating the effect of noise, as has recently been
proposed on a small scale [70, 71]. Intriguingly, the AQM and VCT have
local stabilizer tilings that resemble the stabilizers of surface code [17].
However, in contrast to those error correction codes, we cannot achieve
topological protection against logical errors. For the planar code of the
VCT to correct errors, we necessarily would need the data qubits (the
qubits with Z on them in Figure 3.9(d)) to be error free, as 𝑋- and 𝑌 - er-
rors would masquerade syndromes of errors on the auxiliary qubits. Fur-
thermore, the code cannot detect 𝑍-errors on the data qubits, and even
increases their 𝑍-error rate, as syndromes which are stabilizers in surface
code differ by some 𝑍-operators from the stabilizers of the VCT. A similar
statement can be made for the square lattice AQM, where the auxiliary
qubits would have to be perfect, and their 𝑋-error rate is increased, see
Figure 3.9 (a). Using fewer auxiliary qubits, the square lattice AQM has
fewer ears to mitigate errors with (as compared to Figure 3.9(d)), they
could however be added with more auxiliary qubits encoding the cor-
responding horizontal (local) connections. Unlike the surface code, the
BKSF (Figure 3.9(c)) has a three-colorable brickwork-pattern in its tiling,
that theoretically allows to detect all single-Pauli errors, but like before
some weight-two errors tend to masquerade themselves and go unde-
tected when too close together. Although none of the codes allow for
topological error correction, they exhibit a limited potential for error mit-
igation, in which one might be able to catch some errors if the rate is low
enough. Whether this is feasible is left to be decided.

3.8 Conclusion 111

In conclusion, although the BKSF has the longest operators, it also
requires the fewest qubits. As it is defined on a rotated square lattice,
its shape might be the perfect fit for actual devices, as a patch of rotated
surface code (including measurement qubits) is a rhombus. The BKSF is
probably the most feasible candidate for error mitigation strategies. With
its output strings having the lowest weight of all three mappings, the
VCT is perhaps the most sophisticated. However, its theoretical back-
bone is also the most complicated – when using the VCT one would
probably have to adhere to the surface-code-like structure of the origi-
nal proposal. With the weight of the output strings in between the two
mappings, AQMs are a compromise for the cases that demand more flex-
ibility. The most unique feature of the AQMs is that we can just use a
unitary circuit to promote a data-qubit state into its logical equivalent
and if necessary even release it from the auxiliary qubits. The stabilizer
state can also be manipulated during the simulation, e.g. accounting
for swaps or basis transforms. The state preparation with 𝑉aux dat might
make this mapping even interesting for NISQ devices [4], especially for
cloud-based quantum computing.

3.8 Conclusion

In this chapter, we have developed a new class of fermion-to-qubit map-
pings that truly generalize the Jordan-Wigner transform to two dimen-
sions. Moreover, this class can be regarded as a quantum code layer
on top of the mapping provided by the Jordan-Wigner transform, and
with the unitary 𝑉

(†)
aux dat we find a means to encode (decode) quantum

states in the code layer. The quantum code is shown to require a cer-
tain number of auxiliary qubits that is close to 𝑁 , but this number is
not strict. In fact, sparse mappings with a reduced number of auxil-
iary qubits can achieve similar results, which might be of great practical
advantage. More generally, there is a statement that we can make not
just about the Auxiliary Qubit Mapping, but also the Verstraete-Cirac
transform and the Bravyi-Kitaev Superfast simulation. Versions of all
these transforms can be used as one-dimensional linear fermion-to-qubit
mapping with 𝑁 (respectively 𝑁 − 1) qubits, but at the expense of ad-
ditional qubits we can pre-compute certain Pauli strings, which allows
us to take shortcuts when mapping operators. This pre-computation is

112 Chapter 3. Embedding simulations with quantum codes

done when said strings are stabilized in a quantum code that entangles
data qubits with the qubits added. The usage of these codes allows a
quantum computer to do what was not manageable classically: the local
treatment of two-dimensional fermion systems. In this way we can not
only simulate fermionic lattices, but embed every fermion system on a
two-dimensional layout.

We hope that future work will extend these results: we for instance
have not taken into account specific limitations on either the qubit con-
nectivity graph or the ability to perform quantum gates, which can be
found in proposals for actual devices [18, 72]. It would also be interest-
ing to incorporate the mappings into specific simulation algorithms, to
see for instance how phase estimation or qubitization could deal with
the planar layout.

3.9 Supplement

3.9.1 Auxiliary Qubit codes

Here we will set up the quantum codes used for the AQMs, which in-
cludes the review of the methods developed in [60]. We adapt those
methods for quantum codes and contribute ideas which can be used to
speed up the initialization of the logical basis.

As mentioned before, the stabilizing the Pauli strings (𝑝𝑖dat ⊗ 𝜎𝑖
𝑁+𝑖)

effectively describes a quantum code: a larger Hilbert space of 𝑛 = 𝑁 + 𝑟
qubits is constrained to the dimension 2𝑁 by 𝑟 stabilizer conditions. In
contrast to codes for quantum error correction, we do not want to encode
information nonlocally, i.e. obtain nonlocal logical operators, but want to
localize operators that were nonlocal to begin with. When characterizing
a quantum error correction code, one is usually interested in the generat-
ing set of stabilizers, the logical basis states, e.g.

⃒⃒
0
⟩︀
,
⃒⃒
1
⟩︀

and the logical
operators, 𝑋 , 𝑍. In the following, we will look at the AQM equivalents
of those quantities: while {𝑝𝑖dat ⊗ 𝜎𝑖

𝑁+𝑖}𝑖 is a set of stabilizer generators,
the extended computational basis 𝑉aux dat |𝜔⟩dat⊗|0𝑟⟩aux spans the logical
subspace and the adjusted Pauli strings ̃︀ℎaux dat are its logical operators.

In the initialization of the code space via the unitary 𝑉aux dat, the aux-

3.9 Supplement 113

iliary qubits are entangled with data qubits, but not before the former
are possibly rotated into some basis other than the computational basis:
the basis choice of the auxiliary qubits can have consequences for other
methods of state preparation and for sure determines the form of the op-
erators 𝜎𝑖

𝑁+𝑖 and 𝜅ℎaux. In the following, we will introduce the two logical
bases, to which AQMs resort. For each of these we will outline the fol-
lowing points:

i. Logical basis Basis of the (𝑁 + 𝑟)-qubit states |̃︀𝜙⟩aux dat with respect to the
computational basis |𝜔⟩dat of the 𝑁 -qubit states |𝜙⟩dat.

ii. Entangling operation The unitary 𝑉aux dat, for initializing the stabilizer
state by quantum gates: 𝑉aux dat |𝜙⟩ ⊗ |0𝑟⟩ = |̃︀𝜙⟩aux dat.

iii. Hamiltonian adjustments Adjustments to be made to Pauli strings, ℎdat ↦→
ℎdat ⊗ 𝜅ℎaux, and adjusted operator mappings.

We want to deliver the last point in a two-fold way: on the one hand, we
present the adjustments to a Hamiltonian in Pauli string form (3.3), where
we replace every term ℎdat ↦→ (ℎdat ⊗𝜅ℎaux). The origin of such a Hamilto-
nian can be arbitrary. On the other hand we want to focus on Hamiltoni-
ans that originate from certain many-body problems of fermions. There-
fore, we fuse the Hamiltonian adjustments with the linear transform,
such that terms (ℎdat ⊗ 𝜅ℎaux) can be obtained directly from second quan-
tization as a redefinition of relation (2.12):

𝑐†𝑗 =̂
1

2

⎛⎝ ⨂︁
𝑘∈̃︀𝑈(𝑗)

𝑋𝑘

⎞⎠⎛⎝I+
⨂︁

𝑙∈ ̃︀𝐹 (𝑗)

𝑍𝑙

⎞⎠⎛⎝ ⨂︁
𝑚∈ ̃︀𝑃 (𝑗)

𝑍𝑚

⎞⎠ ,

𝑐𝑗 =̂
1

2

⎛⎝ ⨂︁
𝑘∈̃︀𝑈(𝑗)

𝑋𝑘

⎞⎠⎛⎝I−
⨂︁

𝑙∈ ̃︀𝐹 (𝑗)

𝑍𝑙

⎞⎠⎛⎝ ⨂︁
𝑚∈ ̃︀𝑃 (𝑗)

𝑍𝑚

⎞⎠ . (3.19)

The redefined transform stays close to the spirit of the original in the
sense that only the flip, parity and update sets are replaced by adjusted
versions ̃︀𝐹 (𝑗), ̃︀𝑃 (𝑗) and ̃︀𝑈(𝑗).
Apart from the two bases, we also take a look at an extension of the prin-
ciple, that allows to build a stabilizer set with strings {𝑝𝑖dat}, that might
anticommute. Interestingly, one could in this way encode all terms of a
Hamiltonian into a mapping. The resulting code is perhaps most akin to
the original method [60], where a new auxiliary qubit is spent for every
Hamiltonian term to be multiplied with a stabilizer.

114 Chapter 3. Embedding simulations with quantum codes

3.9.1.1 Auxiliary qubits in computational basis

With the parity strings being the detrimental substrings of the Jordan-
Wigner-transformed Hamiltonians, our main goal is to cancel long strings
of 𝑍-operators. In [73], this is achieved in collecting the parity informa-
tion of subsets of qubits with a circuit QED resonator. In a hardware-
unspecific approach, computational basis AQMs store parity information
on auxiliary qubits, which can be updated and they have never to be un-
computed.

We generally restrict computational-basis Auxiliary Qubit codes to
strings 𝑝𝑖dat ⊆ {I, 𝑍}⊗𝑁 . The 𝑝𝑖dat-strings are here canceled with auxiliary
Pauli-𝑍 operators 𝜎𝑖

𝑁+𝑖 = 𝑍𝑁+𝑖. Let us say that the stabilizers are char-
acterized by the (𝑟×𝑁) binary matrix 𝐵, such that an entry ‘1’ in the 𝑗-th
column on line 𝑖 of 𝐵 means that 𝑍𝑗 is part of 𝑝𝑖dat:

𝑝𝑖dat ⊗ 𝜎𝑖
𝑁+𝑖 =

⎛⎝⨂︁
𝑗∈[𝑁]

(𝑍𝑗)
𝐵𝑖𝑗

⎞⎠⊗ 𝑍𝑁+𝑖 . (3.20)

i. Logical basis In the transformation to a logical state, |𝜙⟩dat ↦→ |̃︀𝜙⟩aux dat,
the computational basis is extended to

|𝜔⟩dat ↦→ |𝜔⟩dat ⊗ |𝐵𝜔⟩aux . (3.21)

It is easy to verify that this new basis is stabilized by (3.20) considering
𝑍𝑗 |𝑏⟩𝑗 = (−1)𝑏 |𝑏⟩𝑗 , where 𝑏 ∈ Z2.

ii. Entangling operation The entangling operation can be described as a (com-
muting) sequence of CNOT-gates that depend on the matrix 𝐵. If 𝐵𝑖𝑗 =
1, then there is a CNOT-gate in 𝑉aux dat, that, controlled on data qubit 𝑗,
targets the auxiliary qubit labeled 𝑁 + 𝑖:

𝑉aux dat =
∏︁
𝑖∈[𝑟]

∏︁
𝑗 ∈ [𝑁]

with 𝐵𝑖𝑗 = 1

CNOT (𝑗 → 𝑁 + 𝑖) . (3.22)

The unitary 𝑉aux dat, acting on a basis element (|𝜔⟩dat ⊗ |0𝑟⟩aux) yields the
extended basis of (3.21), considering that
CNOT(𝑗 → 𝑘) |𝑎⟩𝑗 ⊗ |𝑏⟩𝑘 = |𝑎⟩𝑗 ⊗ |𝑎+ 𝑏⟩𝑘, where 𝑎, 𝑏 ∈ Z2. The en-
tangling operation basically stores parity information of subsets of data

3.9 Supplement 115

qubits (as defined by the rows of 𝐵) on auxiliaries. For the exact imple-
mentation of 𝑉aux dat, (3.22) needs to be adjusted to the connectivity graph
of the qubit layout. For square lattice connectivity, the above formula re-
quires 𝑂(𝑟𝑁) time steps in the worst case, but there is a way to improve
the depth of 𝑉aux dat: for the auxiliary qubits 𝑖 and 𝑘, we can replace the
circuit

⎡⎣ ∏︁
𝑗:𝐵𝑖𝑗=1

CNOT(𝑗 → 𝑁 + 𝑖)

⎤⎦⎡⎣ ∏︁
𝑙:𝐵𝑘𝑙=1

CNOT(𝑙 → 𝑁 + 𝑘)

⎤⎦ (3.23)

by

⎡⎣ ∏︁
𝑗:𝐵𝑖𝑗+𝐵𝑘𝑗=1

CNOT(𝑗 → 𝑁 + 𝑖)

⎤⎦ CNOT(𝑁 + 𝑘 → 𝑁 + 𝑗)

×

⎡⎣ ∏︁
𝑙:𝐵𝑘𝑙=1

CNOT(𝑙 → 𝑁 + 𝑘)

⎤⎦ . (3.24)

In this (non-commuting) sequence of gates, we let the 𝑖-th auxiliary qubit
inherit the parity information of the 𝑘-th auxiliary qubit by a CNOT-gate
inside the aux-register. This is a useful trick when the parity informa-
tion that is to be stored on these two auxiliary qubits has a large over-
lap in data qubits, i.e. when the vectors

⨁︀
𝑥(𝐵𝑖𝑥) and

⨁︀
𝑦(𝐵𝑘𝑦) have a

small Hamming distance. In that case, the leftmost product contains only
few CNOT-gates, as the bulk of the parity information has been inherited
from the (𝑁 + 𝑘)-th qubit.

iii. Hamiltonian adjustments To maintain the stabilizer state (3.6), we ad-
just a Pauli string ℎdat on the data qubits by ℎdat ↦→ (ℎdat ⊗ 𝜅ℎaux) with

𝜅ℎaux =
⨂︁
𝑚∈[𝑟]

(𝑋𝑁+𝑚)𝜆𝑚 , (3.25)

where 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑟)
⊤ ∈ Z⊗𝑟

2 is obtained by

𝜆 =
∑︁
𝑗

𝐵𝑢𝑗 (3.26)

with 𝑢𝑗 being the 𝑗-th unit vector of Z⊗𝑁
2 , and the sum extending over all

𝑗 ∈ [𝑁], for which ℎdat acts on the qubit space as 𝑋𝑗 or 𝑌𝑗 . Hamiltonian

116 Chapter 3. Embedding simulations with quantum codes

of adjusted terms (ℎdat ⊗𝜅ℎaux) as in (3.6) can be obtained by the redefined
transforms (3.19), with the same flip and parity sets, ̃︀𝐹 (𝑗) = 𝐹 (𝑗) and̃︀𝑃 (𝑗) = 𝑃 (𝑗), but the sets ̃︀𝑈(𝑗) defined from the columns of the matrix[︂

𝐴

𝐵

]︂
. (3.27)

In case a Pauli string ℎdat flips a data qubit, that is entangled with a qubit
in the aux-register, we have to flip the latter qubit as well. In fact we
need to flip all other auxiliaries to which the data qubit contributes: so
if we apply the operator 𝑋𝑗 to a basis state |𝜔⟩dat ⊗ |𝐵𝜔⟩aux for 𝑗 ∈ [𝑁],
we leave the stabilized basis, unless we update the configuration of the
auxiliary qubits by 𝐵𝜔 ↦→ 𝐵(𝜔 + 𝑢𝑗).

Example

Let us consider a minimal example, in which the data register holds five
qubits, and a sixth, an auxiliary qubit, is in the configuration 𝐵𝜔, where
𝐵 is a (1 × 5) binary matrix. We consider a Hamiltonian term ℎdat =
(𝑋1⊗𝑍2⊗𝑍3⊗𝑍4⊗𝑋5). After adjusting ℎdat → (ℎdat⊗𝜅ℎaux), we have the
choice to multiply with the stabilizer or not. In Table 3.5 we present the
adjusted Hamiltonian before and after multiplication with the stabilizer,
considering different choices of 𝐵.

𝐵 ℎdat ⊗ 𝜅ℎ
aux (ℎdat ⊗ 𝜅ℎ

aux) · (𝑝1dat ⊗ 𝑍6)

[0 1 0 0 0] (𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗𝑋5) (𝑋1 ⊗ 𝑍3 ⊗ 𝑍4 ⊗𝑋5 ⊗ 𝑍6)
[0 1 1 1 0] (𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗𝑋5) (𝑋1 ⊗𝑋5 ⊗ 𝑍6)
[1 1 1 0 0] (𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗𝑋5 ⊗𝑋6) −(𝑌1 ⊗ 𝑍4 ⊗𝑋5 ⊗ 𝑌6)
[1 1 1 1 1] (𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗𝑋5) −(𝑌1 ⊗ 𝑌5 ⊗ 𝑍6)

Table 3.5. Adjusted Hamiltonian terms ̃︀ℎaux dat with respect to the original string
ℎdat = (𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗𝑋5), depending on the matrix (1× 5) matrix 𝐵.

3.9.1.2 Auxiliary qubits in Hadamard basis

Extending the idea of [60], we can cancel a set of arbitrary (commut-
ing) strings {𝑝𝑖dat}, where 𝑝𝑖dat ∈ {𝑋,𝑌, 𝑍, I}⊗𝑁 , by 𝑋-operators: 𝜎𝑖

𝑁+𝑖 =
𝑋𝑁+𝑖. Let us characterize the choice of the strings 𝑝𝑖dat by three (𝑟 × 𝑁)
binary matrices 𝐶𝑋 , 𝐶𝑌 and 𝐶𝑍 . Here an entry ‘1’ in 𝐶𝑠

𝑗𝑖, with 𝑠 ∈
{𝑋,𝑌, 𝑍}, indicates that the string 𝑝𝑖dat acts as 𝑠 on the 𝑗-th qubit.

3.9 Supplement 117

i. Logical basis In the transformation |𝜙⟩dat ↦→ |̃︀𝜙⟩aux dat, the computational
basis is extended to

|𝜔⟩dat ↦→

⎡⎣∏︁
𝑖∈[𝑟]

1√
2

(︀
I+ 𝑝𝑖dat ⊗𝑋𝑁+𝑖

)︀⎤⎦ |𝜔⟩dat ⊗ |0𝑟⟩aux

=
1

2𝑟/2

∑︁
𝜇∈Z⊗𝑟

2

⎡⎣∏︁
𝑘∈[𝑟]

(︁
𝑝𝑘dat

)︁𝜇𝑘

⎤⎦ |𝜔⟩dat ⊗ |𝜇⟩aux . (3.28)

The sum in (3.28) invoke all the possible qubit configurations 𝜇 ∈ Z⊗𝑟
2

with equal weight. This is a result of the auxiliary qubits being in Hadamard
basis. This choice of basis becomes plausible by multiplying a basis state
(3.28) with one of the stabilizers (𝑝𝑖dat ⊗𝑋𝑁+𝑖):

(︀
𝑝𝑖dat ⊗𝑋𝑁+𝑖

)︀ 1

2𝑟/2

∑︁
𝜇∈Z⊗𝑟

2

⎡⎣∏︁
𝑘∈[𝑟]

(︁
𝑝𝑘dat

)︁𝜇𝑘

⎤⎦ |𝜔⟩dat ⊗ |𝜇⟩aux

=
1

2𝑟/2

∑︁
𝜇∈Z⊗𝑟

2

⎡⎣∏︁
𝑘∈[𝑟]

(︁
𝑝𝑘dat

)︁𝜇𝑘+𝛿𝑖𝑘

⎤⎦ |𝜔⟩dat ⊗ |𝜇+ 𝑢𝑖⟩aux .

(3.29)

If we now shift the binary vector in the sum by the 𝑖-th unit vector 𝑢𝑖 to
𝜇 ↦→ 𝜇+ 𝑢𝑖, the original basis element on the right-hand side of (3.28) is
recovered and thus the set of Pauli strings (𝑝𝑖dat ⊗𝑋𝑁+𝑖) stabilizes every
state |̃︀𝜙⟩aux dat that is in the subspace spanned by (3.28).

ii. Entangling operation Following [60], the entangling operation can be de-
scribed as

𝑉aux dat =
∏︁
𝑖∈[𝑟]

(︀
|0⟩⟨0|𝑁+𝑖 + 𝑝𝑖dat ⊗ |1⟩⟨1|𝑁+𝑖

)︀
H𝑁+𝑖 , (3.30)

where H𝑁+𝑖 is the Hadamard gate on the (𝑁 + 𝑖)-th qubit. In words,
𝑉aux dat can be realized by a unitary quantum circuit that first applies
Hadamard gates to every auxiliary qubit, and then applies each string
𝑝𝑘dat controlled on the 𝑘-th auxiliary qubit.

We notice that the circuit (3.30), when acting on a state |𝜙⟩dat ⊗ |0𝑟⟩aux,
firstly changes the basis of the auxiliary register into

118 Chapter 3. Embedding simulations with quantum codes

𝑗 H ∙ ∙ H

𝑘 ∙ ∙ ∙

𝑙 ∙ ∙ ∙

𝑚 H ∙ H

𝑁 + 𝑖 ∙ ∙ ∙ ∙ ∙
Figure 3.10. Two versions of the controlled application of the Pauli string 𝑝𝑖dat =
(𝑋𝑗 ⊗ 𝑍𝑘 ⊗ 𝑍𝑙 ⊗𝑋𝑚) on the 𝑖-th qubit in the auxiliary register.

|+𝑟⟩aux = (
⨂︀

𝑖∈[𝑟] |+⟩𝑁+𝑖) = 𝑟−
1
2
∑︀

𝜇∈Z⊗𝑟
2

|𝜇⟩aux. Then the controlled ap-
plication of the strings 𝑝𝑖dat entangles auxiliary and data qubits. In princi-
ple, this can be done by CNOT, CPHASE and controlled-𝑌 gates accord-
ing to the action of a string 𝑝𝑖dat on each data qubit, see Figure 3.10 (left).
In practice, the required qubit connectivity might however not be avail-
able, such that we may resort to an implementation of the circuit as in
Figure 3.10 (right). Like for the codes with computational-basis auxiliary
qubits, we can here apply tricks to make 𝑉aux dat more shallow whenever
two strings 𝑝𝑖dat, 𝑝

𝑘
dat are similar to one another: after the Hadamard-gates

are applied to the auxiliary qubits 𝑖 and 𝑘, we can replace the circuit

(︁
|0⟩⟨0|𝑁+𝑖 + 𝑝𝑖dat ⊗ |1⟩⟨1|𝑁+𝑖

)︁ (︁
|0⟩⟨0|𝑁+𝑘 + 𝑝𝑘dat ⊗ |1⟩⟨1|𝑁+𝑘

)︁
by (3.31)(︁

|0⟩⟨0|𝑁+𝑖 +
(︁
𝑝𝑖dat · 𝑝𝑘dat

)︁
⊗𝑋𝑁+𝑘 ⊗ |1⟩⟨1|𝑁+𝑖

)︁(︁
|0⟩⟨0|𝑁+𝑘 + 𝑝𝑘dat ⊗ |1⟩⟨1|𝑁+𝑘

)︁
, (3.32)

which means that instead of applying the string 𝑝𝑖dat, we conditionally
apply the string that results from the operator product of 𝑝𝑖dat with 𝑝𝑘dat,
and an 𝑋-operator on the 𝑘-th auxiliary qubit. What we use here is the
fact that the (𝑁 + 𝑘)-th qubit is already entangled with the data qubits
after the right sequence of controlled gates, such that we can use the sta-
bilizer condition in the sequence on the left. For this to work, the order in
which the two resulting strings are initialized is now fixed. A minus sign
that might occur in the operator product can be reproduced by adding a
𝑍𝑁+𝑖, [42]. Before presenting the Hamiltonian adjustments, it is left for
us to verify that the controlled applications of 𝑝𝑖dat on |𝜔⟩dat⊗|+𝑟⟩aux yield
the corresponding element of the extended basis (3.28). Let us consider

3.9 Supplement 119

the following reformulation of the controlled-(𝑝𝑖dat) terms:∏︁
𝑖∈[𝑟]

(︀
|0⟩⟨0|𝑁+𝑖 + 𝑝𝑖dat ⊗ |1⟩⟨1|𝑁+𝑖

)︀

=
∏︁
𝑖∈[𝑟]

⎛⎝ ∑︁
𝜇′
𝑖∈Z2

(︀
𝑝𝑖dat

)︀𝜇′
𝑖 ⊗
⃒⃒
𝜇′
𝑖

⟩︀⟨︀
𝜇′
𝑖

⃒⃒
𝑁+𝑖

⎞⎠
=

∑︁
𝜇′∈Z⊗𝑟

2

⎡⎣∏︁
𝑘∈[𝑟]

(︁
𝑝𝑘dat

)︁𝜇′
𝑘

⎤⎦⊗
⃒⃒
𝜇′⟩︀⟨︀𝜇′⃒⃒

aux . (3.33)

Considering the expansion of |+𝑟⟩aux in the computational basis, we can
proceed to arrive at (3.28) by inspection.

iii. Hamiltonian adjustments For a Pauli string ℎdat to maintain the stabi-
lizer state (3.6), we adjust it by

𝜅ℎaux =
⨂︁

𝑗∈𝑇 (ℎ)

𝑍𝑁+𝑗 , (3.34)

where the set 𝑇 (ℎ) ⊆ [𝑟] contains 𝑘 if 𝑝𝑘dat anticommutes with ℎdat. As a
consequence, a Hamiltonian of terms (ℎdat ⊗ 𝜅ℎaux) can be obtained from
second quantization using the redefined transformations (3.19), where the
update sets are defined as before ̃︀𝑈(𝑗) = 𝑈(𝑗), but flip and parity sets̃︀𝐹 (𝑗), ̃︀𝑃 (𝑗) are redefined by the rows of the matrices[︀

𝐴
⃒⃒
𝐶𝑋 + 𝐶𝑌

]︀
,
[︀
𝑅𝐴

⃒⃒
𝑅(𝐶𝑋 + 𝐶𝑌) + 𝐶𝑌 + 𝐶𝑍

]︀
. (3.35)

We will now show that the adjusted Pauli string (ℎdat⊗𝜅ℎ𝐴) acts on a state
|̃︀𝜙⟩aux dat such that after application of 𝑉 †

aux dat, we recover ℎdat |𝜙⟩dat ⊗
|0𝑟⟩aux. We start by applying the adjusted term to the extended state. The
goal is to use (anti-)commutation relations with the strings 𝑝𝑘dat to let ℎdat
act on the data register first. It turns out that minus signs that we pick
up by anticommutations are exactly canceled by sign changes originating
from 𝜅ℎ𝐴 acting on the aux-register.

In general, we find if ℎdat now anticommutes with a string 𝑝𝑘dat, then
𝑘 ∈ 𝑇 (ℎ) such that (ℎdat ⊗ 𝜅ℎaux) commutes with (I + 𝑝𝑘dat ⊗ 𝑋𝑁+𝑘), and
we find (3.5) satisfied. For the transform (3.35), we take into account all
sorts of Pauli operators that originate from parity, update and flip op-
erators, by which we mean the strings (

⨂︀
𝑚∈𝑃 (𝑗) 𝑍𝑚), (

⨂︀
𝑘∈𝑈(𝑗)𝑋𝑘) and

120 Chapter 3. Embedding simulations with quantum codes

(
⨂︀

𝑙∈𝐹 (𝑗) 𝑍𝑙) in (2.12). If 𝑋- and 𝑌 -operators in a string 𝑝𝑖dat anticommute
with the 𝑍-operators in the 𝑗-th flip operator, we have to counteract by
adjusting it with a 𝑍-operator on the 𝑖-th auxiliary: (

⨂︀
𝑙∈𝐹 (𝑗) 𝑍𝑙)⊗ 𝑍𝑁+𝑖.

The same argument holds for the parity operators, but we also add 𝑍-
operators there, stemming from anticommutations of the update opera-
tor with 𝑍- and 𝑌 -operators in 𝑝𝑖dat. Considering that the operators 𝑋 ,
𝑌 and 𝑍 appear in the strings 𝑝𝑖dat according to the 𝐶-matrices, we can
use these matrices to describe the contents of the flip and parity sets, by
which we obtain (3.35).

Example

As an example we examine a 5-qubit Hamiltonian term, ℎdat = (𝑋1 ⊗
𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗𝑋5). The sixth qubit is a Hadamard-basis auxiliary, used
to cancel various substrings 𝑝1dat. In Table 3.6, we find the adjusted terms
(ℎdat⊗𝜅ℎaux) and the deformed terms, (𝑝1dat⊗𝑋6) ·(ℎdat⊗𝜅ℎaux), for various
choices of the stabilizer (𝑝1dat ⊗𝑋6).

𝑝1dat (ℎdat ⊗ 𝜅ℎ
aux) (𝑝1dat ⊗𝑋6) · (ℎdat ⊗ 𝜅ℎ

aux)

(𝑍2 ⊗ 𝑍3 ⊗ 𝑍4) (𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗𝑋5) (𝑋1 ⊗𝑋5 ⊗𝑋6)
(𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗𝑋4) (𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗𝑋5 ⊗ 𝑍6) −(𝑌4 ⊗𝑋5 ⊗ 𝑌6)
(𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗𝑋5) (𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗𝑋5) 𝑋6

Table 3.6. Adjusted Hamiltonians ̃︀ℎaux dat to ℎdat = (𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗ 𝑋5),
depending on the choice of 𝑝1dat.

3.9.1.3 Stabilizing anticommuting data-qubit strings

We present a more general quantum code based on auxiliary qubits in
Hadamard basis, but in which the strings {𝑝𝑖dat} do not necessarily have
to commute. Using this code, an entire Hamiltonian can in principle be
transformed into interactions on only the auxiliary qubits. The general
idea here is to amend the scheme by the following notion: in order to
counter anticommutations, we replace the (single-qubit) Pauli operators
𝜎𝑖
𝑁+𝑖 with Pauli strings on the auxiliary register 𝛾𝑖aux, such that 𝛾𝑖aux con-

tains 𝑋𝑁+𝑖 as before, but for every other string 𝑝𝑘dat with 𝑘 < 𝑖, that anti-
commutes with 𝑝𝑖dat, it contains a 𝑍-operator, 𝑍𝑁+𝑘. For convenience we

3.9 Supplement 121

define the operation ⋆ as:

𝑖 ⋆ 𝑘 =

{︃
0 if [𝑝𝑖dat, 𝑝

𝑘
dat] = 0

1 if [𝑝𝑖dat, 𝑝
𝑘
dat]+ = 0

. (3.36)

Using this notation, we define the stabilizers of our system as

𝑝𝑖dat ⊗ 𝛾𝑖aux = 𝑝𝑖dat ⊗

⎛⎝ ⨂︁
𝑘∈[𝑖−1]

(𝑍𝑁+𝑘)
𝑖⋆𝑘

⎞⎠⊗𝑋𝑁+𝑖 , (3.37)

since all Pauli strings (𝑝𝑖dat ⊗ 𝛾𝑖aux) have to commute pairwise for all 𝑖 ∈
[𝑟] as defined above. We will now turn to describe the mapping in the
established way.

i. Extended basis The computational basis |𝜔⟩dat is extended to:

|𝜔⟩dat ↦→ 1

2𝑟/2

∑︁
𝜇∈Z⊗𝑟

2

[︀(︀
𝑝1dat

)︀𝜇1 · · · (𝑝𝑟dat)
𝜇𝑟
]︀
|𝜔⟩dat ⊗ |𝜇⟩aux . (3.38)

This basis resembles (3.28), with the subtle difference that the order of
the strings 𝑝𝑖dat matters here. When stabilizer (𝑝𝑖dat ⊗ 𝛾𝑖aux) are multiplied
to (3.38) from the right, the operators 𝛾𝑖aux cancel all minus signs from
anticommutations, and flip the 𝑖-th qubit in the auxiliary register. Note
that the order of the strings 𝑝𝑖dat in (3.38) is to be taken into account when
we attempt to encode |̃︀𝜙⟩aux dat from |𝜙⟩ ⊗ |0𝑟⟩aux.

ii. Entangling operation We pick a sequence 𝑖1, 𝑖2, ..., 𝑖𝑟 that is some per-
mutation of 1, 2, ..., 𝑟, in which we want to perform the entangling op-
eration for the stabilizers (𝑝𝑖𝑚dat ⊗ 𝛾𝑖𝑚aux), where the stabilizer of number 𝑖𝑟
is taken care of first, and the one labeled 𝑖1 last. The entangling operation
associated with that sequence is

𝑉aux dat =

𝑟∏︁
𝑚=1

(︃
|0⟩⟨0|𝑁+𝑖𝑚

+ 𝑝𝑖𝑚dat ⊗ |1⟩⟨1|𝑁+𝑖𝑚
⊗

[︃⨂︁
𝑘>𝑚

(𝑍𝑁+𝑖𝑘)
(𝑖𝑚 ⋆ 𝑖𝑘) 𝜃𝑖𝑚𝑖𝑘

]︃)︃
H𝑁+𝑖𝑚 ,

(3.39)

Note that if the we pick the original order, 𝑖𝑚 = 𝑚, the circuit almost
looks like (3.30), but, again, here the exact order matters. The Hamilto-
nian adjustments are identical to (3.34) and (3.35), as the only difference,
the ordering of the strings 𝑝𝑖dat, does not matter there: a Hamiltonian term

122 Chapter 3. Embedding simulations with quantum codes

̃︀ℎaux dat needs to pass all 𝑝𝑘dat in (3.38), picking up all minus signs possible.
We have thus obtained an auxiliary qubit mapping with completely ar-
bitrary set of strings 𝑝𝑖dat. If this string is a Hamiltonian term ℎdat = 𝑝𝑖dat,
we can eliminate its action on the data qubits by replacing

ℎdat ↦→ (ℎdat ⊗ 𝜅ℎ
aux) ·

(︀
𝑝𝑖dat ⊗ 𝛾𝑖

aux
)︀

= 𝑋𝑁+𝑖 ⊗

[︃⨂︁
𝑘>𝑖

(𝑍𝑁+𝑘)
𝑖⋆𝑘

]︃
. (3.40)

The entire Hamiltonian can in this way be pre-computed and reduced to
an action on only the auxiliary register.

3.9.2 Tree-based transforms

In this section, we consider fermion-to-qubit mappings defined on tree
structures for a setup with limited connectivity. This particular class of
mappings is part of the mappings considered in Section 2.3 (so 𝑛 = 𝑁),
where the tree structures are inherent in the definition of the transforma-
tion matrix 𝐴. Although this class technically contains the Jordan-Wigner
transform, our motivation is to obtain mappings that are more akin to the
Bravyi-Kitaev transform, in order to keep parity strings short. While the
Bravyi-Kitaev transform itself does this job perfectly, we will show that
it cannot be reconciled with a square lattice connectivity graph: in this
section, we instead develop a method to tailor mappings to preexisting
connectivity graphs, and provide an algorithm with which short parity
strings can be guaranteed and the operator weight bounded. Let us start
by reviewing the Bravyi-Kitaev transform.

In [26], the mapping is introduced in order to reduce the weight of
transformed fermionic operators to 𝑂(log𝑁), which is an exponential
improvement over the Jordan-Wigner transform. In the original paper,
the (classical) encoding and decoding are defined by a partially order-
ing the mode indices according to some rules defined by their repre-
sentation as binary numbers. Later works then developed the notion
of flip, update and parity sets and provided a method to construct the
binary matrices 𝐴−1 and 𝐴 in log𝑁 steps [27, 37]. Instead of being one-
dimensional, the partial order can be regarded placing all mode indices
onto nodes inside a tree structure, which is the reason the mapping is
sometimes referred to as binary-tree transform (even though the tree is
not a binary tree). As pointed out in [29], the flip and update opera-
tors of every mode 𝑗, (

⨂︀
𝑘∈𝐹 (𝑗) 𝑍𝑘) and (

⨂︀
𝑙∈𝑈(𝑗)𝑋𝑙), have a geometric

interpretation on that tree (as will be illustrated shortly), so we would

3.9 Supplement 123

naturally like to match it with the qubit-connectivity graph. While an
embedding is possible for small such trees, increasing 𝑁 will make the
tree outgrow the square lattice rather quickly. In fact, the binary rule im-
plies that the node with index 2𝑗 has exactly 𝑗 children, and all nodes
with indices below 2𝑗 have fewer than 𝑗 children. This means that trees
with 𝑁 > 16 modes, cannot be embedded in the square lattice where
every site has 4 nearest neighbors. The tree for 𝑁 = 16 can be found
in Figure 3.11(a) and its embedding in the square lattice is presented in
panel (b). This particular tree is however not the end of the story. In
[29], it was argued that the Bravyi-Kitaev transform can be optimized to
produce more local strings, in particular when considering Hamiltoni-
ans of locally-interacting fermions. For that purpose, the ‘binary’ trees
are replaced with segmented Fenwick-tree structures. These structures
are explicitly allowed to contain multiple trees, and the number of trees
is even a parameter of the mapping. This number can range from 1 to
𝑁 (the number of modes), where at 𝑁 the mapping is identical to the
Jordan-Wigner transform and at 1 it corresponds the Bravyi-Kitaev trans-
form (in case 𝑁 is an integer power of two). However, we can go even
further and define mappings based on an arbitrary number of arbitrary
trees. In particular, we can define tree structures that can be embedded
on arbitrary qubit connectivity graphs, like our square lattice, and the as-
sociated mappings still yield small parity operators (

⨂︀
𝑚∈𝑃 (𝑗) 𝑍𝑚). Let

us consider one specific connectivity graph.
We need to pick a forest (a set of trees) which in total has a number of
𝑁 nodes. As each node will correspond to one qubit, the trees need to
be connected to each other, and so we connect their respective roots. It
is sufficient here for each root to be connected to two others, such that
they are linked like a chain with their order foreshadowing some canon-
ical ordering. We now choose a set of trees, such that the graph created
by connecting them can be embedded in the actual qubit-connectivity
graph. Let us now turn to the description of the mapping itself. For that
purpose, we firstly need to assign an index to every node, a process for
which we later will provide an algorithm, but for now let us assume we
have done so in a prudent way. For the definition of the transform, it is
sufficient to give a definition of all update and flip sets, as by correspond-
ing sets 𝐹 (𝑗) and 𝑈(𝑗) the matrices 𝐴 and 𝐴−1 can be inferred column-
and row-wise. For the flip set of index 𝑗, 𝐹 (𝑗), we consider the node with
index 𝑗 and all its children in the tree it is on, i.e. all the nodes directly

124 Chapter 3. Embedding simulations with quantum codes

connected to 𝑗 on edges that lead away from the root. The update set
𝑈(𝑗) includes the node 𝑗 and all its ancestors, i.e. all nodes on the direct
line to the root (of the tree it is on), where the root is also included. A
visual representation of these operators can be found in Figure 3.11(c),
where the direction with respect to the root is indicated by arrows. Their
embedded version can be found in panel (d) of the figure. Note that this
means that by the encoding of this mappings, qubit 𝑗 stores the parity
information of mode 𝑗 and all other modes whose index is beneath 𝑗 in
the tree.
For anticommutation relations like [𝑐𝑖 , 𝑐

†
𝑗]+ = 𝛿𝑖𝑗 , it is important that⎛⎝ ⨂︁

𝑘∈𝐹 (𝑖)

𝑍𝑘

⎞⎠⎛⎝ ⨂︁
𝑙∈𝑈(𝑗)

𝑋𝑙

⎞⎠ = (−1)𝛿𝑖𝑗

⎛⎝ ⨂︁
𝑙∈𝑈(𝑗)

𝑋𝑙

⎞⎠⎛⎝ ⨂︁
𝑘∈𝐹 (𝑖)

𝑍𝑘

⎞⎠ , (3.41)

which we now want to verify by the definitions of the flip and update
sets. If 𝑗 is any descendant of 𝑖, then the two operators overlap on two
qubits, which means they commute. If it is not an ancestor, then the only
case where the operators have overlap is when 𝑖 = 𝑗, where they exactly
overlap on that very qubit and anticommute.
We so far have suppressed the discussion of the parity operators, that
will now lead into an algorithm for the index assigning and a bound for
the operator weight. Let us assume that our forest consisted of 𝜏 trees,
each of which has at most Λ levels and every node at most Γ children.
We know that the operator weight of update and flip operators scales
as 𝑂(Λ + 1) and 𝑂(Γ + 1), the structure of the parity set however now
depends on the index assigned to the nodes. By a binary rule, the Bravyi-
Kitaev transform manages to only involve 𝑂(log𝑁) qubits in the parity
operators, and we can devise a labeling that mirrors its principle. The
parity operator of 𝑗 is only the product of flip operators of 𝑖 < 𝑗. On
the other hand, multiplying the flip operator of a parent node 𝑘 with all
flip operators of its descendants will cancel all 𝑍-operators but 𝑍𝑘. Thus,
in order for the parity operator of 𝑗 to have low weight, as many nodes
with labels 𝑖 < 𝑗 as possible need to be descendants of 𝑗. Subsequently,
the mapping with the smallest parity sets is characterized by a tree where
every node has only one child, i.e. a vertical line. This mapping, that we
recall as parity transform from [27], has however the problem of 𝑂(𝑁)-
weight update operators, and is thus of the same quality as the Jordan-
Wigner transform. Indeed, one being characterized by a vertical line, the

3.9 Supplement 125

other by a horizontal line (connected one-node trees), makes both map-
pings effectively one-dimensional. In order to minimize the weight of
update and parity operators altogether, we need to reconcile the cancel-
lation strategy with the tree structure. The idea is to involve only qubits
in 𝑃 (𝑗), that are children of the nodes in 𝑈(𝑗). Of course, this is not quite
possible. If an entire tree only contains nodes 𝑖 < 𝑗, then 𝑃 (𝑗) will al-
ways contain the root of this tree. According to the formula (2.12), trans-
forming 𝑐

(†)
𝑗 thus results in strings of weight 𝑂(𝜏 + ΛΓ). Not only this,

but the strings produced will also be continuous for transforms of single
operators. Unfortunately, for pairs of operators like 𝑐†𝑖𝑐𝑗 , the strings are
discontinuous on the first qubit that is both, an ancestor of 𝑖 and 𝑗 – a
situation we cannot remedy.
The question is now how to assign the labels to the nodes such that this
mapping is implemented, or in other words: given an unlabeled forest
with connected roots, how can we obtain a mapping that outputs strings
of weight 𝑂(𝜏 + ΛΓ)? For that purpose, we put labels 1 to 𝑁 (in order)
on the nodes according to the little program below.

Line 1 Consider the first tree in line.

Line 2 Choose a leaf and put a label on it.

Line 3 Check whether there are unlabeled siblings. If it does, choose
such a sibling for the consideration in the following step. If not,
proceed to Line 5.

Line 4 Check whether the current node is a leaf, and if it is, label it, oth-
erwise put a label on a leaf chosen from the sub-tree of which the
current node is the root. Continue from Line 3 with the last-labeled
node.

Line 5 Check whether the last node considered has a parent. If there is
a parent, put a label on it and continue from Line 3 with it. In case
there is none, the previous node was a root, and we label it and
proceed with the next line.

Line 6 If the root is the top of the last tree, the program ends, but if it is
not, the next tree in line is considered and the program continues
from Line 2.

126 Chapter 3. Embedding simulations with quantum codes

By the end of the program, all nodes are labeled in a way such that the
resulting mapping outputs strings of weight 𝑂(𝜏 + ΛΓ). Note that there
might be variations on how this process can turn out, since in several
lines an element of choice is involved. We can now consider customized
trees and root-connected forests. For instance, we can consider a per-
fect binary tree (a real one this time), which yields a 𝑂(log𝑁) scaling as
well. Although with such a tree, every node is only required to have
three nearest-neighbors, the embedding of an arbitrarily-sized tree into
a square lattice is still not possible. This is due to the children that run
into each other as we expand the tree-embedding on the lattice. We hope
however that for future work the tools provided in this section will help
to tailor tree-based transforms directly to specific device layouts.

3.9.3 Technical details

This section is dedicated to the quantum codes in the foundation of every
locality-preserving fermion-to-qubit mapping referenced in this chapter.
In particular, we provide details on the features that distinguish our map-
pings from prior works: rather than trying to mimic the locality of the
simulated system, we have focused on the quantum device and encoded
fermions into local terms on its connectivity. However, since the fermionic
Hamiltonian is local on a different graph, we have introduced Manhattan-
distance strings to tackle this mismatch. To comply with those ideas, we
have chosen the quantum codes to be planar on the square lattice, with
locality and Manhattan-distance properties reflected in their logical oper-
ators. Catching up on a number of technical details omitted earlier in the
text, we commence this section by showing the latter for the logical oper-
ators of the square lattice AQM. Specifically, we have claimed that each
(relevant) logical operator only had small support on the auxiliary qubits
– a statement we we will substantiate in Section 3.9.3.1 by decomposing
fermion operators into Majoranas. Note that those Majorana operators
should not be regarded as physical particles, but rather as a useful de-
scription of the model at hand. With this new tool, we then motivate the
Manhattan-distance property in Section 3.9.3.2. Afterwards, we turn to
BKSF and VCT in Sections 3.9.3.4 and 3.9.3.3. We review the literature
implementations of those mappings and then adapt them such that the
codes are planar on the square lattice layout. What is more, we show
that our implementation results in logical operators with the Manhattan-
distance property. We also add some points about the proper code space

3.9 Supplement 127

(a)

1

2

4

8

16

15 1412

6 11 10 13

3 9

7

5

(b)

9 11 15 13

10 12 16 14

5 6 8 7

1 2 4 3

(c)

−→

←−
←−

←−

←−

Z

Z

X

X

Z XZ

(d)

−→ −→

←− −→−
→

X X X

Z Z Z

Z

Figure 3.11. (a) Tree of the Bravyi-Kitaev transform for 16 qubits. Qubits are
labeled from 1 to 16 according to the underlying binary tree rule. (b) Embed-
ding the tree of 16 qubits into a (4 × 4) square lattice. (c) & (d) Pauli strings
(
⨂︀

𝑖∈𝑈(10) 𝑋𝑖) and (
⨂︀

𝑖∈𝐹 (8) 𝑍𝑖) on the tree and the square lattice, where the
arrows indicate the rules that determine the update set 𝑈(10), and the flip set
𝐹 (8) respectively: 𝐹 (𝑖) would involve node 𝑖 and all its children, whereas 𝑈(𝑗)
would involve involves node 𝑗 and all its ancestors including the root.

and the logical basis, which is relevant for the logical state preparation
and transformation of the Hamiltonian. For the BKSF, we describe how
to constrain the simulated parity sector, and discuss the subspace of the
auxiliary system for the VCT. Lastly, we consider both mappings applied
to the Hubbard model, showing some of the strings referenced in Table
3.4.

128 Chapter 3. Embedding simulations with quantum codes

3.9.3.1 Auxiliary Qubit support of the square lattice AQM

Majorana particles are fermions as their many-body wave-functions are
anti-symmetric under permutation. Majorana operators 𝑚(†)

𝑗 thus satisfy
anticommutation relations like (1.7), but they are also their own antipar-
ticles, making the operators Hermitian: 𝑚†

𝑗 = 𝑚𝑗 . In general, these oper-
ators describe the relations

[𝑚𝑖, 𝑚𝑗]+ = 2𝛿𝑖𝑗 and 𝑚𝑖𝑚𝑖 = 1 . (3.42)

For each fermionic mode, we need two Majoranas, such that the fermionic
operators 𝑐

(†)
𝑗 are described by two Majorana species 𝑚𝑗 and 𝑚𝑗 , where

𝑚𝑗 obey the same relations (3.42), and are indistinguishable to 𝑚𝑗 , which
means 𝑚𝑖𝑚𝑗 = −𝑚𝑗 𝑚𝑖. We define

𝑐†𝑗 =
1

2
(𝑚𝑗 − 𝑖𝑚𝑗) and 𝑐𝑗 =

1

2
(𝑚𝑗 + 𝑖𝑚𝑗) . (3.43)

Thus we can represent the operators 𝑚𝑗 , 𝑚𝑗 with the Jordan-Wigner
transform as

𝑚𝑗 =̂

(︃
𝑗−1⨂︁
𝑘=1

𝑍𝑘

)︃
⊗𝑋𝑗 and 𝑚𝑗 =̂

(︃
𝑗−1⨂︁
𝑘=1

𝑍𝑘

)︃
⊗ 𝑌𝑗 . (3.44)

Keeping the canonical order in mind, we turn mode and qubit indices
once again into coordinates just like in Section 3.5. With the index 𝑗 being
found at coordinate 𝑅 = (𝑅1, 𝑅2)

⊤, the two Pauli strings (3.44) will be
denoted by ℳ𝑏,𝑅

dat , where 𝑏 ∈ Z2 with ℳ0,𝑅
dat =̂ 𝑚𝑅 and ℳ1,𝑅

dat =̂ 𝑚𝑅. It is
important to note that 𝐻dat is comprised of strings ℳ𝑏,𝑅

dat in the same way
the fermionic Hamiltonian is constructed from products of 𝑚𝑅 and 𝑚𝑅.
As a Hamiltonian of the form (1.8) only features products of at most four
Majorana operators, the same can be said about Jordan-Wigner trans-
formed Hamiltonians and the ℳ-strings. Therefore we only have to put
a bound on the weight gained in the adjustment process ℎdat ↦→ ℎdat⊗𝜅ℎaux

for any ℎdat = ℳ𝑏,𝑅
dat . Since the adjustment is a linear process, the total

weight that any term gains is four-fold that of a single ℳ-string. Indeed,
for a coordinate 𝑅 in the bulk of the qubit array, we find

ℳ𝑏,𝑅
dat ↦→ ℳ𝑏,𝑅

dat ⊗ 𝑍𝑅± 1
2
𝑒2

, (3.45)

3.9 Supplement 129

where 𝑒2 = (0, 1)⊤ is the Cartesian unit vector in vertical direction, and
we recall that auxiliary are placed at half integer positions of the vertical
coordinate. The point is that the adjustments only include information
of one of the two auxiliaries adjacent to the data qubit at 𝑅. As claimed
before, this means that for hopping terms, i.e. 𝑐†𝑖𝑐𝑗 , the adjustments are
local at the end points of the resulting strings. Note that in the case where
𝑅 is at the boundary of the qubit array, there is only an adjustment such
as in (3.45) if the corresponding auxiliary qubit exists.
Let us now briefly illustrate the statement (3.45). We first express the

stabilizers (3.9) in terms of ℳ𝑏,𝑅
dat . For a stabilizer (𝑝

𝑅+ 1
2
𝑒2

dat ⊗𝑋𝑅+ 1
2
𝑒2
), we

find

𝑝
𝑅+ 1

2
𝑒2

dat =

⎧⎨⎩ 𝑖ℳ0,𝑅
dat · ℳ0,𝑅+ 1

2
𝑒2

dat if 𝑅2 is odd

−𝑖ℳ1,𝑅
dat · ℳ1,𝑅+ 1

2
𝑒2

dat if 𝑅2 is even .
(3.46)

From ℳ𝑏,𝑅
dat ℳ

𝑎,𝑆
dat = (−1)1+𝛿𝑆𝑅 𝛿𝑎𝑏ℳ𝑎,𝑆

dat ℳ
𝑏,𝑅
dat it is apparent that a phys-

ical operator ℳ𝑏,𝑅
dat can only anticommute with a 𝑝-strings local to 𝑅 or

𝑅− 1
2𝑒2 (so they both exist). Since the species index has to match as well,

only one of the two stabilizers will anticommute and make an adjustment
(3.45) necessary. Note that it hinges on both 𝑏 and the vertical component
of 𝑅 whether that adjustment is 𝑍𝑅+ 1

2
𝑒2

or 𝑍𝑅− 1
2
𝑒2

in particular.

3.9.3.2 Manhattan-distance property

Verstraete-Cirac transform, Superfast simulation and the square lattice
AQM - all three mappings inherently posses the Manhattan-distance prop-
erty, which means that when we use them to transform hopping interac-
tion of two fermionic modes, the weight of the (shortest) resulting Pauli
string can be bounded with the Manhattan distance of the modes on the
fermionic lattice. Here we will show that all mappings work in a similar
fashion that enables us to use this property and elucidate why it is neces-
sary to make use of it in a limited qubit layout. Let us recall the definition
of the Majorana fermions from Section 3.9.3.1.

Majorana-pair operators like 𝑖𝑚𝑗𝑚𝑘 are used in the original proposals
of VCT and BKSF, and their structure is also an element in the AQM. This
is because these operators can be transformed into single Pauli strings
that describe the interaction of two fermionic modes 𝑗 and 𝑘, making

130 Chapter 3. Embedding simulations with quantum codes

them a useful tool for modeling it. As already established, they also
have quite convenient (anti-) commutation relations. All mappings intro-
duce extra qubits to encode operators corresponding to Majorana pairs
(𝑚𝑗 𝑚𝑘) ∝̂𝒪𝑗𝑘. In one or the other way, all mappings use these operators
to prevent hopping terms, as they occur in fermionic Hamiltonians, to
become nonlocal Pauli strings in the qubit Hamiltonian. When nonlocal
connections of modes 𝑖 with 𝑘, and 𝑘 with 𝑗, as well as 𝑖 with 𝑗 appear
in a fermionic Hamiltonian, one might think of encoding three opera-
tors 𝒪𝑖𝑘, 𝒪𝑘𝑗 and 𝒪𝑖𝑗 . However, all mappings exhibit repercussions for
adding qubits to encode these operators, such as a weight increase in the
substrings 𝜅ℎaux in case of the AQM. There is also the issue that we need to
connect all the modes in a way that would mimic the connectivity graph
of the fermionic Hamiltonian - a Hamiltonian that is generally more com-
plicated than a lattice model. In order to be modest with the amount of
qubits to be added and to be able to deal with the limited connectivity
of the setup, we reconsider encoding operators 𝒪𝑖𝑗 of all possible combi-
nations 𝑖𝑗 by adding qubits. Instead, under the cost of a slightly higher
operator weight, we can obtain some nonlocal 𝒪𝑖𝑗 by multiplying opera-
tors that are already encoded: 𝒪𝑖𝑗 ∝ 𝒪𝑖𝑘𝒪𝑘𝑗 .

This is possible since for Majorana pairs we find (𝑚𝑖𝑚𝑗) = (𝑚𝑖𝑚𝑘) ·
(𝑚𝑘 𝑚𝑗). We report only a ‘slightly’ higher weight as 𝒪𝑖𝑘 and 𝒪𝑘𝑗 have
been introduced to localize their respective links in the first place. With
the same argument we can take a walk over an arbitrary sequence of
indices 𝑘1, 𝑘2, . . . , 𝑘𝑙, where 𝑘𝑠 and 𝑘𝑠+1 are connected by an operator
𝒪𝑘𝑠𝑘𝑠+1 , just to obtain the operator that links the first and the last mode
𝑘1 and 𝑘𝑙

𝒪𝑘1𝑘𝑙 ∝
𝑙∏︁

𝑠=1

𝒪𝑘𝑠𝑘𝑠+1 . (3.47)

This is the foundation for the Manhattan-distance property of all three
mappings.

3.9.3.3 Verstraete-Cirac transform

Review Here we will review the Verstraete-Cirac transform starting
with the original proposal [25], that, like the AQMs, can be regarded as
manipulation of the Jordan-Wigner transform in which nonlocal strings

3.9 Supplement 131

are canceled with stabilizers. There, the auxiliary degrees of freedom that
produce these stabilizers are added on the side of the model, where we
find them in the form of Majorana modes. However, in the investigation
of this mapping we found the consideration of the mapping as a quan-
tum code more practical for a rigorous derivation of the stabilizers and
outputs. This is why after a short motivation in the original language,
we will describe the general concept of this mapping as a quantum code
quite similar to the concept of the Auxiliary Qubit codes, which allows
for the description of customized mappings such as a mapping with an
odd number of rows or a qubit-economic version.

The idea of [25] is to extend the fermionic systems by doubling the
number of modes, where the modes added are denoted by primed num-
bers from 1′ to 𝑁 ′. For all indices 𝑘, 𝑘′ does not denote another variable
but is the primed version of the value of 𝑘. For the Jordan-Wigner trans-
form, we need to impose the canonical order of 2𝑁 sites, and so we stag-
ger primed and unprimed indices:
1, 1′, 2, 2′, . . . 𝑁, 𝑁 ′. Adding those primed sites, we practically increase
the length of Pauli strings, since all hopping terms on the original system
hop over primed sites, even turning horizontal nearest-neighbor hop-
pings into next-nearest neighbor interactions.

(𝑖 < 𝑗) : 𝑐†𝑖𝑐𝑗 + 𝑐†𝑗𝑐𝑖 =̂
1

2

[︃
𝑗−1⨂︁

𝑘=𝑖+1

𝑍𝑘

]︃
(𝑋𝑖 ⊗𝑋𝑗 + 𝑌𝑖 ⊗ 𝑌𝑗)

↦→ 1

2

[︃
𝑗−1⨂︁

𝑘=𝑖+1

(𝑍𝑘 ⊗ 𝑍𝑘′)

]︃
(𝑋𝑖 ⊗ 𝑍𝑖′ ⊗𝑋𝑗 + 𝑌𝑖 ⊗ 𝑍𝑖′ ⊗ 𝑌𝑗) . (3.48)

The hopping terms are thus made sensitive to the primed subsystem, and
the original system is recovered if all primed modes are empty. In their
original work, Verstraete and Cirac define a fermionic quantum code,
that constrains the primed subsystem completely by means of majoranic
stabilizers (𝑖𝑚𝑗′ 𝑚𝑘′) for certain pairs of modes 𝑗′ and 𝑘′. These are
translated to the qubit side by Jordan-Wigner transform (𝑖𝑚𝑗′ 𝑚𝑘′) =̂𝒫𝑗𝑘.
While in the original proposal, the majoranic stabilizers (𝑖𝑚𝑗′𝑚𝑘′) are
fixed as gap terms in the model Hamiltonian, it is suggested in [55] to
prepare the entangled state by making syndrome measurements with the
transformed stabilizers 𝒫𝑗𝑘.

Stabilizers like (𝑖𝑚𝑗′𝑚𝑘′) are useful to cancel nonlocal connections be-

132 Chapter 3. Embedding simulations with quantum codes

tween 𝑗 and 𝑘. Let us here assume that such a stabilizer is present, then
the hopping between those modes can be modified by multiplication of
the corresponding fermionic terms in the model Hamiltonians:(︁

𝑐†𝑗𝑐𝑘 + 𝑐†𝑘𝑐𝑗

)︁
𝑖𝑚𝑗′ 𝑚𝑘′ =̂ −1

2
𝑋𝑗 ⊗𝑋𝑗′ ⊗ 𝑌𝑘 ⊗ 𝑌𝑘′

+
1

2
𝑌𝑗 ⊗𝑋𝑗′ ⊗𝑋𝑘 ⊗ 𝑌𝑘′ . (3.49)

As one can see, the re-sized parity string has been canceled. Although
all operators involved satisfy the correct (anti-)commutation relations, it
is not possible to attribute the correct sign to all stabilizers and Hamilto-
nian terms without considering the code space. To do so, we now derive
the quantum code version of the VCT, starting by the constructing the
logical basis, that has to determine the adjustments to the Jordan-Wigner-
transformed Hamiltonian terms. Although it was recently pointed out in
[55], that keeping the stabilizers majoranic is unnecessary, we will stick
to the original concept and merely add the freedom to ‘flip’ the stabilizer
by introducing a sign

𝒫𝑏𝑠
𝛼𝑠𝛽𝑠

=̂ (−1)𝑏𝑠 𝑖𝑚𝛼′
𝑠
𝑚𝛽′

𝑠
, (3.50)

where 𝛽, 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑟) ∈ [𝑁]⊗𝑟 and 𝑏 = (𝑏1, 𝑏2, . . . , 𝑏𝑟) ∈
Z⊗𝑟
2 are sequences that parameterize the mapping. A ‘flipped’ stabilizer

would practically be implemented by requiring that syndrome measure-
ments have the outcomes (−1), so a stabilizer 𝒫𝑏𝑠

𝛼𝑠𝛽𝑠
constrains the code

space to ⟨𝒫0
𝛼𝑠𝛽𝑠

⟩ = (−1)𝑏𝑠 . Instead of the primed and unprimed subspace
to host indistinguishable fermions and being interleaved in the canoni-
cal order, we separate those modes (qubits) in an attempt to regard the
primed subspace as the auxiliary register. The aux-register is not even
required to have size 𝑁 , instead a smaller number of auxiliary qubits
can be chosen, 𝑟 ≤ 𝑁 . Although separated into different registers, each
auxiliary qubit is still affiliated with a data qubit, or rather their corre-
sponding modes are. Our intention is to keep the previous notation and
let the auxiliary register contain the primed labels. For that purpose, we
introduce the set 𝑊 as a 𝑟-sized subset of the mode numbers, 𝑊 ⊆ [𝑁],
such that the auxiliary register is comprised of qubits labeled (

⋃︀
𝑘∈𝑊 𝑘′).

In this way every data qubit 𝑘 ∈ 𝑊 has an auxiliary qubit 𝑘′ associated
with it. Let us now characterize a general version of this mapping. We
consider the (ℓ1 × ℓ2) block of data qubits and for every 𝑠 ∈ [𝑟] connect
the qubits 𝛼𝑠 and 𝛽𝑠 in a directed graph. For every qubit 𝑘 that is a vertex
of this graph, we add an auxiliary qubit 𝑘′ somewhere, and the number 𝑘

3.9 Supplement 133

becomes a member of 𝑊 . Generalizing (3.50), the stabilizers of the qubit
system are

𝒫𝑏𝑠
𝛼𝑠𝛽𝑠

= (−1)𝑏𝑠

⎛⎝ 𝛽𝑠⨂︁
𝑗=𝛼𝑠+1

𝑍𝑗

⎞⎠⊗ 𝑌𝛼′
𝑠
⊗

⎛⎜⎜⎝ ⨂︁
𝑘∈𝑊

𝛼𝑠<𝑘<𝛽𝑠

𝑍𝑘′

⎞⎟⎟⎠⊗ 𝑌𝛽′
𝑠

if 𝛼𝑠 < 𝛽𝑠

= (−1)𝑏𝑠

⎛⎝ 𝛼𝑠⨂︁
𝑗=𝛽𝑠+1

𝑍𝑗

⎞⎠⊗𝑋𝛽′
𝑠
⊗

⎛⎜⎜⎝ ⨂︁
𝑘∈𝑊

𝛽𝑠<𝑘<𝛼𝑠

𝑍𝑘′

⎞⎟⎟⎠⊗𝑋𝛼′
𝑠

if 𝛼𝑠 > 𝛽𝑠 .

(3.51)

Note that for the quantum code, that we intent to construct with the set
{𝒫𝑏𝑠

𝛼𝑠𝛽𝑠
}𝛼,𝛽 as stabilizer generators, certain conditions on 𝛼 and 𝛽 are to

be met. While these conditions are intrinsically fulfilled for the mappings
in [25], we want to briefly spell them out for the sake of generality. The
following conditions must be met by the directed graph on which 𝛼 and
𝛽 are defined: (i) the graph must be composed of closed loops on the
(ℓ1 × ℓ2)-grid. (ii) The loops do not overlap in their vertices. (iii) The
loops are uniformly directed, which means that within one loop no two
edges point towards the same vertex.
Statement (i) is just a consequence of the fact that we need to constrain the
auxiliary system completely. As the stabilizers (3.51) are associated with
edges, we need to consider closed loops, otherwise degrees of freedom
remain undetermined. We also need to make sure that all stabilizes com-
mute and so, considering (3.50), we find that every vertex can host one
incident and one outbound edge. This, together with statement (i), ex-
plains statements (ii) and (iii). An example of such a mapping, for which
all three statements hold, is depicted in Figure 3.12(a), where we con-
sider two loops in counter-clockwise directions. While in (a), we elimi-
nate some arbitrary nonlocal connections, Figure 3.12(b) exhibits the orig-
inal proposal, where the stabilizer implement the vertical connections.
Of course we need to involve a few horizontal connections in order to
comply with statement (i). As loops cannot be closed in it, the original
proposal deals with an odd number ℓ1 in ignoring the last column. Alter-
natively, we suggest that one could just create loops between vertically
adjacent modes in that last column, like it is done in the right-most loop
in panel (a). It is of course only possible to stabilize roughly half of all
vertical connections in this way, i.e. all even or all odd pairs. Assuming

134 Chapter 3. Embedding simulations with quantum codes

an underlying S-pattern of the canonical ordering, nothing else would be
required, since half of the links are local anyways. The original proposal
yields a decent mapping already, as we can shorten vertical hoppings
along the last column by multiplications stabilizers of the second-to-last
column. In fact, the idea that not every column needs to have their own
auxiliary qubits is the foundation for qubit-conserving versions of the
VCT, as is shown in Figure 3.12(c). Note that in order to comply with the
three statements, the periodicity ℐ has to be chosen such that (ℓ1 − 1)/ℐ
is an odd number, the size of the auxiliary register subsequently becomes
𝑟 = ℓ2+(ℓ1−1)ℓ2/ℐ. Note that a loop of one vertex is counterproductive,
resulting in a stabilizer 𝒫𝑏

𝑗𝑗 = (−1)1+𝑏𝑍𝑗′ . This only fixes the parity of the
auxiliary qubit, which renders it redundant since it is not entangled with
the rest of the system. Not just that, it blocks the mode from being part
in another loop.

Let us now take a look to the basis of the extended system. As before,
the 𝑁 original modes describing the fermionic Fock space shall make up
the data qubit register and the primed auxiliary qubits be in the register
aux = (

⋃︀
𝑘∈𝑊 𝑘′). An ansatz for a logical basis stabilized by all {𝒫𝑏𝑠

𝛼𝑠𝛽𝑠
} is

|𝜔⟩dat ↦→ ∝

⎛⎝ ∑︁
𝜇∈Z⊗𝑟

2

𝑟∏︁
𝑠=1

[︁
𝒫𝑏𝑠
𝛼𝑠𝛽𝑠

]︁𝜇𝑠

⎞⎠ |𝜔⟩dat ⊗ |𝜒⟩aux , (3.52)

where |𝜒⟩aux = (
⨂︀

𝑘∈𝑊 |𝜒𝑘⟩𝑘′) is a product state on the auxiliary regis-
ter that can be chosen inside a certain range of parity constraints, which
we now want to explain.
These parity constraints are related to a certain freedom in the charac-
terization of the mapping. We have not determined 𝑏 yet, as up to now
the only restrictions we had were on the choice of 𝛼 and 𝛽. In order
to understand the role of 𝑏, let us for a moment assume that the graph
spanned by 𝛼 and 𝛽 is only one loop, which means that 𝛽𝑠 = 𝛼𝑠+1 and
𝛽𝑟 = 𝛼1. No matter the number of loops, the sum in the basis (3.52) will
always contain the product of all stabilizers around a closed loop, here
it is (

∏︀𝑟
𝑠=1 𝒫

𝑏𝑠
𝛼𝑠𝛽𝑠

), met by the summand for which 𝜇 = (1)⊗𝑟. In fact,
half of the terms in the sum will differ from the other half only by these
operators: (having omitted the normalization factor for that reason) it is
alright for some stabilizers to be linearly dependent, as long as they sta-
bilize |𝜔⟩dat ⊗ |𝜒⟩aux. Since we are stabilizing a loop, we find by (3.50),

3.9 Supplement 135

(a) (b)

(c)

Figure 3.12. Verstraete-Cirac transform. (a) An arbitrary mapping showcasing
the constraints on the VCT code space. The black dots correspond to data qubits.
Directed loops of operators 𝒫𝑏

𝑗𝑘 are drawn into this grid, where the direction
of one loop is indicated by arrows. With 9 vertices involved, we entangle 9
auxiliary qubits to that system. (b) Graph of the original proposal [25]. (c) One
possibility for a qubit-economic version of the VCT.

that
𝑟∏︁

𝑠=1

𝒫𝑏𝑠
𝛼𝑠𝛽𝑠

= (−1)1+
∑︀𝑟

𝑘=1 𝑏𝑘
⨂︁
𝑗∈𝑊

𝑍𝑗′ . (3.53)

Since (3.53) acts only on |𝜒⟩aux, it becomes apparent that 𝑏 determines
the parity of all auxiliary qubits associated with the loops in the map-
ping. According to the choice of 𝑏, we now need to pick a state |𝜒⟩aux
that meets all parity constraints (3.53). Since we in general have more
than one loop in our mapping, we need to fix the parity on several dis-
tinct subsets of |𝜒⟩aux. For instance if we pick the parity of every loop to
be even, we can choose |𝜒⟩aux = |0𝑟⟩aux.

We lastly show that 𝑍-strings on the primed qubits come naturally
as adjustments to Hamiltonian terms ℎdat, together with minus signs

136 Chapter 3. Embedding simulations with quantum codes

from the loop parity constraints. The data-qubit substring of the stabi-
lizers (3.51) is purely a 𝑍-string, so we do not need to adjust a string
ℎdat ∈ {I, 𝑍}⊗𝑁 . This means that it is sufficient to consider the changes
to be made to a string (

⨂︀𝑘−1
𝑗=1 𝑍𝑗)⊗𝑋𝑘, in order to describe all fermionic

operators 𝑐
(†)
𝑘 . This string anticommutes with all stabilizers, that have

data qubit substrings (
⨂︀𝑡

𝑗=𝑠 𝑍𝑗), where 𝑠 ≤ 𝑘. These stabilizers, 𝒫𝑏
(𝑠−1)𝑡

or 𝒫𝑏
𝑡(𝑠−1), act on the aux-register as

(−1)𝑏 𝑌(𝑠−1)′⊗

⎛⎜⎜⎝ ⨂︁
𝑗∈𝑊

𝑡<𝑗<(𝑠−1)

𝑍𝑗′

⎞⎟⎟⎠⊗ 𝑌𝑡′

or (−1)𝑏 𝑋(𝑠−1)′⊗

⎛⎜⎜⎝ ⨂︁
𝑗∈𝑊

𝑡<𝑗<(𝑠−1)

𝑍𝑗′

⎞⎟⎟⎠⊗𝑋𝑡′ , (3.54)

which means they change the parity of the subsystem that is spanned
by all auxiliary qubits with the labels 𝑗′, where 𝑗 ≤ (𝑘 − 1) and 𝑗 ∈ 𝑊 .
The total parity of all auxiliary qubits is however constant i.e. it does
not change with the multiplication of either stabilizer. The total parity
is predetermined by |𝜒⟩aux and the action of a Majorana-pair operator
conserves it.

If we now multiply (
⨂︀𝑘−1

𝑗=1 𝑍𝑗)⊗𝑋𝑘 to a basis element (3.52), we can
determine whether it anticommutes with an even or odd number of stabi-
lizers as we move it to the right until it reaches |𝜔⟩dat⊗|𝜒⟩aux: it anticom-
mutes with an odd number of stabilizers if the parity of the subsystem,
spanned by all auxiliary qubits with labels at most as large as (𝑘 − 1)′, is
changed. We therefore extract the parity of said subsystem by the oper-
ator (

⨂︀
𝑗∈𝑊<𝑘 𝑍𝑗′) and add a minus sign in case (

⨂︀
𝑗∈𝑊<𝑘 𝑍𝑗′) |𝜒⟩aux =

(−1) |𝜒⟩aux. We hence find

(︃
𝑘−1⨂︁
𝑖=1

𝑍𝑖

)︃
⊗𝑋𝑘 ↦→ ±

⎛⎝𝑘−1⨂︁
𝑗=1

𝑍𝑗

⎞⎠⊗𝑋𝑘 ⊗

⎛⎝ ⨂︁
𝑗∈𝑊<𝑘

𝑍𝑗′

⎞⎠ (3.55)

where the sign is determined by |𝜒⟩. When we consider the planar code

3.9 Supplement 137

of the original proposal, we find that string has become

±

⎡⎣𝑘−1⨂︁
𝑗=1

(𝑍𝑗 ⊗ 𝑍𝑗′)

⎤⎦⊗𝑋𝑘 (3.56)

which is the expected string with perhaps a minus sign, depending on
whether we have flipped any stabilizers. Note however that the loop
parity constraints have to be fulfilled somewhere, either by minus signs
in the logical operators or by flipping stabilizers.

Adaption to the layout & Manhattan-distance property We here adapt
the Verstraete-Cirac transform to the square lattice connectivity, such that
it has the Manhattan-distance property. In doing so, we will not stray too
far from the original proposal, that is built upon the connectivity graph
in Figure 3.12(b). The layout is roughly motivated by an S-pattern of
the qubits ordered 1 1′ 2 2′ . . . 𝑁 𝑁 ′. For reasons that become clear
later, we need the rows to be connected vertically by the auxiliary qubits,
which leads us to shift every second row in order to align the primed
qubits. The vertical connections are also placed along the windings of
the S-pattern, resulting in a graph that can be studied in Figure 3.13(a).
For the initialization of a state, stabilizers that are horizontally adjacent
are multiplied pairwise. We fully constrain the auxiliary systems by those
localized stabilizers, plus the stabilizers that are local already: the ones
along the windings and the horizontal connections in the first and ℓ2-th
row. The stabilizer tiling to the layout of Figure 3.13(a) is presented in
panel (b) of the same figure. As already remarked in [25], the analogy of
the stabilizer tilings of this code and the rotated surface code [17] comes
to mind easily. The tiles of the VCT are identical to the surface code on
the primed qubits, but the stabilizers contain some additional 𝑍-strings
on the data qubits. Also, not all of the stabilizers might have the same
sign according to 𝑏 in the definition 𝒫𝑏

𝑗𝑘. Curiously, only the first qubit of
the data register is not entangled with the auxiliary system in any way.

Using the interpretations of the stabilizers (3.50), we can define 𝒪𝑗𝑘 ∝
(−1)𝑏 𝒫𝑏

𝑗𝑘𝑍𝑘′ and obtain arbitrary long-range vertical connections over
the sequence of vertically aligned stabilizers 𝒫𝑏𝑠

𝑘𝑠𝑘𝑠+1
, where 𝑘 ∈ [𝑁]⊗𝑙

and 𝑏 ∈ Z⊗𝑙
2 , via (3.47):

138 Chapter 3. Embedding simulations with quantum codes

(a)

1 1′ 2 2′ 3 3′ 4 4′

88′ 77′ 66′ 55′

9 10 11 12

16 15 14 13

17 18 19 20

24 23 22 21

(b)

Y
Y

Z
Z

Y
Y

X
X

Z
Z

X
X

Y
Y

Z
Z

Y
Y

X
X

Z
Z

X
X

Y
Y

Z
Z

Y
Y

X
X

Z
Z

X
X

Y
Y

Z
Z

Y
Y

X
X

Z
Z

X
X

Y
Y

Z
Z

Y
Y

X
X

Z
Z

X
X

Y
Y

Z
Z

Y
Y

X
X

Z
Z

X
X

Y
Y

Z
Z

Y
Y

X
X

Z
Z

X
X

Y
Y

Z
Z

Y
Y

X Z
X

X Z
X

X Z
X

YZ
Y

YZ
Y

X Z X X Z X

X Z X X Z X

Figure 3.13. VCT as a planar code. (a) Connectivity graph, in which we alternate
data (white) and auxiliary qubits (gray), but shift every second row such that the
auxiliary qubits align vertically. The labeling of the qubits follows an S-pattern.
(b) Stabilizers of the VCT for a graph as in Figure 3.12(b), the original proposal.
We here give the connectivity graph a two-coloring of the stabilizer plaquettes,
where the Pauli operators, that make up each stabilizer, are denoted by letters
inside the plaquettes close to where their corresponding qubits are. Note that
we have not indicated the signs that each stabilizer possibly has attached to it.

3.9 Supplement 139

X X

Y Z Z Z Y

Z

Z

X X

Figure 3.14. Simulating the term (𝑖𝑚20 𝑚1) via the VCT, where we have arbi-
trarily deformed the string by the multiplication of stabilizers.

𝑙−1∏︁
𝑡=1

𝒫𝑏𝑡
𝑘𝑡𝑘𝑡+1

= 𝒫𝑎
𝑘1𝑘𝑙

𝑙−1⨂︁
𝑢=2

𝑍𝑘′𝑢 , (3.57)

where 𝑎 = (
∑︀𝑙

𝑠=1 𝑏𝑠). Equation (3.57) means that the multiplication of
these vertical stabilizers yields a nonlocal connection 𝒫𝑎

𝑘1𝑘𝑙
, which (is not

a stabilizer and) is missing the operators 𝑍𝑘′𝑢 for 1 < 𝑢 < 𝑙. The absence
of these 𝑍-operators does not cancel them in Pauli strings originating
from fermionic terms like 𝑐†𝑖𝑐𝑗 , where 𝑖 ≤ 𝑘1 < 𝑘𝑙 ≤ 𝑗. These operators
subsequently serve as connection between the qubits labeled 𝑘′1 and 𝑘′𝑙, as
the qubits are vertically aligned by our layout. With this building block
we can multiply various stabilizers and so connect the qubits 𝑖 and 𝑗 via
different paths but with the same number of gates. In Figure 3.14, we
present an example of such a term.

3.9.3.4 Superfast Simulation

Review We here review the original proposal of the Bravyi-Kitaev Su-
perfast simulation, [26], which includes the transform of the operators
and the structure of the stabilizers.

In contrast to the other mappings, the Superfast simulation is not de-
fined to transform fermionic operators, but pairs of Majoranas. Thus the
BKSF only allows us to conveniently consider Hamiltonians that con-
serve the fermionic parity i.e. are comprised of operator pairs 𝑐𝑗𝑐𝑘, 𝑐†𝑗𝑐

†
𝑘

and 𝑐†𝑗𝑐𝑘. By the relations (3.43), these Hamiltonians can then be ex-

140 Chapter 3. Embedding simulations with quantum codes

pressed using only the operators

𝒜𝑗𝑘 =̂ − 𝑖𝑚𝑗 𝑚𝑘 , (3.58)
ℬ𝑘 =̂ − 𝑖𝑚𝑘 𝑚𝑘 , (3.59)

where 𝒜𝑗𝑘 and ℬ𝑘 are some Pauli strings. Using these operators, fermionic
Hamiltonians can be transformed via

𝑐𝑗𝑐𝑘 =̂
𝑖

4
(𝒜𝑗𝑘 −𝒜𝑗𝑘ℬ𝑘 + ℬ𝑗𝒜𝑗𝑘 − ℬ𝑗𝒜𝑗𝑘ℬ𝑘) , (3.60)

𝑐†𝑗𝑐
†
𝑘 =̂

𝑖

4
(𝒜𝑗𝑘 +𝒜𝑗𝑘ℬ𝑘 − ℬ𝑗𝒜𝑗𝑘 − ℬ𝑗𝒜𝑗𝑘ℬ𝑘) , (3.61)

𝑐†𝑗𝑐𝑘 =̂
𝑖

4
(𝒜𝑗𝑘 −𝒜𝑗𝑘ℬ𝑘 − ℬ𝑗𝒜𝑗𝑘 + ℬ𝑗𝒜𝑗𝑘ℬ𝑘) . (3.62)

The BKSF is furthermore not based on the Jordan-Wigner transform, so
𝒜𝑗𝑘 and ℬ𝑘 are not going to be obtained by transforming the right-hand
side of (3.58) and (3.59) under (3.44). Instead, the 𝒜- and ℬ-operators will
be defined on a unique qubit layout, that we now introduce.
The Hamiltonian that we want to simulate describes a certain graph of
pairwise interactions between modes, for example there is an edge be-
tween vertices 𝑗, 𝑘 when it contains at least one of the term (3.60)-(3.62).
The qubit connectivity graph of the Superfast simulation is then the line
graph of this Hamiltonian graph. Here the operators 𝒜𝑗𝑘 are associated
with edges in the Hamiltonian graph, i.e. interactions of the Hamiltonian,
and the operators ℬ𝑘 are associated with vertices, i.e. fermionic modes.
Let 𝐸 be the set of undirected edges of the Hamiltonian graph, and 𝜀𝑗𝑘
a number associated to the index pair 𝑗𝑘, that yields zero if 𝑗𝑘 /∈ 𝐸. By
means of 𝜀𝑗𝑘 a direction on the graph is fixed by imposing that if 𝑗𝑘 ∈ 𝐸,
then 𝜀𝑗𝑘 = 1, in case the edge is directed from 𝑗 ↦→ 𝑘, and 𝜀𝑗𝑘 = −1 when
the direction is opposite. With that construction, we will take into ac-
count that 𝒜𝑗𝑘 = −𝒜𝑘𝑗 , which is straightforward to see from (3.58). Also,
on every vertex 𝑘, we need to impose an ordering of the edges connected
to it. To that end Bravyi and Kitaev introduce the symbolic operator <

𝑘
,

such that two different edges 𝑗𝑘, 𝑙𝑘 ∈ 𝐸, 𝑗 ̸= 𝑙 on vertex 𝑘 are ordered by
a relation like 𝑗𝑘 <

𝑘
𝑙𝑘. As we place the qubits on the edges of that graph,

both 𝑗𝑘 and 𝑘𝑗 shall be identifiers for the same qubit (given 𝜀𝑗𝑘 ̸= 0). In
the original BKSF, the number of qubits equals the number of edges in
the graph, so the qubit requirements do not depend on the system size,

3.9 Supplement 141

but on the size of the Hamiltonian. The operators 𝒜𝑗𝑘 and ℬ𝑘 are defined
by

ℬ𝑘 =
⨂︁

𝑎: 𝑎𝑘∈𝐸
𝑍𝑎𝑘 , (3.63)

𝒜𝑗𝑘 = 𝜀𝑗𝑘𝑋𝑗𝑘

⎛⎜⎝ ⨂︁
𝑏: 𝑏𝑘 <

𝑘
𝑗𝑘

𝑍𝑏𝑘

⎞⎟⎠
⎛⎜⎝ ⨂︁

𝑐: 𝑗𝑐<
𝑗
𝑗𝑘

𝑍𝑗𝑐

⎞⎟⎠ . (3.64)

As shown in [26], these operators fulfill all algebraic relations that we
would expect from representations of (3.58) and (3.59) but one. As it is
now, the mapping would allow a Majorana to unphysically interact with
itself via hopping terms around a closed loop. For a length-𝑙 sequence
𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑙, that describes a closed loop along edges, i.e. 𝑎𝑗𝑎𝑗+1 ∈ 𝐸
and 𝑎1 = 𝑎𝑙, we must impose that

(𝑖)𝑙
𝑙−1∏︁
𝑗=1

𝒜𝑎𝑗𝑎𝑗+1 (3.65)

is a stabilizer of the system. As not all closed loops are linearly indepen-
dent, one needs to stabilize only the smallest closed loops of the system.

Adaption to the layout & Manhattan-distance property We now adapt
the Superfast simulation to the square lattice layout and give it the Manhattan-
distance property. As we are interested in simulating more than square
lattice Hamiltonians, we are going to depart a bit from the original con-
cept of the qubit connectivity being related to the Hamiltonian.

Instead, we will show that we can adapt the mapping adequately by
pretending that the Hamiltonian graph is a square lattice. On this lattice,
modes that are actually subject to hopping interactions in the Hamilto-
nian, should be locally close. Such a lattice of modes is shown in Figure
3.15(a), where the direction of every edge is indicated. As the direction
of every edge 𝑗𝑘 only determines the factor 𝜀𝑗𝑘 ∈ {+1, −1} in (3.63), it
has not much influence on the transformation. We will see later that the
choice of the order of the edges on every mode is way more relevant for
the strings that such a mapping produces. In 3.15(a), we have already
outlined the tiling of the line graph, to which we now switch. The re-
sulting qubit connectivity graph can be seen in Figure 3.15(b), where the

142 Chapter 3. Embedding simulations with quantum codes

(a) (b)

Figure 3.15. Connectivity graphs for Superfast simulation in limited connec-
tivity. (a) Hamiltonian graph: all vertices correspond to fermionic modes, and
in the original setting all edges would indicate the presence of hopping terms
between the two modes in the Hamiltonian. We have displayed the direction
of every edge in this graph. (b) Qubit connectivity graph: a qubit is placed on
each vertex of this rotated square lattice. The underlying checkerboard pattern
indicates which qubits are associated with which fermionic modes. Each dark
plaquette is associated with an index 𝑘, such that the qubits on each of its cor-
ners have indices 𝑗𝑘 ∈ 𝐸.

plaquettes enclosing a fermionic mode are darkened. Starting from a
general set of ℓ1× ℓ2 modes, we have now ended up with a rotated patch
of the square lattice that has 2ℓ1ℓ2 − (ℓ1 + ℓ2) qubits on it. The number of
white plaquettes, that are enclosed in the graph, describes the number of
smallest possible loops, which means it is the total number of linearly in-
dependent stabilizers. We have (ℓ1− 1)(ℓ2− 1) of those white plaquettes,
which means the system has 2ℓ1ℓ2−1 degrees of freedom left: since we
have mapped only pairs of operators (3.60)-(3.62), we are now seemingly
stuck in the subspace with an even number of fermions. This situation
is however not terminal: we can simulate the odd-parity subspace sepa-
rately as well as the entire Fock space. Let us further illuminate this issue
by considering the logical basis of the even-parity subspace first. For that
purpose we pick a set {𝑆𝑖}𝑖 of (ℓ1 − 1)(ℓ2 − 1) linearly independent sta-
bilizers from (3.65). The set fully constrains the system. Automatically,
all stabilizers 𝑆𝑖 are orthogonal in the computational basis, such that the
fermionic vacuum state is encoded as

|Θ⟩ =̂

[︃∏︁
𝑖

1√
2

(︀
I+ 𝑆𝑖

)︀]︃
|0𝑛⟩ . (3.66)

3.9 Supplement 143

We can then apply operators 𝒜𝑗𝑘 and ℬ𝑗 in order to prepare other states
with an even particle number. While the 𝒜𝑗𝑘 are different for every order-
ing, the operators ℬ𝑘, are independent of it: an operator ℬ𝑘 is the string of
𝑍-operators around the shaded plaquette associated with mode 𝑘. If this
plaquette is in the interior of the lattice in Figure 3.15(b), the string has
weight four, three if it is on the boundary edge, and two if in a corner. The
one feature that the operators 𝒜𝑗𝑘 have in common for every ordering, is
that they include an 𝑋-operator on the qubit (𝑗𝑘). Apart from the admin-
istration of some minus signs, the 𝒜𝑗𝑘 has generally the effect to flip qubit
(𝑗𝑘) in the all-zero state |0𝑛⟩ of (3.66). Comparing the encoded operators
(3.58) and (3.59) to the toy picture of the 𝒜 and ℬ operators we have just
suggested, we find that a qubit configuration |𝜉⟩ = (

⨂︀
𝑗𝑘∈𝐸 |𝜉𝑗𝑘⟩𝑗𝑘), with

all 𝜉𝑗𝑘 ∈ Z2, has the following correspondence to a fermionic quantum
state:[︃∏︁

𝑖

1√
2

(︀
I+ 𝑆𝑖

)︀]︃
|𝜉⟩ ∝̂

⎡⎣ 𝑁∏︁
𝑗=1

(︁
𝑐†𝑗

)︁∑︀
𝑖: (𝑖𝑗)∈𝐸 𝜉𝑖𝑗 mod 2

⎤⎦ |Θ⟩ . (3.67)

Note that (as denoted by ∝̂) we have not kept track of any minus signs in
(3.67). The relation is however sufficient to show that a fermionic mode
𝑘 is occupied, if an odd number of qubits around the plaquette 𝑘 are in
|1⟩. The product of the stabilizers

∏︀
𝑖

1√
2

(︀
I+ 𝑆𝑖

)︀
mixes all possible con-

figurations that conserve the common parity of qubits around a shaded
plaquette (as the stabilizers need to commute with ℬ𝑘, a logical opera-
tor), and so the fermionic occupations are conserved as well. In order
to prepare a pure fermionic state different from the vacuum, we need to
consider a qubit configuration |𝜉⟩, in which we flip strings of adjacent
qubits in order to create fermions on the plaquettes at their ends, see Fig-
ure 3.16.

So far, we still have not left the even-parity subspace, but we might
have systems to solve that are populated by odd numbers of fermions.
In [57], it is suggested to add another mode to the system that is how-
ever not coupled to any other term in the Hamiltonian. From the original
concept of the BKSF it is however not clear how this mode is brought
into the system, since all qubits correspond to couplings of modes in the
Hamiltonian, which here do not exist. Let us suggest to couple this mode
to exactly one other, without ever using the 𝒜-operator of this link in
the Hamiltonian. For state preparation we however can have strings that
end at that outer plaquette, creating a mode that does not play a role and

144 Chapter 3. Embedding simulations with quantum codes

1

1

1

1(a)

(b)

(c)

Figure 3.16. State preparation in the Superfast simulation. Black dots are flipped
qubits and plaquettes with an odd number of flipped qubits are marked with 1,
as a fermion is created on the corresponding mode. (a) Flipping a qubit with
label (𝑗𝑘) creates fermions on the adjacent modes 𝑗 and 𝑘. (b) 𝑋-strings (here
emphasized by linking the qubits) create nonlocal pairs of fermions, as long as
we ensure to flip always an even number of qubits on each plaquette, which
means winding around white plaquettes when the string has to change direc-
tion. (c) Flips like this result from stabilizers, and do not excite fermions, as on
all dark plaquettes an even number of qubits is flipped.

so effectively increase the degrees of freedom to 2𝑁 , modeling the entire
Fock space. The cost of this increase is the overhead of one qubit. Al-
ternatively there is a way to only map the odd-parity subspace without
using additional quantum resources: the idea is to consider the plaquette
𝑘 as being switched to ‘filled’, such that the configuration on the right-
hand side of (3.66) does not correspond to the vacuum state (which is
in the even-parity subspace), but to the state 𝑐†𝑘 |Θ⟩. Flipping the qubit
(𝑗𝑘) will lead to the fermion on 𝑘 being annihilated and re-created on 𝑗,
a string of flips that ends at 𝑘 will in general move the fermion to the
other end. We therefore make the replacement

∑︀
𝑖 𝜉𝑖𝑘 ↦→ (1 +

∑︀
𝑖 𝜉𝑖𝑘) in

the exponent of the mode-𝑘 creation operator 𝑐†𝑘 on the right-hand side
of (3.67). In order to account for the switched occupation, we also need
to update ℬ𝑘 ↦→ (−1)ℬ𝑘 and add minus signs to some 𝒜-operators.
After having established an abstract idea of BKSF on the square lattice,
we will now consider different versions of this mapping as we delve into
detail. As mentioned before, the stabilizers of this mapping roughly flip
qubits around white plaquettes. Due to (3.65), their exact structure is
determined by the operators 𝒜𝑗𝑘, which on the other hand depend on
the ordering of edges on every vertex in the Hamiltonian graph, Figure
3.15(a). In the qubit graph, this means that with every shaded plaquette

3.9 Supplement 145

we associate numbers with the qubits on its edges. The decision for an
ordering has to be made consciously, as it influences the weight of strings
simulating long-range hoppings. For now let us consider two different
versions of this mapping in Table 3.7. For each version we assume that
the ordering on every dark plaquette (leaving out missing vertices at the
boundaries) is the same. From (3.63), we therefore just need to differ-
entiate between vertical and horizontal version of the operators 𝒜𝑗𝑘, i.e.
considering the directions of the edges, we need to separate the cases
where (1) the plaquette 𝑘 is the right neighbor of the plaquette 𝑗 and (2)
where the plaquette 𝑗 is below 𝑘. In the Table 3.7, we sketch these opera-
tors, along with the stabilizers that follow from the multiplication of four
of those operators to describe a closed loop around a white plaquette.
The first version is the one already considered in [29], and second one is
related to the mapping in [54].

O
rd

er
in

g
𝒜

𝑗𝑘
(h

or
iz

on
ta

l)
𝒜

𝑗𝑘
(v

er
ti

ca
l)

St
ab

ili
ze

r

2
3

1 4
Z

X

Z
Z

𝑗
𝑘

Z
Z

Z X𝑘 𝑗

X

Y
Y

Z

Z
X

4
2

3 1
X

Z
ZZ

Z
𝑗

𝑘

X Z

Z

𝑘 𝑗

X

Y
XZ

Z

Y

Ta
bl

e
3.

7.
D

iff
er

en
tv

er
si

on
s

of
BK

SF
.T

he
or

de
ri

ng
of

th
e

ed
ge

s
on

ea
ch

ve
rt

ex
is

di
sp

la
ye

d
as

w
el

la
s

th
e

op
er

at
or

s
th

is
or

de
ri

ng
en

ta
ils

:h
or

iz
on

ta
la

nd
ve

rt
ic

al
ed

ge
op

er
at

or
s
𝒜

𝑗
𝑘

an
d

th
e

st
ab

ili
ze

rs
(s

ig
ns

ar
e

om
it

te
d)

.T
he

up
pe

r
ve

rs
io

n
is

th
e

on
e

us
ed

in
[2

9]
,w

hi
le

th
e

lo
w

er
on

e
is

re
la

te
d

to
th

e
m

ap
pi

ng
in

[5
4]

.

3.9 Supplement 147

We can now describe fermion-operator-pairs via Table 3.7 with (3.60)-
(3.62). The latter equations hold for operators 𝒜𝑗𝑘 of every link, whereas
the table only provides us with operators in which 𝑗 and 𝑘 are adjacent
plaquettes. We will now cease to pretend that the Hamiltonian is just
composed of nearest-neighbor interactions, and derive nonlocal opera-
tors 𝒜𝑗𝑘. By (3.58) we set 𝒜𝑗𝑘 ∝ 𝒪𝑗𝑘 and using (3.47) we find

𝒜𝑘1𝑘𝑙 = (𝑖)𝑙−1
𝑙−1∏︁
𝑠=1

𝒜𝑘𝑠𝑘𝑠+1 (3.68)

for any sequence 𝑘1, 𝑘2, . . . , 𝑘𝑙, where for all 𝑠 ∈ [𝑙− 1]: 𝑘𝑠𝑘𝑠+1 ∈ 𝐸. This
means we can multiply several of the nearest-neighbor 𝒜-operators from
Table 3.7. The choice of the ordering turns out to be crucial, as for vari-
ous orderings, the resulting mapping is not a good one according to the
criteria of Section 3.3. The first mapping in Table 3.7 for instance does not
produce a continuous Pauli string (3.68) when making a chain of several
horizontal 𝒜𝑗𝑘. For a vertical chain, we have a maximal operator weight.
The second mapping on the other hand is better behaved: horizontal
and vertical 𝒜-operators are connected and their weight is minimal. In
Figure 3.17, we present an example of the simulation of the Pauli string
(−𝑖ℬ𝑘1𝒜𝑘1𝑘𝑙), where 𝒜𝑘1𝑘𝑙 is nonlocal as in (3.68), with 𝑙 = 13. The string
here extends on a zig zag line along the edges of the plaquettes involved,
{𝑘𝑠}𝑠 connecting the plaquettes 𝑘1 and 𝑘13. The weight of this string can
perhaps be optimized in cutting more corners like at plaquette 𝑘5. In any
case, we have adapted the BKSF as a two-dimensional fermion-to-qubit
mapping on the square lattice.

3.9.3.5 Fermi-Hubbard model

In this section we test the proposed square lattice implementations of the
Superfast simulation and the Verstraete-Cirac transform on the Fermi-
Hubbard model.
For both mappings, we have to decide where to place spin-up and -down
modes of the same spatial site. On the one hand should the qubits repre-
senting these modes be locally close, perhaps even horizontally or verti-
cally adjacent, but on the other hand they will increase the weight of the
strings simulating hopping terms, as they are ‘in the way’. For the BKSF,
it is almost inconsequential whether the spin pairs are vertically or hori-
zontally stacked, so we decide for the latter. For the VCT, the situation is

148 Chapter 3. Embedding simulations with quantum codes

Z

Z

Y

Z

Y

Z

Y

Z

Y

X

Z

Y

Z

Y

Z

Y

Z

Y

X

Z

Y

Z

X

Z

Z

Z

𝑘1 𝑘2 𝑘3 𝑘4 𝑘5

𝑘6

𝑘7

𝑘8

𝑘9

𝑘10 𝑘11 𝑘12 𝑘13

Figure 3.17. Superfast simulation of a hopping operator in the between modes
𝑘1 and 𝑘13, coupling the respective shaded plaquettes in a string of length scal-
ing with their Manhattan distance, where the path taken is defined by the lo-
cally connected chain of modes 𝑘2 to 𝑘12. The string simulated is (−𝑖ℬ𝑘1

𝒜𝑘1𝑘13
),

which in Jordan-Wigner transform would be ℎdat = (𝑋𝑘1
⊗𝑍𝑘1+1⊗· · ·⊗𝑍𝑘13−1⊗

𝑋𝑘13). The plaquettes (𝑘1, ... , 𝑘13) are labeled on this lattice.

3.10 Notations 149

different as it produces shorter hopping strings in the vertical direction,
which leads us to make the spin pairs vertical neighbors on the grid. In
order to do that, we need to compensate for the shift that has emerged
aligning the primed qubits: in Figure 3.13(a), qubit 4 is for instance below
qubit 6, not qubit 5. Without this shift, there would be additional costs
for horizontal or vertical hoppings, but with the shift, additional costs
emerge for the Hubbard terms. As a fix, we simulate the model with ℓ2
additional modes, that remain empty. The qubits corresponding to those
modes are the ones at the horizontal perimeter of the qubit lattice, i.e. the
qubits labeled 1, 5, 9, 13, 17 and 21 in Figure 3.13(a). Those data qubits,
fixed to |0⟩, can as well be removed, but their primed counterparts must
remain and be part of the code. The spin-partners can now be placed ver-
tically adjacent on the grid. The Hubbard model with 𝐿× 𝐿 spatial sites
is thus simulated with 4𝐿2 + 2𝐿 qubits in the VCT, and with 4𝐿2 − 3𝐿
qubits in the BKSF. The resulting Pauli strings can be found in Table 3.8.

3.10 Notations

[...] The set of integers from 1 to the argument.

(𝑖, 𝑗)

Spacial coordinates replacing qubit labels in Section 3.5. To
distinguish data from auxiliary qubits, the latter are given
half-integer coordinates.

=̂

Sign signifying the equivalence between fermionic op-
erators/states to qubit counterparts according to some
fermion-to-qubit mapping.

𝐴, 𝐴−1 The two binary (𝑁 ×𝑁) matrices defining linear fermion-
to-qubit mappings, see Section 2.3 in the first chapter.

AQM Auxiliary Qubit Mapping [43].

aux The auxiliary qubit register, which comprises the integer
labels from (𝑁 + 1) to (𝑁 + 𝑟).

BKSF
Superfast simulation of fermions on a graph, also known
as Superfast Encoding, by Bravyi and Kitaev [26]

𝑐†𝑗 , 𝑐𝑗 Fermionic creation and annihilation operators on mode 𝑗.

150 Chapter 3. Embedding simulations with quantum codes

Verstraete-Cirac transform Superfast simulation

Vertical hoppings

X Y

Z

XY

Y Y

Z

XX

Y

Z

Z Z

Z

Y

Z

Z

Horizontal hoppings

X Z X

Z Y

Z

Z

Z

Z

Z

Y

Y Z Y

X

Z

Z

X

Hubbard interactions

Z

Z

Z

Z

Z

Z Z

Z

Z Z Z

Z

Z

Table 3.8. Transforming terms of the Hubbard model according to the
Verstraete-Cirac and Superfast simulation mapping. For the hoppings, we con-
sider the real hopping terms, i.e. transforms of (𝑖𝑚𝑗 𝑚𝑘) and (𝑖𝑚𝑘 𝑚𝑗) for 𝑗 < 𝑘.
Note that for the Verstraete-Cirac transform, the vertical hopping terms are dif-
ferent for even/odd rows and columns. Here the south east qubit is in an even
column and odd row. The qubit marked, but not labeled with X, Y or Z, is
skipped.

3.10 Notations 151

CNOT(𝑖 → 𝑗)
|0⟩⟨0|𝑖 + |1⟩⟨1|𝑖 ⊗ 𝑋𝑗 . The Controlled-Not gate, where 𝑖 is
the control and 𝑗 is the target qubit.

dat
The data register labels, which comprises all integers from
1 to 𝑁 .

𝐹 (𝑗) The flip set of mode 𝑗, see (2.12).

ℎdat, ̃︀ℎaux dat

𝑁 -qubit Pauli strings and their logical equivalents on 𝑁+𝑟

qubits. Note that ̃︀ℎaux dat and (ℎdat ⊗ 𝜅ℎaux) are equivalent
and identical by the multiplication of stabilizers.

𝐻dat, ̃︀𝐻aux dat

An 𝑁 -qubit physical Hamiltonian (3.3), as for instance ob-
tained by Jordan-Wigner transform, and its (𝑁 + 𝑟)-qubit
logical equivalent (3.7).

H𝑗
1√
2

[︀
1 1
1 −1

]︀
. The Hadamard gate on qubit 𝑗.

I The identity matrix or operation in various spaces.

ℐ
A parameter determining the periodicity in the sparse
AQM, see Table 3.1.

𝜅ℎaux
A Pauli string on the auxiliary register. Adjustments made
to the physical operator ℎdat, see (3.6).

ℓ1, ℓ2
Parameters of the lattice. ℓ1 × ℓ2 is the dimension of the
fermionic lattice depicted in Figure 3.1(a).

𝐿
A lattice size. 2𝐿 × 𝐿 is the dimension of the Fermi-
Hubbard-lattice in Section 3.6.

𝑚𝑗 , 𝑚𝑗
The two types of Majorana operators associated with the
same mode 𝑗, see (3.42)-(3.44).

𝑛 𝑁 + 𝑟. The number of qubits.

𝑁 ℓ1 × ℓ2. The number of fermionic modes.
𝑃 (𝑗) The parity set of mode 𝑗, see (2.12).

𝑝𝑖dat
The part of the stabilizers (𝑝𝑖dat ⊗ 𝜎𝑖

𝑁+𝑖) that is supported
on the data register, see (3.5).

𝑟 The number of auxiliary qubits.

𝑅
A binary (𝑁 × 𝑁) matrix, in which the lower triangle is
filled with ones, see see (2.13).

𝜎𝑖
𝑁+𝑖

The part of the stabilizers (𝑝𝑖dat ⊗ 𝜎𝑖
𝑁+𝑖), that is supported

on the auxiliary register, see (3.5).

152 Chapter 3. Embedding simulations with quantum codes

𝑈(𝑗) The update set of mode 𝑗, see (2.12).

𝑉aux dat The unitary initializing the code space, see (3.5).

VCT
Verstraete-Cirac transform, also known as Auxiliary
fermion mapping, [25] .

3.11 Further work

Generalized Superfast Encoding

Not long after we finished [43], the Superfast simulation was extended
in [74] and [75], focusing on the error mitigation properties. Both works
not just manage to eliminate the blindness against certain type of Pauli
errors, but even define distance three codes with which all Pauli errors of
weight one can be corrected. Note that the goal of error mitigation and
even correction is somewhat orthogonal to locality efforts. For quantum
error correction the code distance, the minimal weight of a logical oper-
ator, is sought to be increased, whereas it is sought to be minimized for
locality. However, the construction of [75], called Generalized Superfast En-
coding (GSE) turns out to be a versatile scheme that can be used for either
purpose. For the sake of completeness within this work, let us quickly
sketch the idea of this mapping. In the GSE, the entirety of qubits is sec-
tioned into partitions 𝑛1, 𝑛2, ... , 𝑛𝑁 , for each mode, where each partition
𝑛𝑗 has 𝑑𝑗/2 qubits, with 𝑑𝑗 being the number of edges at node (mode)
𝑗 that the partition represents. In [75], a different encodings for the 𝒜-
and ℬ-operators are found relying on Majorana-like Pauli strings on ev-
ery node. The strings of one node, {𝛾𝑘𝑛𝑗

}𝑘∈[𝑑𝑗], only anticommute with
each other, not with the 𝛾-operators of a different node. Therefore, we
can think of every node as hosting a local set of Majoranas distinctly en-
coded on the qubits at the node. An operator 𝒜𝑗𝑘 now is defined not just
with the direction 𝜀𝑗𝑘, but also which two 𝛾-strings on nodes 𝑗 and 𝑘 are
associated with the edge. Any 𝛾-string can only participate in one edge
operator, and so we say that for an edge 𝑗𝑘, we select the Majoranas 𝑠
and 𝑡 from nodes 𝑗 and 𝑘. The logical operators are defined as

𝒜𝑗𝑘 = 𝜀𝑗𝑘 𝛾𝑠𝑛𝑗
⊗ 𝛾𝑡𝑛𝑘

(3.69)

ℬ𝑘 = (−𝑖)𝑑𝑘/2
𝑑𝑘∏︁

𝑚=1

𝛾𝑚𝑛𝑘
, (3.70)

3.11 Further work 153

and the stabilizers are defined as before. In contrast to the BKSF, an inter-
action graph underlying the GSE is only valid if every of its vertices has
even degree. That also means that there is an Euler path connecting every
vertex using each edge exactly once. The Euler path is important, since
the multiplication of 𝒜-operators along yields a stabilizer proportional to∏︀

𝑘 ℬ𝑘, the parity operator. It is thus the proportionality constant ±1 that
determines the total parity of the system simulated.
To simulate systems that do not comply with the even-degree condition
on the interaction graph, the introduction of dummy edges and vertices is
advertised in [75]. Even more conditions on the graph connectivity have
to be imposed in order to achieve a code distance of three, which would
allow for quantum error correction. However, for the task of this chapter,
we can also try to cast this mapping into a square lattice of qubits. Con-
sidering that the interaction graph is a square lattice, the total number of
qubits would be 2ℓ1ℓ2 − 4, where it is necessary to introduce ears at the
boundaries such that every node has two qubits associated with it. The
only exceptions are the nodes in the lattice corners, which only have one.
Ideally, one would like to define

{𝛾1𝑛𝑗
, 𝛾2𝑛𝑗

, 𝛾3𝑛𝑗
, 𝛾4𝑛𝑗

} = {𝑋 ⊗ I, 𝑌 ⊗ I, 𝑍 ⊗𝑋, 𝑍 ⊗ 𝑌 } (3.71)

on every node, where the first two operators are chosen e.g. for the two
𝒜-operators in horizontal direction. As a consequence, a Manhattan string
of 𝒜(𝑖, 𝑗)(𝑖+𝑥, 𝑗+𝑦) would roughly be of weight 𝑥 + 𝑦. However, assigning
the qubits to a square lattice, such that all 𝒜(𝑖, 𝑗)(𝑖+𝑥, 𝑗+𝑦) are continuous,
seems impossible. Instead, we can employ a different choice of (3.71) and
settle for weight 𝑥+2𝑦, but with continuous strings, a planar code on the
square lattice with weight-6 stabilizers. This choice is characterized by
the definition of

{𝛾1𝑛𝑗
, 𝛾2𝑛𝑗

, 𝛾3𝑛𝑗
, 𝛾4𝑛𝑗

} = {𝑋 ⊗ 𝑌, 𝑌 ⊗ 𝑌, I⊗𝑋, 𝑍 ⊗ 𝑌 } (3.72)

on every node 𝑗. In conclusion, there is a Superfast mapping with Man-
hattan distance strings of one preferred direction like in the AQM and
VCT. Its qubit requirements are similar to the VCT, and ℬ-strings are en-
coded also by a singular 𝑍-operator. After its state preparation, classical
side computations have to aid the attachment of minus signs to 𝒜- and
ℬ-operators, such that the targeted parity subspace is encoded. Note that
while the representation (3.72) guarantees continuous strings for long-
range interactions, (3.71) can be used for error mitigation purposes, as it
forms a weight-2 code.

154 Chapter 3. Embedding simulations with quantum codes

Chapter 4

Quantum error correction in
Crossbar architectures

4.1 Background

Spin qubits in silicon quantum dots are a promising platform for quan-
tum computation. Isotopically enriched silicon-28 not only promises long
coherence times, but also the compatibility with semiconductor manu-
facturing techniques. Offering a high qubit density, silicon quantum dots
are an important chance for the future of quantum computing. However,
controlling a vast amount of qubits is nontrivial. Out of an array of 𝑁×𝑁
quantum dots, we would have to be able to select singular qubits for
quantum gates and measurements. Those operations can be performed
by manipulating electric potentials on or around the corresponding dots,
for which gate lines have to connect the corresponding elements with a
classical interface. This typically means to steer 𝑂(𝑁2) elements in the
bulk of the dot array from its boundary, which only has space to connect
𝑂(𝑁) gate lines. The solution for this mismatch is known from classi-
cal electronics: a crossbar switch allows to address single elements in a
matrix of components by the use of certain row and column lines. For
the quantum case, a similar strategy can be adopted, and so only 𝑂(𝑁)
gate lines are necessary to control the entire grid. The idea is that grid
operations like quantum gates and measurements only happen where
pulsed lines connect to the same physical elements, such that individual
qubit control is achievable. The price to pay for this is a reduced ability
to perform operations on different units in the grid in parallel. For clas-

156 Chapter 4. Quantum error correction in Crossbar architectures

sical systems this is not a fundamental problem, but when the computa-
tional units are qubits, whose information decays over time, parallelism
becomes absolutely essential. This introduces a formidable roadblock
for the development of crossbar systems for quantum computing sys-
tems. Nevertheless various crossbar architectures for quantum comput-
ers have been proposed in the past [18, 76–79]. This chapter is focusing
on our proposal for crossbar-controlled spin quantum dots in silicon [18].

Any realistic quantum computing device, including the one we propose
in [18], will suffer from noise processes that degrade quantum informa-
tion. This noise can be combated by quantum error correction [80, 81],
where quantum information is encoded redundantly in such a way that
errors can be diagnosed and remedied as they happen without disturb-
ing the encoded information. Many quantum error correction codes have
been developed over the last two decades and several of them have desir-
able properties such as high noise tolerance, efficient decoders and rea-
sonable implementation overhead. Of particular note are the planar sur-
face [82] and color codes [83], which can be implemented in quantum
computing systems in which only nearest-neighbor two-qubit gates are
available.

However these codes, and all other quantum error correction codes, are
developed under the assumption that all physical qubits participating in
the code can be controlled individually in parallel. While practical large-
scale quantum computers most likely pose control limitations, surpris-
ingly little work has been done in this area [72]. Here we investigate the
minimal amount of parallel control resources needed for quantum error
correction in the proposed architecture [18].

4.2 Results

• We analyze the crossbar architecture we propose in [18]. We give
a full description of the layout and control characteristics of the ar-
chitecture in a manner accessible to non-experts in quantum dots.
We develop a language for describing operations in the crossbar
system. Of particular interest here are the regular patterns (see
e.g. Section 4.4.4) that are implied by the crossbar structure. These
configurations provide an abstraction on which we build mappings

4.2 Results 157

of quantum error correction codes (see below) This analysis is par-
ticular to the system in [18] but we believe many of the considera-
tions to hold for more general crossbar architectures.

• We map the planar surface code and the 6.6.6. (hexagonal) and
4.8.8. (square-octagonal) color codes [83] to the crossbar architec-
ture, taking into account its limited ability to perform parallel quan-
tum operations. The tools we develop for describing the mapping,
in particular the configurations described in Section 4.4.4, should
be generalizable to other quantum error correction codes and gen-
eral crossbar architectures.

• Due to experimental limitations the mappings mentioned above
might not be attainable in near term devices. Therefore we adapt
the above mappings to take into account practical limitations in the
architecture [18]. In this version of the mapping the length of an
error correction cycle scale with the distance of the mapped code.
This means the mapping does not allow for arbitrary logical error
rate suppression. Therefore we analyze the behavior of the logical
error rate with respect to estimated experimental error parameters
and find that the logical error rate can in principle be suppressed
to below 10−20 (an error rate comparable to the error rate of clas-
sical computers [84]), allowing for practical quantum computation
to take place.

• Our work raises several interesting theoretical questions regarding
the mapping of quantum algorithms to limited control settings, see
Section 4.7.

In Section 4.3 we introduce the architecture proposed in [18]. We
forgo a deeper discussion of the device physics and only regard its pe-
culiarities as abstract control aspects. We aim to explain the operation of
the device in a largely self-contained manner accessible to non experts in
quantum dot physics. For that purpose introduce classical helper objects
such as the BOARDSTATE matrix which will aid later developments. We
discuss one- and two-qubit operations, measurements, and qubit shut-
tling. In Section 4.4 we focus on difficulties inherent in parallel operation

158 Chapter 4. Quantum error correction in Crossbar architectures

𝑁 − 2

1

0

2

3

0 1 2 3 𝑁 − 2

−𝑁
+
1

−4 −3 −2 −1 0

1

2

3

4

𝑁
−
1

(a)
(b)

Figure 4.1. (a) A schematic of the Quantum Dot Processor (QDP) that we pro-
pose [18], see Section 4.3.1 for details. The white circles correspond to quantum
dots, with the black filling denoting the presence of electrons, whose spins are
employed as qubits. All dots are found in either red or blue columns, repre-
senting areas of different magnetic field. Single qubit gates can only be applied
globally on either all qubits in all blue columns or all qubits in all red columns.
The vertical, horizontal (both yellow) and diagonal lines (gray) are a feature of
this crossbar scheme. The horizontal and vertical gate lines implement barriers
that isolate the dots from each other. The diagonal lines simultaneously control
the dot potentials of all dots coupled to one line. Quantum operations are ef-
fected by pulsing individuals lines. In order to perform two-qubit operations on
adjacent dots, one typically needs to lower the barrier that separates them and
change the dot potentials by operating the diagonal lines. Note that two-qubit
gates applied to adjacent qubits in the same column are inherently different (by
nature of the QDP design) from two-qubit gates between two adjacent qubits in
the same row. With the control lines, we can also move qubits from dot to dot
and measure them. However, since each control line influences 𝑂(𝑁) qubits,
individual qubit control, as well as parallel operation on many qubits is limited.
(b) Abstracted version of the QDP scheme representing the classical BOARD-
STATE matrix. The BOARDSTATE holds no quantum information, but encodes
where qubits are located on the QDP grid.

4.3 The quantum dot processor 159

of the crossbar system. We also introduce several BOARDSTATE config-
urations which feature prominently in quantum error correction map-
pings. We describe how these configurations can be reached efficiently
by parallel shuttling. In Section 4.5.3 we bring together all previous sec-
tions and devise a mapping of the planar surface code to the crossbar
architecture. This we continue in Section 4.5.4 for the 6.6.6. and 4.8.8.
color codes. Finally in Section 4.6 we analyze in detail the logical error
probability of the surface code mapping as a function of the code distance
and estimated error parameters of the crossbar system.

4.3 The quantum dot processor

In this section we will give an overview of the quantum dot processor
(QDP) architecture as proposed in [18]. Although this chapter considers
the concrete realization of quantum dots in silicon, our main focus is go-
ing to lie on its crossbar control structure. Therefore, we will not engage
too much with the physics of the host system, but abstract its peculiari-
ties into operational properties as they are relevant for our purposes of
controlling this device. The basic organization of the QDP is that for an
𝑁 × 𝑁 grid of qubits interspersed with control lines that effect opera-
tions on the qubits. The most notable feature of the QDP (and crossbar
architectures in general) is the fact that any classical control signal sent to
a control line will be applied simultaneously to all qubits along it. This
means that every possible classical instruction applied to the QDP will
affect 𝑂(𝑁) qubits (these qubits will not necessarily be physically close
to each other). This has important consequences for the running of quan-
tum algorithms on the QDP (or any crossbar architecture) that must be
taken into account when compiling these algorithms to hardware level
instructions. Notably it places strong restrictions on performing quan-
tum operations in parallel on the QDP. To deal with these restrictions it
is important to have an understanding of how operations are performed
on the QDP. For this reason that we begin our study of the QDP with an
examination of its control structure at the hardware level. We describe
the physical layout of the system and develop nomenclature for the fun-
damental control operations. This nomenclature might be called the ‘ma-
chine code’ of the QDP. From these basic instructions we go on to con-
struct all elementary operations that can be applied to qubits. These are
quantum operations, such as single qubit gates, nearest-neighbor two-

160 Chapter 4. Quantum error correction in Crossbar architectures

qubit gates and qubit measurements but also a non-quantum operation
called coherent shuttling which does not affect the quantum state of the
QDP qubits but changes their connectivity graph (i.e. which qubits can
be entangled by two-qubit gates). All of these operations are restricted by
the nature of the control architecture in a way that gives rise to interesting
patterns (Section 4.4.4) and which we will fully examine in Section 4.4.

4.3.1 Layout

A schematic overview of the QDP architecture is given in Figure 4.1,
where qubits (which are electrons, denoted by black balls) occupy an ar-
ray of 𝑁 ×𝑁 quantum dots. The latter are denoted by white dots when
empty, since they either are occupied by a qubit or not. We will label the
dots by tuples containing row and column indices (𝑖, 𝑗) ∈ [0 : 𝑁 − 1]⊗2

beginning from the bottom left corner1. We assume all qubits to be initial-
ized in the state |0⟩. For future reference we note that |0⟩ corresponds to
the spin-up state and |1⟩ to the spin-down state of the electron constitut-
ing the qubit.

Typically we will work in a situation where half the dots are occupied by
a qubit and half the dots are empty (as seen in Figure 4.1 (a)). Because
(as we discuss in Section 4.3.3.1) the qubits can be moved around on the
grid, it is important to keep track of which dots contain qubits and which
ones do not. This can be done efficiently in classical side-processing. To
this end we introduce the BOARDSTATE object. BOARDSTATE consists of
a binary 𝑁 × 𝑁 matrix with a 1 as the (𝑖, 𝑗)-th entry if the (𝑖, 𝑗)-th dot
contains an electron and 0 otherwise. The BOARDSTATE does not contain
information about the qubit state, only about the electron occupation of
the grid. A particular BOARDSTATE is illustrated in the left panel of Fig-
ure 4.1.

We now turn to describing the control structures that are characteristic for
this architecture. As a first feature, we would like to point out that each
dot is either located in a red or a blue region in Figure 4.1 (left panel). The
blue (red) columns correspond to regions of high (low) magnetic fields,
which plays a role in the addressing of qubits for single qubit gates. We

1This is a difference from last chapter’s notation, where we started counting from 1,
and the components of the index appeared in the opposite order to resemble euclidean
coordinates.

4.3 The quantum dot processor 161

will denote the set of qubits in blue columns (identified by their row and
column indices) by ℬ and the set of qubits in red columns by ℛ.

Much finer groups of dots can be addressed by the control lines that run
through the grid. The crossbar architecture features control lines that are
connected to 𝑂(𝑁) dots. At the intersections of these control lines indi-
vidual dots and qubits can be addressed. This means that using 𝑂(𝑁)
control lines 𝑂(𝑁2) qubits can be controlled. As seen in Figure 4.1 the
rows and columns of the QDP are interspersed with horizontal and ver-
tical lines (yellow), as a means to control the tunnel coupling between ad-
jacent dots. We refer to those lines as barrier gates, or barriers for short.
Each line can be controlled individually, but a pulse has an effect on all
𝑂(𝑁) dot pairs it separates. Another layer of control lines is used to ad-
dress the dots itself rather than the spaces in between them. The diagonal
gate lines (gray), are used to regulate the dot potential. We label the hor-
izontal and vertical lines by an integer running from 0 to 𝑁 − 2 and the
diagonal lines with integers running from −𝑁 + 1 to 𝑁 − 1 where the
−(𝑁 − 1)-th line is the top-left line and increments move towards the
bottom right (see Figure 4.1(a)). We count horizontal and vertical lines
starting at zero from the lower left corner of the grid (see Figure 4.1).
Note that the barriers at the boundary of the grid are never addressed in
our model and are thus not labeled. Next we describe how all control
lines can be used to effect operations on the qubits occupying the QDP
grid.

4.3.2 Control and addressing

As described above, the QDP consists of quantum dots interspersed with
barriers and connected by diagonal lines. For our purposes these can be
thought of as abstract control knobs that apply certain operations to the
qubits. In this section we will describe what type of gates operations are
possible on the QDP. We will not concern ourselves with the details of
parallel operation until Section 4.4.

There are three fundamental operations on the QDP which we will call
the “grid operations”. These operations are “lower vertical barrier” (V),
“lower horizontal barrier” (H) and “set diagonal line” (D). The first two
operations are essentially binary (on-off) but the last one (D) can be set
to a value 𝑡 ∈ [0 : 𝑇] where 𝑇 is a device parameter. At the physical

162 Chapter 4. Quantum error correction in Crossbar architectures

OPCODE Effect
V[𝑖] Lower vertical barrier at index 𝑖
H[𝑖] Lower horizontal barrier at index 𝑖
D[𝑖][𝑡] Set diagonal line at index 𝑖 to value 𝑡

Table 4.1. Table of grid operations.

level this corresponds to how many clearly distinct voltages we can set
the quantum dot plunger gates [18]. Although the actual pulses on those
gates differ by amplitude and duration between the different gates and
operations, this notation gives us a clear idea which lines are utilized.
This can be done because realistically one will not interleave processes
in which pulses have such different shapes. We can label the grid opera-
tions by mnemonics (which in a classical analogy we will call OPCODES)
as seen in Table 4.1. These OPCODES are indexed by an integer parame-
ter that indicates the label of the control line it applies to.

We indicate parallel operation of a collection of OPCODES by amper-
sands, e.g. D[1]&H[2]&D[5]. The three grid operations are summarized
in Table 4.1. These grid operations can be used to induce some elemen-
tary quantum gates and operations on the qubits in the QDP. Below we
describe these operations.

4.3.3 Elementary operations

Here we give a short overview of the elementary operations available in
the QDP. We will describe basic single qubit gates, two-qubit gates, the
ability to move qubits around by coherent shuttling [20] and a measure-
ment process through Pauli Spin Blockade (PSB) [85]. All of these oper-
ations are implemented by a combination of the grid operations defined
in Table 4.1, and are inherently dependent on the BOARDSTATE .

4.3.3.1 Coherent qubit shuttling

An elementary operation of the QDP is the coherent qubit shuttling [20,
86], of one qubit to an adjacent, empty dot. That means that an electron
(qubit) is physically moved to the other dot utilizing at least one diagonal
line and the barrier between the two dots. It thereby does not play a role
whether the shuttling is in horizontal (from a red to a blue column or the

4.3 The quantum dot processor 163

other way around) or vertical direction (inside the same column). How-
ever, the shuttling in between columns results in a 𝑍-rotation, that must
be compensated by timing operations correctly, see [18] for details. This
𝑍-rotation can also by used as a local single qubit gate, see Section 4.3.3.3.
The operation is dependent on the BOARDSTATE by the prerequisite that
the dot adjacent to the qubit to must be empty. Collisions of qubits are
to be avoided, as those could lead to the formation of different charge
states (see however the measurement process in Section 4.3.3.2). We now
describe the coherent shuttling as the combination of grid operations.

We lower the vertical (or horizontal) barrier in between the two dots and
instigate a ‘gradient’ of the on-site potentials of the two dots. That is,
the diagonal line of the dot containing the qubit must be operated at
𝑡 ∈ [0 : 𝑇] while the line overhead the empty dot must have the potential
𝑡 ∈ [0 : 𝑇] with 𝑡 = 𝑡 − 1. Note that this implies it might not be oper-
ated at all (if it is already at the right level). We will subsequently refer
to the combination of a lowered barrier and such a gradient as a “flow”.
A flow will in general be into one of the four directions on the grid. We
define the commands VS[𝑖, 𝑗, 𝑘] (vertical shuttling) and HS[𝑖, 𝑗, 𝑘] (hor-
izontal shuttling). The command VS[𝑖, 𝑗, 𝑘] shuttles a qubit at location
(𝑖, 𝑗) to (𝑖+ 1, 𝑗) for 𝑘 = 1 (upward flow) and shuttles a qubit at location
(𝑖+ 1, 𝑗) to (𝑖, 𝑗) for 𝑘 = (−1) (downward flow). Similarly, the command
HS[𝑖, 𝑗, 𝑘] shuttles a qubit at location (𝑖, 𝑗) to (𝑖, 𝑗+1) for 𝑘 = 1 (rightward
flow) and shuttles a qubit at location (𝑖, 𝑗 + 1) to (𝑖, 𝑗) for 𝑘 = (−1) (left-
ward flow). See Table 4.2 for a summary of these OPCODES.

Using only these control lines, we can individually select a single qubit to
be shuttled. However, when attempting to shuttle in a parallel manner,
we have to be carefully take into account the effect that the activation of
several of those lines has on other locations. We will deal with this in
more detail in Section 4.4.1.

4.3.3.2 Measurement and readout

The QDP allows for local single qubit measurements in the computa-
tional basis |0⟩ , |1⟩. We can measure a qubit by using essentially the same
lines as if we were to shuttle it to a horizontally adjacent dot that is al-
ready occupied by a qubit in a fixed state of reference: that qubit will

164 Chapter 4. Quantum error correction in Crossbar architectures

↦→

(a) Coherent shuttling

(b)
√

SWAP (c) CPHASE⋆ or
measurement

Figure 4.2. Schematic representation of the use of control lines for the native
operations in the QDP. Qubits are represented by black balls on the grid. Red or
blue colored dots are empty, but their dot potentials change due to an operation
of the diagonal line they are coupled to. Empty dots, unaffected by grid oper-
ations, are white. (a) Vertical shuttling of a qubit (to the top left dot) requires
to lower the orange barrier. One can than either raise the dot potentials on the
red diagonal line, or lower the potential on the blue dot by pulsing the blue di-
agonal. (b) Schematic representation of the control lines used for performing
two-qubit

√
SWAP gate between the two qubits on that grid. The orange bar-

rier is lowered and the red diagonal line is utilized to detune dot potentials. (c)
Grid operations necessary to perform a measurement or a two-qubit effective
CPHASE⋆ gate between the two qubits. The orange barrier between the two
qubits is lowered, and the dot potentials along the red diagonal line is raised by
pulsing the latter. Note that the empty, red colored dot is also effected by that
action, and its barrier to the adjacent dot is lowered. If the two dots in the up-
per row were not empty, side effects would occur. See Section 4.3.3.4 for more
information on the nature of the two-qubit gates. Note also that the readout pro-
cedure of the measurement requires us to have the upper dot (light blue) empty,
if the barrier gate between them is used for readout.

4.3 The quantum dot processor 165

therefore be referred to as reference qubit.2 When the first qubit is in
contact with the reference, their total spin wavefunction collapses into
either a singlet or a triplet state. Due to the Pauli principle, those two
spin wave functions produce an antisymmetric spatial wave function re-
sulting in a different distribution of charge over the two dots. This charge
distribution can be detected in the readout. This process is called Pauli
Spin Blockade (PSB) measurement [18, 85]. However, the QDP’s ability
to perform this type of qubit measurements is limited by three factors.

Firstly, the measurement requires a reference qubit horizontally adjacent
to the qubit to be measured. Not only must the reference be in a known
computational basis state, but the choice of state depends on the mag-
netic field, i.e. whether the dots are in red or blue columns in Figure
4.1(a). A reference qubit in the set ℬ must be in the state |0⟩, whereas
one found in ℛ must be in |1⟩. The qubit that is to be measured, has to be
in the respective other column, vertical measurements are not allowed.
This effectively means that when a qubit pair is in the wrong configu-
ration we must first shuttle both qubits one step to the left (or to the
right). Note that this takes two additional shuttling operations, which
means it is important to keep track at all times where the two qubits are
on the BOARDSTATE, or else incur a shuttling overhead (which might be-
come significant when dealing with large systems and many simultane-
ous measurements). We will deal with the problem of qubit-pair place-
ment in more detail in Section 4.4.3.

Secondly, assuming that the qubit pair is in the right configuration to
perform the PSB process, one still needs to perform a shuttling-like op-
eration to actually perform the measurement. On the technical level, the
operation is different from coherent shuttling, but the use of the lines is
similar with the difference that after the readout, the shuttling-like op-
eration is undone by the use of the same lines as before - which are not
necessarily the lines one would use to reverse a coherent shuttling opera-
tion. However, scheduling measurement events on the QDP is at least as
hard as the scheduling of shuttle operations discussed above. Depending
on the state the qubit is in, it will now assume one of two possible states
that can be distinguished by their charge distribution.

2Not to be confused with the measurement qubit in the surface code. The role of the
latter is assumed by the first qubit, that is supposed to be measured.

166 Chapter 4. Quantum error correction in Crossbar architectures

OPCODE Control OPCODES Effect

HS[𝑖, 𝑗, 𝑘]
V[𝑖] & D[𝑖− 𝑗][𝑡− 1/2− 𝑘/2]
& D[𝑖− 𝑗 + 1][t-1/2+k/2]

(𝑘 = 1):
Shuttle from (𝑖, 𝑗) to (𝑖, 𝑗+1)
(𝑘 = −1):
Shuttle from (𝑖, 𝑗+1) to (𝑖, 𝑗)

VS[𝑖, 𝑗, 𝑘]
H[𝑗] & D[𝑖− 𝑗][𝑡− 1/2− 𝑘/2]
& D[𝑖− 𝑗 − 1][𝑡− 1/2 + 𝑘/2]

(𝑘 = 1):
Shuttle from (𝑖, 𝑗) to (𝑖+1, 𝑗)
(𝑘 = −1):
Shuttle from (𝑖+1, 𝑗) to (𝑖, 𝑗)

M[𝑖, 𝑗, 𝑘] HS[𝑖, 𝑗 + 1/2 + 𝑘/2,−𝑘] Measurement of qubit (𝑖, 𝑗)
using the qubit at (𝑖, 𝑗 + 𝑘)

Table 4.2. OPCODES for horizontal and vertical shuttling and measurement
together with the control OPCODES required to implement these operations on
the QDP.

Thirdly, the readout process requires to have a barrier line that borders
to the qubit pair, with an empty dot is across the spot of the qubit to be
measured. This is a consequence of the readout procedure [18].

In Table 4.2 we introduce the measurement OPCODE M[𝑖, 𝑗, 𝑘] with
𝑘 ∈ {−1, 1} to denote a measurement of a qubit at location (𝑖, 𝑗) with a
reference located to the left (𝑘 = −1) or to the right (𝑘 = 1).

4.3.3.3 Single-qubit rotations

There are two ways in which single qubit rotations can be performed on
the QDP, both with drawbacks and advantages. The first method, which
we call the semi-global qubit rotation, relies on electron-spin-resonance [87].
Its implementation in the QDP allows for any rotation in the single qubit
special unitary group 𝑆𝑈(2) [88] to be performed but we do not have par-
allel control of individual qubits. The control architecture of the QDP is
such that we can merely apply the same single qubit unitary rotation on
all qubits in either ℛ or ℬ (even or odd numbered columns). Concretely
we can perform in parallel the single qubit unitaries

𝑈ℛ =
⨂︁

(𝑖,𝑗)∈ℛ

𝑈(𝑖,𝑗) , 𝑈ℬ =
⨂︁

(𝑖,𝑗)∈ℬ

𝑈(𝑖,𝑗) (4.1)

where 𝑈(𝑖,𝑗) means applying the same unitary 𝑈 to the state carried by
the qubit at location (𝑖, 𝑗). In general the only way to apply an arbitrary

4.3 The quantum dot processor 167

single qubit unitary on a single qubit in ℬ (or ℛ) is by applying the uni-
tary to all qubits in ℬ (ℛ), moving the desired qubit into an adjacent
column, i.e. from ℬ to ℛ (ℛ to ℬ) and then applying the inverse of the
target unitary to ℛ (ℬ). This restores all qubits except for the target qubit
to their original states and leaves the target qubit with the required uni-
tary applied. The target qubit can then be shuttled to its original location.
A graphical depiction of the BOARDSTATE associated with this maneuver
can be found in Figure 4.3. This means applying a single unitary to a sin-
gle qubit takes a constant amount of grid operations regardless of grid
size.

The second method does allow for individual 𝑍-rotations on single qubits:
exp(𝑖𝜑𝑍) = cos𝜑 · I + 𝑖 sin𝜑 · 𝑍. This operation can be performed on
a given qubit at (𝑖, 𝑗) by shuttling it to an empty dot at (𝑖, 𝑗 ± 1) (and
perhaps back). When the qubit leaves the column it was originally de-
fined on (ℬ to ℛ or vice versa) it will effectively start precessing about
its 𝑍-axis [18]. This effect is always present but it can be mitigated by
timing subsequent operations such that a full rotation happens between
every operation (effectively performing the identity transformation, see
Section 4.3.3.1). By changing the timing between subsequent operations
any rotation angle 𝜑 can be effected. This technique will often be used to
perform the 𝑍-gate (𝜑 = 𝜋/2) and the 𝑆 =

√
𝑍 phase gate (𝜑 = 𝜋/4) in

error correction sequences.

4.3.3.4 Two-qubit gates

As the last elementary tool, we have the ability to apply entangling two-
qubit gates on adjacent qubits. The QDP can perform two different types
of two-qubit gates. Inside one column, so between qubits at locations
(𝑖, 𝑗) and (𝑖± 1, 𝑗), a square-root of SWAP (

√
SWAP) can be realized [89].

This can be done by lowering the horizontal barrier between the two
qubits and toggling the voltage on the diagonal lines overhead the two
qubits. This situation is illustrated in Figure 4.2 (c). The

√
SWAP gate is

defined as

168 Chapter 4. Quantum error correction in Crossbar architectures

(a)

𝑈 𝑈 𝑈

(b)

𝑈 † 𝑈 † 𝑈 †

(c)

Figure 4.3. BOARDSTATE schematic for applying the unitary 𝑈 to a single qubit
(red). Time flows from (a) to (c) in this schematic. This process illustrates both,
the possibility to retain single qubit control by using coherent shuttling, and the
overhead that comes with it. In (a) we firstly apply the unitary 𝑈 (blue bars) to
all qubits in ℛ (ℬ). We then move the qubit to the adjacent column. Note that
this takes two operations because we do not want any other qubits transitioning
with it. In (b), we apply the inverse unitary 𝑈† to all qubits in ℛ (ℬ). In the last
step we move the red qubit back, such that it is in its original position in (c).

4.3 The quantum dot processor 169

√
SWAP =

⎛⎜⎜⎝
1

(1 + 𝑖) /2 (1− 𝑖) /2
(1− 𝑖) /2 (1 + 𝑖) /2

1

⎞⎟⎟⎠ , (4.2)

in the computational basis, and has the name-lending property√
SWAP ·

√
SWAP = SWAP. Alternatively, between horizontally adjacent

qubits, e.g. between (𝑖, 𝑗) ∈ ℛ and (𝑖, 𝑗±1) ∈ ℬ the native two-qubit gate
is an effective CPHASE gate which acts on the computational basis as

CPHASE⋆ =

⎛⎜⎜⎝
1

𝑒𝑖𝜑1

𝑒𝑖𝜑2

1

⎞⎟⎟⎠ , (4.3)

where the two angles obey (𝜑1 + 𝜑2 mod 2𝜋) = 𝜋 (demonstrated in [90–
92]). This gate can be performed between horizontally adjacent qubits
by lowering the vertical barrier between them and toggling the overhead
diagonal lines. This is illustrated in Figure 4.2(a). The CPHASE⋆ can be
corrected to a CPHASE by the readily available methods of performing
individual 𝑍-rotations. In practice, however, we expect the

√
SWAP gate

to have significantly higher fidelity than the CPHASE⋆ gate [18], so in any
application (e.g. error correction) the

√
SWAP gate is the preferred native

two-qubit gate on the QDP. In Table 4.3 we define OPCODES for the hor-
izontal interaction (CPHASE⋆) and the vertical interaction (

√
SWAP).

4.3.3.5 CNOT subroutine

Many quantum algorithms are conceived using the CNOT gate as the
main two-qubit gate. However the QDP does not support the CNOT gate
natively. It is easy to construct the CNOT gate from the CPHASE⋆ gate
by dressing the CPHASE gate with single qubit Hadamard rotations as
seen in Figure 4.4(center). It is slightly more complicated to construct
a CNOT gate using the

√
SWAP but it can be done by performing two√

SWAP gates interspersed single qubit rotations [91–93] as seen in Fig-
ure 4.4(right). If the control qubit is moved from an adjacent column on
the QDP (as it is in most cases we will deal with) the 𝑍- and 𝑆-gates
can be performed by the 𝑍-rotation-by-waiting technique described in

170 Chapter 4. Quantum error correction in Crossbar architectures

𝐻 ∙ 𝐻 𝑆† � 𝑍 �

∙ ∙ 𝑍𝐻𝑆† � � 𝐻

Figure 4.4. Construction of the CNOT gate out of the native CPHASE⋆ and√
SWAP gates. Note that one requires two

√
SWAP gates to construct a

CNOT gate [93]. When performing arbitrary algorithms it would be preferable
to forgo this substitution and instead compile the algorithm directly into a gate-
set containing the

√
SWAP gate.

OPCODE Effect Parameter

HI[𝑖, 𝑗]
Perform CPHASE⋆ gate between
dots (𝑖, 𝑗) and (𝑖, 𝑗 + 1)

(𝑖, 𝑗) ∈ [0 : 𝑁 − 2]⊗2

VI[𝑖, 𝑗]
Perform

√
SWAP gate between

dots (𝑖, 𝑗) and (𝑖+ 1, 𝑗)
(𝑖, 𝑗) ∈ [0 : 𝑁 − 2]⊗2

HC[𝑖, 𝑗]
Perform CNOT (using CPHASE⋆)
between (𝑖, 𝑗) and (𝑖, 𝑗 + 1)

(𝑖, 𝑗) ∈ [0 : 𝑁 − 2]⊗2

VC[𝑖, 𝑗]
Perform CNOT (using

√
SWAP)

between (𝑖, 𝑗) and (𝑖+ 1, 𝑗)
(𝑖, 𝑗) ∈ [0 : 𝑁 − 2]⊗2

Table 4.3. OPCODES for horizontal and vertical two-qubit operations on the
QDP, respectively the CPHASE⋆ and

√
SWAP gates. We also include OPCODES

for the performing of CNOT gates composed of
√

SWAP or CPHASE⋆ gates.

the last section. For completeness we also define an OPCODE for the
CNOT operation in Table 4.3.

4.4 Parallel operation of a crossbar architecture

In this section we focus on performing operations in parallel on the QDP
(or more general crossbar architectures). Because of the limitations im-
posed by the shared control lines of the crossbar architecture, achiev-
ing as much parallelism as possible is a nontrivial task. We will discuss
parallel shuttle operations, parallel two qubit gates, parallel single qubit
gates and parallel measurement. As part of the focus on parallel shuttling
we also include some special cases relevant to quantum error correction
where full parallelism is possible.

4.4 Parallel operation of a crossbar architecture 171

Before we start our investigation however, we would like to put three
issues into focus that are likely to be encountered when attempting par-
allel operations. Firstly, it must be understood that an operation on one
location on a crossbar system can cause unwanted side effects in other
locations (that might be far away). As indicated in Section 4.3 many el-
ementary operations on the grid in particular take place at the crossing
points of control lines. This means that any parallel use of these grid
operations must take into account “spurious crossings” which may have
such unintended side effects. Let us illustrate such a spurious crossing
with an example. Imagine we want to perform the vertical shuttling op-
erations VS[𝑖, 𝑗 − 1, 1] and VS[𝑖+ 2, 𝑗 − 1, 1] in parallel (see Figure 4.5 for
illustration). We can do this by lowering the horizontal barriers at rows
𝑖 and 𝑖+ 2 (orange in illustration) and elevating the on-site potentials on
the diagonal lines 𝑖− 𝑗+1 and 𝑖+2− 𝑗+1 (red in illustration). This will
open upwards flows at locations (𝑖, 𝑗 − 1) and (𝑖 + 2, 𝑗 − 1). However it
will also open an upward flow at the location (𝑖 + 2, 𝑗 + 1). This means,
if a qubit is present at that location an unintended shuttling event will
happen. To avoid this outcome we must either perform the operations
VS[𝑖, 𝑗 − 1, 1] and VS[𝑖 + 2, 𝑗 − 1, 1] in sequence (taking two time-steps)
or perform an operation VS[𝑖 + 2, 𝑗 + 1,−1] to fix the mistake we made,
again taking two time-steps. This is a general problem when considering
parallel operations on the QDP.

Secondly, we would like to point out that in realistic setups, we expect a
trade-off between parallelism (manifested in algorithmic depth) and op-
eration fidelity (in particular this will be the case in the QDP system). In
order to understand this, we have to be aware that most operations con-
sist of applying the correct pulses for the right amount of time. Due to
𝑔-factor variations, these durations can slightly vary from dot to dot. In
order to perform the perfect gate, for instance, we must be able to ter-
minate one interaction in a parallel operation. This usually entails being
able to eliminate a single crossing by resetting one control line prema-
turely, if the dot at the crossing has a higher 𝑔-factor. If this is not possible
(maybe because it would cause side effects) a loss in operation fidelity is
a consequence of the resulting improperly timed operation. The most ro-
bust case is thus to schedule operations line-by-line. By this we mean that
we attempt to perform 𝑂(𝑁) grid operations in a single time step while
using every horizontal, diagonal or vertical line only once per individual

172 Chapter 4. Quantum error correction in Crossbar architectures

(a)

𝑗 + 1𝑗𝑗 − 1

𝑖+ 3

𝑖+ 2

𝑖+ 1

𝑖

(b)

(c) (d)

Figure 4.5. Spurious shuttle operations. Here we illustrate an example of unin-
tended side effects that occur due to the limited control. We again denote qubits
by colored balls, and color barriers and lines that are operated. Empty dots with
changed potentials are colored as well, whereas white dots are unaffected. (a)
The black qubits are to be shuttled from (𝑖, 𝑗−1) to (𝑖+1, 𝑗−1) and from (𝑖+2, 𝑗)
to (𝑖 + 3, 𝑗) respectively without moving the blue qubit. For that purpose, the
(orange) barriers between the two dot pairs are lowered, as well as the (red)
diagonal lines through (𝑖, 𝑗 − 1) and (𝑖 + 2, 𝑗) are pulsed, such that the dot po-
tentials at those sites are raised. (b) The qubit on (𝑖+3, 𝑗+1) has unintentionally
moved to (𝑖+2, 𝑗+1). (c) To remedy this situation, we lower the barrier labeled
𝑖 + 2 again (orange), and also raise the potential at dot (𝑖 + 3, 𝑗 + 1) and with it
at all other dots that are connected by the pulsed diagonal line (red). In (d), the
desired situation is achieved.

4.4 Parallel operation of a crossbar architecture 173

grid operation. If we, for instance, schedule several vertical shuttle op-
erations, we may choose to start by lowering the horizontal barrier first
and then detune the dot potentials of all qubits adjacent to that barrier,
by pulsing the corresponding diagonal lines. To account for the varia-
tions, we reset the diagonal lines at slightly different times. Line-by-line
operations work with either line types for every two-dot operation (mea-
surement, shuttling and two-qubit gates). Note however that for shut-
tling operations individual control over one line is sufficient, whereas
for measurement and two-qubit gates we would ideally like to be able to
control two lines per qubit pair individually, where one line should be the
barrier separating the two paired qubits. Results presented in the follow-
ing take these constraints into account for quantum error correction. The
parallel operation nonetheless remains one of the greatest challenges of
the crossbar scheme. In this section, we will assume all operations to be
perfect (even when performed in parallel) but in Section 4.6 we perform
a more detailed analysis of the behavior of the QDP when operational
errors are taken into account.

Thirdly, it is important to have access to classical side computations to aid
the scheduling of parallel operations without spurious crossings. How-
ever, no classical assistance is required for purposes of quantum error
correction, such that a discussion of the concrete algorithms is omitted.
The interested reader may find an in-depth discussion on the classical
side computations within the original work [94] or the crossbar chapter
of [95]. As we define parallel versions of the elementary operations in the
next step, we would like the reader to bear in mind that these OPCODES
work with the classical input, which in our case is however trivial. We
begin with discussing parallel shuttle operations.

4.4.1 Parallel shuttle operations

We define parallel versions of the shuttling OPCODES HS[𝑖, 𝑗, 𝑘] and VS[𝑖, 𝑗, 𝑘]
in the following table.

OPCODE Effect
HS[L] Perform HS[𝑖, 𝑗, 𝑘] for all (𝑖, 𝑗, 𝑘) ∈ L
VS[L] Perform HS[𝑖, 𝑗, 𝑘] for all (𝑖, 𝑗, 𝑘) ∈ L

This OPCODE takes in a set (denoted as L) of tuples (𝑖, 𝑗, 𝑘) which de-

174 Chapter 4. Quantum error correction in Crossbar architectures

note ‘locations at which shuttling happens’ (𝑖, 𝑗) and ‘shuttling direction’
(𝑘). From these codes it is not immediately clear how many of the shut-
tling operations can be performed in a single grid operation, i.e. setting
the diagonal lines to some configuration and lowering several horizontal
or vertical barrier. If multiple grid operations are needed (such as in the
example Figure 4.5) we would like this sequence of grid operations to be
as short as possible. However, given some initial BOARDSTATE and a par-
allel shuttling command HS[L] it is not clear what the sequence of parallel
shuttling operations actualizing this command is. At the same time, par-
allelization might not be the ultimate goal, and so other schedules might
be implicit in the given OPCODES.

4.4.1.1 Selective parallel single-qubit rotations

In this section we will discuss a particular example that illustrates the use
of abstracting away the complexity of parallel shuttling. Imagine a QDP
grid initialized in the so called idle configuration. This configuration can
be seen in Figure 4.6. We will focus on the qubit in the odd columns
(i.e. the set ℬ). Imagine a subset 𝑆 of these qubits to be in the state |1⟩ and
the remainder of these qubits to be in the state |0⟩. The qubits on in the
set ℛ can be in some arbitrary (and possibly entangled) multi-qubit state
|Ψ⟩. We would like to change the states of the qubits in the set 𝑆 to |0⟩
without changing the state of any other qubit. Due to the limited single
qubit gates (see Section 4.3.3.3) available in the QDP this is a nontrivial
problem for some arbitrary set 𝑆. However using the power of parallel
shuttling we can perform this task as follows. Begin by defining the set of
coordinates 𝑆, which hold all qubits in the complement of 𝑆 in ℛ. Now
we begin by performing the parallel shuttling operation

HS[L], L = {(𝑖, 𝑗, 1) ‖ (𝑖, 𝑗) ∈ 𝑆}. (4.4)

This operation in effect moves all qubits in 𝑆 out of ℛ (and into ℬ, note
that the dots the qubits are being shuttled in are always empty by the
definition of the idle configuration). Now we can use a semi-global single
qubit rotation (as discussed in Section 4.3.3.3) to perform 𝑋-rotations on
all qubits in ℛ, which is at this point all qubits in the set 𝑆. These flips
change the states of the qubits in 𝑆 from |1⟩ to |0⟩ without changing the
state of any other qubit. Following this we can restore the BOARDSTATE to
its original configuration by applying the parallel shuttling command

HS[L], L = {(𝑖, 𝑗,−1) ‖ (𝑖, 𝑗) ∈ 𝑆}. (4.5)

4.4 Parallel operation of a crossbar architecture 175

OPCODE Effect
HI[L] Perform VI[𝑖, 𝑗] for (𝑖, 𝑗) ∈ L
VI[L] Perform HI[𝑖, 𝑗] for (𝑖, 𝑗) ∈ L

OPCODE Effect
VC[L] Perform VC[𝑖, 𝑗] for every (𝑖, 𝑗) in L

Now we have applied the required operation. Note that at no point we
had to reason about the structure of the set 𝑆 itself. This complexity was
taken care of by the classical subroutines embedded in HS[L]. Next we
discuss performing parallel two-qubit gates.

4.4.2 Parallel two-qubit gates

Similar to parallel shuttling it is in general rather involved to perform
parallel two-qubit operations in the QDP. We can again define parallel
versions of the OPCODES for two-qubit operations and then analyze
how to perform them as parallel as possible (again having access to clas-
sical side computation).

However, as mentioned before, the parallel operation of two-qubit
gates in the QDP will mean taking a hit in operation fidelity vis-à-vis the
more controllable line-by-line operation [18]. Since this operation fidelity
is typically a much larger error source than the waiting-time-induced de-
coherence stemming from line-by line operation we will for the remain-
der of this chapter assume line-by-line operation of the two-qubit gates.
This will have an impact when performing quantum error correction on
the QDP which we will discuss in more detail in Section 4.6.

For the sake of completeness we also define a parallel version of the
CNOT OPCODE. The same considerations of parallel operation hold for
the parallel use of CNOT gates as they hold for the CPHASE⋆ and

√
SWAP

gates. We continue the discussion of parallelism in the QDP by analyzing
parallel measurements.

4.4.3 Parallel Measurements

Performing measurements on an arbitrary subset of qubits on the QDP
is in general quite involved. Every qubit to be measured requires a ref-

176 Chapter 4. Quantum error correction in Crossbar architectures

OPCODE Effect
M[L] Perform M[𝑖, 𝑗, 𝑘] for every (𝑖, 𝑗, 𝑘) in L

erence in a known computational basis state, and an empty dot must be
adjacent as a reference for the readout process. The qubits must then
be shuttled such that the pairs are horizontally adjacent and located in
such a way such that they are in the right columns for the PSB process to
take place (revisit Section 4.3.3.2 for more information). On top of the re-
quired shuttling the PSB process itself (from a control perspective similar
to shuttling) must be performed in a way that depends on the BOARD-
STATE and the configuration of the reference qubits. In general this PSB
process will be performed line-by-line (for the fidelity reasons mentioned
in the beginning of the section) and hence requires a sequence of depth
𝑂(𝑁) parallel grid operations (plus the amount of shuttling operations
needed to attain the right measurement configuration in the first place).
Due to this complexity we will not analyze parallel measurement in de-
tail but rather focus on a particular case relevant to the mapping of the
surface code. But first we define a parallel measurement OPCODE M[L]
which takes in a list of tuples (𝑖, 𝑗, 𝑘) denoting locations of qubits to be
measured (𝑖, 𝑗) and whether the reference qubit is to its left (𝑘 = −1) or
to its right (𝑘 = 1).

4.4.3.1 A specific parallel measurement example

Let us consider a specific example of a parallel measurement procedure
that will be used in our discussion of error correction. We begin by imag-
ining the BOARDSTATE to be in the idle configuration (Figure 4.6 top left).
We next perform the shuttle operations needed to change the BOARD-
STATE to the measurement configuration. This configuration (and how to
reach it by shuttling operations from the idle configuration) will be dis-
cussed Section 4.4.4 and can be seen in Section 4.6 (c). Next take the
qubits to be measured in the parallel measurement operation to be the
red qubits in Figure 4.6. The qubits directly to the right or to the left will
serve as a reference (blue in Figure 4.6). We will assume that the reference
qubits are in the |0⟩ state. If some of them were in the |1⟩ state instead we
would perform the procedure given in Section 4.3.3.3 to rotate them to
|0⟩ without changing the state of the other qubits on the grid. With that

4.4 Parallel operation of a crossbar architecture 177

all the reference qubits are in the set ℬ and qubits to be read out in the
set ℛ, we can perform the PSB process by sending the latter into the dots

occupied by the former. Using the shorthand 𝑎
𝑏
= 𝑐 to denote 𝑎 mod 𝑏 = 𝑐,

we employ the commands

VS[L], L = {(𝑖, 𝑗, 1) ‖ 𝑖
2
= 0, 𝑗

2
= 1, 𝑖+ 𝑗

4
= 1} (4.6)

to bring the qubits to be measured (red) horizontally adjacent to the ref-
erence qubits (blue) and then

M[L], L = {(𝑖, 𝑗, 1) ‖ 𝑖
4
= 1, 𝑗

4
= 1} (4.7)

and

M[L], L = {(𝑖, 𝑗,−1) ‖ 𝑖
4
= 3, 𝑗

4
= 3}. (4.8)

All of these operations can be performed in a single time-step, al-
though the line-by-line manner is preferred by reasons laid out earlier. In
particular we would like to perform these operations one row at a time
since this gives us the ability to control both diagonal and vertical lines
individually for each measurement. However, if we first were to align
all pairs, a line-by-line measurement is not possible. For instance when
performing measurements on the qubits at locations (1, 1) and (1, 5) we
must measurement is also invoked on the pair at location (5, 5). To avoid
this situation we will align only the qubits in the bottom row, perform the
PSB process and readout on that row only and then undo the shuttlings.
This we repeat going up in rows until we reach the end of the grid. More
formally we perform the following sequence of operations:

For 𝑖 ∈ [0 : 𝑁 − 2]

If 𝑖
4
= 1

VS[L], L = {(𝑖− 1, 𝑗, −1) ‖ 𝑗
4
= 1}

M[L], L = {(𝑖, 𝑗, 1) ‖ 𝑗
4
= 1}

VS[L], L = {(𝑖− 1, 𝑗, 1) ‖ 𝑗
4
= 1}

178 Chapter 4. Quantum error correction in Crossbar architectures

If 𝑖
4
= 3

VS[L], L = {(𝑖− 1, 𝑗, −1) ‖ 𝑗
4
= 3}

M[L], L = {(𝑖, 𝑗, −1) ‖ 𝑗
4
= 3}

VS[L], L = {(𝑖− 1, 𝑗, 1) ‖ 𝑗
4
= 3} .

We will use this particular procedure when performing the readout step
in a surface code error correction cycle in Section 4.5.3. This concludes
our discussion of parallel operations on the QDP. We now move on to
highlight some BOARDSTATE configurations that will feature prominently
in the surface and color code mappings.

4.4 Parallel operation of a crossbar architecture 179

180 Chapter 4. Quantum error correction in Crossbar architectures

(a) Idle (b) Rightward triangle

(c) Measurement

(d) PSB and readout (e) Right square

4.4 Parallel operation of a crossbar architecture 181

Figure 4.6. Useful BOARDSTATE configurations. We denote memory qubits with
dark color, 𝑋-measurement qubits by red and 𝑍-measurement qubits by blue.
Those will collect the parity of the data qubits in one error correction cycle, and
one is the others reference at the PSB measurement. (a) The idle configuration
is a starting point of all algorithms. All qubits are spread out and well sepa-
rated. (b) The triangle configurations (here we have a rightward triangle, see
the frame in the figure) is assumed when the proximity of measurement qubits
to data qubits is required. This is the case for the parity measurements in er-
ror correction cycles. (c) The measurement configuration is formed to bring 𝑋-
and 𝑍-measurement qubits close to each other, such that a row can be selected
in which the measurement is performed. (d) Certain measurement qubits are
brought to adjacent dots in order to perform the PSB-based measurement and
readout in a line-by-line fashion (encircled qubits). Since the rest of the grid is in
the measurement configuration, individual control over the barrier lines and
one potential is guaranteed without spurious measurements. (e) The (right)
square configuration is a mid-way point between the idle and (right) triangle
configuration. Going through the square configuration keeps the shuttling al-
gorithm manageable, as not more that 2 different heights of the dot potentials
are employed. One of the characteristic squares is framed in the figure.

182 Chapter 4. Quantum error correction in Crossbar architectures

4.4.4 Some useful grid configurations

There are several configurations of the BOARDSTATE that show up fre-
quently enough (for instance in the error correction codes in Section 4.5.3)
to merit some special attention. In this section, we list these specific con-
figurations and show how to construct them. Note that this is done using
Figure 4.6, in which the red (blue) qubits will later serve as measurement
qubits for the 𝑍−type (𝑋−type) stabilizer tiles of the surface code, while
the dark qubits are part of the memory.

4.4.4.1 Idle configuration

The idle configuration is the configuration in which the QDP is initial-
ized. As shown in Figure 4.6, its BOARDSTATE matrix describes a checker-
board pattern. In this configuration no two-qubit gates can be applied be-
tween any qubit pair but since it minimizes unwanted crosstalk between
qubits [18], it is good practice to bring the system back to this configu-
ration when not performing any operations. For this reason we consider
the idle configuration to be the starting point for the construction of all
other configurations.

4.4.4.2 Square configuration

As seen in Figure 4.6(e), the square configurations consist of alternating
filled and unfilled 2×2 blocks of dots. The so-called right square configu-
ration can be reached from the idle configuration by a shuttling operation
HS[L] with the set L being

L = {(𝑖, 𝑗, 1) ‖ 𝑖
2
= 1, 𝑗

2
= 1, 𝑖+ 𝑗

4
= 2}

∪ {(𝑖, 𝑗,−1) ‖ 𝑖
2
= 0, 𝑗

2
= 1, 𝑖+ 𝑗

4
= 3}. (4.9)

Note that this operation only takes a single time-step, and the square
configuration is shown in Figure 4.6(e). The right square configuration is
characterized by 𝑍-measurement qubits being in the left corner of every
square. Another flavor of this configuration is the left square configura-
tion, where the 𝑍-measurement qubits are in the upper right corner, and
the 𝑋-measurement qubits in the left in the left. The left square configu-
ration can be reached from the idle configuration by a shuttling operation
HS[L] with the set L being

4.4 Parallel operation of a crossbar architecture 183

L = {(𝑖, 𝑗, 1) ‖ 𝑖
2
= 0, 𝑗

2
= 0, 𝑖+ 𝑗

4
= 2}

∪ {(𝑖, 𝑗,−1) ‖ 𝑖
2
= 1, 𝑗

2
= 0, 𝑖+ 𝑗

4
= 1}. (4.10)

These configurations are used as an intermediate step for us to reach
the triangle configurations.

4.4.4.3 Measurement Configuration

The measurement configuration can be reached from the idle configura-
tion in three time-steps by the following sequence of parallel shuttling
operations.

HS[A], A = {(𝑖, 𝑗,−1), (𝑖− 1, 𝑗 − 1, 1) | 𝑖 4
= 1, 𝑗

4
= 2},

HS[B], B = {(𝑖− 1, 𝑗 − 1, 1) ‖ 𝑖
4
= 3, 𝑗

4
= 1},

VS[C], C = {(𝑖, 𝑗,−1) ‖ 𝑖
2
= 0, 𝑗

2
= 1, 𝑖+ 𝑗

4
= 1}. (4.11)

This configuration can be seen in Figure 4.6(d) and it is an intermediate
state in the measurement process in which the blue qubits are read out
against the red ones. How this measurement protocol works in detail is
described in Section 4.4.3.

4.4.4.4 Triangle configurations

In order to collect the parity of memory qubits in the error correction cy-
cles, we need to align the measurement qubits with them, where it hinges
on the two-qubit gates whether the alignment is horizontal or vertical.
This is reflected in the use of triangle configurations. There are two trian-
gle configurations that can be reached in a single parallel shuttling step
from the right square configuration. The first one, seen in Figure 4.6(b),
is called the rightward triangle configuration. It can be reached from the
square configuration by the grid operation HS[L] with the set L being

L = {(𝑖, 𝑗,−1) ‖ 𝑖
2
= 1, 𝑗

2
= 1, 𝑖+ 𝑗

4
= 3}, (4.12)

which does as much as to shuttle the right memory qubit of every square
(framed squares in Figure 4.6(e)) to the empty dot on its right. In this con-
figuration, we are able to perform high-fidelity two-qubit gates between

184 Chapter 4. Quantum error correction in Crossbar architectures

measurement and memory qubits in every triangle. In order to reach the
neighboring pair of memory qubits, we start from the left square config-
uration horizontally shuttling the left memory qubit out of every square.
Operationally, we would perform HS[L] with

L = {(𝑖, 𝑗, 1) ‖ 𝑖
2
= 0, 𝑗

2
= 0, 𝑖+ 𝑗

4
= 2}. (4.13)

Note again that these parallel shuttling operations can be performed in
a single time step. From these configurations the idle configuration can
also be reached in a single time step. In the next section, these configura-
tions will feature prominently in the mapping of several quantum error
correction codes to the QDP architecture.

4.5 Error correction codes

In this section, we will apply the techniques we developed in the pre-
vious sections to map topological quantum error correction codes to the
QDP.

4.5.1 Surface code

The planar surface code is well-studied to the point were we have an ex-
act idea of how it should be implemented. In its rotated version, shown in
Figure 1.2, one code patch contains 2𝑑2 − 1 physical qubits encoding and
maintaining a single logical qubit with distance 𝑑.Here, 𝑑2 qubits are part
of the memory and additional 𝑑2 − 1 qubits are used for syndrome mea-
surements. All of them are placed onto rhombus-shaped patch of square
lattice, with ears at its boundaries. In the bulk, a checkerboard tiling of
stabilizers, in which each plaquette engulf 5 qubits, is found – see Figure
4.7(a). Adjacent plaquettes share 2 memory qubits each, and each tile’s
central qubit is used for the measurement. In an error correction cycle,
it collects the parity of the tile’s memory qubits with CNOT-gates [80,
81, 96, 97], see Figure 4.7(b) and (c). Whether the parity is collected in
the Hadamard or computational basis, meaning whether the stabilizer
on those four qubits is 𝑍⊗4 or 𝑋⊗4, is dependent on the shade of the
plaquette on the checkerboard. In all figures of this thesis depicting sur-
face code, we have chosen to distinguish 𝑍-type stabilizers with a darker
shade from white 𝑋-type stabilizers. Like in the previous chapter, we as-
sume that gate operations can be performed in parallel as long as they do

4.5 Error correction codes 185

not share any resources. This leads the to a constant runtime for all par-
ity collections. The measurement qubits, which now carry all syndrome
information, are then read out. After being decoded, possible errors can
be rectified and the error correction cycle concluded. Note that it is as-
sumed that readout and correction are assumed to happen in single time
steps, such that the entire circle has a runtime of 𝑂(1).

Unfortunately, we cannot hope to run surface code cycles in the same
manner on the QDP, not even if we neglect the issues of parallel oper-
ation and spurious crossings. As it turns out, our idea of how to run
the code makes strong assumptions on the capabilities of the device that
cannot be matched with the QDP: although CNOT-gates are possible to
all adjacent qubits in the QDP, we have already argued to refrain from
the use of CPHASE⋆ gates for the sake of fidelity. This renders some of
the two-qubit gates in Figure 4.7(b) and (c) nonlocal. Moreover, we re-
quire an additional qubit to be present in each stabilizer tile, to serve the
measurement qubit as a reference in the syndrome extraction. Also, the
readout procedure requires an empty dot along the barrier gate, which
raises questions about the packing density of the qubits. To remedy all
those issues, we present a revised version of the surface code cycles in
Section 4.5.3.

4.5.2 2D color codes

Another important class of planar topological codes are the 2D color
codes [83]. These codes are defined on 3-colorable tilings of the Euclidean
plane. Two such tilings are featured in the so-called 6.6.6. and 4.8.8.
codes, where hexagonal and square-octagonal shapes occur respectively.
Similar to Figure 1.2, we can think of the memory qubits as sitting at the
corners of those tiles, but the difference is here that every tile hosts two
stabilizers, namely one in which 𝑋-operators are applied to their corners
and another in which the same operators are replaced by 𝑍. With suit-
able boundary conditions this construction encodes a single logical qubit
with a distance 𝑑 using an amount of 𝑑2 physical qubits. See Figure 4.8
for examples of the 6.6.6. and 4.8.8. color codes of distance five, in which
tiles and qubits are sketched. Note that, similar to Figure 1.2(b) and (c),
these pictures do not include measurement qubits. Planar color codes
have lower thresholds than the planar surface code but are more versa-
tile when it comes to fault-tolerant gates, as the support the full Clifford

186 Chapter 4. Quantum error correction in Crossbar architectures

(a)

A B

5

2

6

1

4

3

(b)

(c)

|0⟩A 𝑍

1 ∙
2 ∙
5 ∙
6 ∙

|+⟩𝐵 ∙ ∙ ∙ ∙ 𝑋

2
3
4
5

Figure 4.7. Stabilizer measurements in the surface code. (a) Distance-five code
with some labeled qubits. Here, A and B label measurement qubits, while mem-
ory qubits carry numbers. The dark plaquettes indicate that the qubits at its
corners are involved in a 𝑋⊗4 stabilizer, where the syndrome is read out on the
measurement qubit in its center. White plaquettes indicate regular parity mea-
surements. (b) & (c) 𝑍− and 𝑋-stabilizer circuits [80, 81, 96, 97], with the qubits
from panel (a).

4.5 Error correction codes 187

Figure 4.8. Distance 5 examples of the 4.8.8. (first from left) and 6.6.6. (third
from left) color codes [83] and their deformed versions (second from left and
fourth from left respectively). The vertices correspond to memory qubits and
every colored face corresponds to both an 𝑋- and a 𝑍-stabilizer to be measured.
These stabilizers can be measured by using weight 4, 6 and 8 versions of the
circuits shown in Figure 4.7. The deformation of the codes does not change the
code properties at all. They are a visual guide that facilitates the mapping the
crossbar grid in Section 4.5.4.

group as a transversal set. In the next section we will focus on mapping
these codes to the QDP using the concepts introduced in Section 4.4.

4.5.3 Surface code mapping

We now describe a protocol that maps the surface code on the architec-
ture described in Section 4.3. The surface code layout has a straight-
forward mapping that places the memory qubits into even numbered
columns, while 𝑋- and 𝑍-measurement qubits can be found in the odd
ones. This means we have single-qubit control over the set of all mem-
ory qubits and the set of all measurement qubits separately. We be-
gin by changing the circuits performing the 𝑋- and 𝑍-stabilizer mea-
surements to work with

√
SWAP rather than CNOT. We can emulate a

188 Chapter 4. Quantum error correction in Crossbar architectures

|0⟩𝐴 𝑆† � 𝑍 � 𝑆† � 𝑍 � 𝑆† � 𝑍 � 𝑆† � 𝑍 � 𝑆† 𝑍

|𝑞1⟩ 𝑍𝐻𝑆† � � 𝑍𝐻𝑆†

|𝑞2⟩ 𝑍𝐻𝑆† � � 𝑍𝐻𝑆†

|𝑞3⟩ 𝑍𝐻𝑆† � � 𝑍𝐻𝑆†

|𝑞4⟩ 𝑍𝐻𝑆† � � 𝑍𝐻𝑆†

Figure 4.9. 𝑍-stabilizer measurement circuit using the
√

SWAP as the main two-
qubit gate. The 𝑍- and 𝑆-rotations can be performed by the timing procedure
described in Section 4.3.3.3.

CNOT gate by using two
√

SWAP gates interspersed with a 𝑍-gate on
the control plus some single qubit gates. As described in Section 4.3.3.5
the 𝑍- and 𝑆-gates on the measurement qubit can performed by waiting,
which means they can be performed locally while the single qubit opera-
tions on the memory qubits can be performed in parallel using the global
unitary rotations described in Section 4.3.3.3. The 𝑋- and 𝑍-circuits us-
ing

√
SWAP are shown in Figure 4.9.

We will split up the quantum error correction cycle by first measur-
ing all 𝑋-type stabilizers (the 𝑋-cycle) and then all 𝑍-type stabilizers (𝑍-
cycle). This means we can use the idle 𝑍- (𝑋-) measurement qubits as
references for the 𝑋- (𝑍-) cycle measurements. For convenience we in-
cluded a depiction of the surface code 𝑍-cycle unit cell in Figure 4.10(right).
Note that all panels in that figure depict the smallest possible building
block of a code patch, not the patch itself. The qubit labeled ‘A’ is go-
ing to be measured in the 𝑍-cycle. The numbered qubits are part of the
memory and the qubit labeled ‘B’ is used as a reference for ‘A’ qubit.
It is also the measurement qubit for the 𝑋-cycle. We now describe the
steps needed to perform the 𝑍-cycle in parallel on the entire surface code
sheet. For convenience we ignore the surface code boundary conditions
since these can be easily included. The 𝑋-cycle is equivalent up to differ-
ent single qubit gates (𝑋𝑆† instead of 𝑍𝐻𝑆† on the memory qubits, 𝐻𝑆†

instead of 𝑆† on the measurement qubits) and shifting every operation 2
steps up, e.g. setting 𝑖 ↦→ 𝑖+ 2 in row indices.
∙

4.5 Error correction codes 189

10

9

D

8

7

6

5

A

B

C

1

2

3

4

4.8.8.

6

5

4

A

B

1

2

3

6.6.6.

4

3

A

1

2

surface code

B

Figure 4.10. Unit cells of topological codes in the QDP. From left to right: de-
formed 4.8.8. color code, deformed 6.6.6. color code and surface code. Darkened
circles correspond to qubits, where qubits used for measurement are labeled
with letters, while memory qubits bear numbers. The shaded and colored pla-
quettes denote stabilizer tiles. Note that the depicted cells do not encode logical
qubits, but are the smallest possible building blocks of a code patch. 4.8.8. code:
The qubit labeled ‘A’ is the is measured for the octagon (now a rectangle) stabi-
lizer, while the qubit labeled ‘D’ has the same role for the square sub-cell. The
qubit labeled ‘B’ is used to read out the qubit ‘D’ and the qubit labeled ‘C’ is
used to read out the measurement qubit for the octagon cell directly below the
square cell (not pictured). 6.6.6. code: The qubit labeled ‘A’ is measurement
qubit of that tile while the qubit labeled ‘B’ is used as a reference to read out the
‘A’ qubit for the unit cell directly to the bottom left (not pictured). Surface code:
The qubit labeled ‘A’ is the measurement qubit of the for the 𝑍-cycle stabilizer
using ‘B’ as a reference. Their roles are reversed in the 𝑋-cycle.

190 Chapter 4. Quantum error correction in Crossbar architectures

The surface code 𝑍-cycle

1. Initialize in the idle configuration.

2. Apply 𝑍𝐻𝑆† to all qubits in ℛ (memory) and 𝑆† to qubits in ℬ.

3. Go to right square configuration.

4. Go to rightward triangle configuration.

5. Perform CNOT between qubits A and 1 by performing VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 1, 𝑗

2
= 0, 𝑖+ 𝑗

4
= 3} .

6. Perform CNOT between qubits A and 2 by performing VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 0, 𝑗

2
= 0, 𝑖+ 𝑗

4
= 2} .

7. Go to idle configuration.

8. Go to left square configuration.

9. Go to leftward triangle configuration.

10. Perform CNOT between qubits A and 3 by performing VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 1, 𝑗

2
= 0, 𝑖+ 𝑗

4
= 1} .

11. Perform CNOT between qubits A and 4 by performing VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 0, 𝑗

2
= 0, 𝑖+ 𝑗

4
= 0} .

12. Go to idle configuration

13. Apply 𝑍𝐻𝑆† to all qubits in ℛ and 𝑆† to qubits in ℬ.

14. Apply measurement qubit correction step for qubit B as described
in Section 4.4.1.1.

15. Go to measurement configuration.

16. Perform PSB measurement process as described in Section 4.4.3 us-
ing qubit B as reference to qubit A.

17. Go to idle configuration.

∙

4.5 Error correction codes 191

4.5.4 Color code mapping

The mapping of the color codes is largely analogous to that of the sur-
face code. We begin with the 6.6.6. color code as it is easiest to map.
First, the tiling on which the color code is must be deformed such that it
is more amenable to the square grid structure of the QDP. This is fairly
straightforward as can be seen from the 𝑑 = 5 example in Figure 4.8. In
the deformed tiling it is clear how to map the code to the QDP. We once
again place all memory qubits in the even columns and all measurement
qubits in the odd columns. This places the unit ‘hexagon’ seen in the de-
formed code into a patch of 3× 5 dots on the QDP (see Figure 4.10 (right)
for this unit tile). It also puts all memory qubits in ℛ and 2 extra qubits
into ℬ, both of which could be used as measurement qubit in the stabi-
lizer circuit. We will always choose the top qubit (‘A’) of these two in
the hexagon unit cell as the measurement qubit for the error correction
cycles. The extra (bottom) qubit (‘B’) in the unit cell will be used as a
reference for the unit hexagon to its direct left. This has the advantage of
making the readout process independent of the measurement results of
the previous cycles (as was the case in the surface code). Note also that
all measurement qubits are positioned along diagonal lines on the QDP
grid. This makes the quantum error correction cycle very analogous to
the surface code. We once again must split up the 𝑋- and 𝑍-cycles (again
due to the limited single qubit rotations possible). Below we present the
steps needed to perform the 𝑍-cycle (which now measures a weight 6
operator). The 𝑋-cycle is identical up to differing single qubit rotations
on the memory qubits.
∙

The 6.6.6 color code 𝑍-cycle

1. Apply Steps 1 to 11 in the surface code 𝑍-cycle to perform CNOT gates
between qubits A and the memory qubits 1, 2, 5, 6 in the unit hexagon,
ending in the idle configuration.

2. Go to idle configuration but with all even columns up and all odd
columns down by performing VS[L] with

L = {(𝑖, 𝑗, 1) ‖ 𝑖
2
= 0, 𝑗

2
= 0} ∪ {(𝑖, 𝑗,−1) ‖ 𝑖

2
= 1, 𝑗

2
= 1} .

192 Chapter 4. Quantum error correction in Crossbar architectures

3. Go to right square configuration.

4. Go to rightward triangle configuration.

5. Perform CNOT between qubits A and 3 by performing VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 1, 𝑗

2
= 0, 𝑖+ 𝑗

4
= 1} .

6. Go to idle configuration.

7. Go to left square configuration.

8. Go to leftward triangle configuration.

9. Perform CNOT by performing between qubits A and 4 by VC[L]
with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 0, 𝑗

2
= 0, 𝑖+ 𝑗

4
= 2} .

10. Go to idle configuration.

11. Invert Step 6 by performing VS[L] with

L = {(𝑖, 𝑗,−1) ‖ 𝑖
2
= 0, 𝑗

2
= 0} ∪ {(𝑖, 𝑗, 1) ‖ 𝑖

2
= 1, 𝑗

2
= 1} .

12. Apply 𝑍𝐻𝑆† to all qubits in ℛ (memory) and 𝑆† to qubits in ℬ.

13. Go to measurement configuration.

14. Perform PSB measurement process as described in Section 4.4.3 us-
ing qubit B as reference to A in the unit cell to the right.

15. Go to idle configuration.

∙

Next up is the 4.8.8. color code. We deform the tiling on which the code
is defined similarly to the 6.6.6. code. The deformed 4.8.8. code lattice
can be seen in Figure 4.10 (left). We again place the memory qubits into
ℛ and the measurement qubits into the set ℬ. See Figure 4.10 for a lay-
out of the unit cell of the 4.8.8. code on the QDP. Note that holds two
different stabilizers. The square tile has one qubit (qubit ‘D’ in Figure
4.10) in ℬ, which we will use for the measurement. The deformed oc-
tagon tile has three qubits in ℬ. We will use the topmost qubit (‘A’) as the
measurement qubit for the tile while the middle one (qubit ‘B’) serves

4.5 Error correction codes 193

as reference for the square tile measurement directly to its left. The bot-
tommost qubit (‘C’) will be used to as a reference of the octagon directly
below the square tile (not pictured). Because the structure of the 4.8.8.
code is less amenable to direct mapping the stepping process is a little
more involved. We will again only write down the 𝑍-cycle with the 𝑋-
cycle being the same up to initial and final single-qubit rotations on the
memory qubits.
∙

The 4.8.8 color code 𝑍-cycle

1. Initialize in the idle configuration.

2. Apply 𝑍𝐻𝑆† to all qubits in ℛ (memory) and 𝑆† to qubits in ℬ.

3. Go to right square configuration.

4. Go to rightward triangle configuration.

5. Perform CNOT between qubits A and 1 and D and 7 by performing
VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 1, 𝑗

2
= 0, 𝑖+ 𝑗

16
= 3 ∨ 7} .

6. Perform CNOT between qubits A and 2 as well as D and 6 by per-
forming VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 0, 𝑗

2
= 0, 𝑖+ 𝑗

16
= 2 ∨ 6} .

7. Go to left square configuration.

8. Go to left triangle configuration.

9. Perform CNOT between qubits A and 8 and D and 9 by performing
VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 1, 𝑗

2
= 0, 𝑖+ 𝑗

16
= 1 ∨ 5} .

10. Perform CNOT between qubits A and 7 and d and 10 by performing
VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 0, 𝑗

2
= 0, 𝑖+ 𝑗

16
= 0 ∨ 4} .

194 Chapter 4. Quantum error correction in Crossbar architectures

11. Go to idle configuration.
12. Go to idle configuration but with all even columns up and all odd

columns down by performing VS[L] with

L = {(𝑖, 𝑗, 1) ‖ 𝑖
2
= 0, 𝑗

2
= 0} ∪ {(𝑖, 𝑗,−1) ‖ 𝑖

2
= 1, 𝑗

2
= 1} .

13. Go to right square configuration.
14. Go to rightward triangle configuration.
15. Perform CNOT between qubits A and 3 by performing VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 1, 𝑗

2
= 0, 𝑖+ 𝑗

16
= 3} .

16. Perform CNOT between qubits A and 4 by performing VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 0, 𝑗

2
= 0, 𝑖+ 𝑗

16
= 2} .

17. Go to idle configuration.
18. Go to left square configuration.
19. Go to leftward triangle configuration.
20. Perform CNOT between qubits A and 6 by performing VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 1, 𝑗

2
= 0, 𝑖+ 𝑗

16
= 1} .

21. Perform CNOT between qubits A and 5 by performing VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 0, 𝑗

2
= 0, 𝑖+ 𝑗

16
= 0} .

22. Go to idle configuration.
23. Invert Step 6 by performing VS[L] with

L = {(𝑖, 𝑗,−1) ‖ 𝑖
2
= 0, 𝑗

2
= 0} ∪ {(𝑖, 𝑗, 1) ‖ 𝑖

2
= 1, 𝑗

2
= 1} .

24. Repeat Steps 2 - 23 but shifting 𝑖 ↦→ 𝑖+ 2 and 𝑗 ↦→ 𝑗 + 1.
25. Apply 𝑍𝐻𝑆† to all qubits in ℛ and 𝑆† to qubits in ℬ.
26. Go to measurement configuration.
27. Perform PSB measurement process as described in Section 4.4.3 us-

ing qubit B (unit cell to the right) as reference for qubit A and using
qubit C as reference for qubit D.

28. Go to idle configuration.

∙

4.6 Discussion 195

4.6 Discussion

In this section, we evaluate the mapping of the error correction codes
described above and argue numerically that it is possible to attain the er-
ror suppression needed for practical universal quantum computing. We
will do this exercise for the planar surface code, as it is the most popu-
lar and best understood error correction code. The description given in
Section 4.5.3 assumes that all operations can be implemented perfectly
in parallel. In practice though, for the reasons outlined in Section 4.4
many operations that can in principle be done in parallel will be done
in a line-by-line fashion. Note that for surface code in an array like this,
the side lengths of a quadratic grid scale linearly with the code distance
as 𝑁 = 2𝑑 + 1. This means that the time performing a surface code cy-
cle (and thus the number of errors affecting a logical qubit) rises linearly
with the code distance and hence this mapping of the surface code will
not exhibit an error correction threshold. As a consequence, the error
probability of the encoded qubit (the logical error probability) cannot be
made arbitrarily small but rather will exhibit a minimum for some par-
ticular code distance after which it will start rising with increasing code
distance. Also, the code distance characterizing the minimum will de-
pend nontrivially on the error probability of the code qubits. This is not
a very satisfactory situation from a theoretical point of view, but being
pragmatic we are not so much interested in asymptotic statements but
rather in whether the logical error probability can be made small enough
to allow for realistic computation [97]. As a target logical error prob-
ability we choose 𝑃𝐿 = 10−20 as at this point the computation is essen-
tially error free (for comparison, a modern classical processor has an error
probability around 10−19 [84]). We will use this number as a benchmark
to assess if and for what error parameters the surface code mapping in
the QDP yields a “practical” logical qubit. In order to assess this we must
consider in more detail the sources of error afflicting the surface code op-
eration on the QDP. We will begin by detailing how the surface code is
likely to be implemented in practice on the QDP and afterwards consider
how this impacts the error behavior of the logical surface code qubit. We
will distinguish two classes of error sources: operation induced errors
and decoherence induced errors.

196 Chapter 4. Quantum error correction in Crossbar architectures

4.6.1 Practical implementation of the surface code

Here we present an mapping of the surface code based on the one pre-
sented in Section 4.5.3 but differing in the amount of time-steps used
to perform certain operations. In particular, we choose to do all shuttle
and two-qubit-gate operations in a line-by-line manner. This is a specific
choice which we expect will work well but variations of this protocol are
certainly possible. As mentioned above, this will mean that the time an
error correction cycle takes will scale with the code distance. This means
it is important to keep track of the time needed to perform a cycle. We
will do this while describing line-by-line operation of the surface code
cycle in greater detail below.

In practice, we will perform the protocol in Section 4.5.3 in the following
manner. We begin by performing Step 1 and 2 for all qubits. Then we ap-
ply Steps 3− 7 but only in rows 0 and 1. Note that after performing these
steps on only the first two columns we are back in the idle configuration.
Now we repeat the previous for rows 2 and 3 and so forth until we reach
the end of the grid. Having done these operations we are at the end of
Step 7 (go to idle configuration) and the grid is the idle configuration. We
now repeat the same process to perform Step 8−12 of Section 4.5.3. Next
we perform Step 13 which can be done globally. Hereafter we perform
step 14 (measurement qubit correction) in standard line-by-line fashion.
Note that even in an ideal implementation Step 14 has to be done line-
by-line in the worst case. After this we perform Step 15 (go to measure-
ment configuration) in a line-by line manner and similarly for Steps 16
(PSB/readout procedure) and 17 (go to idle configuration).

Note that in this line-by-line implementation there is a slight asymmetry
between the 𝑋- and 𝑍-cycles. In Table 4.4, we count the number of time
steps that accumulate for every operation type in each program step in
Section 4.5.3. We also calculate the number of time steps (per operation
type) needed for the full surface code error correction cycle.

4.6.2 Decoherence induced errors

Decoherence induced errors are introduced into the computation by un-
controlled physical processes in the underlying system. The effect of
these processes is called decoherence. Decoherence happens even if a

4.6 Discussion 197

Step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
√

SWAP gates 2𝑑 2𝑑 2𝑑 2𝑑

𝑍-rotations 2𝑑 2𝑑 2𝑑 𝑑

Shuttlings 𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 5𝑑 2𝑑 3𝑑

Global rotations 1 1 1

Measurements 𝑑

Average Total
√

SWAP gates 8𝑑 16𝑑
𝑍-rotations 7𝑑 14𝑑
Shuttlings 16𝑑 32𝑑

Global rotations 3 6
Measurements 𝑑 2𝑑

Table 4.4. Time-step count per operation type and program step for the line-
by-line implementation of the surface code cycle described in Section 4.5.3. The
number of time-steps is quoted in terms of the code distance 𝑑. This table does
not specify the exact order in which the operations happen, see Section 4.6.1 for
an explanation of the time flow. Note that the table shows the average of the
time-step counts for the 𝑋- and 𝑍-cycles. The actual count for the individual 𝑋-
and 𝑍-cycles is slightly different due to the boundary conditions of the surface
code. Table cells that are left empty signify zero entries.

qubit is not being operated upon and the amount of decoherence happen-
ing during a computation scales with the time that computation takes.
Therefore, to account for decoherence induced errors during the error
correction cycle we need to compute how long an error correction cycle
takes. Generally any operation on the QDP takes a certain amount of
time denoted by 𝜏 . We distinguish again five different operations: (𝑠𝑤)
two-qubit

√
SWAP gates, (𝑠ℎ) qubit shuttle operations, (𝑧) single qubit 𝑍-

gates by waiting, (𝑔𝑙) global single qubit operations and (𝑚) qubit mea-
surements. The time they take we will denote by 𝜏𝑠𝑤, 𝜏𝑠ℎ, 𝜏𝑧, 𝜏𝑔𝑙 and 𝜏𝑚
respectively. In Table 4.4 we count the total time taken by the surface
code error correction cycle using the mapping described in Sections 4.5.3
and 4.6.1. Table 4.5 summarizes the total number of time-steps for every
gate type for a full surface code error correction cycle. Following that
table, the total time 𝜏total(𝑑) as a function of the code distance 𝑑 is given
by

𝜏total(𝑑) = 16𝑑 𝜏𝑠𝑤 + 32𝑑 𝜏𝑠ℎ + 14𝑑 𝜏𝑧 + 6 𝜏𝑔𝑙 + 2𝑑 𝜏𝑚. (4.14)

This total time can be connected to an error probability by invoking the
mean decoherence time of the qubits in the system, the so called 𝑇2 time [88,

198 Chapter 4. Quantum error correction in Crossbar architectures

Symbol Operation
Time-steps
per cycle

𝜏𝑠𝑤
√

SWAP gates 16𝑑
𝜏𝑠ℎ Shuttlings 32𝑑
𝜏𝑧 𝑍 rotations by waiting 14𝑑
𝜏𝑔𝑙 Global qubit rotations 6
𝜏𝑚 Measurements 2𝑑

Table 4.5. Time steps required for one error correction cycle of surface code.

98]. We neglect the influence of 𝑇1 in this calculation as it is typically
much larger than 𝑇2 in silicon spin qubits [18, 99]). We can find the deco-
herence induced error probability 𝑃𝑑𝑒𝑐 [88, Page 384] as

𝑃𝑑𝑒𝑐(𝑑) =
𝜏total(𝑑)

2𝑇2
. (4.15)

Next we investigate operation induced errors. These will typically be
larger than decoherence induced errors but will not scale with the dis-
tance of the code.

4.6.3 Operation induced errors

Operation induced errors are caused by imperfect application of quan-
tum operations to the qubit states. According to the five types of op-
erations, we will denote the probability of an error afflicting them by
𝑃𝑠𝑤, 𝑃𝑠ℎ, 𝑃𝑧, 𝑃𝑔𝑙 and 𝑃𝑚 respectively. In Table 4.6 we list the total num-
ber of operations of a given type that memory and measurement qubits
participate in over the course of a surface code cycle. In Section 4.8 we
give a more detailed per-step overview of the operations performed on
memory and measurement qubits. For clarity we have chosen qubit 1 in
Figure 4.10 (right) as a representative of the memory qubits and qubit A
as a representative of the measurement qubits. Other qubits in the code
might have a different ordering of operations but their counts will be the
same, except for the qubits located at the boundary of the code patch
for which the given counts are an upper bound. For each operation we
also calculate the average number of this times it involves memory and
measurement qubits. This average number will serve as our measure of
operationally induced error.

4.6 Discussion 199

Memory qubit 𝑍-measurement qubit
Average

𝑍-cycle 𝑋-cycle Total 𝑍-cycle 𝑋-cycle Total√
SWAP gates 4 4 8 8 0 8 8

𝑍-rotations 0 0 0 7 0 7 3.5

Shuttlings 2 4 6 10 4 14 10

Global rotations 2 2 4 2 3 5 4.5

Measurements 0 0 0 1 1 2 1

Table 4.6. This table lists the total number of operations per qubit type, over
the course of a surface code cycle. In Section 4.8 we give a more detailed per-
step overview of the operations performed. For clarity we have chosen qubit 1
in Figure 4.10 (right) as a representative of the memory qubits and qubit A as
representative of the measurement qubits..

4.6.4 Surface code logical error probability

By tallying up the contributions from operational and decoherence in-
duced errors we can construct a measure for the total error probability
per error correction cycle experienced by all physical qubits that make
up the code. Note that this a rather crude model that disregards possi-
ble influences from inter-qubit correlated errors and time-like correlated
errors. Nevertheless it serves as a useful first approximation to the per-
formance of the surface code on the QDP. We define the average per qubit
per cycle error probability 𝑃tot as

𝑃tot(𝑑) = 8𝑃𝑠𝑤 + 3.5𝑃𝑠ℎ + 10𝑃𝑧 + 4.5𝑃𝑔𝑙 + 𝑃𝑚 + 𝑃𝑑𝑒𝑐(𝑑). (4.16)

Note that this quantity depends linearly on the code distance 𝑑. We can
plug this total per cycle error probability 𝑃𝑡𝑜𝑡 into an empirical equation
for the logical error probability 𝑃𝐿 derived in [97]:

𝑃𝐿 = 0.03

(︂
𝑃𝑡𝑜𝑡(𝑑)

8𝑃𝑡ℎ

)︂ 𝑑+1
2

, (4.17)

where 𝑃𝑡ℎ is the per-step fault-tolerance threshold of the surface code,
which we take to be 𝑃𝑡ℎ = 0.0057 following the result in [97]. The factor
of 8 is inserted to account for the fact that the empirical relation derived
in [97] is between the physical per-step error rate and the logical per cy-
cle error rate and the protocol analyzed in [97] requires 8 time-steps per
surface code error correction cycle. This is an approximation but it will
serve our purposes of getting a basic initial estimate of the logical error

200 Chapter 4. Quantum error correction in Crossbar architectures

Operation Error probability Time
Two-qubit

√
SWAP gate 𝑃𝑠𝑤 = 10−3 𝜏𝑠𝑤 = 20ns

Coherent shuttle 𝑃𝑠ℎ = 10−3 𝜏𝑠ℎ = 10ns
𝑍-rotation by waiting 𝑃𝑧 = 10−3 𝜏𝑧 = 100ns
Global qubit rotation 𝑃𝑔𝑙 = 10−3 𝜏𝑔𝑙 = 1000ns

Measurement 𝑃𝑚 = 10−3 𝜏𝑚 = 100ns

Table 4.7. Error probabilities and times for the five elementary operations of the
QDP.

rate. In Table 4.7, we quote error probabilities and operation times that
will be plugged into (4.16). These numbers are projections from [18] and
references therein. To convert the operation times into decoherence in-
duced error we use the estimated 𝑇2 time of quantum dot spin qubits in
28Si quoted as 𝑇2 = 109ns [18, 99] and (4.15). Plugging these numbers
into (4.16) we get the following linear function of the code distance

𝑃𝑡𝑜𝑡 = 2.7× 10−2 + 2.8𝑑× 10−5 (4.18)

which we can plug into the empirical model (4.17). In Figure 4.11 we plot
the logical error probability 𝑃𝐿 versus code distance. Note that for the ex-
perimental numbers provided the practical quantum computing bench-
marking log(𝑃𝐿) = −20 is reached for a code distance of 𝑑 = 37. The
maximal code distance for the experimental parameters is 𝑑 = 155 for
which the logarithmical logical error probability reaches log(𝑃𝐿) = −41,
after which it starts increasing again. We also plot what would happen if
we had the power to operate the QDP (with quoted device parameters)
completely in parallel. The physical error rate of the latter scenario is cal-
culated setting 𝑑 = 1 in (4.18). Note that the difference between parallel
and crossbar style operation is not that big, the parallel version reaches
𝑃𝐿 = 10−20 for 𝑑 = 31. This rough model provides some quantitative
justification for the implementation of planar error correction codes in
the QDP even in the absence of the ability to arbitrarily suppress logi-
cal errors. Note also that, due to the long coherence times of the QDP
spin qubits [18, 99], the dominant terms in the expression for the total
error probability 𝑃𝑡𝑜𝑡 are those associated with operation induced errors.
This provides justification for the line-by-line application of two-qubit
gates discussed in Section 4.4.2, which takes a longer time to perform but
improves gate quality. It also means that long coherence times and/or

4.7 Conclusion 201

fast operation times are likely critical to the success of a crossbar based
scheme. This concludes our discussion of the QDP mapping of the sur-
face code. A similar exercise can be done for the 6.6.6. and 4.8.8. color
codes but due to their lower thresholds [100], the results will likely be
less positive for current experimental parameters.

4.7 Conclusion

We analyzed the architecture presented in [18], focusing on its crossbar
control system. Building on this analysis we presented procedures for
mapping the planar surface code and the 6.6.6. and 4.8.8. color codes.
Because the line-by-line operation of the crossbar architecture means the
noise in a single error correction cycle scales with the distance, it is not
possible to arbitrarily suppress the logical error rate by increasing the
code distance. Instead there will be some “optimal” code distance for
which the logical error rate is the lowest. Using numbers for [18] and an
empirical model taken from [97] we analyzed the logical error behavior
of the surface code mapping and found that, for current experimental
numbers, it appears plausible to achieve logical error probabilities below
𝑃𝑙𝑜𝑔 = 10−20, making practical quantum computation possible. How-
ever, we strongly stress that this is a rather crude estimate and a more de-
tailed answer would have to take into account the details of the dominant
error processes in quantum dot qubits. It must also take into account that
while it is possible to achieve certain low noise gates and good coherence
times in quantum dots qubits in isolation this does not necessarily mean
they will be practically achievable in the current QDP design. A future
research direction would be to perform much more detailed simulations
of this crossbar system, perhaps with input from future experiments. In
such a simulation the effect of correlated errors (which might feasibly ap-
pear in a crossbar architecture) could be investigated.

Another possible research direction would be to use the currently devel-
oped machinery to map more exotic quantum error correction codes. A
first step in this direction would be the implementation of variants of
the surface code with more resistance to biased noise [101, 102]. Due
to the possibility of qubit shuttling, also codes with long distance stabi-
lizers could in principle be implemented. Codes such as the 3D gauge
color codes might be prime candidates for this kind of treatment. How-

202 Chapter 4. Quantum error correction in Crossbar architectures

25 50 75 100
Code Distance

-40

-30

-20

-10

0

lo
g(

 L
og

ica
l E

rro
r)

crossbar control
parallel control
10 20 logical error

Figure 4.11. Plot of logical error probability versus code distance for the empiri-
cal model given in (4.17) with experimental parameters given in Table 4.7. Note
that the logical error probability for crossbar operation goes below 𝑃𝐿 = 10−20

for 𝑑 = 37. This is only slightly slower that parallel operation, which reaches
𝑃𝐿 = 10−20 for 𝑑 = 31. Due to the scaling of crossbar operation with the code
distance the logical error probability bottoms out at some point. This however
does not happen until 𝑑 = 155 (not shown) for a logical error rate of 𝑃𝐿 = 10−41,
which is not practically relevant. This rough model gives good indication it is
possible to create very low logical error surface code logical qubits in the QDP.

4.7 Conclusion 203

ever, barring some special cases, parallel shuttling is currently being per-
formed in a line-by-line manner. A general classical algorithm for gener-
ating optimal (in time) shuttling-steps from an initial to a final BOARD-
STATE would vastly simplify the task of mapping more exotic codes and
also general quantum circuits. Such an algorithm would probably be use-
ful for any future crossbar quantum architecture.

Lastly, there are important aspects of quantum error correction that
are not discussed in this paper. Two of these aspects are the ability to
store multiple logical qubits simultaneously and the ability to perform
quantum operations on the logical qubits. A popular way of performing
these tasks is by encoding multiple logical qubits in a single surface code
sheet by introducing topological defects in to the surface code sheet [97].
This process involves not measuring stabilizers at certain points in the
sheet, thus creating extra degrees of freedom which can store logical in-
formation. The code distance of the code is given by the physical dis-
tance (measured in number of physical qubits) between the defects. Op-
erations can then be performed on these logical qubits by moving the
defects around each other, a process known as braiding. We think this
approach is not natural to the constraints of the crossbar architecture for
the following reasons

• Encoding qubits as defects would mean the size of the surface code
sheet would scale as the number of encoded qubits. Hence also, in
our implementation, the physical error probability per QEC cycle
would scale with the number of qubits. This would put an upper
limit on the number of qubits that can be implemented.

• Creating and moving defects around requires turning on and off
measurements for certain stabilizers in a local manner. This locality
runs counter to the design ideas of the crossbar architecture.

• Given that the size of the surface code sheet would scale with the
number of logical qubits one would likely face significant issues
involving uniformity of control parameters of the entire sheet. This
would be a significant issue even if the scaling of the physical error
probability can be avoided by clever implementation.

However, we can envision a mode of computation that we speculate is
more amenable to this architecture by thinking of an architecture com-
posed of separate modules containing a single logical qubit. We refer

204 Chapter 4. Quantum error correction in Crossbar architectures

to Figure 7 of [18] for a proposal of implementation. Inside each module
our surface code protocol could be run with the ideal code distance given
physical error parameters setting the size of these modules. We could
then perform logical 𝑋- and 𝑍-gates transversally within the modules
and we could perform CNOT gates between adjacent modules via lattice
surgery. Note that lattice surgery, which involves the turning on and off
of stabilizer patches in regular patterns (see [103] for an introduction to
lattice surgery), is very amenable to the constraints of the architecture,
implying that a high degree of parallelization could be achieved when
mapping lattice surgery techniques to the QDP.

4.8 Supplement: surface code operation counts

(The reader may find the corresponding tables on the next pages.)

St
ep

s
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

𝑍
-c

yc
le

To
ta

l
√

SW
A

P
ga

te
s

2
2

2
2

8

𝑍
-r

ot
at

io
ns

2
2

2
1

7

Sh
ut

tl
in

gs
1

1
1

1
2

1
2

1
10

G
lo

ba
lr

ot
at

io
ns

1
1

2

M
ea

su
re

m
en

ts
1

1

Ta
bl

e
4.

8.
O

pe
ra

ti
on

co
un

ts
pe

r
st

ep
fo

r
th

e
𝑍

-m
ea

su
re

m
en

t
du

ri
ng

th
e
𝑍

-c
yc

le
of

th
e

su
rf

ac
e

co
de

de
sc

ri
be

d
in

Se
c-

ti
on

4.
5.

3
an

d
Se

ct
io

n
4.

6.
1.

Sp
ec

ifi
ca

lly
th

e
𝑍

-m
ea

su
re

m
en

tq
ub

it
is

ta
ke

n
to

be
qu

bi
tA

in
Fi

gu
re

4.
10

(r
ig

ht
).

Ta
bl

e
ce

lls
th

at
ar

e
le

ft
em

pt
y

si
gn

if
y

ze
ro

en
tr

ie
s.

St
ep

s
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

𝑋
-c

yc
le

To
ta

l
√

SW
A

P
ga

te
s

0

𝑍
-r

ot
at

io
n

0

Sh
ut

tl
in

gs
2

1
1

4

G
lo

ba
lr

ot
at

io
ns

1
1

1
3

M
ea

su
re

m
en

ts
1

1

Ta
bl

e
4.

9.
O

pe
ra

ti
on

co
un

ts
pe

r
st

ep
fo

r
th

e
𝑍

-m
ea

su
re

m
en

tq
ub

it
du

ri
ng

th
e
𝑋

-c
yc

le
of

th
e

su
rf

ac
e

co
de

de
sc

ri
be

d
in

Se
ct

io
n

4.
5.

3
an

d
Se

ct
io

n
4.

6.
1.

Th
e
𝑍

-m
ea

su
re

m
en

tq
ub

it
is

ta
ke

n
to

be
qu

bi
tA

in
Fi

gu
re

4.
10

(r
ig

ht
).

Ta
bl

e
ce

lls
th

at
ar

e
le

ft
em

pt
y

si
gn

if
y

ze
ro

en
tr

ie
s.

St
ep

s
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

𝑍
-c

yc
le

To
ta

l
√

SW
A

P
ga

te
s

2
2

4

𝑍
-r

ot
at

io
ns

0

Sh
ut

tl
in

gs
1

1
2

G
lo

ba
lr

ot
at

io
ns

1
1

2

M
ea

su
re

m
en

ts
0

Ta
bl

e
4.

10
.O

pe
ra

ti
on

co
un

ts
pe

rs
te

p
fo

ra
m

em
or

y
qu

bi
td

ur
in

g
th

e
𝑍

-c
yc

le
of

th
e

su
rf

ac
e

co
de

de
sc

ri
be

d
in

Se
ct

io
n

4.
5.

3
an

d
Se

ct
io

n
4.

6.
1.

Sp
ec

ifi
ca

lly
th

e
m

em
or

y
qu

bi
ti

s
ta

ke
n

to
be

qu
bi

t1
in

Fi
gu

re
4.

10
(r

ig
ht

)b
ut

ot
he

r
m

em
or

y
qu

bi
ts

w
ill

ha
ve

th
e

sa
m

e
ga

te
co

un
tu

p
to

a
po

ss
ib

le
re

or
de

ri
ng

of
st

ep
s.

Ta
bl

e
ce

lls
th

at
ar

e
le

ft
em

pt
y

si
gn

if
y

ze
ro

en
tr

ie
s.

St
ep

s
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

𝑋
-c

yc
le

To
ta

l
√

SW
A

P
ga

te
s

2
2

4

𝑍
-r

ot
at

io
ns

0

Sh
ut

tl
in

gs
1

1
1
*

1*
4

G
lo

ba
lr

ot
at

io
ns

1
1

2

M
ea

su
re

m
en

ts
0

Ta
bl

e
4.

11
.

O
pe

ra
ti

on
co

un
ts

pe
r

st
ep

fo
r

a
m

em
or

y
qu

bi
t

du
ri

ng
th

e
𝑋

-c
yc

le
of

th
e

su
rf

ac
e

co
de

de
sc

ri
be

d
in

Se
c-

ti
on

4.
5.

3
an

d
Se

ct
io

n
4.

6.
1.

Sp
ec

ifi
ca

lly
th

e
m

em
or

y
qu

bi
ti

s
ta

ke
n

to
be

qu
bi

t1
in

Fi
gu

re
4.

10
(r

ig
ht

)b
ut

ot
he

r
m

em
or

y
qu

bi
ts

w
ill

ha
ve

th
e

sa
m

e
ga

te
co

un
t

up
to

a
po

ss
ib

le
re

or
de

ri
ng

of
st

ep
s.

Ta
bl

e
ce

lls
th

at
ar

e
le

ft
em

pt
y

si
gn

if
y

ze
ro

en
tr

ie
s.

* :
O

nl
y

ha
lf

of
th

e
m

em
or

y
qu

bi
ts

m
ov

e
du

ri
ng

th
is

st
ep

.I
n

th
e

to
ta

lo
pe

ra
ti

on
co

un
tt

hi
s

sh
ut

tl
in

g
is

co
un

te
d

to
w

ar
ds

al
lm

em
or

y
qu

bi
ts

.

4.9 Notations 207

4.9 Notations

𝑎
𝑏
= 𝑐 Shorthand for 𝑎 mod 𝑏 = 𝑐.

[𝑎 : 𝑏] Set of integers from 𝑎 to 𝑏.

(𝑖, 𝑗) Dot locations, in row 𝑖 and column 𝑗.

BOARDSTATE
(𝑁 × 𝑁) Matrix mirroring the charge distribution
over the grid of dots.

ℬ Qubits in grid columns of high magnetic field.

CNOT Controlled-Not gate: |0⟩⟨0| ⊗ I+ |1⟩⟨1| ⊗𝑋 .

𝑑 Distance of a quantum code.

CPHASE⋆ Effective controlled-phase gate, see (4.3).

D[𝑖][𝑡]
Set diagonal line 𝑖 to potential level 𝑡, see Table 4.1.

𝐻 Hadamard gate: (𝑋 + 𝑍)/
√
2.

H[𝑖] Pulsing horizontal barrier 𝑖, see Table 4.1.

HC[𝑖, 𝑗]
CNOT-gate along horizontal direction, Table 4.3
and Figure 4.4.

HI[𝑖, 𝑗]
OPCODE for CPHASE⋆ gate between qubits (𝑖, 𝑗)
and (𝑖, 𝑗 + 1), see Table 4.3.

HS[𝑖, 𝑗, 𝑘] Horizontal shuttling at (𝑖, 𝑗) with flow 𝑘, see Table
4.2.

M[𝑖, 𝑗, 𝑘]
Measuring the qubit at (𝑖, 𝑗) with the qubit at (𝑖, 𝑗+
𝑘) as a reference, see Table 4.2.

𝑁
The grid inside the processor has the size of 𝑁 ×𝑁
quantum dots, see Figure 4.1(a).

PSB Pauli spin blockade.

QDP
Abbreviation for Quantum Dot Processor, the term
we use to describe the proposed quantum device.

ℛ Qubits in grid columns with low magnetic field.

𝑆 Square-root of a Pauli-𝑍 gate: |0⟩⟨0|+ 𝑖 |1⟩⟨1|.
√

SWAP Square-root of swap gate, (4.2).

V[𝑖] Pulse vertical barrier gate 𝑖, see Table 4.1.

208 Chapter 4. Quantum error correction in Crossbar architectures

VC[𝑖, 𝑗]
CNOT-gate in vertical direction, see Table 4.3 and
Figure 4.4.

VI[𝑖, 𝑗]
OPCODE for

√
SWAP gate between qubits (𝑖, 𝑗) and

(𝑖+ 1, 𝑗), see 4.3.

VS[𝑖, 𝑗, 𝑘] Vertical shuttling at (𝑖, 𝑗) with flow 𝑘, see Table 4.2.

Publications and Preprints

1. (Chapter 3) M. Steudtner and S. Wehner. Quantum codes for quantum
simulation of fermions on a square lattice of qubits. Phys. Rev. A 99,
022308 (2019).

2. (Chapter 2) M. Steudtner and S. Wehner. Fermion-to-qubit mappings
with varying resource requirements for quantum simulation. New J.
Phys. 20, 063010 (2018).

3. (Chapter 4) J. Helsen, M. Steudtner, M. Veldhorst, and S. Wehner. Quan-
tum error correction in crossbar architectures. Quantum Sci. Technol.
3, 035005 (2018).

4. (Chapter 4) R. Li, L. Petit, D. P. Franke, J. P. Dehollain, J. Helsen, M.
Steudtner, N. K. Thomas, Z. R. Yoscovits, K. J. Singh, S. Wehner,
L. M. K. Vandersypen, J. S. Clarke, and M. Veldhorst. A crossbar
network for silicon quantum dot qubits. Sci. Adv. 4, eaar3960 (2018).

5. J. R. McClean, K. J. Sung, I. D. Kivlichan, Y. Cao, C. Dai, E. S. Fried, C.
Gidney, B. Gimby, P. Gokhale, T. Häner, T. Hardikar, V. Havlı́ček, O.
Higgott, C. Huang, J. Izaac, Z. Jiang, X. Liu, S. McArdle, M. Neeley,
T. O’Brien, B. O’Gorman, I. Ozfidan, M. D. Radin, J. Romero, N. Ru-
bin, N. P. D. Sawaya, K. Setia, S. Sim, D. S. Steiger, M. Steudtner, Q.
Sun, W. Sun, D.Wang, F. Zhang, and R. Babbush. OpenFermion: the
electronic structure package for quantum computers. arXiv:1710.07629
(2017).

6. E. C. Andrade, M. Steudtner, and M. Vojta. Anderson localization and
momentum-space entanglement. J. Stat. Mech.: Theory Exp. 2014.7,
P07022 (2014).

210 Publications and Preprints

Summary

This thesis is a collection of theoretical works aiming at adjusting quan-
tum algorithms to the hardware of quantum computers. The overarching
topic of these efforts is to enable digital quantum simulation, the process
of approximating the ground state of an arbitrary physical system with
elementary operations of a quantum computer. For fermionic systems, a
class including molecules and materials, the impact of quantum comput-
ing would be undoubtedly high, and algorithms exist for their simula-
tion. However, there is a certain gap between the requirements of those
algorithms and what actual quantum devices can provide: it seems that
our expectations of a fully-fledged quantum computer still exceed our
capabilities to build it. To make quantum simulation feasible, we seek
to adapt quantum algorithms to three different types of device limita-
tions within this thesis. In particular, we address two of those issues in
the context of fermionic quantum simulation and discuss the third while
doing quantum error correction (which is a low-level task of a quantum
computer).

Firstly, we consider a shortage of quantum bits. Qubits are a valu-
able resource that is squandered when quantum information is stored
uncompressed in a quantum memory. This is in particular the case with
digital quantum simulation when the physical system is modeled using
the Jordan-Wigner transform – a longstanding standard of representing
fermionic systems as spins (equivalent to qubits). Here, only a small
number of configurations that the quantum memory could encode are
actually relevant for the simulation. In chapter two, we therefore set out
to save qubits by restricting ourselves to only those relevant configura-
tions. The key to our method is that all quantum data stored in the qubit
memory is a superposition of bit strings describing the simulated system.
In the Jordan-Wigner case, these bit strings are readable as fermionic oc-

212 Summary

cupations (different states describing how the fermions occupy their host
system). By using binary codes, only physically relevant occupations are
mapped to somewhat shorter bit strings, and so stored on fewer qubits.
This procedure however comes at the expense of the simulation runtime,
as the fermionic interactions are mapped to operations more complicated
than in the Jordan-Wigner case – an effect that increases the stronger the
information is abstracted. Nonetheless, our efforts result in a scalable
method that helps reducing the qubit requirements a bit.

A different limitation comes from the connectivity of qubits in a quan-
tum device, and the need to keep quantum algorithms short. Of course,
we will not be able to perform arbitrary quantum operations on our
memory. Qubits have physical locations, and our ability to perform oper-
ations that couple two of them is geometrically limited. While scientists
and engineers work on realizing devices with square lattice connectiv-
ity, fermionic quantum simulation is unfortunately not harnessing that
connectivity in an optimal way. This problem is related to the locality of
fermionic interactions: when simulating a term that is geometrically local
in the fermionic system’s two-dimensional embedding, one would like to
only read and write on a local group of qubits. In this way, the quantum
algorithm can be parallelized. Considering the limits set by decoherence,
the resulting decrease in algorithmic runtime might even be the decid-
ing factor for the feasibility of a computation. In chapter three, we again
tinker with the way physical states are represented in the memory. The
Jordan-Wigner transform, which is not locality-preserving, is here again
concatenated with a code layer. This time however, the code is quantum
– a construction with code words that can no longer be thought of as bit
strings. Rather than relaxing the resource requirements, the number of
qubits almost needs to be doubled. This increase in memory is necessary
to store nonlocal interactions locally on single qubits, from where those
interactions can then be retrieved via local operations. Not only does
this allow to simulate two-dimensional systems in a constant number of
algorithmic steps, but ensures parallelizability in general.

Lastly, we consider a limitation that is swept under the rug fairly
often. For devices with many qubits, constraints on parallel operation
will appear due to a limited capability to address the involved qubits
at the same time. A realistic layout for a future quantum device is a
densely-packed matrix of qubits, so dense in fact that they can only be
manipulated by wires contacting the matrix periphery. In chapter four,

213

we consider such a crossbar design for spin qubits in silicon quantum
dots. There, the pulsing of lines that go into the chip allows us to set
the electric dot potentials and interdot confinement barriers, by which
quantum operations can be facilitated. For all those operations at least
two lines must be pulsed affecting only the part of the chip at which they
intersect. However, when attempting to run several operations in paral-
lel, there are not just the crosspoints that we intend, but also others that
would not occur if the operations were performed in sequence. At those
spurious crossings, unanticipated quantum operations are induced. As a
way out, we use the quirks of the proposed architecture and for instance
move electrons (qubits) between adjacent dots: when the dots at the spu-
rious crossings are empty, spurious operations cannot corrupt the quan-
tum memory. By providing charge distributions with these properties, as
well as instructions for the operation of the lines, we find quantum error
correction programs compatible with the crossbar architecture.

214 Summary

Samenvatting

Dit proefschrift bevat een verzameling theoretische studies gericht op het
aanpassen van quantumalgoritmen aan de hardware van quantumcom-
puters. Het overkoepelende onderwerp van dit onderzoek is om digitale
quantumsimulatie mogelijk te maken, het proces van het benaderen van
de grondtoestand van een willekeurig fysisch systeem met behulp van
een quantumcomputer. De impact van een quantumcomputer kan po-
tentieel heel groot zijn voor de simulatie van eigenschappen van mole-
culen en materialen. Er bestaan algoritmen voor de simulatie van elek-
tronische eigenschappen, maar die zijn niet zonder meer toepasbaar op
realistische quantumschakelingen. Het lijkt erop dat onze verwachtingen
van een volwaardige quantumcomputer nog steeds onze mogelijkheden
overtreffen om er zo één te bouwen. Om quantumsimulatie toch mo-
gelijk te maken, proberen we in dit proefschrift quantumalgoritmen aan
te passen aan drie verschillende soorten realistische beperkingen. In het
bijzonder behandelen we twee van die beperkingen in de context van fer-
mionische quantumsimulatie en bespreken we de derde in verband met
quantumfoutcorrectie.

De eerste beperking is het tekort aan quantumbits. Omdat bestaande
quantumcomputers hooguit enkele tientallen qubits bevatten, moeten
we quantuminformatie op een efficiënte manier opslaan. Veel algoritmen
zijn niet efficiënt, en dit is met name het geval bij digitale quantumsimu-
latie wanneer het fysieke systeem wordt gemodelleerd met behulp van
de Jordan-Wigner-transformatie – een bekende manier om elektronische
orbitalen te vervangen door een spinketen. Deze manier om informatie
op te slaan verspilt qubits, omdat slechts een kleine hoeveelheid van de
spinconfiguraties relevant zijn voor de simulatie van de elektronen. In
hoofdstuk twee willen we daarom qubits sparen door ons te beperken
tot alleen de relevante configuraties. De sleutel tot onze methode is dat

216 Samenvatting

alle quantumgegevens die zijn opgeslagen in het qubit-geheugen een su-
perpositie zijn van bitstrings die het gesimuleerde systeem beschrijven.
Door het gebruik van binaire codes worden alleen fysisch relevante su-
perposities toegewezen aan iets kortere bitstrings, en dus opgeslagen in
minder qubits. Deze procedure gaat weliswaar ten koste van een langere
duur van de simulatie, maar dat nadeel valt in het niet bij het voordeel
dat de simulatie kan worden uitgevoerd met een kleiner aantal qubits.

De tweede beperking komt van de connectiviteit van qubits. Qubits
hebben vaste posities en ons vermogen om bewerkingen uit te voeren
is doorgaans beperkt tot nabijgelegen qubits. De meeste quantumcom-
puters worden op een tweedimensionaal vierkant rooster ontworpen,
waarbij elke qubit gekoppeld kan worden aan de vier buren. De be-
staande algoritmes van quantumsimulatie maken geen optimaal gebruik
van deze connectiviteit, doordat de lokaliteit van interacties in de simu-
latie verloren gaat. Het is van essentieel belang dat lokale interacties tus-
sen elektronen geı̈mplementeerd kunnen worden in een lokale groep van
nabijgelegen qubits. Op deze manier kan het quantumalgoritme parallel
worden geschakeld en blijft de looptijd kort. Gezien de limieten die zijn
vastgesteld door decoherentie, kan de resulterende afname in algoritmi-
sche looptijd zelfs de beslissende factor zijn voor de haalbaarheid van
een berekening. In hoofdstuk drie sleutelen we opnieuw aan de manier
waarop fysische toestanden in het geheugen worden weergegeven. De
Jordan-Wigner-transformatie, die de lokaliteit niet behoudt, wordt hier
samengevoegd met een codelaag. Deze keer is de code echter quantum
– een constructie met codewoorden die niet langer als bitstrings kunnen
worden beschouwd. Om de lokaliteit te behouden betalen we een prijs,
het aantal qubits moet verdubbeld worden. Maar het grote voordeel is
dat het nu mogelijk wordt om tweedimensionale systemen in een con-
stant aantal algoritmische stappen te simuleren.

Ten slotte beschouwen we de derde beperking, die vrij vaak onder het
tapijt wordt geveegd. Voor apparaten met een groot aantal qubits zullen
beperkingen voor parallelle werking verschijnen vanwege een beperkte
mogelijkheid om al de qubits tegelijkertijd aan te sturen. Een realisti-
sche lay-out voor een toekomstig quantumapparaat is een dicht opeen-
gepakte matrix van qubits, zo dicht zelfs dat ze worden gemanipuleerd
door draden die contact maken met de periferie van de matrix. In hoofd-
stuk vier beschouwen we een dergelijk dwarsbalkontwerp voor spinqu-
bits in quantumdots van silicium. De qubits worden aangestuurd door

217

spanningslijnen, en voor quantumbewerkingen moeten ten minste twee
lijnen worden geactiveerd die alleen het deel van de chip beı̈nvloeden
waarop ze elkaar snijden. Wanneer we echter proberen meerdere be-
werkingen parallel uit te voeren, worden niet alleen de kruispunten die
we wensen geactiveerd, maar ook andere kruispunten waar dit niet zou
moeten. Bij die valse kruisingen worden ongewenste quantumoperaties
geı̈nduceerd. Als uitweg gebruiken we een bijzondere eigenschap van
de voorgestelde architectuur en verplaatsen we bijvoorbeeld elektronen
(qubits) tussen aangrenzende quantumdots: wanneer de dots aan de on-
bedoelde kruisingen leeg zijn, kunnen ongewenste operaties het quan-
tumgeheugen niet beschadigen. Door het aanbieden van ladingsverde-
lingen met deze eigenschappen, evenals instructies voor de werking van
de lijnen, vinden we quantumfoutcorrectieprogramma’s die compatibel
zijn met de dwarsbalkarchitectuur.

218 Samenvatting

Curriculum vitae

I was born in 1991 in Löbau, Germany, where I grew up and received my
school education. In 2010, after having been granted the entrance qualifi-
cation for higher education by my local high school ‘Geschwister-Scholl-
Gymnasium’, I enrolled at Dresden University of Technology in the sub-
ject of physics. My undergraduate studies, that covered a broad spec-
trum of topics, were complemented by an internship at the Helmholtz
research facility in Dresden-Rossendorf in 2011. In 2013, my interest in
theoretical physics had grown, and so I obtained my Bachelor degree in
the solid state theory group of Matthias Vojta. With my course work fo-
cusing on condensed matter theory, I returned to Prof. Vojta’s group one
year later, writing my Master thesis on a topic in quantum magnetism.
Towards the end of 2015, I received my Master of Science degree and
was hired by Carlo Beenakker to join his group in Leiden as a PhD stu-
dent in early 2016. As soon as I joined the Beenakker group, I engaged in
collaborative efforts with Stephanie Wehner, and also became part of her
group at QuTech in Delft. The following years, I worked in both places
while fulfilling the duties of a teaching assistant in Leiden. During that
time, I co-authored several papers, engaged in big collaborations, soft-
ware projects and presented my work at international conferences and
seminars.

220 Curriculum vitae

Bibliography

[1] R. P. Feynman. Simulating physics with computers. Int. J. Theor.
Phys. 21, 467 (1982).

[2] S. Lloyd. Universal quantum simulators. Science 273, 1073 (1996).

[3] D. S. Abrams and S. Lloyd. Simulation of many-body Fermi systems
on a universal quantum computer. Phys. Rev. Lett. 79, 2586 (1997).

[4] J. Preskill. Quantum Computing in the NISQ era and beyond. Quan-
tum 2, 79 (2018).

[5] A. Y. Kitaev. Quantum measurements and the Abelian stabilizer prob-
lem. arXiv:quant-ph/9511026 (1995).

[6] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantum algo-
rithms revisited. Proc. R. Soc. A 454, 339 (1998).

[7] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik.
The theory of variational hybrid quantum-classical algorithms. New J.
Phys. 18, 023023 (2016).

[8] M. Suzuki. Fractal decomposition of exponential operators with appli-
cations to many-body theories and Monte Carlo simulations. Phys. Lett.
A 146, 319 (1990).

[9] M. Suzuki. General theory of fractal path integrals with applications
to many-body theories and statistical physics. J. Math. Phys. 32, 400
(1991).

[10] G. H. Low and I. L. Chuang. Hamiltonian simulation by qubitization.
arXiv:1610.06546 (2016).

http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.22331/q-2018-08-06-79

222 BIBLIOGRAPHY

[11] J. R. McClean, K. J. Sung, I. D. Kivlichan, Y. Cao, C. Dai, E. S.
Fried, C. Gidney, B. Gimby, P. Gokhale, T. Häner, T. Hardikar, V.
Havlı́ček, O. Higgott, C. Huang, J. Izaac, Z. Jiang, X. Liu, S. McAr-
dle, M. Neeley, T. O’Brien, B. O’Gorman, I. Ozfidan, M. D. Radin,
J. Romero, N. Rubin, N. P. D. Sawaya, K. Setia, S. Sim, D. S. Steiger,
M. Steudtner, Q. Sun, W. Sun, D. Wang, F. Zhang, and R. Babbush.
OpenFermion: the electronic structure package for quantum computers.
arXiv:1710.07629 (2017).

[12] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-
Haim, D. Bucher, F. J. Cabrera-Hernádez, J. Carballo-Franquis,
A. Chen, C.-F. Chen, J. M. Chow, A. D. Córcoles-Gonzales, A. J.
Cross, A. Cross, J. Cruz-Benito, C. Culver, S. D. L. P. González,
E. D. L. Torre, D. Ding, E. Dumitrescu, I. Duran, P. Eendebak, M.
Everitt, I. F. Sertage, A. Frisch, A. Fuhrer, J. Gambetta, B. G. Gago,
J. Gomez-Mosquera, D. Greenberg, I. Hamamura, V. Havlicek, J.
Hellmers, Ł. Herok, H. Horii, S. Hu, T. Imamichi, T. Itoko, A.
Javadi-Abhari, N. Kanazawa, A. Karazeev, K. Krsulich, P. Liu,
Y. Luh, Y. Maeng, M. Marques, F. J. Martı́n-Fernández, D. T.
McClure, D. McKay, S. Meesala, A. Mezzacapo, N. Moll, D. M.
Rodrı́guez, G. Nannicini, P. Nation, P. Ollitrault, L. J. O’Riordan,
H. Paik, J. Pérez, A. Phan, M. Pistoia, V. Prutyanov, M. Reuter, J.
Rice, A. R. Davila, R. H. P. Rudy, M. Ryu, N. Sathaye, C. Schn-
abel, E. Schoute, K. Setia, Y. Shi, A. Silva, Y. Siraichi, S. Sivara-
jah, J. A. Smolin, M. Soeken, H. Takahashi, I. Tavernelli, C. Tay-
lor, P. Taylour, K. Trabing, M. Treinish, W. Turner, D. Vogt-Lee, C.
Vuillot, J. A. Wildstrom, J. Wilson, E. Winston, C. Wood, S. Wood,
S. Wörner, I. Y. Akhalwaya, and C. Zoufal, Qiskit: an open-source
framework for quantum computing, 2019.

[13] G. H. Low, N. P. Bauman, C. E. Granade, B. Peng, N. Wiebe, E. J.
Bylaska, D. Wecker, S. Krishnamoorthy, M. Roetteler, K. Kowal-
ski, M. Troyer, and N. A. Baker. Q# and NWChem: tools for scalable
quantum chemistry on quantum computers. arXiv:1904.01131 (2019).

[14] D. S. Wang, A. G. Fowler, and L. C. L. Hollenberg. Surface code
quantum computing with error rates over 1%. Phys. Rev. A 83, 020302
(2011).

https://arxiv.org/abs/1710.07629

BIBLIOGRAPHY 223

[15] A. G. Fowler, A. M. Stephens, and P. Groszkowski. High-threshold
universal quantum computation on the surface code. Phys. Rev. A 80,
052312 (2009).

[16] A. Y. Kitaev. Fault-tolerant quantum computation by anyons. Ann.
Phys. 303, 2 (2003).

[17] H Bombin and M. A. Martin-Delgado. Optimal resources for topolog-
ical two-dimensional stabilizer codes: Comparative study. Phys. Rev. A
76, 012305 (2007).

[18] R. Li, L. Petit, D. P. Franke, J. P. Dehollain, J. Helsen, M. Steudtner,
N. K. Thomas, Z. R. Yoscovits, K. J. Singh, S. Wehner, L. M. K.
Vandersypen, J. S. Clarke, and M. Veldhorst. A crossbar network for
silicon quantum dot qubits. Sci. Adv. 4, eaar3960 (2018).

[19] E. P. Wigner and P. Jordan. Über das Paulische Äquivalenzverbot. Z.
Phys. 47, 631 (1928).

[20] T. Fujita, T. A. Baart, C. Reichl, W. Wegscheider, and L. M. K. Van-
dersypen. Coherent shuttle of electron-spin states. npj Quantum Inf.
3, 22 (2017).

[21] R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme.
Simulating physical phenomena by quantum networks. Phys. Rev. A
65, 042323 (2002).

[22] R. Somma, G. Ortiz, E. Knill, and J. Gubernatis. Quantum simula-
tions of physics problems. Int. J. Quantum Inf. 1, 189 (2003).

[23] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon.
Simulated quantum computation of molecular energies. Science 309,
1704 (2005).

[24] B. P. Lanyon, J. D. Whitfield, G. G. Gillet, M. E. Goggin, M. P.
Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M.
Barbieri, A. Aspuru-Guzik, and A. G. White. Towards quantum
chemistry on a quantum computer. Nat. Chem. 2, 106 (2009).

[25] F. Verstraete and J. I. Cirac. Mapping local Hamiltonians of fermions
to local Hamiltonians of spins. J. Stat. Mech.: Theory Exp. 2005,
P09012 (2005).

[26] S. B. Bravyi and A. Y. Kitaev. Fermionic quantum computation. Ann.
Phys. 298, 210 (2002).

224 BIBLIOGRAPHY

[27] J. T. Seeley, M. J. Richard, and P. J. Love. The Bravyi-Kitaev trans-
formation for quantum computation of electronic structure. J. Chem.
Phys. 137, 224109 (2012).

[28] N. C. Jones, J. D. Whitfield, P. L. McMahon, M.-H. Yung, R. Van
Meter, A. Aspuru-Guzik, and Y. Yamamoto. Faster quantum chem-
istry simulation on fault-tolerant quantum computers. New J. Phys.
14, 115023 (2012).

[29] V. Havlı́ček, M. Troyer, and J. D. Whitfield. Operator locality in
the quantum simulation of fermionic models. Phys. Rev. A 95, 032332
(2017).

[30] I. D. Kivlichan, J. McClean, N. Wiebe, C. Gidney, A. Aspuru-
Guzik, G. K.-L. Chan, and R. Babbush. Quantum simulation of elec-
tronic structure with linear depth and connectivity. Phys. Rev. Lett.
120, 110501 (2018).

[31] C. Tian, V. A. Vaishampayan, and N. Sloane. Constant weight codes:
a geometric approach based on dissections. arXiv:0706.1217 (2007).

[32] S. Bravyi, G. Smith, and J. A. Smolin. Trading classical and quantum
computational resources. Phys. Rev. X 6, 021043 (2016).

[33] N. Moll, A. Fuhrer, P. Staar, and I. Tavernelli. Optimizing qubit re-
sources for quantum chemistry simulations in second quantization on a
quantum computer. J. Phys. A: Math. Theor. 49, 295301 (2016).

[34] S. Bravyi, J. M. Gambetta, A. Mezzacapo, and K. Temme. Taper-
ing off qubits to simulate fermionic Hamiltonians. arXiv:1701.08213
(2017).

[35] J. Romero, J. P. Olson, and A. Aspuru-Guzik. Quantum autoen-
coders for efficient compression of quantum data. Quantum Sci. Tech-
nol. 2, 045001 (2017).

[36] M. Steudtner and S. Wehner. Fermion-to-qubit mappings with vary-
ing resource requirements for quantum simulation. New J. Phys. 20,
063010 (2018).

[37] A. Tranter, S. Sofia, J. Seeley, M. Kaicher, J. McClean, R. Babbush,
P. V. Coveney, F. Mintert, F. Wilhelm, and P. J. Love. The Bravyi–
Kitaev transformation: Properties and applications. Int. J. Quantum
Chem. 115, 1431 (2015).

BIBLIOGRAPHY 225

[38] J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik. Simulation
of electronic structure Hamiltonians using quantum computers. Mol.
Phys. 109, 735 (2011).

[39] M. B. Hastings, D. Wecker, B. Bauer, and M. Troyer. Improving
quantum algorithms for quantum chemistry. Quantum Inf. Comput.
15, 1 (2015).

[40] A. E. Ruckenstein, P. J. Hirschfeld, and J Appel. Mean-field theory of
high-T c superconductivity: The superexchange mechanism. Phys. Rev.
B 36, 857 (1987).

[41] P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R.
McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding,
B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G.
Fowler, E. Jeffrey, A. Megrant, J. Y. Mutus, C. Neill, C. Quintana,
D. Sank, A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney,
P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis. Scal-
able quantum simulation of molecular energies. Phys. Rev. X 6, 031007
(2016).

[42] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margo-
lus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter. Elementary
gates for quantum computation. Phys. Rev. A 52, 3457 (1995).

[43] M. Steudtner and S. Wehner. Quantum codes for quantum simula-
tion of fermions on a square lattice of qubits. Phys. Rev. A 99, 022308
(2019).

[44] J. Du, N. Xu, X. Peng, P. Wang, S. Wu, and D. Lu. NMR implemen-
tation of a molecular hydrogen quantum simulation with adiabatic state
preparation. Phys. Rev. Lett. 104, 030502 (2010).

[45] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou,
P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien. A variational eigen-
value solver on a photonic quantum processor. Nat. Commun. 5, 4213
(2014).

[46] R. Barends, L. Lamata, J. Kelly, L. Garcı́a-Álvarez, A. G. Fowler,
A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Camp-
bell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I. C. Hoi, C. Neill,
P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wen-
ner, E. Solano, and J. M. Martinis. Digital quantum simulation of

226 BIBLIOGRAPHY

fermionic models with a superconducting circuit. Nat. Commun. 6,
7654 (2015).

[47] Y. Wang, F. Dolde, J. Biamonte, R. Babbush, V. Bergholm, S. Yang,
I. Jakobi, P. Neumann, A. Aspuru-Guzik, J. D. Whitfield, and J.
Wrachtrup. Quantum simulation of helium hydride cation in a solid-
state spin register. ACS nano 9, 7769 (2015).

[48] C. Hempel, C. Maier, J. Romero, J. McClean, T. Monz, H. Shen,
P. Jurcevic, B. Lanyon, P. Love, R. Babbush, A. Aspuru-Guzik, R.
Blatt, and C. Roos. Quantum chemistry calculations on a trapped-ion
quantum simulator. Phys. Rev. X 8, 031022 (2018).

[49] D. Wecker, B. Bauer, B. K. Clark, M. B. Hastings, and M. Troyer.
Gate-count estimates for performing quantum chemistry on small quan-
tum computers. Phys. Rev. A 90, 022305 (2014).

[50] T Holstein and H. Primakoff. Field dependence of the intrinsic domain
magnetization of a ferromagnet. Phys. Rev. 58, 1098 (1940).

[51] E. Fradkin. Jordan-Wigner transformation for quantum-spin systems
in two dimensions and fractional statistics. Phys. Rev. Lett. 63, 322
(1989).

[52] Y. Wang. Ground state of the two-dimensional antiferromagnetic
Heisenberg model studied using an extended Wigner-Jordon transfor-
mation. Phys. Rev. B 43, 3786 (1991).

[53] R. Ball. Fermions without fermion fields. Phys. Rev. Lett. 95, 176407
(2005).

[54] Y.-A. Chen, A. Kapustin, and D. Radičević. Exact bosonization in
two spatial dimensions and a new class of lattice gauge theories. Ann.
Phys. 393, 234 (2018).

[55] J. D. Whitfield, V. Havlı́ček, and M. Troyer. Local spin operators for
fermion simulations. Phys. Rev. A 94, 030301 (2016).

[56] E. Zohar and J. I. Cirac. Eliminating fermionic matter fields in lattice
gauge theories. Phys. Rev. B 98, 075119 (2018).

[57] K. Setia and J. D. Whitfield. Bravyi-Kitaev Superfast simulation of
fermions on a quantum computer. arXiv:1712.00446 (2017).

[58] R. Beals, S. Brierley, O. Gray, A. W. Harrow, S. Kutin, N. Linden,
D. Shepherd, and M. Stather. Efficient distributed quantum comput-
ing. Proc. R. Soc. A 469, 20120686 (2013).

BIBLIOGRAPHY 227

[59] R. Babbush, N. Wiebe, J. McClean, J. McClain, H. Neven, and
G. K.-L. Chan. Low-depth quantum simulation of materials. Phys. Rev.
X 8, 011044 (2018).

[60] Y. Subaşı and C. Jarzynski. Nonperturbative embedding for highly
nonlocal Hamiltonians. Phys. Rev. A 94, 012342 (2016).

[61] D. Poulin, A. Kitaev, D. S. Steiger, M. B. Hastings, and M. Troyer.
Quantum algorithm for spectral measurement with a lower gate count.
Phys. Rev. Lett. 121, 010501 (2018).

[62] R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A.
Paler, A. Fowler, and H. Neven. Encoding electronic spectra in quan-
tum circuits with linear T complexity. Phys. Rev. X 8, 041015 (2018).

[63] R. J. Bartlett, S. A. Kucharski, and J. Noga. Alternative coupled-
cluster ansätze ii. the unitary coupled-cluster method. Chem. Phys.
Lett. 155, 133 (1989).

[64] F. Motzoi, M. Kaicher, and F. Wilhelm. Linear and logarithmic time
compositions of quantum many-body operators. Phys. Rev. Lett. 119,
160503 (2017).

[65] D. Poulin, M. B. Hastings, D. Wecker, N. Wiebe, A. C. Doberty,
and M. Troyer. The trotter step size required for accurate quantum
simulation of quantum chemistry. Quantum Information & Compu-
tation 15, 361 (2015).

[66] A. M. Childs, A. Ostrander, and Y. Su. Faster quantum simulation
by randomization. arXiv:1805.08385 (2018).

[67] E. Campbell. A random compiler for fast hamiltonian simulation.
arXiv:1811.08017 (2018).

[68] J. Haah, M. B. Hastings, R. Kothari, and G. H. Low. Quantum
algorithm for simulating real time evolution of lattice Hamiltonians.
arXiv:1801.03922 (2018).

[69] D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak, and
M. Troyer. Solving strongly correlated electron models on a quantum
computer. Phys. Rev. A 92, 062318 (2015).

[70] S. McArdle, X. Yuan, and S. Benjamin. Error-mitigated digital quan-
tum simulation. Phys. Rev. Lett. 122, 180501 (2019).

228 BIBLIOGRAPHY

[71] X Bonet-Monroig, R Sagastizabal, M Singh, and T. O’Brien. Low-
cost error mitigation by symmetry verification. Phys. Rev. A 98, 062339
(2018).

[72] R Versluis, S Poletto, N Khammassi, B Tarasinski, N Haider, D.
Michalak, A Bruno, K Bertels, and L DiCarlo. Scalable quantum cir-
cuit and control for a superconducting surface code. Phys. Rev. Appl.
8, 034021 (2017).

[73] G. Zhu, Y. Subaşı, J. D. Whitfield, and M. Hafezi. Hardware-efficient
fermionic simulation with a cavity–QED system. npj Quantum Inf. 4,
16 (2018).

[74] Z. Jiang, J. McClean, R. Babbush, and H. Neven. Majorana loop
stabilizer codes for error correction of fermionic quantum simulations.
arXiv:1812.08190 (2018).

[75] K. Setia, S. Bravyi, A. Mezzacapo, and J. D. Whitfield. Superfast
encodings for fermionic quantum simulation. arXiv:1810.05274 (2018).

[76] J. Colless. Control and readout of scaled-up quantum dot systems. PhD
Thesis, University of Sydney (2014).

[77] L. M. K. Vandersypen, H. Bluhm, J. S. Clarke, A. S. Dzurak, R.
Ishihara, A. Morello, D. J. Reilly, L. R. Schreiber, and M. Veldhorst.
Interfacing spin qubits in quantum dots and donors—hot, dense, and
coherent. npj Quantum Inf. 3, 34 (2017).

[78] C. D. Hill, E. Peretz, S. J. Hile, M. G. House, M. Fuechsle, S. Rogge,
M. Y. Simmons, and L. C. Hollenberg. A surface code quantum com-
puter in silicon. Sci. Adv. 1, e1500707 (2015).

[79] M. Veldhorst, H. G. J. Eenink, C. H. Yang, and A. S. Dzurak. Sili-
con CMOS architecture for a spin-based quantum computer. Nat. Com-
mun. 8, 1766 (2017).

[80] D. Gottesman. Theory of fault-tolerant quantum computation. Phys.
Rev. A 57, 127 (1998).

[81] D. A. Lidar, T. A. Brun, and T. Brun, eds. Quantum error correction.
(Cambridge University Press, 2009).

[82] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill. Topological quan-
tum memory. J. Math. Phys. 43, 4452 (2002).

[83] H. Bombin and M. A. Martin-Delgado. Topological quantum distil-
lation. Phys. Rev. Lett. 97, 180501 (2006).

BIBLIOGRAPHY 229

[84] T. Heijmen. “Soft errors from space to ground: historical overview,
empirical evidence, and future trends”. In Soft errors in modern
electronic systems (Springer US, 2010), pp. 1–25.

[85] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K.
Vandersypen. Spins in few-electron quantum dots. Rev. Mod. Phys.
79, 1217 (2007).

[86] J. M. Taylor, H.-A. Engel, W. Dür, A. Yacoby, C. M. Marcus, P.
Zoller, and M. D. Lukin. Fault-tolerant architecture for quantum com-
putation using electrically controlled semiconductor spins. Nat. Phys.
1, 177 (2005).

[87] M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de
Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A.
Morello, and A. S. Dzurak. An addressable quantum dot qubit with
fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981 (2014).

[88] M. A. Nielsen and I. Chuang. Quantum computation and quantum
information. AAPT (2002).

[89] J. R. Petta. Coherent manipulation of coupled electron spins in semicon-
ductor quantum dots. Science 309, 2180 (2005).

[90] T. Meunier, V. E. Calado, and L. M. K. Vandersypen. Efficient
controlled-phase gate for single-spin qubits in quantum dots. Phys. Rev.
B 83, 121403 (2011).

[91] T. F. Watson, S. G. J. Philips, E. Kawakami, D. R. Ward, P. Scar-
lino, M. Veldhorst, D. E. Savage, M. G. Lagally, M. Friesen, S. N.
Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen. A pro-
grammable two-qubit quantum processor in silicon. Nature 555, 633
(2018).

[92] M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P. Dehol-
lain, J. T. Muhonen, S. Simmons, A. Laucht, F. E. Hudson, K. M.
Itoh, A. Morello, and A. S. Dzurak. A two-qubit logic gate in silicon.
Nature 526, 410 (2015).

[93] N. Schuch and J. Siewert. Natural two-qubit gate for quantum com-
putation using the XY interaction. Phys. Rev. A 67, 032301 (2003).

[94] J. Helsen, M. Steudtner, M. Veldhorst, and S. Wehner. Quantum
error correction in crossbar architectures. Quantum Sci. Technol. 3,
035005 (2018).

http://dx.doi.org/10.1103/physreva.67.032301

230 BIBLIOGRAPHY

[95] J. Helsen. Quantum computing in the real world, Diagnosing and cor-
recting errors in practical quantum devices. PhD thesis, TU Delft
(2019).

[96] B. M. Terhal. Quantum error correction for quantum memories. Rev.
Mod. Phys. 87, 307 (2015).

[97] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cle-
land. Surface codes: Towards practical large-scale quantum computa-
tion. Phys. Rev. A 86, 032324 (2012).

[98] Y. Tomita and K. M. Svore. Low-distance surface codes under realistic
quantum noise. Phys. Rev. A 90, 062320 (2014).

[99] A. M. Tyryshkin, S. Tojo, J. J. L. Morton, H. Riemann, N. V. Abrosi-
mov, P. Becker, H.-J. Pohl, T. Schenkel, M. L. W. Thewalt, K. M.
Itoh, and S. A. Lyon. Electron spin coherence exceeding seconds in
high-purity silicon. Nat. Mater. 11, 143 (2011).

[100] A. J. Landahl, J. T. Anderson, and P. R. Rice. Fault-tolerant quantum
computing with color codes. arXiv:1108.5738 (2011).

[101] J. R. Wootton, A. Peter, J. R. Winkler, and D. Loss. Proposal for a
minimal surface code experiment. Phys. Rev. A 96, 032338 (2017).

[102] D. K. Tuckett, S. D. Bartlett, and S. T. Flammia. Ultrahigh error
threshold for surface codes with biased noise. Phys. Rev. Lett. 120,
050505 (2018).

[103] C. Horsman, A. G. Fowler, S. Devitt, and R. V. Meter. Surface
code quantum computing by lattice surgery. New J. Phys. 14, 123011
(2012).

1. It is possible to store fermionic data in arbitrary tree structures.
Chapter 2

2. On a two-dimensional square lattice the auxiliary qubit mapping is com-
putationally more efficient than the Jordan-Wigner transformation.

Chapter 3

3. Locality-preserving mappings of fermions onto qubits increase the number
of Hamiltonian terms for many-body operators.

Chapter 3

4. In a uniform quantum dot array the surface code can be run in constant
time using a crossbar network.

Chapter 4

5. The improvements proposed by Hastings et al. to minimize the gate count
in an implementation of the Trotter formula for time evolution lead in
general to a larger discretization error.

M. B. Hastings, D. Wecker, B. Bauer, and M. Troyer,
Quantum Inf. Comp. 15, 1 (2015).

6. The exact preparation of Slater determinants is possible even without
Givens rotations.

D. Wecker, M. B. Hastings, N. Wiebe,
B. K. Clark, C. Nayak and M. Troyer,

Phys. Rev. A 92, 062318 (2015).

7. The quantum algorithm of Poulin et al. for spectral measurement with a
lower gate count needs three-qubit (Toffoli) gates.

D. Poulin, A. Kitaev, D. S. Steiger, M. B. Hastings, and M. Troyer,
Phys. Rev. Lett. 121, 010501 (2018).

8. The reduction of qubit requirements by the elimination of Z2-symmetries
proposed by Bravyi et al. may need repeated runs of the simulation to be
effective.

S. Bravyi, J. M. Gambetta, A. Mezzacapo, and K. Temme,
arXiv:1701.08213

1

	Introduction
	Preface
	Fermion-to-qubit mappings
	Quantum error correction
	This thesis
	Chapter two
	Chapter three
	Chapter four

	Saving qubits with classical codes
	Background
	Results
	Encoding the entire Fock space
	Jordan-Wigner, Parity and Bravyi-Kitaev transform

	Encoding only a subspace
	Saving qubits by exploiting symmetries
	General transforms
	Particle number conserving codes

	Examples
	Hydrogen molecule
	Fermi-Hubbard model

	Conclusion
	Supplement
	General operator mappings
	Transforming particle-number conserving Hamiltonians
	Multi-weight binary addressing codes based on dissections
	Segment codes

	Notations
	Further work

	Embedding simulations with quantum codes
	Background
	Results
	Preliminaries
	Simulating a qubit Hamiltonian
	S-pattern Jordan-Wigner transform

	Techniques
	Motivation
	Definitions

	Auxiliary qubit mappings
	E-type AQM
	Square lattice AQM
	Sparse AQM

	Example: Fermi-Hubbard lattice model
	Second quantization and Jordan-Wigner transform
	Square lattice and sparse AQM
	VCT and BKSF

	Comparison of AQM, VCT and BKSF
	Conclusion
	Supplement
	Auxiliary Qubit codes
	Tree-based transforms
	Technical details

	Notations
	Further work

	Quantum error correction in Crossbar architectures
	Background
	Results
	The quantum dot processor
	Layout
	Control and addressing
	Elementary operations

	Parallel operation of a crossbar architecture
	Parallel shuttle operations
	Parallel two-qubit gates
	Parallel Measurements
	Some useful grid configurations

	Error correction codes
	Surface code
	2D color codes
	Surface code mapping
	Color code mapping

	Discussion
	Practical implementation of the surface code
	Decoherence induced errors
	Operation induced errors
	Surface code logical error probability

	Conclusion
	Supplement: surface code operation counts
	Notations

	Publications and Preprints
	Summary
	Samenvatting
	Curriculum vitae
	Bibliography
	stellingen

