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Chapter 1

Introduction

Fundamental research on superconductivity can be broadly divided into
two classes, each with its own motivation. The first class of research
studies novel mechanisms of electron pairing, that might persist at higher
temperatures than the conventional phonon-mediated pairing. The second
class studies novel effects that occur when conventionally paired electrons
are confined to structures of sub-micrometer dimensions (so-called nanos-
tructures). The motivation here is not the search for higher transition tem-
peratures, but the integration of superconducting elements in computer
circuits. The research described in this thesis falls in the second class, the
study of superconductivity in nanostructures.

Two types of nanostructures have been investigated, Andreev billiards
and Josephson junction qubits. An Andreev billiard is an impurity-free re-
gion in a two-dimensional electron gas (a so-called quantum dot), cou-
pled to a superconducting electrode via a point contact. The fundamental
question that we have answered is how the excitation gap of the electron
gas, caused by Andreev reflection at the superconductor, depends on the
Ehrenfest time. This time scale governs the crossover from classical to
quantum chaos in quantum dots.

A Josephson junction qubit is a superconducting ring in which the di-
rection of the current is a quantum mechanical superposition of clock-
wise and counter-clockwise. Such a device is one of the possible building
blocks of a quantum computer. To describe existing experiments we have
developed a quantitative theory that takes into account both the time-
dependent external magnetic field used to control the qubit and its cou-
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Figure 1.1: Normal reflection (left) vs. Andreev reflection. Upon normal
reflection at the interface between an insulator (I) and a normal metal (N)
only the component of the velocity normal to the interface changes sign
and the charge is conserved. In the case of Andreev reflection at a normal-
metal-superconductor (NS) interface all three components of the velocity
change sign and the negatively charged electron is converted into a posi-
tively charged hole.

pling to a quantum measurement device.

In this introductory chapter we present some background material for
the topics studied in the thesis.

1.1 Andreev reflection

The anomalous reflection at the interface between a normal metal (N) and
a superconductor (S), discovered by Andreev in 1964 [1], plays a central
role in this thesis. Andreev reflection, as this process is now called, ex-
plains the opening of an excitation gap in the billiard geometry and it
explains the flow of a non-decaying current in the ring geometry (the so-
called Josephson effect).

1.1.1 Reflection mechanism

The process of Andreev reflection is illustrated in Fig. 1.1. When a nega-
tively charged electron in the normal metal hits the interface with the su-
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perconductor (NS interface) it is converted into a positively charged hole.
The hole retraces the path of the electron, so its velocity is reversed (so-
called retroreflection). Because the hole has a negative mass, the total
momentum is conserved. The charge difference of 2e between electron
and hole is compensated by the creation of a Cooper pair with charge 2e
in the superconductor. In contrast, specular reflection between a normal
metal and an insulator (also shown in Fig. 1.1) conserves the charge, but
not the momentum.

The velocity is only exactly reversed when electron and hole are both
at the Fermi level. When the electron has an excitation energy E above
the Fermi energy EF it is converted into a hole with energy −E, and as a
consequence there is a slight mismatch between their velocities: while the
magnitude of the velocity parallel to the superconductor is conserved, the
perpendicular velocity differs in magnitude by

√
4E/m.

A quantum mechanical description of Andreev reflection starts from a
Schrödinger equation for the electron and hole components u(r) and v(r)
of the wave function, coupled by the pair potential ∆(r). This so-called
Bogoliubov-de Gennes (BdG) equation is given by [2]

(
H0 ∆(r)
∆∗(r) −H∗0

)(
u
v

)
= E

(
u
v

)
. (1.1)

It contains the Hamiltonian H0 = [p+ eA(r)]2 /2m+ V(r)− EF of a single
electron moving with momentum p in an electrostatic potential V and vec-
tor potential A. The pair potential ∆(r) ≡ 0 in the normal region while it
recovers the bulk value ∆0eiφ of the superconductor at some distance lc
away from the interface. For the geometries considered in this thesis the
step function

∆(r) =
{

0 if r ∈ N
∆0eiφ if r ∈ S (1.2)

is sufficiently accurate (because lc is much smaller than the superconduct-
ing coherence length �vF/∆0). The excitation spectrum consists of the
solution of Eq. (1.1) with E ≥ 0.

Referring to the geometry of Fig. 1.2 the eigenfunctions of the BdG
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Figure 1.2: Geometry of an NS junction (bottom) and plot of the absolute
value of the pair potential (top), in the step function model of Eq. (1.2).

equation in the normal metal can be written as

ψ±n,e =
(

1
0

)
1√
ken
Φn(y, z) exp(±ikenx), (1.3)

ψ±n,h =
(

0
1

)
1√
khn
Φn(y, z) exp(±ikhnx), (1.4)

ke,hn = (2m/�2)1/2(EF − En +σe,hE)1/2, (1.5)

with σe = 1 and σh = −1. The discrete wave numbers ke,hn originate from
the confinement in y and z direction, with the index n labeling the dif-
ferent modes. The n-th mode has transverse wave function Φn(y, z) and
threshold energy En. The wavefunctions are normalized to carry the same
amount of quasiparticle current if the functions Φn(y, z) are normalized
to unity.

In the superconductor the solutions of the BdG equation give decay-
ing eigenfunctions for E < ∆0, indicating that there are no propagating
modes in the superconductor for these energies. Matching the eigenfunc-
tions in the normal metal and superconductor at the NS boundary de-
termines the scattering at the superconductor. For ∆0 � EF and in the
absence of a barrier at the NS interface there is no normal reflection, only
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Figure 1.3: Geometry of an SNS junction. The superconducting pair poten-
tials have phase difference δφ = φ1 − φ2. An Andreev level consists of
an electron and a hole traveling in opposite directions. This bound state
carries a non-zero electrical current.

Andreev reflection. It transforms an electron into a hole without chang-
ing the mode index. The transformation is accompanied by a phase shift
−arccos (E/∆0)∓φ. The factor − arccos (E/∆0) is due to the penetration
of the wavefunction into the superconductor, while the shift ∓φ is equal
to the phase of the pair potential. (The minus sign is for reflection from
electron to hole, the plus sign for the reverse process.) Note that this
phase shift equals −π/2 ∓φ at the Fermi level.

1.1.2 Excitation gap

Electrons and holes with energies E < ∆0 cannot leave the normal metal
since there are no propagating modes for them in the superconductor.
This means that the normal metal has a discrete spectrum for E < ∆0. The
discrete spectrum consists of bound states, called Andreev levels [3, 4].
The lowest Andreev level cannot be at the Fermi level for the following rea-
son: all phase shifts accumulated by the electron in the normal metal are
canceled by the Andreev reflected hole, which is its exact time reverse at
the Fermi level. What remains is the phase shift of 2×−π/2 = −π from the
penetration of the wavefunction in the superconductor (the phase shifts
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∓φ cancel as well). So electron and hole interfere destructively at the
Fermi level and the lowest excited state must be separated by some en-
ergy Egap from EF . The calculation of Egap is the problem of the Andreev
billiard, introduced in Sec. 1.2.

1.1.3 Josephson effect

Now consider an SNS junction having two NS interfaces with a phase dif-
ference δφ = φ1 − φ2 of the pair potentials (Fig. 1.3). An Andreev level
corresponds to an electron moving towards one superconductor, where
it is converted into a hole which goes to the other superconductor to be
retroreflected again as an electron.

The excitation gap Egap closes when δφ = π , because then the electron
and hole at the Fermi level interfere constructively rather than destruc-
tively (as they do when δφ = 0). Not only Egap depends on δφ, but the
total energy U of the SNS junction is δφ-dependent. The current I which
flows from one superconductor to the other is related to U(δφ) by

I = 2e
�
dU
dδφ

. (1.6)

This current is present in the SNS junction in equilibrium, so it cannot de-
cay. Since I depends periodically on δφ ∈ (0,2π), it reaches a maximum
for some δφ at a value called the critical current Ic .

The original discovery by Josephson of this effect [5] was done for the
case that the normal metal is a tunnel junction (relevant for our Josephson
junction qubit). Then U = EJ(1 − cosδφ), where EJ = π∆0G�/4e2 [6] is
determined by the tunnel conductance G. The current-phase relationship
becomes

I = Ic sinδφ, Ic = 2e
�
EJ (1.7)

The connection between the Josephson effect and Andreev reflection in
ballistic SNS junctions was made by Kulik [7].

1.2 Andreev billiard

An electro-micrograph of an Andreev billiard is shown in Fig. 1.4. A con-
fined region in a two-dimensional electron gas is created by means of gate
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Figure 1.4: Quantum dot (central square of dimensions 500 nm× 500 nm)
fabricated in a high-mobility InAs/AlSb heterostructure and contacted by
four superconducting Nb electrodes. Device made by A. T. Filip, Groningen
University (unpublished figure).

electrodes. These electrodes provide insulating barriers, at which normal
specular reflection occurs. Four superconducting electrodes introduce An-
dreev reflection (retroreflection).

The density of states of two types of Andreev billiards is shown in Fig.
1.5. Depending on the shape, there is either a true excitation gap (solid
lines) or a smoothly vanishing density of states without a true gap (dashed
lines). The origin of this difference, discovered in Ref. [8], is chaotic vs.
integrable dynamics. The density of states could be measured in the An-
dreev billiard of Fig. 1.4 by means of a scanning tunneling probe, but this
experiment has not yet been performed.

1.2.1 Chaotic vs. integrable billiard

Depending on the shape of the billiard, uncoupled from the superconduc-
tor, its classical dynamics can be either chaotic or integrable [9–11]. We
illustrate the difference for the two billiards in Fig. 1.6. In each billiard
we show two trajectories, which are initially very close. In the circularly
shaped billiard (left) the trajectories stay close, while in the stadium bil-
liard (right) the two trajectories become very different after only a few
collisions with the boundary. This sensitivity on initial conditions is a
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Figure 1.5: Mean density of states for a chaotic Andreev billiard (top inset)
and an integrable Andreev billiard (bottom inset). The histograms are the
exact quantum mechanical solution, obtained numerically. The smooth
curves are the analytical predictions. From Ref. [15].

characteristic of chaotic dynamics: two trajectories which are initially at
a distance δ(0), have diverged to δ(t) = δ(0) exp (λt) after a time t. The
Lyapunov exponent λ determines the strength of the divergence.

Quantum mechanical properties of chaotic systems are the subject of
the field of quantum chaos [12–14]. A billiard is one of the most sim-
ple systems to study in this context. The properties of normal billiards
(normal meaning that there is no superconducting segment in the bound-
ary) have been studied extensively in the past. A universal description of
chaotic systems is provided by random-matrix theory (RMT) [16], while a
direct way of connecting classical and quantum mechanics is provided by
periodic orbit theory [10]. The mean density of states of a normal bil-
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Figure 1.6: Trajectories in an integrable billiard (left) and a chaotic bil-
liard (right). The solid and dashed lines denote two trajectories which are
initially very close and either stay close together or diverge.

liard only depends on the area of the billiard, not on its shape, so it can
not distinguish between chaotic and integrable dynamics. One needs to
study the distribution of level spacings, rather than the mean spacing, to
find quantum signatures of chaos. In an Andreev billiard, however, the
mean density of states itself is already different for chaotic and integrable
normal regions, cf. Fig. 1.5.

The origin of the difference is the absence of long dwell times in the
chaotic billiard. The chaotic dynamics mixes the trajectories so well that
the mean dwell time τD is representative of the actual dwell time of most
electrons. A hard gap appears at [8]

Egap = γ5/2�/τD ≈ 0.3�/τD, (1.8)

with γ = 1
2(
√

5 − 1) the golden number. In an integrable billiard, in con-
trast, the distribution of dwell times has a long tail, so that dwell times
� τD have a substantial weight. These almost trapped electrons con-
tribute to the spectral density at low energies, leading to a density of states
vanishing with a power-law rather than a hard gap.

1.2.2 Quantum-to-classical crossover

In this thesis we consider chaotic billiards. As mentioned in the previous
subsection, two methods to study the properties of chaotic billiards are
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Figure 1.7: Periodic trajectory in an Andreev billiard consisting of an elec-
tron (e) and a retroreflected hole (h).

RMT and periodic orbit theory. RMT is based on the fact that the Hamil-
tonian of a chaotic system is well-described by a large Hermitian matrix
with randomly chosen elements. The distribution of the matrix elements
is usually taken to be a set of independent Gaussians, but the results are
largely insensitive to the distribution if the matrix is large enough. RMT
has been very successful in describing the properties of chaotic quantum
dots [17, 18]. The spectrum of an Andreev billiard was calculated using
RMT in Ref. [8]. RMT predicts a hard gap (1.8) in the mean density of
states of the Andreev billiard, meaning that ρ(E) = 0 for E < Egap.

A closer connection to the classical dynamics is provided by periodic
orbit theory. The retroreflection at the superconductor makes all trajecto-
ries in the Andreev billiard periodic near the Fermi level [19]. A periodic
trajectory consists of an electron and a hole retracing each other’s path
(see Fig. 1.7). The phase accumulated in one period consists of two parts:
the phase shifts of the two Andreev reflections, equal to −π (for E � ∆0)
and the phase 2ET acquired during the motion in the normal region. (The
period of the trajectory is 2T , with T the time between Andreev reflections,
also referred to as the dwell time.) Summing the two phase contributions
and requiring that the phase accumulated in one period is a multiple of
2π leads to the mean density of states

ρBS(E) = N
∫∞

0
dTP(T)

∞∑
n=0

δ
(
E − (n+ 1

2
)π�/T

)
, (1.9)
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where P(T) is the classical dwell time distribution and N is the number of
modes in the point contact connecting the normal region with the super-
conductor. This result is the Bohr-Sommerfeld approximation of Ref. [8].

A chaotic billiard has an exponential dwell time distribution P(T) =
exp (−T/τD)τ−1

D , with τD = 2π�/Nδ the mean dwell time and δ the mean
level spacing of the isolated billiard. Substitution of this distribution into
Eq. (1.9) results in the density of states [20]

ρBS(E) = 2
δ
(πET/E)2 cosh(πET/E)

sinh2(πET /E)
, (1.10)

with Thouless energy ET = �/2τD . The Bohr-Sommerfeld density of states
is compared with the RMT result in Fig. 1.8. In contrast to RMT, periodic
orbit theory does not predict a hard gap in the density of states, although
there is an exponential suppression for E� ET . It was realized by Lodder
and Nazarov [21] that the discrepancy between the two theories of Refs. [8]
and [20] is not a short-coming in one of them, but indicates that both
theories are correct in different limits. To explain this, the concept of the
Ehrenfest time is needed.

The Ehrenfest time characterizes the crossover from classical to quan-
tum mechanics. According to Ehrenfest’s theorem [22] the propagation
of a quantum mechanical wave packet is initially described by the clas-
sical equations of motion. If the classical motion is chaotic, the size of
the wave packet will grow exponentially ∝ exp (λt). After some time the
initial size λF (Fermi wavelength) of the wave packet has increased to the
linear dimension L of the quantum dot. This time scale is the Ehrenfest
time

τE = 1
λ
[ln (L/λF)+O(1)] . (1.11)

For times t > τE a description in terms of classical trajectories no longer
applies.

Periodic orbit theory, since it is based on classical trajectories, requires
a mean dwell time τD � τE . The Bohr-Sommerfeld result therefore applies
in the limit τE/τD → ∞. In the opposite limit τE/τD → 0 the RMT result
applies, with a hard gap given by Eq. (1.8), of order �/τD . For finite τE �
τD a hard gap appears at a value of order �/τE [21].

The central result of this thesis is a quasiclassical theory which de-
scribes the crossover from the RMT regime τD � τE to the periodic orbit
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Figure 1.8: Comparison of the mean density of states ρ(E) of a chaotic
Andreev billiard, as it is predicted by random-matrix theory (RMT) and by
periodic orbit theory (or Bohr-Sommerfeld quantization, labeled BS). While
RMT (valid for τE � τD) predicts a hard gap, Bohr-Sommerfeld quantiza-
tion (valid in the opposite limit τE � τD) gives an exponential suppression
at low energies, without a hard gap. From Ref. [23].

regime τD � τE . Our approach is very simple in principle: for short classi-
cal trajectories T < τE we use periodic orbit theory while for long classical
trajectories T > τE we use RMT with effective τE -dependent parameters
(effective RMT). Since an experimental test is still lacking, we compare our
theory with quantum mechanical simulations. The numerical model we
use is the Andreev kicked rotator [24], which provides a stroboscopic de-
scription of an Andreev billiard. The model is very efficient and allows one
to go to large enough system sizes to reach the regime τE 
 τD .

1.3 Josephson junction qubit

Superconducting circuits with Josephson junctions can be designed to
have states that carry circulating currents of opposite sign. This means
that quantum mechanically the system can be in a macroscopic superpo-
sition of clockwise and counter-clockwise circulating currents [25]. The
word “macroscopic” is used because a macroscopic number of Cooper
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Figure 1.9: a). Scanning electron microscope image of the Josephson junc-
tion qubit. b). Schematic picture of the Josephson junction qubit (inner
loop). The Josephson junctions are denoted by crosses and the arrows in-
dicate the direction of the phase difference δφi in Eq. (1.12). Junction 3
has a critical current which is smaller by a factor α. The loop is inductively
coupled to a Superconductor Quantum Interference Device (SQUID) (outer
loop), which can be used as a magnetometer. From Ref. [36].

pairs is involved in a state. The interest in the quantum mechanical be-
haviour of these systems is motivated by the possibility of using them
as the building blocks of a quantum computer [26–28]. While a classi-
cal computer has bits which are either 0 or 1, a quantum computer has
quantum bits (qubits) which can be in superpositions of the states |0〉 and
|1〉. The laws of quantum mechanics allow quantum computers to out-
perform classical computers for some tasks. Josephson junction circuits
are promising candidates for realizing a quantum computer, because the
technology to expand such systems to large-scale computers already ex-
ists. However, Josephson junction circuits are large on the scale of sin-
gle atoms and are therefore hard to decouple from experimental noise.
The coherent manipulation of only one qubit is already a huge experi-
mental challenge, but there exist several superconducting Josephson cir-
cuits where it was achieved [29–34]. In this thesis we focus on one par-
ticular realization: a superconducting loop intersected by three Josephson
junctions [35], shown in Fig. 1.9.
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Figure 1.10: a). Schematical picture of the loop’s double well potential
for an applied flux Φext ≈ 0.5Φ0. The quantum mechanical ground state
and first excited state are shown, they are well separated from the higher
levels (dotted lines). b). Energy and expectation value of the current as
a function of the applied flux Φext for the ground and first excited state.
From Ref. [36].

The Josephson junctions are characterized by two energy scales: the
Josephson energy EJ and the charging energy EC = e2/2C, where C is the
capacitance of the Josephson junction. The three Josephson junctions di-
vide the superconducting loop into islands. The phase (hence current) and
the excess number of Cooper pairs on each island are quantum mechani-
cal conjugate variables. Depending on the ratio EJ/EC it is convenient to
choose a basis where the charge (in the limit EJ � EC ) or the current (in
the opposite limit EJ � EC ) is well defined. In the system shown in Fig. 1.9
EJ/EC � 60 and the eigenstates can be well described as superpositions of
current states.

A description of the system starts with the current-phase relationship
(1.7) of a Josephson junction. One of the three junctions in Fig. 1.9 has a
critical current which is smaller by a factor α. The loop can be biased by
an external magnetic field Φext. The inductance of the loop is negligible, so
the total flux is the external flux. Then flux quantization [6] requires that
δφ1 + δφ2 + δφ3 = 2πΦext/Φ0. Here Φ0 = h/2e is the superconducting
flux quantum. The Josephson energy due to the i-th junction reads EJi(1−
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cosδφi). Combining this with the flux quantization, the total Josephson
energy U is given by

U = EJ [2+α− cosδφ1 − cosδφ2 −α cos(2πΦext/Φ0 − δφ1 − δφ2)] .
(1.12)

It is a function of two phases. For a range of magnetic fields, this clas-
sical potential has two stable solutions: one corresponding to a current
flowing clockwise, the other to a current flowing counter-clockwise. The
magnitude Imax of both currents is equal and it is very close to the crit-
ical current of the weakest junction. By adding the charging energy and
considering the circuit quantum mechanically, the quantum mechanical
eigenstates can be determined [37]. For suitably chosen parameters (α �
0.6 − 0.8, EJ/EC � 60), the system can be well-described as a two-state
quantum system, in the vicinity of Φext = 1

2Φ0. The two eigenstates corre-
spond to superpositions of states with opposite currents.

This is illustrated in Fig. 1.10. The classical double-well potential is
shown, with the wells corresponding to currents of opposite sign. Quan-
tum mechanically the qubit has two low-energy eigenstates (black and
gray) which are well-separated from the higher lying levels. For Φext =
1
2Φ0 the energies of the two wells are equal and the quantum mechanical
states are symmetric and anti-symmetric superpositions of the two cur-
rent states. For Φext below or above 1

2Φ0 the quantum states are more
localized in one of the two wells. In Fig. 1.10 the expectation value of the
current as a function of Φext is also shown, both for the ground and ex-
cited state. The current produces a magnetic field, which can be detected
by a Superconducting Quantum Interference Device (SQUID), shown in Fig.
1.9.

The Hamiltonian of the Josephson junction qubit can be written in the
form of a spin 1/2 particle,

HQ = −�W2 σx − �F2 σz , (1.13)

where σi are Pauli matrices. The tunnel splitting �W depends on the de-
tails of the junctions and it cannot be manipulated during the experiment.
The static energy bias �F = 2Imax

(
Φext − 1

2Φ0

)
can be tuned by changing

the applied flux.
The state of the qubit can be controlled by applying a time-dependent

magnetic field in the GHz range, introducing a time dependence in the
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energy bias F . If the control field is resonant with the energy splitting of
the ground and excited state, coherent oscillations between the two levels
occur. These Rabi oscillations have been measured [33]. For a quantitative
description of the experiment one has to take into account the presence of
the quantum measurement device (the SQUID) and the fact that the system
is periodically driven. In a recent experiment it has been found that the
presence of the SQUID introduces extra resonances [38]. The last chapter
of the thesis is devoted to a quantitative description of this experiment.

1.4 This thesis

Chapter 2: Adiabatic quantization of an Andreev billiard

Periodic orbit theory gives a reliable description of the energy levels and
wave functions of a normal billiard, provided it is large compared to the
electron wave length. In this chapter we apply this quasiclassical approach
to Andreev billiards.

We start by studying the classical dynamics of electrons and holes.
For finite excitation energies an Andreev reflected hole does not exactly
retrace the path of the electron. The slow drift has an adiabatic invariant:
the time T between Andreev reflections. The adiabatically invariant torus
in phase space can be quantized, resulting in a ladder of Andreev levels.
The adiabatic quantization breaks down for T > τE . For this part of phase
space we propose an effective RMT. The result is a quantitative prediction
for the dependence of the excitation gap on the Ehrenfest time τE and the
dwell time τD, which agrees well with computer simulations [24].

Chapter 3: Quasiclassical fluctuations of the superconductor prox-
imity gap in a chaotic system

Mesoscopic systems have universal sample-to-sample fluctuations. Uni-
versal means that their size does not depend on the exact miscroscopic
properties of the system. A well-known example are the universal conduc-
tance fluctuations, which occur both in disordered and chaotic ballistic
systems. They can be described by RMT.

In this chapter we focus on the sample-to-sample fluctuations in the ex-
citation gap of the Andreev billiard. In Ref. [39] the universal distribution
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function of the gap is calculated using RMT. It has a standard deviation

δERMT
0 = 1.09ET/N2/3. (1.14)

For τE 
 τD RMT breaks down. Since the Ehrenfest time scales only log-
arithmically with L/λF , a numerical investigation of the regime τE 
 τD
demands a very effective numerical model. This is provided by the An-
dreev kicked rotator [24].

We use the Andreev kicked rotator to investigate the effect of the
Ehrenfest time on the gap fluctuations. We find that in the quasiclass-
cial regime, the amplitude of the fluctuations is much larger than the RMT
value (1.14). The effective RMT of chapter 2 gives a good description of
the fluctuations.

Chapter 4: Quantum-to-classical crossover of Andreev billiards
in a magnetic field

We continue our development of the periodic orbit theory of Andreev bil-
liards by studying the effect of a perpendicular magnetic field. RMT pre-
dicts that the excitation gap of the Andreev billiard will be reduced with in-
creasing field strength and that it will close at a critical magnetic field [15]

B0 � �
eL2

√
L

vFτD
. (1.15)

We extend the quasiclassical theory of chapter 2 to include a time-
reversal-symmetry breaking magnetic field. The critical magnetic field is
reduced with increasing τE . We compare our quasiclassical expressions
with numerical results from the Andreev kicked rotator.

Chapter 5: Noiseless scattering states in a chaotic cavity

In this chapter we apply the effective RMT, developed in chapter 2 for
the Andreev billiard to a different system: a quantum dot which is not
attached to a superconductor, but to two electron reservoirs. Through
such a system a current I(t) can flow. Due to the discreteness of charge
the current will fluctuate around its time averaged value Ī, even for zero
temperature. These fluctuations are known as shot noise. The shot noise
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Figure 1.11: Dependence of the Fano factor F on the dimensionality of
Hilbert space M � L/λF , at fixed dwell time τD = (M/2N) × τ0. The
data points are from a quantum mechanical simulation of the open kicked
rotator with kicking strength K, Lyapunov exponent λ � ln (K/2) and stro-
boscopic time τ0. The dashed lines are the prediction from effective RMT.
There are no fit parameters in the comparison. From Ref. [43].
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power S can be quantified by the Fano factor F = S/2eĪ . For a quantum
dot RMT predicts the universal value F = 1/4 [40].

In the limit L/λF → ∞ it was predicted that shot noise should vanish,
due to the transition from stochastic wave dynamics to deterministic par-
ticle dynamics [41]. A more quantitative description was given in Ref. [42]
and yields an exponential suppression of the Fano factor,

F = 1
4

exp(−τE/τD). (1.16)

The theory of Ref. [42] does not describe sample-specific deviations
from the universal value. In this chapter we construct noiseless channels
for transport through a chaotic quantum dot and relate the Fano factor
to the classical details of the system. The noisy channels are described
by effective RMT. We find qualitatively the same behaviour as predicted
by Eq. (1.16), but we find that the suppression depends on the difference
between τE and the ergodic time τerg, not on τE alone. The sample-specific
results predicted by our theory agree well with computer simulations, as
shown in Fig. 1.11.

Chapter 6: Spectroscopy of a driven solid-state qubit coupled to
a structured environment

It is not realistic to describe a macroscopic quantum system as being com-
pletely isolated from its surroundings. In reality, the quantum system is
an open system in contact with a heat bath. The most widely-used model
for the bath is a thermal reservoir consisting of many uncoupled harmonic
oscillators. It is assumed that the coupling between system and bath is lin-
ear in both the system and bath coordinates. When the quantum system
is a two-state system, described by a spin 1/2 Hamiltonian, this model is
known as the spin-boson model [44].

The influence of the heat bath on the quantum system can be com-
pletely described by its spectral density J(ω). The linear form J(ω) ∝ω
represents the effect of an Ohmic electromagnetic environment. When the
environment is a quantum measurement device, the simple Ohmic descrip-
tion is not always valid. In the experiment of the Josephson junction qubit
the measurement device is a SQUID, shunted by an external capacitance.
It can be modeled as a harmonic oscillator with frequency Ωp. The whole
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Figure 1.12: a). Josephson junction qubit (small loop on the right hand
side) coupled to a SQUID (total loop), shunted by a capacitance. The qubit-
SQUID coupling is realized by merging the two loops (different from the
inductive coupling of Fig. 1.9). The time-dependent control field is pro-
vided by the MW (=microwave) line and couples inductively to the qubit.
b). Resonant frequencies in the coupled qubit-SQUID system as a function
of the bias ∆Φ = Φext − 1

2Φ0. Different symbols correspond to different
transitions, shown in the inset. The states in the inset are described by
two numbers, the first number characterizes the qubit state, while the sec-
ond number refers to the state of the capacitively shunted SQUID. The
solid lines are numerical fits. From Ref. [38].

set-up can be described as a qubit coupled to a heat bath, having a spec-
tral density with a Lorentzian peak at Ωp [45]. An equivalent description
is that of a qubit coupled to a harmonic oscillator which itself is damped
by an Ohmic heat bath.

In the experiment of Ref. [38], the coupled dynamics in the qubit-
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oscillator system was investigated (cf. Fig. 1.12). In this chapter we give a
quantitative description of the behaviour of the system, both in the experi-
mentally relevant weak damping limit and in the limit of strong damping
and/or high temperature. We find that the combination of the coupling to
the SQUID and the time-dependent control field results in resonances in
the long-time behaviour of the qubit, in agreement with the experiment.
We give analytical formulas for their line-shapes. They compare well with
the results of a numerical ab-initio calculation.
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Chapter 2

Adiabatic quantization of an

Andreev billiard

The notion that quantized energy levels may be associated with classical
adiabatic invariants goes back to Ehrenfest and the birth of quantum me-
chanics [1]. It was successful in providing a semiclassical quantization
scheme for special integrable dynamical systems, but failed to describe
the generic nonintegrable case. Adiabatic invariants play an interesting
but minor role in the quantization of chaotic systems [2,3].

Since the existence of an adiabatic invariant is the exception rather
than the rule, the emergence of a new one quite often teaches us some-
thing useful about the system. An example from condensed matter physics
is the quantum Hall effect, in which the semiclassical theory is based on
two adiabatic invariants: the flux through a cyclotron orbit and the flux en-
closed by the orbit center as it slowly drifts along an equipotential [4]. The
strong magnetic field suppresses chaotic dynamics in a smooth potential
landscape, rendering the motion quasi-integrable.

Some time ago it was realized that Andreev reflection has a similar
effect on the chaotic motion in an electron billiard coupled to a supercon-
ductor [5]. An electron trajectory is retraced by the hole that is produced
upon absorption of a Cooper pair by the superconductor. At the Fermi
energy EF the dynamics of the hole is precisely the time reverse of the
electron dynamics, so that the motion is strictly periodic. The period from
electron to hole and back to electron is twice the time T between Andreev
reflections. For finite excitation energy E the electron (at energy EF + E)
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and the hole (at energy EF − E) follow slightly different trajectories, so the
orbit does not quite close and drifts around in phase space. This drift
has been studied in a variety of contexts [5–9], but not in connection with
adiabatic invariants and the associated quantization conditions. It is the
purpose of this chapter to make that connection and point out a striking
physical consequence: The wave functions of adiabatically quantized An-
dreev levels fill the cavity in a highly nonuniform “squeezed” way, which
has no counterpart in normal state chaotic or regular billiards. In particu-
lar the squeezing is distinct from periodic orbit scarring [10] and entirely
different from the random superposition of plane waves expected for a
fully chaotic billiard [11].

Adiabatic quantization breaks down near the excitation gap, and we
will argue that random-matrix theory [12] can be used to quantize the
lowest-lying excitations above the gap. This will lead us to a formula for
the gap that crosses over from the Thouless energy to the inverse Ehren-
fest time as the number of modes in the point contact is increased.

To illustrate the problem we represent in Figs. 2.1 and 2.2 the quasiperi-
odic motion in a particular Andreev billiard. (It is similar to a Sinai billiard,
but has a smooth potential V in the interior to favor adiabaticity.) Figure
2.1 shows a trajectory in real space while Fig. 2.2 is a section of phase
space at the interface with the superconductor (y = 0). The tangential
component px of the electron momentum is plotted as a function of the
coordinate x along the interface. Each point in this Poincaré map corre-
sponds to one collision of an electron with the interface. (The collisions
of holes are not plotted.) The electron is retroreflected as a hole with the
same px. At E = 0 the component py is also the same, and so the hole
retraces the path of the electron (the hole velocity being opposite to its
momentum). At non-zero E the retroreflection occurs with a slight change
in py , because of the difference 2E in the kinetic energy of electrons and
holes. The resulting slow drift of the periodic trajectory traces out a con-
tour in the surface of section. The adiabatic invariant is the function of
x,px that is constant on the contour. We have found numerically that the
drift follows isochronous contours CT of constant time T(x,px) between
Andreev reflections [13]. Let us now demonstrate analytically that T is an
adiabatic invariant.

We consider the Poincaré map CT → C(E, T) at energy E. If E = 0 the
Poincaré map is the identity, so C(0, T) = CT . For adiabatic invariance
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Figure 2.1: Classical trajectory in an Andreev billiard. Particles in a two-
dimensional electron gas are deflected by the potential V = [1−(r/L)2]V0

for r < L, V = 0 for r > L. (The dotted circles are equipotentials.) There
is specular reflection at the boundaries with an insulator (thick solid lines)
and Andreev reflection at the boundary with a superconductor (dashed
line). The trajectory follows the motion between two Andreev reflections
of an electron near the Fermi energy EF = 0.84V0. The Andreev reflected
hole retraces this trajectory in opposite direction.

we need to prove that limE→0 dC/dE = 0, so that the difference between
C(E, T) and CT is of higher order than E [14]. Since the contour C(E, T)
can be locally represented by a function px(x,E), we need to prove that
limE→0 ∂px(x, E)/∂E = 0.

In order to prove this, it is convenient to decompose the map CT →
C(E, T) into three separate stages, starting out as an electron (from CT to
C+), followed by Andreev reflection (C+ → C−), and then concluded as a
hole [from C− to C(E, T)]. Andreev reflection introduces a discontinuity
in py but leaves px unchanged, so C+ = C−. The flow in phase space as
electron (+) or hole (−) at energy E is described by the action S±(q, E), such
that p±(q, E) = ∂S±/∂q gives the local dependence of (electron or hole)
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Figure 2.2: Poincaré map for the Andreev billiard of Fig. 2.1. Each dot
represents a starting point of an electron trajectory, at position x (in units
of L) along the interface y = 0 and with tangential momentum px (in units
of
√
mV0). The inset shows the full surface of section, while the main plot

is an enlargement of the central region. The drifting quasiperiodic motion
follows contours of constant time T between Andreev reflections. The
cross marks the starting point of the trajectory shown in the previous

figure, having T = 18 (in units of
√
mL2/V0).

momentum p = (px,py) on position q = (x,y). The derivative ∂S±/∂E =
t±(q, E) is the time elapsed since the previous Andreev reflection. Since
by construction t±(x,y = 0, E = 0) = T is independent of the position x
of the end of the trajectory, we find that limE→0 ∂p±x (x,y = 0, E)/∂E = 0,
completing the proof.

The drift (δx,δpx) of a point in the Poincaré map is perpendicular to
the vector (∂T/∂x, ∂T/∂px). Using also that the map is area preserving, it
follows that

(δx,δpx) = Ef(T)(∂T/∂px,−∂T/∂x) +O(E2), (2.1)

with a prefactor f(T) that is the same along the entire contour.
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The adiabatic invariance of isochronous contours may alternatively be
obtained from the adiabatic invariance of the action integral I over the
quasiperiodic motion from electron to hole and back to electron:

I =
∮
pdq = E

∮
dq
q̇
= 2ET. (2.2)

Since E is a constant of the motion, adiabatic invariance of I implies adia-
batic invariance of the time T between Andreev reflections. This is the way
in which adiabatic invariance is usually proven in textbooks. Our proof ex-
plicitly takes into account the fact that phase space in the Andreev billiard
consists of two sheets, joined in the constriction at the interface with the
superconductor, with a discontinuity in the action on going from one sheet
to the other.

The contours of large T enclose a very small area. This will play a cru-
cial role when we quantize the billiard, so let us estimate the area. Elec-
trons leaving the superconductor have transverse momenta in the range
(−pW ,pW), with the value of pW depending on the details of the potential
near the superconductor. It is convenient for our estimate to measure px
and x in units of pW and the width W of the constriction to the super-
conductor [15]. The highly elongated shape evident in Fig. 2.2 is a conse-
quence of the exponential divergence in time of nearby trajectories, char-
acteristic of chaotic dynamics. The rate of divergence is the Lyapunov ex-
ponent λ. (We consider a fully chaotic phase space.) Since the Hamiltonian
flow is area preserving, a stretching �+(t) = �+(0)eλt of the dimension in
one direction needs to be compensated by a squeezing �−(t) = �−(0)e−λt
of the dimension in the other direction. The area O(t) � �+(t)�−(t) is
then time-independent. Initially, �±(0) < 1. The constriction at the super-
conductor acts as a bottleneck, enforcing �±(T) < 1. These two inequali-
ties imply �+(t) < eλ(t−T), �−(t) < e−λt . Therefore, the enclosed area has
upper bound

Omax � pWWe−λT � �Ne−λT , (2.3)

where N � pWW/�� 1 is the number of channels in the point contact.
We now continue with the quantization. The two invariants E and T de-

fine a two-dimensional torus in the four-dimensional phase space. Quan-
tization of this adiabatically invariant torus proceeds following Einstein-
Brillouin-Keller [3], by quantizing the area∮

pdq = 2π�(m + ν/4), m = 0,1,2, . . . (2.4)
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enclosed by each of the two topologically independent contours on the
torus. Equation (2.4) ensures that the wavefunctions are single valued.
(See Ref. [16] for a derivation in a two-sheeted phase space.) The integer ν
counts the number of caustics (Maslov index) and in our case should also
include the number of Andreev reflections.

The first contour follows the quasiperiodic orbit of Eq. (2.2), leading to

ET = (m+ 1
2)π�, m = 0,1,2, . . . (2.5)

The quantization condition (2.5) is sufficient to determine the smoothed
density of states ρ(E), using the classical probability distribution P(T) ∝
exp(−TNδ/h) [17] for the time between Andreev reflections. (We denote
by δ the level spacing in the isolated billiard.) The density of states

ρ(E) = N
∫∞

0
dT P(T)

∞∑
m=0

δ
(
E − (m+ 1

2)π�/T
)

(2.6)

has no gap, but vanishes smoothly ∝ exp(−Nδ/4E) at energies below
the Thouless energy Nδ. This “Bohr-Sommerfeld approximation” [12] has
been quite successful [18–20], but it gives no information on the location
of individual energy levels — nor can it be used to determine the wave
functions.

To find these we need a second quantization condition, which is pro-
vided by the area

∮
T pxdx enclosed by the contours of constant T(x,px),

∮
T
pxdx = 2π�(n+ ν/4), n = 0,1,2, . . . (2.7)

Equation (2.7) amounts to a quantization of the time T , which together
with Eq. (2.5) leads to a quantization of E. For each Tn there is a ladder of
Andreev levels Enm = (m+ 1

2)π�/Tn.

While the classical T can become arbitrarily large, the quantized Tn
has a cutoff. The cutoff follows from the maximal area (2.3) enclosed by
an isochronous contour. Since Eq. (2.7) requires Omax > π�, we find that
the longest quantized time is T0 = λ−1[lnN + O(1)]. The lowest Andreev
level associated with an adiabatically invariant torus is therefore

E00 = π�2T0
� π�λ

2 lnN
. (2.8)
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Figure 2.3: Projection onto the x-y plane of the invariant torus with
T = 18, representing the support of the electron component of the wave
function. The flux tube has a large width near the superconductor, which
is squeezed to an indistinguishably small value after a few collisions with
the boundaries.

The time scale T0 ≡ τE ∝ | ln�| represents the Ehrenfest time of the An-
dreev billiard, which sets the scale for the excitation gap in the semiclassi-
cal limit [21–23].

We now turn from the energy levels to the wave functions. The wave
function has electron and hole components ψ±(x,y), corresponding to
the two sheets of phase space. By projecting the invariant torus in a single
sheet onto the x-y plane we obtain the support of the electron or hole
wave function. This is shown in Fig. 2.3, for the same billiard presented
in the previous figures. The curves are streamlines that follow the mo-
tion of individual electrons, all sharing the same time T between Andreev
reflections. (A single one of these trajectories was shown in Fig. 2.1.)

Together the streamlines form a flux tube that represents the support
of ψ+. The width δW of the flux tube is of order W at the constriction,
but becomes much smaller in the interior of the billiard. Since δW/W <
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�+ + �− < eλ(t−T) + e−λt (with 0 < t < T ), we conclude that the flux tube is
squeezed down to a width

δWmin � We−λT/2. (2.9)

The flux tube for the level E00 has a minimal width δWmin � W/
√
N. Parti-

cle conservation implies that |ψ+|2 ∝ 1/δW , so that the squeezing of the
flux tube is associated with an increase of the electron density by a factor
of
√
N as one moves away from the constriction.

Let us examine the range of validity of adiabatic quantization. The drift
δx, δpx upon one iteration of the Poincaré map should be small compared
to W,pF . We estimate

δx
W

� δpx
pW

� Enm
�λN

eλTn � (m+ 1
2)
e−λ(T0−Tn)

λTn
. (2.10)

For low-lying levels (m ∼ 1) the dimensionless drift is � 1 for Tn < T0.
Even for Tn = T0 one has δx/W � 1/ lnN � 1.

Semiclassical methods allow to quantize only the trajectories with times
T ≤ T0 = τE . We propose that the part of phase space with longer periods
can be quantized by random-matrix theory (RMT). Since the RMT descrip-
tion is only valid for a reduced phase space, we call it an effective RMT.

Such an effective RMT calculation has been performed in Ref. [24] and
it is summarized in Appendix 2.A. Here we just give the result for the ex-
citation gap Egap. It is shown in Fig. 2.4 as a function of τE/τD (solid line),
where the dwell time τD is the mean time between Andreev reflections.
The two asymptotes (dotted lines) are

Egap = γ5/2�
τD

(
1− (2γ − 1)

τE
τD

)
, τE � τD, (2.11)

Egap = π�
2τE

(
1− (3+

√
8)
τD
τE

)
, τE � τD, (2.12)

with γ = 1
2(
√

5 − 1) the golden number. The results of effective RMT are
compared with a calculation of Vavilov and Larkin [25] (dashed line), who
use small-angle scattering by a smooth disorder potential to mimick the
quantum diffraction of a wave packet in a chaotic billiard [26]. The results
of both models are close.

Effective RMT describes the crossover from the Thouless regime where
Egap = 0.30�/τD (see Eq. (2.11)) to the Ehrenfest regime with Egap =
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Figure 2.4: Excitation gap of the Andreev billiard in the crossover from
Thouless to Ehrenfest regimes. The solid curve is the solution of the ef-
fective RMT, derived in App. 2.A. The dotted lines are the two asymptotes
(2.11) and (2.12). The dashed curve is the result of the stochastic model of
Ref. [25]. Adapted from Ref. [24].

π�/2τE (Eq. (2.12)). The value Egap is lower than the lowest adiabatic
level E00 = π�/2τE (they coincide in the limit τE → ∞), meaning that the
excitation gap is always an effective RMT level.

Up to now we considered two-dimensional Andreev billiards. Adiabatic
quantization may equally well be applied to three-dimensional systems,
with the area enclosed by an isochronous contour as the second adiabatic
invariant. For a fully chaotic phase space with two Lyapunov exponents
λ1, λ2, the longest quantized period is T0 � 1

2(λ1 + λ2)−1 lnN. We expect
interesting quantum size effects on the classical localization of Andreev
levels discovered in Ref. [7], which should be measurable in a thin metal
film on a superconducting substrate.

A numerical test of the dependence of Egap on τE/τD was performed
in Ref. [27] using a stroboscopic description for an Andreev billiard, the
Andreev kicked rotator. The numerical results are in agreement with the
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effective RMT prediction of Egap (see Ref. [24] for a comparison). In the
Andreev kicked rotator the drift due to a finite excitation energy E was
not included and adiabatic levels were not considered. One important
challenge for future research is to test the adiabatic quantization of An-
dreev levels numerically, by solving the Bogoliubov-De Gennes equation
on a computer. The characteristic signature of the adiabatic invariant that
we have discovered, a narrow region of enhanced intensity in a chaotic re-
gion that is squeezed as one moves away from the superconductor, should
be readily observable and distinguishable from other features that are un-
related to the presence of the superconductor, such as scars of unstable
periodic orbits [10]. Experimentally these regions might be observable us-
ing a scanning tunneling probe, which provides an energy and spatially
resolved measurement of the electron density.

2.A Effective RMT

In this appendix we summarize the effective RMT calculation of Ref. [24].
Effective RMT is based on the hypothesis that the part of phase space with
long trajectories can be quantized by a scattering matrix Sq in the circular
ensemble of RMT, with a reduced dimensionality

Neff = N
∫∞
τE
P(T)dT = Ne−τE/τD . (2.13)

The energy dependence of Sq(E) is that of a chaotic cavity with mean
level spacing δeff, coupled to the superconductor by a long lead with
Neff propagating modes. (See Fig. 2.5.) The lead introduces a mode-
independent delay time τE between Andreev reflections, to ensure that
P(T) is cut off for T < τE . Because P(T) is exponential ∝ exp(−T/τD),
the mean time 〈T〉∗ between Andreev reflections in the accessible part of
phase space is simply τE + τD . The effective level spacing in the chaotic
cavity by itself (without the lead) is then determined by

2π�
Neffδeff

= 〈T〉∗ − τE = τD. (2.14)

It is convenient to separate the energy dependence due to the lead
from that due to the cavity, by writing Sq(E) = exp(iEτE/�)S0(E). The
unitary symmetric matrix S0 corresponds to a chaotic cavity with effective
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Figure 2.5: Pictorial representation of the effective RMT of an Andreev bil-
liard. The part of phase space with time T > τE between Andreev reflec-
tions is represented by a chaotic cavity (mean level spacing δeff), connected
to the superconductor by a long lead (Neff propagating modes, one-way
delay time τE/2 for each mode). Between two Andreev reflections an elec-
tron or hole spends, on average, a time τE in the lead and a time τD in the
cavity. The scattering matrix of lead plus cavity is exp(iEτE/�)S0(E), with
S0(E) distributed according to the circular ensemble of RMT (with effective
parameters Neff, δeff). The complete excitation spectrum of the Andreev
billiard consists of the levels of the effective RMT (periods > τE ) plus the
levels obtained by adiabatic quantization (periods < τE). Adapted from
Ref. [24].

parameters Neff and δeff given by Eqs. (2.13) and (2.14). The mean dwell
time associated with S0 is τD . It has an energy dependence of the usual
RMT form [28,29]

S0(E) = 1− 2πiWT(E −H0 + iπWWT)−1W, (2.15)

in terms of the M ×M Hamiltonian H0 of the closed effective cavity and
a M × Neff coupling matrix W . The matrix WTW has eigenvalues wn =
Mδeff/π2.

The discrete spectrum of an Andreev billiard with scattering matrix
Sq(E) is determined by the determinantal equation [30]

Det
[
1−α(E)2Sq(E)Sq(−E)∗

]
= 0. (2.16)

It takes the form

Det
[
1+ e2iEτE/�S0(E)S0(−E)∗

]
= 0. (2.17)
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We have replaced α(E) ≡ exp[−i arccos(E/∆)] → −i (since E � ∆), but
the energy dependence of the phase factor e2iEτE/� can not be omitted.
The calculation for Neff � 1 follows the method described in Ref. [12],
modified as in Ref. [31] to account for the energy dependent phase factor
in the determinant.

Using Eq. (2.15), we can write Eq. (2.17) in the Hamiltonian form

Det [E −Heff] = 0, (2.18)

Heff =
(
H0 0
0 −H∗0

)
−W(E), (2.19)

W(E) = π
cosu

(
WWT sinu WWT

WWT WWT sinu

)
, (2.20)

where we have abbreviated u = EτE/�. The ensemble averaged density of
states is given by

ρeff(E) = −
1
π

Im Tr
(

1+ dW
dE

)
〈(E + i0+ −Heff)−1〉. (2.21)

In the presence of time-reversal symmetry the Hamiltonian H0 of the
isolated billiard is a real symmetric matrix. The appropriate RMT ensemble
is the GOE, with distribution [32]

P(H) ∝ exp

(
− π2

4Mδ2
eff

TrH2

)
. (2.22)

The ensemble average 〈· · · 〉 in Eq. 2.21 is an average over H0 in the GOE
at fixed coupling matrix W . Because of the block structure of Heff, the
ensemble averaged Green function G(E) = 〈(E −Heff)−1〉 consists of four
M ×M blocks G11, G12, G21, G22. By taking the trace of each block sepa-
rately, one arrives at a 2× 2 matrix Green function

G =
(
G11 G12

G21 G22

)
= δ
π

(
TrG11 TrG12

TrG21 TrG22

)
. (2.23)

(The factor δ/π is inserted for later convenience.)
The average over the distribution (2.22) can be done diagrammatically

[33, 34]. To leading order in 1/M and for E � δ only simple (planar)
diagrams need to be considered. Resummation of these diagrams leads to
the selfconsistency equation [12,31]

G = [E +W − (Mδeff/π)σzGσz]−1, σz =
(

1 0
0 −1

)
. (2.24)
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After some algebra we find that G22 = G11 and G21 = G12 and there are
two unknown functions to determine. For M � N these satisfy

G2
12 = 1+G2

11, (2.25a)

G11 +G12 sinu = −(τD/τE)uG12

× (G12 + cosu+G11 sinu). (2.25b)

and the density of states (2.21) is given by

ρeff(E) = −
2
δeff

Im
(
G11 − u

cosu
G12

)
. (2.26)

The excitation gap corresponds to a square root singularity in ρeff(E),
which can be obtained by solving Eqs. (2.25a) and (2.25b) jointly with
dE/dG11 = 0 for u ∈ (0, π/2). The result is plotted in Fig. 2.4. The
small- and large-τE asymptotes are given by Eqs. (2.11) and (2.12).
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Chapter 3

Quasiclassical fluctuations of

the superconductor proximity

gap in a chaotic system

The universality of statistical fluctuations is one of the most profound
manifestations of quantum mechanics in mesoscopic systems [1]. Classi-
cally, the conductance g of a disordered metal (measured in the funda-
mental unit 2e2/h) would fluctuate from sample to sample by an amount
of order (l/L)3/2 � 1, with l the mean free path and L the length of the
conductor [2]. Quantum mechanical interference increases the fluctua-
tions to order unity, independent of disorder or sample length. This is
the phenomenon of universal conductance fluctuations [3, 4]. The same
universality applies to a variety of other properties of disordered metals
and superconductors, and random-matrix theory (RMT) provides a unified
description [5].

Chaotic systems (for example, a quantum dot in the shape of a sta-
dium) share much of the phenomenology of disordered systems: The
same universality of sample-to-sample fluctuations exists [6–8]. What is
different is the appearance of a new time scale, below which RMT breaks
down [9, 10]. This time scale is the Ehrenfest time τE , which measures
how long it takes for a wave packet of minimal size to expand over the
entire available phase space. If τE is larger than the mean dwell time τD
in the system (the reciprocal of the Thouless energy ET = �/2τD), then
interference effects are inoperative. A chaotic system with conductance
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g × 2e2/h, level spacing δ, and Lyapunov exponent λ has τD = 2π�/gδ
and τE = λ−1

[
ln (gτ0/τD)+O(1)

]
, with τ0 the time of flight across the

system [11]. The defining characteristic of the Ehrenfest time is that it
scales logarithmically with �, or equivalently, logarithmically with the sys-
tem size over Fermi wavelength [12].

The purpose of this chapter is to investigate what happens to meso-
scopic fluctuations if the Ehrenfest time becomes comparable to, or larger
than, the dwell time, so one enters a quasiclassical regime where RMT no
longer holds. This quasiclassical regime has not yet been explored experi-
mentally. The difficulty is that τE increases so slowly with system size
that the averaging effects of inelastic scattering take over before the effect
of a finite Ehrenfest time can be seen. In a computer simulation inelastic
scattering can be excluded from the model by construction, so this seems
a promising alternative to investigate the crossover from universal quan-
tum fluctuations to nonuniversal quasiclassical fluctuations. Contrary to
what one would expect from the disordered metal [2], where quasiclassi-
cal fluctuations are much smaller than the quantum value, we find that
the breakdown of universality in the chaotic system is associated with an
enhancement of the sample-to-sample fluctuations.

The quantity on which we choose to focus is the excitation gap E0 of
a chaotic system which is weakly coupled to a superconductor. We have
two reasons for this choice: Firstly, there exists a model (the Andreev
kicked rotator) which permits a computer simulation for systems large
enough that τE 
 τD . So far, such simulations, have confirmed the theory
of Ref. [11] for the average gap 〈E0〉 [13]. Secondly, the quasiclassical
theory of chapter 2 can describe the effect of a finite Ehrenfest time on
the excitation gap and its fluctuations. This allows us to achieve both a
numerical and an analytical understanding of the mesoscopic fluctuations
when RMT breaks down.

We summarize what is known from RMT for the gap fluctuations [14].
In RMT the gap distribution P(E0) is a universal function of the rescaled
energy (E0−Egap)/∆g , where Egap = 0.6ET is the mean-field energy gap and
∆g = 0.068g1/3 δ determines the mean level spacing just above the gap.
The distribution function has mean 〈E0〉 = Egap + 1.21∆g and standard

deviation
(
〈E2

0〉 − 〈E0〉2
)1/2 ≡ δERMT

0 given by

δERMT
0 = 1.27∆g = 1.09ET/g2/3. (3.1)
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The RMT predictions for P(E0), in the regime τE � τD , were confirmed
numerically in Ref. [13] using the Andreev kicked rotator.

We will use the same model, this time focusing on the gap fluctua-
tions δE0 in the regime τE 
 τD . The Andreev kicked rotator provides
a stroboscopic description (period τ0) of the dynamics in a normal re-
gion of phase space (area M�eff) coupled to a superconductor in a much
smaller region (area N�eff, 1 � N � M). We refer to this coupling as a
“lead”. The effective Planck constant is �eff = 1/M . The mean dwell time
in the normal region (before entering the lead) is τD = M/N and the cor-
responding Thouless energy is ET = N/2M . We have set τ0 and � equal
to 1. The dimensionless conductance of the lead is g = N. The product
δ = 4πET/g = 2π/M is the mean spacing of the quasi-energies εm of
the normal region without the coupling to the superconductor. The phase
factors eiεm (m = 1,2, ..,M) are the eigenvalues of the Floquet operator
F , which is the unitary matrix that describes the dynamics in the normal
region. In the model of the kicked rotator the matrix elements of F in
momentum representation are given by [15]

Fnm = e−(iπ/2M)(n
2+m2)(UQU†)nm, (3.2a)

Unm = M−1/2e(2πi/M)nm, (3.2b)

Qnm = δnme−(iMK/2π) cos (2πn/M). (3.2c)

The coupling to the superconductor doubles the dimension of the Flo-
quet operator, to accomodate both electron and hole dynamics. The scat-
tering from electron to hole, known as Andreev reflection, is described by
the matrix

P =
(

1− PTP −iPTP
−iPTP 1− PTP

)
, (3.3)

with the projection operator

(
PTP

)
nm

= δnm ×
{

1 if L0 ≤ n ≤ L0 +N − 1,
0 otherwise.

(3.4)

Since we work in momentum representation, the lead defined by Eq. (3.4) is
a strip in phase space of width N parallel to the coordinate axis. The inte-
ger L0 indicates the location of the lead. One could alternatively consider
a lead parallel to the momentum axis, if one would work in coordinate
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representation. We do not expect any significant differences between the
two alternatives. Putting all this together we arrive at the Floquet operator
of the Andreev kicked rotator [13],

F = P1/2
(
F 0
0 F∗

)
P1/2. (3.5)

The matrix F can be diagonalized efficiently using the Lanczos technique
in combination with the Fast-Fourier-Transform algorithm [16]. This makes
it possible to calculate the quasi-energies εm and eigenfunctions ψm for
systems of sizes up to M = 5 · 105. The gap value ε0 ≡ E0 is given by the
eigenphase of F closest to zero. (It is shown in Ref. [13] that the eigen-
value equation for the quasi-energies εm of the Andreev kicked rotator
has the same form as the equation for the energy spectrum of an Andreev
billiard).

The Floquet operator (3.5) provides a stroboscopic description of the
electron and hole dynamics, which is believed to be equivalent to the true
Hamiltonian dynamics on long time scales t � τ0. The support for this
comes from two sides: (i) In the absence of superconductivity, and for
varying parameters K and �eff, the 1-D kicked rotator correctly reproduces
properties of localized [17], diffusive [18], and even ballistic [19] quasi-
particles in disordered media. (ii) In the presence of superconductivity,
the kicked Andreev rotator, and extensions thereof, adequately describe
quantum dots in contact with a superconductor [13], and give a proper
description of quasiparticles in dirty d-wave superconductors [20].

Since we will be giving a classical interpretation of our results, we also
describe the classical map corresponding to the Andreev kicked rotator.
The map relates the dimensionless coordinate xn ∈ (0,1) and momentum
pn ∈ (0,1) at time (n+ 1)τ0 to the values at time nτ0:

pn+1 = pn ± (K/2π) sin[2π(xn ± pn2 )], (3.6a)

xn+1 = xn ± pn2 ± pn+1

2
. (3.6b)

The upper and lower sign correspond to electron and hole dynamics, re-
spectively. Periodic boundary conditions hold both for x and p. The
quasiparticle reaches the superconductor if |pn+1 − plead| < N/2M , where
plead = L0/M is the center of the lead. At the next iteration the electron is
converted into a hole and vice versa.
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Figure 3.1: Root-mean-square value δE0 of the gap divided by the RMT
prediction δERMT

0 , as a function of the system sizeM for dwell timeM/N =
5 and kicking strength K = 14. The data points result from the numerical
simulation of the Andreev kicked rotator. The solid line has slope 2/3,
indicating that δE0 depends only onM/N and not on M or N separately in
the large-M regime.

We study a system with kicking strength K = 14 (fully chaotic, Lya-
punov exponent λ = 1.95) and vary the level spacing δ = 2π/M at fixed
dwell time τD = M/N = 5. Sample-to-sample fluctuations are generated
by varying the position plead of the lead over some 400 locations. The
resulting M dependence of δE0 is plotted in Fig. 3.1 on a double logarith-
mic scale. We have divided the value δE0 resulting from the simulation
by the RMT prediction δERMT

0 from Eq. (3.1). The numerical data follows
this prediction for M � 103, but for larger M the fluctuations are bigger
than predicted by RMT. For M 
 104 the ratio δE0/δERMT

0 grows as M2/3

(solid line). Since δERMT
0 ∝ M−2/3, this means that δE0 is independent of

the level spacing δ = 2π/M at fixed dwell time τD = M/N. This suggests
a quasiclassical explanation.

To relate the fluctuations of E0 to the classical dynamics, we first exam-
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Figure 3.2: Left panels: Husimi function (3.7) for the electron component
of the ground-state wavefunction ψ0 of the Andreev kicked rotator, for
two different positions of the lead. The parameters are M = 131072,
τD = M/N = 5, K = 14. The calculated values are scaled by a factor
0.019 (0.017) in the top (bottom) panel, so that they cover the range (0,1),
indicated by the gray scale at the top. Right panels: The corresponding
classical density plots of all trajectories which have a time t > τE = 4.4
between Andreev reflections. The calculated values are rescaled by a factor
0.38 (0.39) in the top (bottom) panel.
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ine the corresponding wavefunction ψ0. In the RMT regime the wavefunc-
tions are random and show no features of the classical trajectories. In the
quasiclassical regime τE 
 τD we expect to see some classical features.
Phase space portraits of the electron components ψem of the wavefunc-
tions are given by the Husimi function

H (nx,np) = |〈ψem|nx,np〉|2. (3.7)

The state |nx,np〉 is a Gaussian wave packet centered at x = nx/M , p =
np/M . In momentum representation it reads

〈n|nx,np〉 ∝ e−π(n−np)2/Me2πinxn/M. (3.8)

In Fig. 3.2, left panels, the Husimi function of ψ0 is shown for two lead
positions. Shown is a logarithmic gray scale density plot of the Husimi
function, with light (dark) areas corresponding to low (high) density. The
lead is visible as a light strip parallel to the x-axis. It is clear that these
wavefunctions are not random. We expect that the structure that one sees
corresponds to long classical trajectories, since the wavefunctions are for
the excitation gap. To test this expectation, we show in the right panels
(on a linear gray scale) the corresponding classical density plots for all
trajectories with dwell time t > τE . A total of 3 · 105 initial conditions
(x0, p0) for these trajectories are chosen uniformly in the lead. Each new
iteration of the map (3.6) gives a point (xn,pn) in phase space, which is
kept if the time of return to the lead is greater than the Ehrenfest time
τE � λ−1 ln (N2/M) = 4.4. There is a clear correspondence between the
quantum mechanical Husimi function and the classical density plot. We
conclude that the wavefunction of the lowest excitation covers predomi-
nantly that part of phase space where the longest dwell times occur.

To make this more quantitative we have done a quasiclassical calcula-
tion, based on the effective RMT of the previous chapter. Effective RMT
is valid for the part of phase space containing the long trajectories, which
have an average time between Andreev reflections

〈T〉∗ =
∫∞
τE
TP(T)dT. (3.9)

In the pictorial representation of effective RMT (cf. Fig. 2.5), there is a long
lead with delay time τE/2 and a chaotic cavity with dwell time

τD = 〈T〉∗ − τE. (3.10)
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Figure 3.3: The data points are the quantum mechanical gap values E0 of
the Andreev kicked rotator as a function of the position plead = L0/M of
the lead, for parameter values M = 131072, τD = M/N = 5, K = 14. The
solid line is the effective RMT prediction, relating the fluctuations in E0

with the fluctuations in the average dwell time of long classical trajectories
(with T > τE).

We have determined 〈T〉∗ by a classical simulation of the Andreev
kicked rotator for different lead positions. Eq. (3.10) relates the fluctua-
tions in 〈T〉∗ to the fluctuations in τD (we assume that τE does not depend
on the position of the lead). We obtained the gap by plugging this numer-
ically obtained lead-position-dependent τD into the self-consistency equa-
tions (2.25a) and (2.25b), and by solving them jointly with dE/dG11 = 0.
This resulted in the solid curve of Fig. 3.3. The data points are from the
quantum simulation.

We see that the sample-to-sample fluctuations in the gap E0 can be
quite well described by the fluctuations in the sample-to-sample mean
dwell time of long trajectories. While the theory of Ref. [11] has been
found to be in good agreement with the average gap value 〈E0〉 [13], it is
not clear how it compares to the data of Fig. 3.3.

In conclusion, we have investigated the transition from quantum me-
chanical to quasiclassical gap fluctuations in the superconductor proxim-
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ity effect. The transition is accompanied by a loss of universality and
a substantial enhancement of the fluctuations. Our numerical data pro-
vides support for the effective random-matrix theory in a reduced part
of phase space of chapter 2, as is witnessed by the relationship which
we have found between the value of the gap and the dwell time of long
classical trajectories (see Fig. 3.3). Similar quasiclassical fluctuations of
the conductance in a ballistic chaotic system have been found numerically
and they can also be well described by effective RMT [22].
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Chapter 4

Quantum-to-classical crossover

for Andreev billiards in a

magnetic field

4.1 Introduction

When a quantum dot is coupled to a superconductor via a point contact,
the conversion of electron to hole excitations by Andreev reflection gov-
erns the low-energy spectrum. The density of states of such an Andreev
billiard was calculated using random-matrix theory (RMT) [1]. If the classi-
cal dynamics in the isolated quantum dot is chaotic, a gap opens up in the
spectrum. The excitation gap Egap is of the order of the Thouless energy
�/τD , with τD the average time between Andreev reflections. Although
chaoticity of the dynamics is essential for the gap to open, the size of
the gap in RMT is independent of the Lyapunov exponent λ of the chaotic
dynamics.

If the size L of the quantum dot is much larger than the Fermi wave-
length λF , a competing timescale τE � λ−1 ln (L/λF) appears, the Ehrenfest
time, which causes the breakdown of RMT [2]. The gap becomes dependent
on the Lyapunov exponent and for τE � τD vanishes as Egap � �/τE . The
Ehrenfest time dependence of the gap has been investigated in chapter 2
and 3 and in several other works [3–7]. For a recent review, see Ref. [8].

A magnetic field breaks time-reversal symmetry, thereby reducing Egap.
At a critical field Bc the gap closes. This was calculated using RMT in Ref.
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[9], but the effect of a finite Ehrenfest time was not studied before. Here
we extend the zero-field theory of chapter 2 to non-zero magnetic field.
It is a quasiclassical theory, which relates the excitation spectrum to the
classical dynamics in the billiard. The entire phase space is divided into
two parts, depending on the time T between Andreev reflections. Times
T < τE are quantized by identifying the adiabatic invariant, while times
T > τE are quantized by an effective RMT with τE-dependent parameters.

There exists an alternative approach to quantization of the Andreev
billiard, due to Vavilov and Larkin [5], which might also be extended to
non-zero magnetic field. In zero magnetic field the two models have been
shown to give similar results (see Fig. 2.4), so we restrict ourselves here to
the approach of chapter 2.

The outline of the chapter is as follows. We start by describing the
adiabatic levels in Sec. 4.2, followed by the effective RMT in Sec. 4.3. In Sec.
4.4 we compare our quasiclassical theory with fully quantum mechanical
computer simulations. We conclude in Sec. 4.5.

4.2 Adiabatic quantization

We generalize the theory of adiabatic quantization of the Andreev billiard
of chapter 2 to include the effect of a magnetic field. An example of the
geometry of such a billiard is sketched in Fig. 4.1. The normal metal lies in
the x-y plane and the boundary with the superconductor (NS boundary)
is at y = 0. The classical mechanics of electrons and holes in such an
Andreev billiard has been analyzed in Refs. [10–12]. We first summarize
the results we need, then proceed to the identification of the adiabatic
invariant, and finally present its quantization.

4.2.1 Classical mechanics

The classical equation of motion

r̈(t) = − e
m

ṙ× B+ e
m
∇V(r) (4.1)

is the same for the electron and the hole because both charge e and mass
m change sign. The vector B is the uniform magnetic field in the z-
direction and V(r) is the electrostatic potential in the plane of the billiard.
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 0
 0

L

L
x

y

Figure 4.1: Classical trajectory in an Andreev billiard. Particles are
deflected by the potential V =

[
(r/L)2 − 1

]
V0 for r < L, V =[

−4(r/L)2 + 10(r/L)− 6
]
V0 for r > L, with r 2 = x2 + y2 (the dotted

lines are equipotentials). At the insulating boundaries (solid lines) there is
specular reflection, while the particles are Andreev reflected at the super-
conductor (y = 0, dashed line). Shown is the trajectory of an electron at
the Fermi level (E = 0), for B = 0 and EF = 0.84 eV0. The Andreev reflected
hole will retrace this path.

The dots on r = (x,y) denote time derivatives. We follow the classical
trajectory of an electron starting at the NS boundary position (x,0) with
velocity (vx, vy). The electron is at an excitation energy E counted from
the Fermi level. After a time T the electron returns to the superconductor
and is retroreflected as a hole. Retroreflection means that vx → −vx . The
y-component vy of the velocity also changes sign, but in addition it is
slightly reduced in magnitude, v2

y → v2
y − 4E/m, so that an electron at an

energy E above the Fermi level becomes a hole at an energy E below the
Fermi level.

This refraction is one reason why the hole does not precisely retrace
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e
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hh
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E=0
B=0

Figure 4.2: Andreev reflection at a NS boundary (dashed line) of an electron
to a hole. The left panel shows the case of perfect retroreflection (zero ex-
citation energy E and zero magnetic field B). The middle and right panels
show that the hole does not precisely retrace the path of the electron if E
or B are non-zero.

the path of the electron. A second reason is that a non-zero B will cause
the hole trajectory to bend in the direction opposite to the electron tra-
jectory (because the velocity has changed sign), see Fig. 4.2. It follows
that if either E or B are non-zero, the hole will return to the NS boundary
at a slightly different position and with a slightly different velocity. The
resulting drift of the quasi-periodic motion is most easily visualized in a
Poincaré surface of section, see Fig. 4.3. Each dot marks the position x and
tangential velocity vx of an electron leaving the NS boundary. At non-zero
E or B, subsequent dots are slightly displaced, tracing out a contour in
the (x,vx) plane. In the limit E, B → 0, the shape of these contours is de-
termined by the adiabatic invariant of the classical dynamics. In chapter
2 it was shown that the contours in the Poincaré surface of section are
isochronous for B = 0. This means that they are given by T(x,vx) = const,
with T(x,vx) the time it takes an electron at the Fermi level to return to
the NS boundary, as a function of the starting point (x,vx) on the bound-
ary. In other words, for B = 0 the time between Andreev reflections is an
adiabatic invariant in the limit E → 0.

4.2.2 Adiabatic invariant

We generalize the construction of the adiabatic invariant of chapter 2 to
B ≠ 0. We start from the Poincaré invariant

I(t) =
∮
C(t)

p · dr (4.2)
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Figure 4.3: Poincaré map for the Andreev billiard of Fig. 4.1. Each dot
marks the position x and tangential velocity vx of an electron at the NS
boundary. Subsequent dots are obtained by following the electron trajec-

tory for E, B → 0 at fixed ratio B/E = 1
3

√
m/V0L2e3. The inset shows the

full surface of section of the Andreev billiard, while the main plot is an en-
largement of the central region. The drift is along closed contours defined
by K = constant [see Eq. (4.4)]. The value of the adiabatic invariant K
(in units of

√
mL2/eV0) is indicated for several contours. All contours are

closed loops, but for some contours the opening of the loop is not visible
in the figure.

over a closed contour C(t) in phase space that moves according to the
classical equations of motion. The contour extends over two sheets of
phase space, joined at the NS interface. In the electron sheet the canonical
momentum is p+ =mv+ − eA, while in the hole sheet it is p− = −mv− +
eA. Both the velocity v±, given in absolute value by |v±| = (2/m)1/2[EF ±
E+eV(r)]1/2 and directed along the motion, as well as the vector potential
A = 1

2Bẑ × r are functions of the position r on the contour, determined,
respectively, by the energy E and the magnetic field B. (Since the contour
is closed, the Poincaré invariant is properly gauge invariant.)

Quite generally, dI/dt = 0, meaning that I is a constant of the motion
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-

+
B

Figure 4.4: Directed area for a classical trajectory, consisting of the area
enclosed by the trajectory after joining begin and end points along the NS
boundary (dashed line). Different parts of the enclosed area have different
signs because the boundary is circulated in a different direction.

[13]. For E = B = 0 we take C(0) to be the self-retracing orbit from electron
to hole and back to electron. It is obviously time-independent, with I = 0
(because the contributions from electron and hole sheet cancel). For E
or B non-zero, we construct C(0) from the same closed trajectory in real
space, but now with p±(r) andA(r) calculated at the given values of E and
B. Consequently, this contour C(t) will drift in phase space, preserving
I(t) = I(0). The Poincaré invariant is of interest because it is closely
related to the action integral

I =
∮
Oeh

p · dr. (4.3)

The action integral is defined as an integral along the periodic electron-
hole orbit Oeh followed by electrons and holes at E, B = 0. To every point
(x,vx) in the Poincaré surface of section corresponds an orbit Oeh and
hence an action integral I(x, vx). We compare the contour C(t) and the
trajectory Oeh intersecting the Poincaré surface of section at the same
point (x,vx). At t = 0 they coincide and for sufficiently slow drifts they
stay close and therefore the action integral I = I(0)+O(t2) is an adiabatic
invariant of the motion in the Poincaré surface of section [13].
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It remains to determine the adiabatic invariant I in terms of E and B
and the chosen trajectory C(0). To linear order in E, B we find

I = 2EK, K ≡ T − eAB/E, (4.4)

with A = 1
2

∮
(r × dr) · ẑ the directed area (see Fig. 4.4) enclosed by the

electron trajectory and the NS boundary. Both the time T and the area A
are to be evaluated at E = B = 0. Because E is a constant of the motion,
adiabatic invariance of I implies that K ≡ I/2E is an adiabatic invariant.
At zero field this adiabatic invariant is simply the time T between Andreev
reflections. At non-zero field the invariant time contains also an electro-
magnetic contribution −eAB/E, proportional to the enclosed flux.

Fig. 4.3 shows that, indeed, the drift in the Poincaré surface of sec-
tion is along contours CK of constant K. In contrast to the zero-field
case, the invariant contours in the surface of section are now no longer
energy-independent. This will have consequences for the quantization, as
we describe next.

4.2.3 Quantization

The two invariants E andK define a two-dimensional torus in four-dimen-
sional phase space. The two topologically independent closed contours
on this torus are formed by the periodic electron-hole orbit Oeh and the
contour CK in the Poincaré surface of section. The area they enclose is
quantized following the prescription of Einstein-Brillouin-Keller [14,15],∮

Oeh
p · dr = 2π�(m+ 1/2), m = 0,1,2, . . . (4.5a)

∮
CK
pxdx = 2π�(n+ 1/2), n = 0,1,2, . . . . (4.5b)

The action integral (4.5a) can be evaluated explicitly, leading to

EK = π�(m+ 1/2). (4.6)

The second quantization condition (4.5b) gives a second relation between
E and K, so that one can eliminate K and obtain a ladder of levels Emn.
For B = 0 the quantization condition (4.5b) is independent of E, so one
obtains separately a quantized time Tn and quantized energy Emn = (m+
1/2)π�/Tn. For B �= 0 both Kmn and Emn depend on the sets of integers
m,n.
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4.2.4 Lowest adiabatic level

L

0
L0

Figure 4.5: Illustration of a bunch of trajectories within a single scattering
band in the billiard defined in Fig. 4.1. All trajectories in this figure have
starting conditions in the band containing the contour with K = 11 of
Fig. 4.3. Both T and A vary only slightly from one trajectory to the other,
so that the whole band can be characterized by a single T̄ and Ā, being the
average of T and A over the scattering band.

The value E00 of the lowest adiabatic level follows from the pair of
quantization conditions (4.5) with m = n = 0. To determine this value
we need to determine the area O(K) = ∮CK pxdx enclosed by contours of
constant K, in the limit of large K.

In chapter 2 the area O(K) was determined in the case B = 0, when
K = T and the contours are isochronous. It was found that

O(T) � O0 exp(−λT), (4.7)

with λ the Lyapunov exponent of the normal billiard without superconduc-
tor and O0 a characteristic area that depends on the angular distribution
of the beam of electrons entering the billiard (width L) from the narrow
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contact to the superconductor (width W ). For a collimated beam having a
spread of velocities |vW/vF | � W/L one has O0 = Nh (see chapter 2). For
a non-collimated beam O0 = NhW/L (this will be explained in chapter 5).
The integer N is the number of scattering channels connecting the billiard
to the superconductor. The quantization requirement O(T) ≥ π� gives
the lowest adiabatic level in zero magnetic field,

E00(B = 0) = π�
2τE

, τE = 1
λ
[ln (O0/π�)+O(1)] . (4.8)

The Ehrenfest time τE corresponds to a contour that encloses an area π�.
In order to generalize Eq. (4.7) to B �= 0, we discuss the concept of

scattering bands, which will be discussed in chapter 5 for a normal bil-
liard (where they are called transmission and reflection bands). Scattering
bands are ordered phase space structures that appear in open systems,
even if their closed counterparts are fully chaotic. These structures are
characterized by regions in which the functions T(x,vx) and A(x,vx)
vary slowly almost everywhere. Hence, they contain orbits of almost con-
stant return time and directed area, that is, orbits returning by bunches.
One such bunch is depicted in Fig. 4.5. The scattering bands are bounded
by contours of diverging T(x,vx) and A(x,vx). The divergence is very
slow (∝ 1/ ln ε, with ε the distance from the contour [4]), so the mean re-
turn time T̄ and mean directed area Ā in a scattering band remain finite
and well defined [16].

The area Oband of a band depends on T̄ as (see chapter 5)

Oband(T̄ ) � O0 exp (−λT̄ ). (4.9)

Since an isochronous contour must lie within a single scattering band,
Eq. (4.7) follows from Eq. (4.9) and from the fact that the distribution of
return times is sharply peaked around the mean T̄ . Because contours of
constant K = T − eAB/E must also lie within a single scattering band, the
area O(K) is bounded by the same function Oband(T̄ ). We conclude that
within a given scattering band the largest contour of constant T and the
largest contour of constant K each have approximately the same area as
the band itself,

O(T),O(K) � Oband(T̄ ) � O0 exp(−λT̄). (4.10)

We are now ready to determine the magnetic field dependence of the
lowest adiabatic level E00(B). The corresponding contour CK lies in a



66 Chapter 4. Quantum-to-classical crossover . . .

band characterized by a mean return time T̄ � λ−1 ln (O0/π�), according
to Eqs. (4.5b) and (4.10). This is the same Ehrenfest time as Eq. (4.8)
for B = 0 (assuming that the orbital effect of the magnetic field does not
modify λ) . The energy of the lowest adiabatic level E00 is determined by
the quantization condition (4.6),

E00K � E00τE + eAmaxB = π�/2. (4.11)

The range of directed areas −Amax � Ā � Amax is the product of the area
L2 of the billiard and the maximum number of times nmax ≈ vFT̄ /L that a
trajectory can encircle that area (clockwise or counterclockwise) in a time
T̄ . Hence Amax = vF T̄L � vFτEL and we find

E00(B) ≡ Ead
gap �

π�
2τE

− evFLB. (4.12)

We conclude that a magnetic field shifts the lowest adiabatic level
downward by an amount evFLB which is independent of τE . Eq. (4.12)
holds up to a field Bad

c at which the lowest adiabatic level reaches the
Fermi level,

Bad
c � π�

2eAmax
� π�

2τEevFL
. (4.13)

We have added the label “ad”, because the true critical field at which the
gap closes may be smaller due to non-adiabatic levels below E00. For B = 0,
the ground state is never an adiabatic state (chapter 2). In the next section
we study the effective RMT, in order to determine the contribution from
non-adiabatic levels (return times T > τE).

4.2.5 Density of states

The pair of quantization conditions (4.5) determines the individual energy
levels with T < τE and |A| < Amax � vFτEL. For semiclassical systems
with L/λF � 1 the level spacing δ of the isolated billiard is so small that
individual levels are not resolved and it suffices to know the smoothed (or
ensemble averaged) density of states ρad(E). In view of Eq. (4.6) it is given
by

ρad(E) = N
∫ τE

0
dT
∫ Amax

−Amax

dAP(T ,A)×
∑
m
δ
(
E − π�(m + 1/2)+ eAB

T

)
,

(4.14)
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in terms of the joint distribution function P(T ,A) of return time T and
directed area A. In the limit τE → ∞ this formula reduces to the Bohr-
Sommerfeld quantization rule of Ref. [1] for B = 0 and to the generaliza-
tion of Ref. [17] for B �= 0. The adiabatic density of states (4.14) vanishes
for E < Ead

gap. Its high energy asymptotics (meaning E � Ead
gap, but still

E � ∆) can be estimated using P(T ,A) = P(A|T)P(T) with the condi-
tional distribution P(A|T) (which will be discussed in the next section)
and the return time distribution P(T) = exp (−T/τD)τ−1

D . One gets

lim
E→∞
E�∆

ρad(E) =
2
δ

(
1− e−τE/τD

[
1+ τE

τD

])
. (4.15)

The limit (4.15) is less than the value 2/δ, which also contains the contri-
bution from the non-adiabatic levels with T > τE .

4.3 Effective random-matrix theory

The adiabatic quantization applies only to the part of phase space in which
the return time T is less than the Ehrenfest time τE . To quantize the re-
mainder, with T > τE , we apply the effective random-matrix theory (RMT)
of chapter 2. The existing formulation does not yet include a magnetic
field, so we begin by extending it to non-zero B.

4.3.1 Effective cavity

The effective RMT is based on the decomposition of the scattering matrix
in the time domain into two parts,

S(t) =
{
Scl(t) if t < τE
Sq(t) if t > τE .

(4.16)

The classical, short-time part Scl(t) couples to Ncl scattering channels of
return time < τE , which can be quantized adiabatically as explained in the
previous section. The remaining

Nq = N −Ncl = Ne−τE/τD ≡ Neff (4.17)

quantum channels, with return time > τE , are quantized by RMT with
effective τE-dependent parameters.
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Figure 4.6: Pictorial representation of the effective RMT of an Andreev bil-
liard. The part of phase space with long trajectories (return time > τE )
is represented by a chaotic cavity with level spacing δeff, connected to the
superconductor via a fictitious ballistic lead withNeff channels. The lead in-
troduces a channel-independent delay time τE/2 and a channel-dependent
phase shift φn, which is different from the distribution of phase shifts in
a real lead.

To describe the effective RMT ensemble from which Sq is drawn, we
refer to the diagram of Fig. 4.6, following Ref. [8]. A wave packet of return
time t > τE evolves along a classical trajectory for the initial τE/2 and the
final τE/2 duration of its motion. This classical evolution is represented
by a fictitious ballistic lead with delay time τE/2, attached at one end to
the superconductor. The transmission matrix of this lead is an Neff ×Neff

diagonal matrix of phase shifts exp [iΦ(B)] (for transmission from left to
right) and exp [iΦ(−B)] (for transmission from right to left). The ballistic
lead is attached at the other end to a chaotic cavity having an Neff × Neff

scattering matrix S0 with RMT distribution. The entire scattering matrix
Sq(t) of the effective cavity plus ballistic lead is, in the time domain,

Sq(t) = eiΦ(−B)S0(t − τE, B)eiΦ(B), (4.18)

and in the energy domain,

Sq(E) = eiEτE/�eiΦ(−B)S0(E, B)eiΦ(B). (4.19)
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The level spacing δeff of the effective cavity is increased according to

δeff/δ = N/Neff = eτE/τD , (4.20)

to ensure that the mean dwell time 2π�/Neffδeff remains equal to τD , in-
dependent of the Ehrenfest time.

For weak magnetic fields (such that the cyclotron radiusmvF/eB � L),
the phase shifts Φ(B) are linear in B:

Φ(B) � Φ(0)+ BΦ′(0) ≡ Φ(0)+ diag
[
φ1,φ2 . . .φNeff

]
. (4.21)

The phases φn are the channel-dependent, magnetic field induced phase
shifts of classical trajectories spending a time τE/2 in a chaotic cavity.

The conditional distribution of directed areas A for a given return time
T is a truncated Gaussian [17,18],

P(A|T) ∝ exp
(
−A2/A2

0

)
θ(Amax − |A|),

A2
0 ∝ vFTL3, (4.22)

with θ(x) the unit step function. This implies that the distribution P(φ)
of phase shifts φ = eAB/� for T = τE/2 is given by

P(φ) ∝ exp

[
−φ

2

c
τD
τE

(
B0

B

)2
]
θ (φmax − |φ|) , (4.23)

φmax = eAmaxB
�

� B
B0

√√√√vFτ2
E

LτD
. (4.24)

The constant c of order unity is determined by the billiard geometry and
B0 denotes the critical magnetic field of the Andreev billiard when τE → 0.
Up to numerical coefficients of order unity, one has [9]

B0 � �
eL2

√
L

vFτD
. (4.25)

4.3.2 Density of states

The energy spectrum of an Andreev billiard, for energies well below the
gap ∆ of the bulk superconductor, is related to the scattering matrix by
the determinantal equation [19]
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Det
[
1+ S(E)S∗(−E)] = 0. (4.26)

Since Scl and Sq couple to different channels, we may calculate separately
the contribution to the spectrum from the effective cavity, governed by Sq.
We substitute the expression (4.19) for Sq, to obtain

Det
[
1+ e2iEτE/�S0(E, B)Ω(B)S∗0 (−E, B)Ω∗(B)

]
= 0, (4.27)

Ω(B) ≡ eiΦ(B)−iΦ(−B) = diag[e2iφ1 , e2iφ2 . . . e2iφNeff ]. (4.28)

In chapter 2 the density of states was calculated from this equation for
the case B = 0, when Ω = 1. We generalize the calculation to B �= 0. The
technicalities are very similar to those of Ref. [20].

The scattering matrix S0(E, B) of the open effective cavity can be rep-
resented by [21,22]

S0(E, B) = 1− 2πiWT
[
E −H0(B)+ iπWWT

]−1
W, (4.29)

in terms of the Hamiltonian H0(B) of the closed effective cavity and a
coupling matrix W . The dimension of H0 is M × M and the dimension
of W is M × Neff. The matrix WTW has eigenvalues Mδeff/π2. The limit
M → ∞ at fixed level spacing δeff is taken at the end of the calculation.
Substitution of Eq. (4.29) into the determinantal equation (4.27) gives a
conventional eigenvalue equation [20],

Det [E −Heff(B)] = 0, (4.30)

Heff(B) =
(
H0(B) 0

0 −H∗0 (B)

)
−W , (4.31)

W = π
cosu

(
WWT sinu WΩ(B)WT

WΩ∗(B)WT WWT sinu

)
. (4.32)

We have abbreviated u = EτE/�.
The Hamiltonian H0(B) of the fictitious cavity has the Pandey-Mehta

distribution [23],

P(H) ∝ exp

⎛
⎝−π2(1+ b2)

4Mδ2
eff

M∑
i,j=1

[
(ReHij)2 + b−2(ImHij)2

]⎞⎠ . (4.33)
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The parameter b ∈ [0,1] measures the strength of the time-reversal sym-
metry breaking. It is related to the magnetic field by [9]

M
Neff

b2 = 1
8
(B/B0)2. (4.34)

The ensemble averaged density of states ρeff(E) is obtained from the
Green function,

ρeff(E) = − 1
π

ImTr
(

1+ dW
dE

)
G(E + i0+), (4.35)

G(z) = 〈(z −Heff)−1〉, (4.36)

where the average 〈· · · 〉 is taken with the distribution (4.33). Using the
results of Refs. [9, 20] we obtain a self-consistency equation for the trace
of the ensemble averaged Green function,

G =
(
G11 G12

G21 G22

)
= δ
π

(
TrG11 TrG12

TrG21 TrG22

)
. (4.37)

The four blocks refer to the block decomposition (4.31) of the effective
Hamiltonian. The self-consistency equation reads

G11 = G22, G12G21 = 1+G2
11, (4.38)

0 = Neff

(
E

2ET
−
( B
B0

)2 G11

2

)
G12

+
Neff∑
j=1

e2iφjG11 +G12 sinu
1
2

[
e−2iφjG12 + e2iφjG21

]
+ cosu+G11 sinu

, (4.39)

0 = Neff

(
E

2ET
−
(
B
B0

)2 G11

2

)
G21

+
Neff∑
j=1

e−2iφjG11 +G21 sinu
1
2

[
e−2iφjG12 + e2iφjG21

]
+ cosu+G11 sinu

, (4.40)

with the Thouless energy ET = �/2τD .
From Eq. (4.35) we find the density of states

ρeff(E) = − 2
δeff

Im
[
G11 + τE

τD cosu

×
Neff∑
j=1

G11 + 1
2 sinu

(
G21e2iφj +G12e−2iφj

)
cosu+G11 sinu+ 1

2G12e−2iφj + 1
2G21e2iφj

]
. (4.41)
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Because Neff � 1, we may replace in Eqs. (4.38–4.41) the sum
∑
j f (φj) by∫

dφP(φ), with P(φ) given by Eq. (4.23). In the next section we will com-
pare the density of states obtained from (4.38–4.41) with a fully quantum
mechanical calculation. In this section we discuss the low and high energy
asymptotics of the density of states.

In the limit E → ∞, E � ∆ we find from Eqs. (4.38–4.40) that G12 =
G21 ∝ 1/E → 0 while G11 → −i. Substituting this into Eq. (4.41) we obtain
the high energy limit,

lim
E→∞
E�∆

ρeff(E) =
2
δeff

(
1+ τE

τD

)
= 2
δ
e−τE/τD

(
1+ τE

τD

)
. (4.42)

This limit is larger than 2/δeff because of the contribution from states in
the lead, cf. Fig. 4.6. Comparison with Eq. (4.15) shows that the total
density of states,

ρ(E) = ρeff(E)+ ρad(E), (4.43)

tends to 2/δ for high energies, as it should be.
At low energies the density of states ρeff(E) obtained from the effective

RMT vanishes for E < Eeff
gap. In the limit τE � τD the lowest level in the

effective cavity is determined by the fictitious lead with return time τE .
This gives the same gap as for adiabatic quantization,

Eeff
gap = Ead

gap =
�
τE

(
π
2
− 2φmax

)
≈ π�

2τE
− evFLB, (4.44)

cf. Eq. (4.12). The two critical magnetic fields Beff
c and Bad

c coincide in this
limit,

Beff
c = Bad

c � π�
2τEevFL

� B0

√
τDL
vFτ2

E
, if τE � τD, (4.45)

cf. Eq. (4.13). In the opposite regime of small τE we find a critical field of

Beff
c = B0

(
1− cτE

8τD

)
, if τE �

√
LτD/vF , (4.46)

which is smaller than Bad
c so Bc = Beff

c . In the intermediate regime
√
LτD/vF �

τE � τD , the critical field Bc is given by

Bc = min
(
Beff
c , Bad

c

)
. (4.47)

We do not have an analytical formula for Beff
c in this intermediate regime,

but we will show in the next section that Bad
c drops below Beff

c so that
Bc = Bad

c .
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4.4 Comparison with quantum mechanical model

In this section we compare our quasiclassical theory with a quantum me-
chanical model of the Andreev billiard. The model we use is the Andreev
kicked rotator introduced in Ref. [6]. We include the magnetic field into
the model using the three-kick representation of Ref. [24], to break time-
reversal-symmetry at both the quantum mechanical and the classical level.
The basic equations of the model are summarized in Appendix 4.A.

In Fig. 4.7 we show the ensemble averaged density of states of the An-
dreev kicked rotator and we compare it with the theoretical result (4.43).
The Ehrenfest time is given by [5,6]

τE = λ−1
[
ln (N2/M)+O(1)

]
, (4.48)

withM the dimensionality of the Floquet matrix. We neglect the correction
term of order unity. The mean dwell time is τD = (M/N)τ0 and the level
spacing is δ = (2π/M)�/τ0, with τ0 the stroboscopic time. The relation
between B/B0 and the parameters of the kicked rotator is given by Eq.
(4.60).

In Fig. 4.7a τE � τD and we recover the RMT result of Ref. [9]. The
density of states is featureless with a shallow maximum just above the
gap. In Figs. 4.7b, c, d τE and τD are comparable. Now the spectrum
consists of both adiabatic levels (return time T < τE) as well as effective
RMT levels (return time T > τE). The adiabatic levels cluster in peaks,
while the effective RMT forms the smooth background, with a pronounced
bump above the gap.

The peaks in the excitation spectrum of the Andreev kicked rotator
appear because the return time T in Eq. (4.14) is a multiple of the strobo-
scopic time τ0 [6]. The peaks are broadened by the magnetic field and they
acquire side peaks, due to the structure of the area distribution P(A|T) for
T a small multiple of τ0. This is illustrated in Fig. 4.8 for the central peak
of Fig. 4.7. The distribution was calculated from the classical map (4.61)
associated with the quantum kicked rotator. The same map gave the coef-
ficient c = 0.55 appearing in Eq. (4.23).

In Fig. 4.9 we have plotted the critical magnetic field Bc at which the
gap closes, as a function of the Ehrenfest time. For τE � τD the Andreev
kicked rotator gives a value for Bc close to the prediction B0 of RMT, cf.
Eq. (4.60). With increasing τE we find that Bc decreases quite strongly. In
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Figure 4.7: Ensemble averaged density of states ρ(E) of the Andreev
kicked rotator. The dark (red) curves show the numerical results from
the fully quantum mechanical model, while the light (green) curves are ob-
tained from Eq. (4.43) with input from the classical limit of the model. The
energy is scaled by the Thouless energy ET = �/2τD and the density is
scaled by the level spacing δ of the isolated billiard. The parameters of
the kicked rotator are M = 2048, N = 204, q = 0.2, K = 200 in panel a and
M = 16384, N = 3246, q = 0.2, K = 14 in panels b, c, d. The three-peak
structure indicated by the arrow in panels b, c, d is explained in Fig. 4.8.

the figure we also show the critical magnetic fields Bad
c for adiabatic levels

and Beff
c for effective RMT. The former follows from Eqs. (4.13) and (4.64),

Bad
c = π

4
B0

√√√2τDτ0

τ2
E
, (4.49)

and the latter from solving Eqs. (4.38–4.40) numerically. As already an-
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Figure 4.8: Conditional distribution P(A|T) of directed areas A enclosed
by classical trajectories with T = 2τ0, for K = 14, q = 0.2 and τD =
5τ0. The distribution was obtained from the classical map (4.61) at γ =
0. Trajectories with T = 2τ0 give rise to a peak in the density of states
centered around E/ET = (m + 1/2)π�/2τ0, cf. Eq. (4.14). On the energy
scale of Fig. 4.7 only the peak with m = 0 can be seen, at E/ET = 2.5π ≈
7.9. In a magnetic field this peak broadens and it obtains the side peaks
of P(A|2τ0).

nounced in the previous section, Bad
c drops below Beff

c with increasing τE ,
which means that the lowest level Egap is an adiabatic level correspond-
ing to a return time T < τE . The critical magnetic field is the smallest
value of Beff

c and Bad
c , as indicated by the solid curve. The data of the

Andreev kicked rotator follows the trend of the quasiclassical theory, al-
though quite substantial discrepancies remain. Part of these discrepancies
can be attributed to the correction term of order unity in Eq. (4.48), as
shown by the open circles in Fig. 4.9.

In the regime of fully broken time-reversal-symmetry the distribution
of eigenvalues is determined by the Laguerre unitary ensemble of RMT
[25, 26]. The ensemble averaged density of states vanishes quadratically
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Figure 4.9: Critical magnetic field Bc of the Andreev kicked rotator as a
function of the Ehrenfest time. The Ehrenfest time τE = λ−1 ln(N2/M) is
changed by varying M and N while keeping q = 0.2 and τD/τ0 = M/N = 5
constant. For the closed circles the kicking strength K = 14, while for the
squares from left to right K = 4000, 1000, 400, 200, 100, 50. The solid
curve is the quasiclassical prediction (4.47). The open circles are obtained
from the closed circles by the transformation λτE → λτE + 1.75, allowed
by the terms of order unity in Eq. (4.48).

near zero energy, according to

ρ(E) = 2
δ

(
1− sin (4πE/δ)

4πE/δ

)
. (4.50)

In Fig. 4.10 we show the results for the Andreev kicked rotator in this
regime and we find a good agreement with Eq. (4.50) for τE � τD . We did
not investigate the τE dependence in this regime.

4.5 Conclusion

We have calculated the excitation spectrum of an Andreev billiard in a
magnetic field, both using a quasiclassical and a fully quantum mechan-
ical approach. The quasiclassical theory needs as input the classical dis-
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Figure 4.10: Ensemble averaged density of states of the Andreev kicked
rotator for fully broken TRS. The histogram shows the numerical results,
while the curve is the theoretical prediction (4.50) of the Laguerre unitary
ensemble. Both the energy and the density of states are scaled by the level
spacing δ of the isolated billiard. The parameters of the kicked rotator are
M = 2048, N = 204, q = 0.2, while K was varied between 200 and 250 to
obtain an ensemble average.

tribution of times T between Andreev reflections and directed areas A
enclosed in that time T . Times T smaller than the Ehrenfest time τE are
quantized via the adiabatic invariant and times T > τE are quantized by
an effective random-matrix theory with τE-dependent parameters. This
separation of phase space into two parts, introduced in chapter 2, has re-
ceived much theoretical support in the context of transport, see chapter 5
and Refs. [24,27–31]. The present chapter shows that it can be succesfully
used to describe the consequences of time-reversal symmetry breaking on
the superconducting proximity effect.

The adiabatically quantized and effective RMT spectra each have an
excitation gap which closes at different magnetic fields. The critical mag-
netic field Bc of the Andreev billiard is the smallest of the two values Bad

c
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and Beff
c . For relatively small Ehrenfest time τE � τD the critical field

Beff
c from effective RMT is smaller than the critical field Bad

c of the adia-
batic levels, so Bc = Beff

c . This value Beff
c is smaller than the value B0 of

conventional RMT [9], because of the τE dependence of the parameters in
effective RMT. For τE � τD the two fields Bad

c and Beff
c coincide, but in

an intermediate regime of comparable τE and τD the adiabatic value Bad
c

drops below the effective RMT value Beff
c . This is indeed what we have

found in the specific model that we have investigated, the Andreev kicked
rotator [6]. The lowest level has T � τE for sufficiently large τE and B. This
is a novel feature of the Andreev billiard in a magnetic field: For unbroken
time-reversal symmetry the lowest level always corresponds to longer tra-
jectories T > τE , and thus cannot be obtained by adiabatic quantization
(chapter 2).

4.A Andreev kicked rotator in a magnetic field

The Andreev kicked rotator in zero magnetic field was introduced in Ref.
[6]. Here we give the extension to non-zero magnetic field used in Sec.
4.4. We start from the kicked rotator with broken TRS but without the
superconductor. The kicked rotator provides a stroboscopic description
of scattering inside a quantum dot. The propagation of a state from time t
to time t+τ0 is given by theM×M unitary Floquet operator F with matrix
elements [24]

Fmn =
(
XΠY∗ΠYΠX

)
mn . (4.51)

The three matrices X, Y , and Π are defined by

Ymn = δmnei(Mγ/6π) cos (2πm/M), (4.52)

Xmn = δmne−i(M/12π)V(2πm/M), (4.53)

Πmn = M−1/2e−iπ/4 exp
[
i(π/M)(m −n)2

]
. (4.54)

The potential

V(θ) = K cos (πq/2) cos (θ)+ K
2

sin (πq/2) sin (2θ) (4.55)

breaks the parity symmetry for q �= 0. Time-reversal symmetry is broken
by the parameter γ. For kicking strengths K 
 7 the classical dynamics of
the kicked rotator is chaotic.
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The Floquet operator (4.51) describes electron excitations above the
Fermi level. The hole excitations below the Fermi level are described by
the Floquet operator F∗. Electrons and holes are coupled by Andreev re-
flection at the superconductor. The N ×M matrix P , with elements

Pnm = δnm ×
{

1 if L0 ≤ n ≤ L0 +N − 1
0 otherwise

, (4.56)

projects onto the contact with the superconductor. The integer L0 indi-
cates the location of the contact and N is its width, in units of λF/2. We
will perform ensemble averages by varying L0. The process of Andreev
reflection is described by the 2M × 2M matrix

P =
(

1− PTP −iPTP
−iPTP 1− PTP

)
. (4.57)

The Floquet operator for the Andreev kicked rotator is constructed from
the two matrices F and P [6],

F = P1/2
(
F 0
0 F∗

)
P1/2. (4.58)

The 2M × 2M unitary matrix F can be diagonalized efficiently using the
Lanczos technique in combination with the fast-Fourier-transform algo-
rithm [32]. The eigenvalues eiεm define the quasi-energies εm ∈ [0,2π].
One gap is centered around ε = 0 and another gap around ε = π . For
N � M the two gaps are decoupled and we can study the gap around
ε = 0 by itself.

The correspondence between the TRS-breaking parameter γ of the kicked
rotator and the Pandey-Mehta parameter b for K � 1 is given by [24]

lim
K→∞

b
√
MH = γM

3/2

12π
. (4.59)

Here MH is the size of the Pandey-Mehta Hamiltonian [23]. Comparison
with Eq. (4.34) gives the relation between γ and the magnetic field B,

M3/2

N1/2 γ =
√
τD
τ0
Mγ = 3π

√
2
B
B0
. (4.60)

In RMT the gap closes when B = B0, so when γ = γ0 = 3πM−1
√

2τ0/τD .
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For the quasiclassical theory we need the classical map associated with
the Floquet operator (4.58). The classical phase space consists of the torus
0 ≤ θ ≤ 2π , 0 ≤ p ≤ 6π . The classical map is described by a set of
equations that map initial coordinates (θ,p) onto final coordinates (θ′, p′)
after one period τ0 [24],

θ1 = θ ± p/3− V ′(θ)/6− 2πσθ1 ,

p1 = p ∓ γ sin (θ1)∓ V ′(θ)/2− 6πσp1 ,

θ2 = θ1 ± p1/3− 2πσθ2 ,

p2 = p1 − 6πσp2 ,

θ′ = θ2 ± p2/3+ γ sin (θ2)/3− 2πσθ′ ,

p′ = p2 ± γ sin(θ2)∓ V ′(θ′)/2− 6πσ ′p. (4.61)

The upper/lower signs correspond to electron/hole dynamics and V ′(θ) =
dV/dθ. The integers σθ and σp are the winding numbers of a trajectory
on the torus.

The directed area enclosed by a classical trajectory between Andreev
reflections can be calculated from the difference in classical action be-
tween two trajectories related by TRS, one with γ = 0 and one with in-
finitesimal γ. To linear order in γ the action difference ∆S acquired after
one period is given by [24]

∆S = γ (cosθ1 − cosθ2) . (4.62)

The effective Planck constant of the kicked rotator is �eff = 6π/M , so we
may obtain the increment in directed area ∆A corresponding to ∆S from

e
�
B∆A = ∆S

�eff
= M

6π
γ (cosθ1 − cosθ2) . (4.63)

Since | cosθ1−cosθ2| < 2, the maximum directed area Amax acquired after
T/τ0 periods is

Amax = 2
T
τ0

�
eB0

√
τ0

2τD
. (4.64)
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Chapter 5

Noiseless scattering states in a

chaotic cavity

Shot noise can distinguish deterministic scattering, characteristic for par-
ticles, from stochastic scattering, characteristic for waves. Particle dy-
namics is deterministic: A given initial position and momentum fixes the
entire trajectory. In particular, it fixes whether the particle will be trans-
mitted or reflected, so the scattering is noiseless. Wave dynamics is stochas-
tic: The quantum uncertainty in position and momentum introduces a
probabilistic element into the dynamics, so it is noisy.

The suppression of shot noise in a conductor with deterministic scat-
tering was predicted many years ago from this qualitative argument [1].
A better understanding, and a quantitative description, of how shot noise
measures the transition from particle to wave dynamics in a chaotic quan-
tum dot was put forward by Agam, Aleiner, and Larkin [2], and devel-
oped further in Ref. [3]. The key concept is the Ehrenfest time τE , which
is the characteristic time scale of quantum chaos [4]. The noise power
S ∝ exp(−τE/τD) was predicted to vanish exponentially with the ratio of
τE and the mean dwell time τD = π�/Nδ in the quantum dot (with δ the
level spacing and N the number of modes in each of the two point con-
tacts through which the current is passed). A recent measurement of the
N dependence of S is consistent with this prediction for τE < τD , although
an alternative explanation in terms of short-range impurity scattering de-
scribes the data equally well [5].

The theory of Ref. [2] introduces the stochastic element by means of
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Figure 5.1: Selected equipotentials of the electron billiard. The outer
equipotential is at EF , the other equipotentials are at increments of
0.19EF . Dashed lines a and b show the sections described in the text.
Also shown is a flux tube of transmitted trajectories, all originating from
a single closed contour in a transmission band, representing the spatial
extension of a fully transmitted scattering state. The flux tube is wide at
the two openings and squeezed inside the billiard.

long-range impurity scattering and adjusts the scattering rate so as to
mimic the effect of a finite Ehrenfest time. Here we take the alternative
approach of explicitly constructing noiseless channels in a chaotic quan-
tum dot. These are scattering states which are either fully transmitted
or fully reflected in the semiclassical limit. They are not described by
random-matrix theory [6]. By determining what fraction of the available
channels is noiseless, we can deduce a precise upper bound for the shot
noise power. A random-matrix conjecture for the remaining noisy chan-
nels gives an explicit form of S(N). We find that the onset of the classical
suppression of the noise is described not only by the Ehrenfest time, but
by the difference of τE and the ergodic time τerg, which we introduce and
calculate in this chapter. The resulting nonlinear dependence of lnS on
N may help to distinguish between the competing explanations of the ex-
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Figure 5.2: Section of phase space at px =
√
p2
F − p2

y and x = 0, corre-
sponding to line a in Fig. 5.1. Each dot in this surface of section is the start-
ing point of a classical trajectory that is transmitted through the lead at
x = L (black/red), or reflected back through x = 0 (gray/green). The points
lie in narrow bands. Only the trajectories with dwell time t < 12mL/pF
are shown.

perimental data [5].

We illustrate the construction of noiseless scattering states for the two-
dimensional billiard with smooth confining potentialU(x,y) shown in Fig.
5.1. The outer equipotential defines the area in the x − y plane which is
classically accessible at the Fermi energy EF = p2

F/2m (with pF = �kF
the Fermi momentum). The motion in the closed billiard is chaotic with
Lyapunov exponent λ. We assume the billiard to be connected at x = 0
and x = L by two similar point contacts to leads of width W extended
along the ±x-direction.

The beam of electrons injected through a point contact into the billiard
has cross-sectionW and transverse momenta in the range (−pW ,pW). The
number of channels N � pWW/� in the lead is much smaller than the
number of channelsM � pFL/� supported by a typical cross-section of the
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billiard. While W/L � 1 in general, the ratio pW/pF depends on details
of the potential near the point contact. If pW/pF � 1 one speaks of a
collimated beam. This is typical for a smooth potential, while a hard-
wall potential typically has pW � pF (no collimation). We define rmin =
min (W/L,pW/pF) and rmax = max (W/L,pW/pF).

The classical phase space is four-dimensional. By restricting the energy
to EF and taking x = 0 we obtain the two-dimensional section of phase
space shown in Fig. 5.2. The accessible values of y and py lie in a disc-
shaped region of area Otot = Nh in this surface of section. Up to factors
of order unity, the disk has width rmin and length rmax (if coordinate and
momentum are measured in units of L and pF , respectively). In Fig. 5.2
one has rmin � rmax. Each point in the disc defines a classical trajectory
that enters the billiard (for positive px) and then leaves the billiard either
through the same lead (reflection) or through the other lead (transmission).
The points lie in narrow bands, which we will refer to as “transmission
bands” and “reflection bands”.

It is evident from Fig. 5.2 that the area Oband,j enclosed by a typical
transmission (or reflection) band j is much less than Otot. For an estimate
we consider the time T(y, py) that elapses before transmission. Let T̄j be
the dwell time averaged over the starting points y,py in a single band.
The fluctuations of T around the average are of the order of the time
TW � mW/pW to cross the point contact, which is typically � T̄j . As we
will see below, the area of the band decreases with T̄j as

Oband,j � O0 exp(−λT̄j) if T̄j � 1/λ, TW . (5.1)

The prefactorO0 = Ototrmin/rmax depends on the degree of collimation. In
chapter 2 the symmetric case rmin = rmax was assumed, when O0 = Otot.

We now proceed to the construction of fully transmitted scattering
states. To this end we consider a closed contour C within a transmission
band j. The starting points on the contour define a family of trajectories
that form a flux tube inside the billiard (see Fig. 5.1). The semiclassical
wave function

ψ(x,y) =
∑
σ

√
ρσ(x,y) exp[iSσ (x,y)/�] (5.2)

is determined as usual from the action Sσ and density ρσ that solve the
Hamilton-Jacobi and continuity equations

|∇S|2 = 2m(EF −U), ∇ · (ρ∇S) = 0. (5.3)
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Figure 5.3: Dwell time distribution for the billiard of Fig. 5.1. Electrons
at the Fermi energy are injected through the left lead. Time is in units of
mL/pF . Inset: the same data on a semilogarithmic scale with larger bin
size of the histogram. Three characteristic time scales are seen: TW , τerg,
τD.

The action is multivalued and the index σ labels the different sheets. Typ-
ically, there are two sheets, one originating from the upper half of the
contour C and one from the lower half.

The requirement that ψ is single-valued as one winds around the con-
tour imposes a quantization condition on the enclosed area,

∮
C
pydy = (n+ 1/2)h. (5.4)

The increment 1/2 accounts for the phase shift acquired at the two turn-
ing points on the contour. The quantum number n = 0,1,2, . . . is the
channel index. The largest value of n occurs for a contour enclosing an
area Oband,j . The number of transmission channels Nj within band j is
therefore given by Oband,j/h, with an accuracy of order unity. In view of
Eq. (5.1) we have

Nj � (O0/h) exp(−λT̄j), for T̄j < τE, (5.5a)

Nj = 0, for T̄j > τE. (5.5b)
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The time

τE = λ−1 [ln(2O0/h)+O(1)] = λ−1 [ln(Nrmin/rmax)+O(1)] (5.6)

above which there are no fully transmitted channels is the Ehrenfest time
of this problem.

By decomposing one of these Nj scattering states into a given basis of
transverse modes in the lead one constructs an eigenvector of the trans-
mission matrix product tt†. The corresponding eigenvalue Tj,n equals
unity with exponential accuracy in the semiclassical limit n� 1. Because
of the degeneracy of this eigenvalue any linear combination of eigenvec-
tors is again an eigenvector. This manifests itself in our construction as
an arbitrariness in the choice of C.

We observe in Fig. 5.1 that the spatial density profile ρ(x,y) of a fully
transmitted scattering state is highly non-uniform. The flux tube is broad
(width of order W ) at the two openings, but is squeezed down to very
small width inside the billiard. A similar effect was noted in chapter 2 for
the excited states of an Andreev billiard. Following the same argument we
estimate the minimal width of the flux tube as Wmin � L

√
Nj/kFL.

The total number

Ncl =
∑
j
Nj = N

∫ τE
0
P(T)dT (5.7)

of fully transmitted and reflected channels is determined by the dwell time
distribution P(T) [7]. Fig. 5.3 shows this distribution in our billiard. One
sees three different time scales. The narrow peaks represent individual
transmission (reflection) bands. They consist of an abrupt jump followed
by an exponential decay with time constant TW . These exponential tails
correspond to the borders of the bands, where the trajectory bounces
many times between the sides of the point contact. If we smooth P(T)
over such short time intervals, an exponential decay with time constant
τD = π�/Nδ is obtained (inset). The decay starts at the so called “ergodic
time” τerg. There are no trajectories leaving the cavity for T < τerg. So the
smoothed dwell time distribution has the form.

P(T) = τ−1
D exp[(τerg − T)/τD]θ(T − τerg), (5.8)

with θ(x) the unit step function.
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Figure 5.4: Section of phase space in the middle of the billiard, along line
b in Fig. 5.1. The subscript ‖ indicates the component of coordinate and
momentum along this line. Elongated black areas Oj show the positions
of the 5-th crossing of the injected beam with this surface of section. The
area Oinitial is the position of the first crossing. Points inside Ofinal leave
the billiard without further crossing of line b. For times less than the
ergodic time τerg there is no intersection between Oj and Ofinal.

In order to find τerg we consider Fig. 5.4, where the section of phase
space along a cut through the middle of the billiard is shown (line b in
Fig. 5.1). It is convenient to measure the momentum and coordinate along
b in units of pF and L. The injected beam crosses the section for the
first time over an area Oinitial of size rmax × rmin = hN/pFL. (Fig. 5.4 has
rmin � rmax, but the estimates hold for any rmin < rmax < 1.) Further
crossings consist of increasingly more elongated areas. The fifth crossing
is shown in Fig. 5.4. The flux tube intersects line b in a few disjunct areas
Oj , of width rmine−λt and total length rmaxeλt . (Due to conservation of the
integral

∮
p·dr enclosing the flux tube, the total area

∑
j Oj decreases only

when particles leave the billiard.) The typical separation of adjacent areas
is (rmaxeλt)−1. To leave the billiard (through the right contact) without
further crossing of b a particle should pass through an area Ofinal � rmax×
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rmin. This is highly improbable [8] until the separation of the areas Oj
becomes of order rmax, leading to the ergodic time

τerg = λ−1 ln r−2
max. (5.9)

The ergodic time varies from τerg � λ−1 for rmax � 1 to τerg = λ−1 ln(kFL/N)
for rmin � rmax. The overlap of the areas Oj and Ofinal is the mapping
of the transmission band onto the surface of section b. It has an area
pFLr 2

mine−λt = Otot(rmin/rmax)e−λt , leading to Eq. (5.1).

Substituting Eq. (5.8) into Eq. (5.7) we arrive at the number Ncl of fully
transmitted and reflected channels,

Ncl = Nθ(τE − τerg)
[
1− e(τerg−τE)/τD

]
, (5.10)

τE − τerg � λ−1 ln(N2/kFL). (5.11)

There are no fully transmitted or reflected channels if τE < τerg, hence if
N <

√
kFL. Notice that the dependence of τE and τerg separately on the

degree of collimation drops out of the difference τE − τerg. The number
of noiseless channels is therefore insensitive to details of the confining
potential. An Ehrenfest time ∝ ln(N2/kFL) has appeared before in con-
nection with the Andreev billiard [9], but the role of collimation (and the
associated finite ergodic time) was not considered there.

Eqs. (5.5) and (5.8) imply that the majority of noiseless channels group
in bands having Nj � 1, which justifies the semiclassical approximation.
The total number of these noiseless bands is of the order of (N−Ncl)/λτD ,
which is much less than both N −Ncl and Ncl. Because of this inequality
the relatively short trajectories contributing to the noiseless channels are
well separated in phase space from other, longer trajectories (cf. Fig. 5.2).

The shot-noise power S is related to the transmission eigenvalues by
[10]

S = 2eĪg−1
N∑
k=1

Tk(1−Tk), (5.12)

with Ī the time-averaged current and g = ∑kTk the dimensionless con-
ductance. The Ncl fully transmitted or reflected channels have Tk = 1 or
0, hence they do not contribute to the noise. The remaining N −Ncl chan-
nels contribute at most 1/4 per channel to Sg/2eĪ . Using that g = N/2 for
largeN, we arrive at an upper bound for the noise power S < eĪ(1−Ncl/N).
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For a more quantitative description of the noise power we need to
know the distribution P(T ) of the transmission eigenvalues for the N−Ncl
noisy channels, which can not be described semiclassically. We expect the
distribution to have the same bimodal form P(T ) = π−1T −1/2(1−T )−1/2

as in the case Ncl = 0 [6]. This expectation is motivated by the earlier ob-
servation that the Ncl noiseless channels are well separated in phase space
from the N−Ncl noisy ones. Using this form of P(T ) we find that the con-
tribution to Sg/2eĪ per noisy channel equals

∫ 1
0 T (1−T )P(T )dT = 1/8,

half the maximum value. The Fano factor F = S/2eĪ is thus estimated as

F = 1
4 , for N �

√
kFL, (5.13a)

F = 1
4(kFL/N

2)Nδ/π�λ, for N 

√
kFL. (5.13b)

This result should be compared with that of Ref. [2]: F ′ = 1
4(kFL)

−Nδ/π�λ.
The ratio F ′/F = exp[(2Nδ/π�λ) ln(N/kFL)] is always close to unity (be-
cause Nδ/π�λ � N/kFL� 1). But F − 1

4 and F ′ − 1
4 are entirely different

for N �
√
kFL, which is the relevant regime in the experiment [5]. There

the N dependence of the shot noise was fitted as F = 1
4(1 − tQ/τD) =

1
4(1 − constant × N), where tQ is some N-independent time. Eq. (5.13)
predicts a more complex N dependence, a plateau followed by a decrease
as lnF ∝ −N ln(N2/kFL), which could be observable if the experiment
extends over a larger range of N.

We mention two other experimentally observable features of the theory
presented here. The reduction of the Fano factor described by Eq. (5.13)
is the cumulative effect of many noiseless bands. The appearance of new
bands with increasing N introduces a fine structure in F(N), consisting of
a series of cusps with a square-root singularity near the cusp. The sec-
ond feature is the highly nonuniform spatial extension of open channels,
evident in Fig. 5.1, which could be observed with the STM technique of
Ref. [11]. From a more general perspective the noiseless channels con-
structed in this chapter show that the random-matrix approach may be
used in ballistic systems only for sufficiently small openings: N �

√
kFL is

required. For larger N the scattering becomes deterministic, rather than
stochastic, and random-matrix theory starts to break down.



94 Chapter 5. Noiseless scattering states . . .



Bibliography

[1] C. W. J. Beenakker and H. van Houten, Phys. Rev. B 43, 12066 (1991).

[2] O. Agam, I. Aleiner, and A. Larkin, Phys. Rev. Lett. 85, 3153 (2000).

[3] H.-S. Sim, and H. Schomerus, Phys. Rev. Lett. 89, 066801 (2002); R. G.
Nazmitdinov, H.-S. Sim, H. Schomerus, and I. Rotter, Phys. Rev. B 66,
241302(R) (2002).

[4] G. M. Zaslavsky, Phys. Rep. 80, 157 (1981).

[5] S. Oberholzer, E. V. Sukhorukov, and C. Schönenberger, Nature 415,
765 (2002).

[6] R. A. Jalabert, J.-L. Pichard, and C. W. J. Beenakker, Europhys. Lett. 27,
255 (1994).

[7] The dwell time distribution is defined with a uniform measure in the
surface of section of the lead, so that its integral is directly propor-
tional to the number of channels. The mean dwell time τD = π�/Nδ
was calculated by W. Bauer and G. F. Bertsch, Phys. Rev. Lett. 65, 2213
(1990).

[8] Dwell times shorter than τerg are improbable but they may exist for
special positions of the two point contacts. The probability that a
random position permits a transmitted (or reflected) trajectory of du-
ration T < τerg is exp[−λ(τerg − T)].

[9] M. G. Vavilov and A. I. Larkin, Phys. Rev. B 67, 115335 (2003).
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Chapter 6

Spectroscopy of a driven

solid-state qubit coupled to a

structured environment

6.1 Introduction

Currently, we witness an impressive progress in realizing coherent quan-
tum dynamics of macroscopic solid state devices [1–5]. Very recently, ex-
perimental results on the quantum dynamics of a superconducting flux
qubit coupled to a read-out Superconducting Quantum Interference De-
vice (SQUID) have been reported [6]. The flux qubit consists of a supercon-
ducting ring with three Josephson junctions and, in the proper parame-
ter regime, it forms a quantum mechanical macroscopic two-state system
(TSS). An external time-dependent driving force controls the state of the
TSS. A SQUID couples inductively to the qubit and, together with an ex-
ternal shunt capacitance, it can be modeled as a harmonic oscillator (HO).
Due to the coupling of the SQUID to the surrounding environment, the
harmonic oscillator is (weakly) damped. The state of the qubit can be in-
ferred from the state of the SQUID. The experiment provides spectroscopic
data on the different transition frequencies of the coupled TSS-HO device.
Moreover, Rabi oscillations involving different pairs of quantum states of
the device have been revealed, including the so-termed red and blue side-
band transitions between energy states of the coupled TSS-HO system.

Heading for a comprehensive detailed understanding, a quantitative



98 Chapter 6. Spectroscopy of a driven solid-state . . .

modeling which includes the effects of time-dependent driving, decoher-
ence and dissipation is required. In this chapter we give a description
which goes beyond the well-known Jaynes-Cummings model [7], by avoid-
ing the strong rotating-wave approximation and by including a micro-
scopic model for the environment. A generic theoretical model for study-
ing the environmental effects on a driven TSS is the driven spin-boson
model [8,9]. The environment is characterized by a spectral density J(ω).
The widest used form is that of an Ohmic spectral density, where J(ω)
is proportional to the frequency ω. It mimics the effects of an unstruc-
tured Ohmic electromagnetic environment. In the classical limit this leads
to white noise and all transitions in the system are damped equally. How-
ever, if the environment for the qubit is formed by a quantum measuring
device which itself is damped by Ohmic fluctuations, the simple descrip-
tion as an Ohmic environment might become inappropriate. In particular,
the SQUID-detector being well described as a HO can equally well be con-
sidered as a (broadened) localized mode of the environment influencing
the qubit as the central quantum system. In this picture, the plasma res-
onance at frequency Ωp of the SQUID gives rise to a non-Ohmic effective
spectral density Jeff(ω) for the qubit with a Lorentzian peak at the plasma
frequency of the detector [10].

The effects of such a structured spectral density on decoherence have
been investigated in several theoretical works in various limits. The role
of the external driving being in resonance with the symmetric TSS at zero
temperature has been studied in Ref. [11] within a Bloch-Redfield formal-
ism being equivalent to a perturbative approach in Jeff. Smirnov’s analy-
sis [12] is based on the assumption of weak interaction between the TSS
and the HO being equivalent to a perturbative approach in Jeff as well.
Moreover, a rotating-wave approximation is used. The first assumption,
however, might become problematic if the driven TSS is in resonance with
the HO. The results presented in Refs. [13, 14] reveal in fact, for the un-
driven case, that a perturbative approach in Jeff breaks down for strong
qubit-detector coupling, and when the qubit and detector frequencies are
comparable. Dephasing times at zero temperature have been determined
for the undriven spin-boson model with a structured environment in Ref.
[15] within a numerical flow equation method.

As shown in the experiment of Ref. [6], the interplay between the ex-
ternal driving and the dynamics of the coupled TSS-HO system yields to
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additional multi-photon transitions, which can be explained only by con-
sidering the spectrum of the coupled system. In contrast, if the time-scale
of the HO does not play a role, the multi-photon resonances occur in the
driven qubit solely, which happens when the driving frequency (or integer
multiples of it) matches the characteristic energy scales of the qubit [9].
Such multiphoton resonances can be experimentally detected in an ac-
driven flux qubit by measuring the asymptotic occupation probabilities of
the qubit, as the dc-field is varied [16]. These qubit resonances, which have
also been theoretically investigated within a Bloch equation formalism in
Ref. [17], could be explained in terms of intrinsic transitions in a driven
spin-boson system with an unstructured environment.

In this chapter, we provide a comprehensive theoretical description of
the driven spin-boson system in the presence of a structured environment
with one localized mode. Upon making use of the equivalence of this
generic model with the model of a driven TSS coupled to an Ohmically
damped HO, we first consider the experimentally most interesting case
of low temperature and weak damping of the HO while the coupling be-
tween the TSS and the HO is kept arbitrary. In this regime, a Floquet-Born-
Markov master equation can be established for the driven TSS-HO system.
A restriction to the most relevant energy states allows the analytic calcu-
lation of the asymptotic TSS time-averaged population P∞, including the
explicit shape of the resonance peaks and dips. We furthermore consider
the case of strong damping and/or high temperature which is the comple-
mentary parameter regime. An analytic real-time path-integral approach
within the non-interacting blip approximation for the driven TSS with the
Lorentzian-shaped spectral density allows to analytically determine P∞ as
well. We compare the results obtained from closed analytic expressions
with those of numerically exact real-time QUAPI calculations in both pa-
rameter regimes and find a very good agreement validating our analytical
approaches. Finally, we consider the weakly damped TSS with the localized
mode in the limit of large HO frequencies. Then, the localized mode acts as
a high-frequency cutoff and the usual Ohmically damped driven TSS is re-
covered. For this case, we employ an approximation valid for large driving
frequencies and obtain a simple expression for the resonance line shapes
for multi-photon transitions. Most importantly, we find that the width of
the n-photon resonance scales with the n-th ordinary Bessel function.

The chapter is organized as follows: In Sec. 6.2, we present the theo-



100 Chapter 6. Spectroscopy of a driven solid-state . . .

Figure 6.1: Schematic picture of the models we use. In (a) the TSS is
coupled to an environment which has a peaked spectral density Jeff(ω).
In (b) the system is shown as a two-level system coupled to a harmonic
oscillator which is itself coupled to an Ohmic environment with spectral
density JOhm(ω) .

retical model. Then, we treat the regime of weak damping and low tem-
peratures in Sec. 6.3. The complementary regime of strong damping is in-
vestigated in Sec. 6.4. The subsequent Sec. 6.5 contains the limit when the
localized mode provides a high-frequency cut-off for the bath, and Sec. 6.6
the discussion of the results and the conclusions. Details of the specific
evaluation of rate coefficients are presented in Appendix 6.A. In Appendix
6.B an expansion used in the strong coupling regime is elaborated in detail.

6.2 The driven qubit coupled to a macroscopic detec-

tor

The driven TSS is described by the Hamiltonian
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HQ(t) = −�W2 σx − �F(t)2
σz , (6.1)

where σi are Pauli matrices, �W is the tunnel splitting, and F(t) = F0 +
s cos(Ωt) describes the combined effects of a time-dependent driving and
the static bias F0. In the absence of ac-driving (s = 0), the level splitting of
the isolated TSS is given by

�ν = �
√
F2

0 +W 2 . (6.2)

The detector can be associated as part of the TSS environment as a local-
ized mode. This gives the spin-boson HamiltonianHSB reading [8,9,11–15]

HSB(t) = HQ(t)+ 1
2
σz�

∑
k
λ̃k(b̃

†
k + b̃k)+

∑
k
�ω̃kb̃

†
kb̃k. (6.3)

Here b̃k and b̃†k are annihilation and creation operators of the k−th bath
mode with frequency ω̃k. The presence of the detector determines the
shape of the spectral density. Following Ref. [10], the dc-SQUID can be
modeled as an effective inductance which is shunted with an on-chip ca-
pacitance. This gives rise to the effective spectral density

Jeff(ω) =
∑
k
λ̃2
kδ(ω− ω̃k) =

2αωΩ4
p

(Ω2
p −ω2)2 + (2πκωΩp)2

(6.4)

of the bath having a Lorentzian peak of width γ = 2πκΩp at the char-
acteristic detector frequency Ωp. It behaves Ohmically at low frequen-
cies with the dimensionless coupling strength α = limω→0 Jeff(ω)/2ω.
The qubit dynamics is described by the reduced density operator ρ(t) ob-
tained by tracing out the bath degrees of freedom. The relevant observable
which corresponds to the experimentally measured switching probability
of the SQUID bias current is the population difference P(t) := 〈σz〉(t) =
Tr[ρ(t)σz] between the two localized states of the qubit. We focus on the
asymptotic value averaged over one period of the external driving field,
i.e., P∞ = limt→∞〈P(t)〉Ω.

In the following, it will become clear that it is convenient to exploit
the exact one-to-one mapping [18] of the Hamiltonian (6.3) onto that of a
driven TSS coupled to a single harmonic oscillator mode with frequency
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Ωp with interaction strength g. The HO itself interacts with a set of mutu-
ally non-interacting harmonic oscillators. The corresponding total Hamil-
tonian is then

HQOB(t) = HQO(t)+HOB (6.5)

with

HQO(t) = HQ(t)+ �gσz(B† + B)+ �ΩpB†B ,

HOB = (B† + B)
∑
k
�νk(b

†
k + bk)+

∑
k
�ωkb

†
kbk + (B† + B)2

∑
k
�
ν2
k
ωk

,

(6.6)

where we have omitted the zero-point constant energy terms. Here, B and
B† are the annihilation and creation operators of the localized HO mode,
while bk and b†k are the corresponding bath mode operators. The spectral
density of the continuous bath modes is now Ohmic with dimensionless
damping strength κ, i.e.,

JOhm(ω) =
∑
k
ν2
kδ(ω−ωk) = κω

ω2
D

ω2 +ω2
D
, (6.7)

where we have introduced a high-frequency Drude cut-off at frequency
ωD. If ωD is larger than all other energy scales the particular choice of
cut-off does not influence the results at long times. The relation between
g and α follows as g = Ωp

√
α/(8κ). Fig. 6.1 illustrates a sketch of the

two equivalent descriptions of the system. Fig. 6.1a shows the viewpoint
where the localized mode is part of the environmental modes, while Fig.
6.1b depicts the perspective of the localized mode being part of the “cen-
tral” quantum system which itself is coupled to an Ohmic environment.
The equivalence of both standpoints has first been pointed out by Garg et
al. [18] in the context of electron transfer in chemical physics. As shown
below, the first way is more convenient for the description in terms of ana-
lytic real-time path-integrals (Sec. 6.4), while the second viewpoint is more
appropriate for the regime of weak-coupling and for the numerical treat-
ment with QUAPI (see below). Note that the TSS reduced density operator
ρ(t) is obtained after tracing out the degrees of freedom of the bath and
of the HO. Further progress relies on approximations which depend on the
choice of the various parameters.
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6.3 Weak coupling: Floquet-Born-Markov master equa-

tion

If the coupling between the HO and the bath is weak, i.e., κ � 1 , we
can choose an approach in terms of a Born-Markov master equation in an
extended Floquet description [9, 19, 20]. For a self-contained discussion,
we shortly introduce below the required formalism of the Floquet theory.
The interested reader can find more details in the review in Ref. [9].

6.3.1 Floquet formalism and Floquet-Born-Markovian master equa-
tion

For systems with periodic driving it is convenient to use the Floquet for-
malism that allows to treat periodic forces of arbitrary strength and fre-
quency [19]. It is based on the fact that the eigenstates of a periodic Hamil-
tonian HQO(t) = HQO(t + 2π/Ω) are of the form

|ψ(t)〉 = e−iεαt/�|φα(t)〉 ,
|φα(t)〉 = |φα(t + 2π/Ω)〉 , (6.8)

with the Floquet states |φα(t)〉 being periodic in time (as is the Hamilto-
nian) and εα are called the Floquet or quasi-energies. They can be obtained
from the eigenvalue equation

(
HQO(t)− i� ∂∂t

)
|φα(t)〉 = εα|φα(t)〉. (6.9)

If the quasi-energy εα is an eigenvalue with Floquet state |φα(t)〉, so is
εα + n�Ω with Floquet state exp (inΩt)|φα(t)〉. Both Floquet states cor-
respond to the same physical state. Because of their periodicity both the
Floquet states and the Hamiltonian can be written as a Fourier series, i.e.,

|φα(t)〉 =
∑
n
|φ(n)α 〉 exp (inΩt) ,

HQO(t) =
∑
n
H(n)QO exp (inΩt). (6.10)

Substituting these Fourier decompositions in the eigenvalue equation (6.9)
gives [21]
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∑
k
(H(n−k)QO +n�Ωδkn)φ(k)α = εαφ(n)α . (6.11)

This allows us to define the Floquet Hamiltonian HQO ≡ HQO(t)− i� ∂∂t in
matrix form with the matrix elements

〈an|HQO|bm〉 = (H(n−m)QO )ab +n�Ωδabδnm. (6.12)

In the notation |an〉, a refers to a basis in which to express the Hamilto-
nian HQO(t), while n refers to the Fourier coefficient. The eigenvectors of
HQO are the coefficients φ(n)α .

The dynamics of the system coupled to a harmonic bath is described
by an equation of motion for the density matrix ρ. Driving effects can
be captured in an elegant way by formulating the equation of motion in
the basis of Floquet states defined in Eq. (6.8). For weak coupling to the
environment, it is sufficient to include dissipative effects to lowest order
in κ. Within this approximation, a Floquet-Born-Markov master equation
has been established [9, 19, 20]. We average the 2π/Ω-periodic coeffi-
cients of the master equation over one period of the driving, assuming
that dissipative effects are relevant only on timescales much larger than
2π/Ω. This yields equations of motion for the reduced density matrix
ραβ(t) = 〈φα(t)|ρ(t)|φβ(t)〉 of the form

ρ̇αβ(t) = −
i
�
(εα − εβ)ραβ(t)+

∑
α′β′

Lαβ,α′β′ρα′β′(t), (6.13)

with the dissipative transition rates

Lαβ,α′β′ =
∑
n
(Nαα′ ,n +Nββ′,n)Xαα′ ,nXβ′β,−n

−δββ′
∑
β′′,n

Nβ′′α′,nXαβ′′ ,−nXβ′′α′,n

−δαα′
∑
α′′,n

Nα′′β′,nXβ′α′′ ,−nXα′′β,n. (6.14)

Here, we have defined

Xαβ,n =
∑
k
〈φ(k)α |B + B†|φ(k+n)β 〉,

Nαβ,n = N(εα,β,n) = N(εα − εβ +n�Ω),
N(ε) = κε

2�

(
coth

(
ε

2kBT

)
− 1
)
. (6.15)
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Figure 6.2: Left: Quasi-energy spectrum εα,k of the driven TSS+HO system
as a function of the dc-bias F0 (in units of W ). The quasi-energies are
defined up to an integer multiple of �Ω, i.e., εα,k = εα + k�Ω. Inset: Zoom
of an anti-crossing. Right: P∞ exhibits resonance dips corresponding to
quasi-energy level anti-crossings. Parameters are Ω = 10W, s = 4W,g =
0.4W,Ωp = 4W,κ = 0.014 and kBT = 0.1�W .

We have neglected the weak quasi-energy shifts, which are of first order
in the coupling to the environment. In the sequel, we will see from a
comparison with exact numerical results that this approximation is well
justified. In order to be able to solve Eq. (6.13), it is necessary to determine
the Floquet quasi-energies εα and Floquet states |φ(n)α 〉. How they can be
determined perturbatively, is shown in the following subsection.

6.3.2 Van Vleck perturbation theory

First, we have to specify the basis for the Floquet Hamiltonian according
to Eq. (6.12). For the TSS+HO Hamiltonian HQO , we use the basis |an〉
defined via the single particle product state |a〉 = |g/em〉with |g/e〉 being
the ground/excited state of the qubit, |m〉 the HO eigenstate, and n the
corresponding Fourier index. In detail, this implies that we can divide the
Hamiltonian into a diagonal part

(HQO)gmn,gmn = �[−ν/2+mΩp +nΩ] ,
(HQO)emn,emn = �[ν/2+mΩp +nΩ] , (6.16)

and an off-diagonal part

(HQO)an,bk = Van,bk , for a �= b,n �= k , (6.17)
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which has non-zero elements. They read

Vg(e)ln,g(e)mn = +(−)(
√
m+ 1δl,m+1 +

√
l+ 1δl+1,m)�gF0

ν
,

Vg(e)ln,e(g)mn = −(
√
m+ 1δl,m+1 +

√
l+ 1δl+1,m)�gW

ν
,

Vg(e)mn,g(e)mk = −(+)(δk,n+1 + δk+1,n)�sF0

4ν
,

Vg(e)mn,e(g)mk = (δk,n+1 + δk+1,n)�sW
4ν

. (6.18)

In the remainder of this section we will assume that the elements of V
are small compared to the diagonal elements of HQO , which is justified if
the coupling g between TSS and HO and the driving amplitude s are small
compared to the other energy scales, i.e., s, g � Ω, ν,Ωp. This is the case
in realistic experimental devices [6, 13]. The Fourier index n ranges from
−∞ to ∞ and m from 0 to ∞. The eigenvalues of the Floquet Hamiltonian
following from Eqs. (6.17) and (6.18) have to be calculated numerically for
a particular cut-off nmax and mmax . In Fig. 6.2, the numerically obtained
quasi-energy spectrum is shown as a function of the static bias F0 for the
case mmax = 4 and |nmax| = 8. We find that for some values of the bias
F0 avoided crossings of the quasi-energy levels occur when two diagonal
elements of HQO have approximately the same values, i.e., when the con-
dition

Ean,bm := (HQO)an,an − (HQO)bm,bm = 0+O(V 2) (6.19)

is fulfilled. It follows from Eq. (6.17) that this happens when at least one
of the two conditions

ν = nΩ±mΩp +O(V 2) ,

nΩ = mΩp +O(V 2) , (6.20)

is fulfilled. At these avoided crossings the Floquet spectrum has quasi-
degeneracies and as a consequence there are transitions between the dif-
ferent Floquet states. As it turns out below, this results in resonant peaks/
dips in the stationary averaged population difference P∞, cf. Fig. 6.2.

Since we are interested in describing the resonance line shape for P∞,
we have to determine the quasi-energies and Floquet states around a reso-
nance, i.e., around an avoided crossing. For this, we use an approach which
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∆Ε

∆Ε2

1

Figure 6.3: Typical energy spectrum suited for the Van Vleck perturbation
theory: Different groups of (nearly) degenerate levels of eigenenergies are
well separated in energy (i.e., ∆E1 � ∆E2).

is perturbative in V . The unperturbed Hamiltonian is diagonal and, close
to an avoided crossing, (nearly) degenerate. An appropriate perturbative
method is the Van Vleck perturbation theory [7,22] suitable for Hamiltoni-
ans for which the unperturbed spectrum has groups of (nearly) degenerate
eigenvalues, well separated in energy space. An example of such a spec-
trum is shown in Fig. 6.3. This method defines a unitary transformation
which transforms the Hamiltonian into an effective block-diagonal one.
The effective Hamiltonian then has the same eigenvalues as the original
Hamiltonian, with the quasi-degenerate eigenvalues in one common block.

The effective Hamiltonian can be written as

Heff = eiSHQOe−iS . (6.21)

In Ref. [7] it is shown how to obtain S systematically for every order in
the perturbation. The small parameter is V/∆E2 (see Fig. 6.3). Eigenvalues
within one block can be arbitrarily close. This means that we can also use
the expansion at resonance. We derive the expressions up to the second
order in the perturbation. Two different cases are relevant: For the case
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when (HQO)an,an and (HQO)bm,bm are not nearly degenerate we find

iS(1)an,bm = Van,bm
Ean,bm

,

iS(2)an,bm =
∑
c,k

Van,ckVck,bm
2Ebm,an

(
1

Eck,an
+ 1
Eck,bm

)
,

(6.22)

where the superscript indicates the order of perturbation theory. For the
second case when (HQO)an,an and (HQO)bm,bm are nearly degenerate,
we find iS(1)an,bm = iS

(2)
an,bm = 0.

Inserting the expressions for San,bm into Eq. (6.21), the matrix ele-
ments of the n-th order term H (n)

eff of the effective Hamiltonian can be
calculated, again for both cases. When (HQO)an,an and (HQO)bm,bm are
not nearly degenerate, we find (Heff)

(1)
an,bm = (Heff)

(2)
an,bm = 0. For the

second case, when (HQO)an,an and (HQO)bm,bm are nearly degenerate,
one finds

(Heff)
(1)
an,bm = Van,bm ,

(Heff)
(2)
an,bm = 1

2

∑
c,k
Van,ckVck,bm

(
1

Ean,ck
+ 1
Ebm,ck

)
.

(6.23)

Since the effective block-diagonal Hamiltonian consequently only has
2×2 blocks (we assume that resonances do not overlap), it is easy to diag-
onalize it. To obtain the eigenvectors of the original Floquet Hamiltonian
(see Eqs. (6.16), (6.17) and (6.18)), the inverse of the transformation defined
in Eq. (6.21) has to be performed on the eigenvectors. There is an infinite
number of quasi-energy levels and Floquet states. However, because the
eigenvalues εα and εα + n�Ω represent the same physical state, only one
of them has to be considered. Still there is an infinite number of levels
because the Hilbert space of the HO Hamiltonian is infinite dimensional.
Nevertheless, for practical calculations, only the relevant HO levels have
to be taken into account. When there is a resonance between the states
|e/g, 0, n〉 and |e/g, l,n+k〉, then at least the first l levels of the HO play a
role. Higher levels can be omitted if one is interested in low temperatures
(which is commonly the case), since for low temperatures their occupation
number will be very small.
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6.3.3 Line shape of the resonant peak/dip

To obtain the line shape of the resonant peak/dip in P∞, we have to de-
termine the stationary solution of Eq. (6.13). Depending on the number
nmax of Floquet states taken into consideration, this might be consider-
ably difficult. One facilitation might arise due to symmetries, i.e., elements
of Lαβ,α′β′ being of the same size. Another possibility appropriate at low
temperatures might be to neglect some of the dissipative transition rates.
Moreover, a further possible approximation can be applied for ραβ(∞), if
εα and εβ are not nearly-degenerate eigenvalues. In that case εα − εβ in
Eq. (6.13) is much larger than the coefficients Lαβα′β′ , since the coupling
to the Ohmic environment is assumed to be weak. This, in turn, allows to
make the partial secular approximation by setting ραβ(∞) = 0. After the
reduced density matrix in the Floquet basis is known, it is straightforward
to calculate P∞.

6.3.4 Example: The first blue sideband

As an example we will derive an analytical expression for the resonant dip
at ν ≈ Ω−Ωp which is called the first blue sideband. For this case, the ma-
trix elements (HQO)g0n+1,g0n+1 and (HQO)e1n,e1n are nearly degenerate,
i.e.,

−ν/2 + (n+ 1)Ω ≈ ν/2+Ωp +nΩ . (6.24)

As the resonance occurs between two states which differ only by one os-
cillator quantum, we only take into account one excited level of the oscil-
lator. We expect that this is a reasonable approximation for not too strong
driving and low temperatures. The validity of this approximation will be
checked against numerically exact results in the end. The elements of the
transformation matrix S follow as Sg0n+1,e1n = Se1n,g0n+1 = 0, while the
remaining elements can be calculated straightforwardly using Eq. (6.22)
and they will not be given here explicitly.

Since we include one HO excited energy level, we have four physically
different eigenstates. Hence, we can express HQO in the basis {|e,1,−1〉,
|g,0,0〉, |g,1,0〉, |e,0,0〉}. Performing the transformation defined in Eq.
(6.21), we obtain the effective Hamiltonian in this basis as



110 Chapter 6. Spectroscopy of a driven solid-state . . .

Heff = �

⎛
⎜⎜⎜⎜⎝

ν
2 +Ωp −Ω+∆1 −W̃ 0 0

−W̃ −ν2 +∆2 0 0
0 0 −ν2 +Ωp +∆3 0
0 0 0 ν

2 +∆4

⎞
⎟⎟⎟⎟⎠ .

(6.25)

The matrix elements are calculated using Eq. (6.23). They read

W̃ =
WF0gs

[
Ω2 +Ω2

p + ν(−Ω +Ωp)
]

4ν(Ω − ν)ΩΩp(ν +Ωp)
,

∆1 = −∆2 =
F2

0g2

ν2Ωp
+ W 2g2

ν2(ν +Ωp)
+ W 2s2

8ν(ν2 −Ω2)
,

∆3 = −∆4 =
F2

0g2

ν2Ωp
− W 2g2

ν2(ν −Ωp)
− W 2s2

8ν(ν2 −Ω2)
. (6.26)

The eigenvalues of the Hamiltonian (6.25) are the relevant quasi-energies,
and they are readily obtained by diagonalization as

ε1/2

�
= −ν

2
+ δF

2

⎛
⎝1∓

√
1+ W̃

2

δF2

⎞
⎠−∆1 ,

ε3

�
= −ν

2
+Ωp +∆3 ,

ε4

�
= ν

2
+∆4 . (6.27)

From these formulas it follows that δF = ν −Ω +Ωp + 2∆1 is a measure
of how far the system is off resonance. For δF = 0, the quasi-energies ε1

and ε2 show an avoided crossing of size �W̃ . Note that Eq. (6.13) implies
that W̃ is the Rabi frequency at the blue sideband.

The eigenvectors, which are the Floquet states, of the 4 × 4 effective
block-diagonal matrix in Eq. (6.25) are easily obtained by performing the
corresponding inverse transformation. We find, with tanθ = 2|W̃ |/δF , the
eigenstates

|φ1〉 = e−iS[sin (θ/2)e−iΩt|e,1〉 + cos (θ/2)|g,0〉] ,
|φ2〉 = e−iS[cos (θ/2)e−iΩt|e,1〉 − sin (θ/2)|g,0〉] ,

|φ3/4〉 = e−iS|g/e, 1/0〉 . (6.28)
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We have used the inverse transformation of Eq. (6.10) to illustrate the time
dependence explicitly. Next, we calculate the rates given in Eq. (6.14) up
to second order in V .

Only the quasi-energies ε1 and ε2 are quasi-degenerate. Therefore, we
assume a partial secular approximation: We set almost all off-diagonal el-
ements of ρ to zero but keep ρ12(∞) and ρ21(∞) = ρ∗12(∞) different from
zero. This allows to simplify the master equation (6.13). The stationary
solutions are determined by the conditions

0 =
∑
β
Lαα,ββρββ(∞)+ (Lαα,12 + Lαα,21)Re[ρ12(∞)],

0 = − i
�
(ε1 − ε2)ρ12(∞)+

∑
α
L12,ααραα(∞)

+L12,12ρ12(∞)+ L12,21ρ∗12(∞). (6.29)

It is most convenient to use the symmetry properties of the correspond-
ing rates which are specified for this particular example in Eq. (6.58) in
Appendix 6.A. In turn, there are eight independent rates associated to all
possible transitions. They are explicitly given in Eq. (6.59).

First we consider the rates exactly at resonance δF = 0. Since then
sin2(θ/2) = cos2(θ/2) = 1/2, all rates contain a term which is of zeroth
order in V . If we neglect the small second order terms, we find

L22,44 = L11,44 = L33,22 = L33,11 = −L33,21 = L21,44 = N(�Ωp) ,
L22,33 = L11,33 = L44,22 = L44,11 = L44,21 = −L21,33 = N(−�Ωp) ,

L11,21 = L22,21 = L21,22 = L21,11 = 1
2
[N(�Ωp)−N(−�Ωp)] ,

L12,12 = −N(−�Ωp)−N(�Ωp) . (6.30)

Solving Eq. (6.29) together with (6.30) finally yields

ρ11(∞) = ρ22(∞) =
N(−�Ωp)N(�Ωp)

[N(−�Ωp)+N(�Ωp)]2
,

ρ33(∞) = N(�Ωp)2

[N(−�Ωp)+N(�Ωp)]2
,

ρ44(∞) = N(−�Ωp)2
[N(−�Ωp)+N(�Ωp)]2

,

ρ12(∞) = 0 . (6.31)
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Eventually, this gives the simple result at resonance, δF = 0,

P∞ = −F0

ν
tanh

(
�Ωp
2kBT

)
+O

(
V 2
)
, (6.32)

which implies a complete inversion of population at low temperatures! We
will discuss the physics behind it in section 6.3.5. Note that no further
assumption on the temperature was made while deriving this formula.

Next we will derive an expression for the peak shape around the res-
onance. For this, we assume low temperatures, i.e., kBT/� � Ωp,Ω, ν.
This allows us to set N(�Ωp) = N(�Ω) = N(�ν) = 0. Far enough away
from resonance, it is appropriate to assume that ρ12(∞) ≈ ρ21(∞) ≈ 0,
and sin (θ/2) ≈ θ/2. Thus, it follows from Eq. (6.58) that there are only
four independent rates in this case, namely L44,22, L22,44, L44,11 and L11,44.
Within our approximations, we find that L22,44 = O(V 3). So only three
rates are relevant which read

L44,22 = 2 cos2(θ/2) ≈ 2 ,

L11,44 = 2Lq(ε1,4,0) cos2(θ/2) ≈
8W 2g2Ω2

p

(ν3 − νΩ2
p)2

,

L44,11 = 2 sin2(θ/2) ≈ θ2/2 ≈ 2W̃ 2/δF2 , (6.33)

where the quantity Lq is given in Appendix 6.A. Note that L44,22 � L44,11,
L11,44. In this limit we find for the asymptotic density matrix elements

ρ11(∞) = L11,44

L11,44 + L44,11
,

ρ22(∞) = ρ33(∞) = 0 ,

ρ44(∞) = 1− ρ11(∞) , (6.34)

which gives the central result

P∞ = F0

ν
L11,44 − L44,11

L11,44 + L44,11
+O

(
V 2
)

� F0

ν

(
1−

2W̃ 2ν2(ν2 −Ω2
p)2

W̃ 2ν2(ν2 −Ω2
p)2 + 4W 2g2Ω2

pδF2

)
. (6.35)

A comparison between the result of this formula and different numerical
results, including those of an exact numerical ab-initio real-time QUAPI
calculation [23–25], is shown in Fig. 6.4. For the QUAPI-simulations, we
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have used the optimized parameters [25] ∆t = 0.23/W,M = 12 and K = 1.
Moreover, we have applied an exponential cut-off for the Ohmic bath with a
cut-off frequencyωc = 10W (since we are considering long-time stationary
results, the explicit shape of the cut-off is irrelevant). Note that the picture
of the TSS+HO being the central quantum system which is coupled to an
Ohmic environment is particularly suited for QUAPI since the coherent
dynamics of the central quantum system is treated exactly. A very good
agreement, even near resonance, is found among all the used numerical
schemes.

6.3.5 Results and discussion

We will now try to give a more physical insight into the nature of the first
blue sideband. First consider the case when T = 0 and we are exactly at
resonance. The driving induces transitions from |g,0〉 to |e,1〉 while the
direct coupling of the HO to the environment will cause a fast decay of
the population from |e,1〉 to |e,0〉. This transition from |g,0〉 to |e,0〉 via
driving and decay has to compete with the decay from |e,0〉 to |g,0〉, but
the last process is much slower because the TSS is not directly coupled to
the environment. So all the population is in |e,0〉 and there is a complete
inversion of population (cf. Eq. (6.32)). For T �= 0 there will be a thermal
equilibrium between ground and excited state of the oscillator.

When the system is not exactly at resonance the driving induced tran-
sitions are much slower ∝ g2 and the decay of the oscillator is still fast.
This means that the transition from |g,0〉 to |e,0〉 is slower than at reso-
nance. The time associated with the decay from |e,0〉 to |g,0〉 is also∝ g2

and the ratio of the time scales of the two processes gives the ratio of the
populations of |e,0〉 and |g,0〉 (at T = 0, for higher T the states |g/e, 1〉
are also populated). This ratio is independent of g and so is P∞ (given in
Eq. (6.35)).

A similar analysis can be performed for the first red sideband at ν =
Ω +Ωp. At resonance it yields P∞ = F0

ν tanh( �Ωp2kBT ) +O(V 2), which is very
close to thermal equilibrium for low T .

For the resonance at ν = Ωp, only the oscillator is excited. After
having traced it out, we expect just thermal equilibrium given by P∞ =
F0
ν tanh( �ν

2kBT ).
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Figure 6.4: P∞ as a function of the dc-bias F0 (in units of W ) around the
peak at ν = Ω −Ωp. The solid lines are the analytical prediction (6.35) for
(a) g = 0.05W , (b) g = 0.2W , (c) g = 0.4W . The triangles are the results
of a Floquet-Bloch-Redfield simulation, cf. Eq. (6.13), with one (upward
triangles) and two (downward triangles) HO levels taken into account. The
circles in (b) are the results from a QUAPI simulation with six HO levels
(see text). We choose s = 2W , Ω = 10W , κ = 0.014, kBT = 0.1�W .

6.4 Strong coupling: NIBA

In the complementary regime of large environmental coupling and/or high
temperature it is convenient to employ model (a), and it is appropriate to
treat the system’s dynamics within the noninteracting-blip approximation
(NIBA) [8]. The NIBA is non-perturbative in the coupling α but perturbative
in the tunneling splitting W . It is a good approximation for sufficiently
high temperatures and/or dissipative strength, or for symmetric systems.
Within the NIBA and in the limit of large driving frequencies Ω� W , one
finds [9]

P∞ =
k−0 (0)
k+0 (0)

. (6.36)

Here,

k−0 (0) = W 2
∫∞

0
dth−(t) sin (F0t)J0

(
2s
Ω

sin
Ωt
2

)
,

k+0 (0) = W 2
∫∞

0
dth+(t) cos (F0t)J0

(
2s
Ω

sin
Ωt
2

)
, (6.37)
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with J0 being the zeroth order Bessel function. Dissipative effects of the
environment are captured by the terms

h+(t) = e−Q
′(t) cos[Q′′(t)] ,

h−(t) = e−Q
′(t) sin[Q′′(t)] . (6.38)

Here, Q′(t) and Q′′(t) are the real and imaginary parts of the bath corre-
lation function

Q(t) =
∫∞

0
dω

J(ω)
ω2

cosh(ωβ/2)− cosh[ω(β/2− it)]
sinh(ωβ/2)

.

For the peaked spectral density given in Eq. (6.4) one finds

Q′(t) = Q′1(t)− e−Γt[Y1 cos(Ω̄pt)+ Y2 sin(Ω̄pt)] ,

Q′′(t) = A1 − e−Γt[A1 cos(Ω̄pt)+A2 sin(Ω̄pt)] . (6.39)

Here, β = �/kBT , Γ = πκΩp , Ω̄2
p = Ω2

p − Γ2 and

Q′1(t) = Y1 +παΩ2
p

[
sinh(βΩ̄p)t

2CΩ̄p
+ sin(βΓ)t

2CΓ

−
4Ω2

p

β

∞∑
n=1

1
νn [e

−νnt − 1]+ t
(Ω2
p + ν2

n)2 − 4Γ2ν2
n

⎤
⎦ , (6.40)

where νn = 2πn/β. Moreover, C = cosh(βΩ̄p) − cos(βΓ), A2 = απ(Γ2 −
Ω̄2
p)/(2Γ Ω̄p), A1 = πα, CY1/2 = ∓A2/1 sinh (βΩ̄p) − A1/2 sin (βΓ) . As

follows from Eq. (6.39), Q′ and Q′′ display damped oscillations with fre-
quency Ω̄p (cf. Fig. 6.5b) which are not present for a pure Ohmic spectrum.
It is the interplay between these oscillations and the driving field which in-
duces the extra resonances in P∞.

To proceed, we rewrite the kernels k±0 (0) in a more convenient form.
In the integrand of Eq. (6.37) the functions cos[Q′′(t)], sin[Q′′(t)] and
e−Q′(t)+Q

′
1(t) oscillate with frequency Ω̄p and we can expand them as

cos[Q′′(t)] =
∞∑

m=−∞

[
Dm cos(mΩ̄pt)+ Em sin(mΩ̄pt)

]
,

sin[Q′′(t)] =
∞∑

m=−∞

[
Fm cos(mΩ̄pt)+Gm sin(mΩ̄pt)

]
,

e−Q
′(t)+Q′1(t) =

∞∑
m=−∞

[
Hm cos(mΩ̄pt)+ Km sin(mΩ̄pt)

]
.

(6.41)
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Figure 6.5: P∞ as a function of the dc-bias F0 (in units of W ). The solid
line is the NIBA prediction, while the circles are from a QUAPI simulation
with 6 HO levels (g = 3W , s = 4W , Ω = 10W , κ = 0.014, kBT = 0.5�W ,
Ωp = 4W ). Inset (a): NIBA result for kBT = 2�W . The arrow indicates
the first red sideband at ν = Ω + Ωp. Inset (b): Q′(t) shows damped
oscillations.

The coefficients Dm, Em, Fm, Gm, Hm and Km are time-dependent and
they are given in Appendix 6.B. Inserting these expansions into Eq. (6.37),
and also using the Fourier representation of J0

(
2s
Ω sin Ωt

2

)
, we find

k±0 (0) =
∞∑

m=−∞

∞∑
n=−∞

W 2
∫∞

0
dte−Q

′
1(t)f±mn(t) . (6.42)

Here, Fmn = F0 −mΩ̄p −nΩ, and

f±mn(t) =
Re
Im

[
c±mn(t) cos(Fmnt)± c∓mn(t) sin(Fmnt)

]
,

c+mn = J2
n

( s
Ω

)
Jm(e−Γtω1) cos(mφ)(−i)me−iA1 ,

c−mn = J2
n

( s
Ω

)
Jm(e−Γtω1) sin(mφ)(−i)me−iA1 , (6.43)

with Jn being a Bessel function of order n, and

ω1 =
√
(A1 − iY1)2 + (A2 − iY2)2 ,

tanφ = −A2 − iY2

A1 − iY1
. (6.44)
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Thus, from Eq. (6.43), we expect resonances when Fnm = 0.
In the limit Γ/Ωp � 1 and for not too large T (i.e., cos(βΓ)� cosh(βΩp)),

we find that

tan(mφ) ≈ i tanh

(
mβΩp

2

)
. (6.45)

Inserting this into Eq. (6.43), we obtain

i tanh

(
mβΩp

2

)
c+mn = c−mn . (6.46)

If the environmental mode is enough localized (i.e., the integrand of Eq.
(6.37) is only damped after several oscillations), we expect that the sum in
Eq. (6.42) is dominated by the coefficient of cos (Fnmt) if Fmn = 0. This
means that

f+mn(t) ≈ Re[c+mn(t)]

f−mn(t) ≈ tanh

(
mβΩp

2

)
Re[c+mn(t)] , (6.47)

which leads to

P∞ = tanh

(
mβΩp

2

)
. (6.48)

Without driving we only have terms with n = 0, and Fm0 = 0 implies
that F0 =mΩp. In that case Eq. (6.48) gives the NIBA thermal equilibrium
value. Hence, in order to find resonances we need to apply driving. For
“conventional” resonances at F0 = nΩ, we putm to zero and we find P∞ ≈
0, as predicted for unstructured environments [17, 26]. Finally, for F0 =
nΩ ±mΩp, we recover P∞ ≈ ± tanh(mβΩp/2), as was also found within
the Floquet-Born-Markov approach, cf. Eq. (6.32). Results of a numerical
evaluation of P∞ are shown in Fig. 6.5, using the NIBA result (6.43), as well
as the exact ab-initio real-time QUAPI method [23–25]. Resonance dips are
observed at F0 = Ω, F0 = Ω − Ωp and F0 = Ω − 2Ωp . For kBT ∼ �Ωp, we
also find the first red sideband at F0 = Ω +Ωp, see inset (a).

6.5 Limit Ωp � ν

In the limit when the frequency Ωp of the HO is much larger than the ef-
fective TSS level splitting ν, the peak in the spectral density at Ωp acts as
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a high-frequency cut-off for an effective Ohmic bath, see Eq. (6.4). In other
words, the oscillations in the correlation functions, see Sec. 6.4 which oc-
cur on a time-scale Ω−1

p are very fast and can be averaged out when only
the long-time dynamics is of interest and short-time effects are not con-
sidered. In this limit, the standard driven and Ohmically damped spin-
boson model [8, 9] is recovered. In the regime of weak damping α � 1,
the stationary population difference P∞ has been determined within the
assumption of large driving frequencies (Ω � W,ν and Ω much larger
than the decay rate) upon using analytic real-time path integral methods
in Ref. [26]. In this Section, we use this high-frequency approximation of
Ref. [26] as a starting point, and derive a closed simple analytic expres-
sion for the peak shape of the “common” multi-photon resonance. Most
importantly, we find the scaling of the width of the n-photon resonance as
the n-th Bessel function Jn(s/Ω). This scaling behavior has been observed
experimentally in superconducting flux qubit devices [16].

The central issue in finding a closed analytic expression for P∞ is to
find the roots ϑn of the pole equation [26]

+∞∏
n=−∞

(
F2
n − ϑ2

)
+
+∞∑
n=0

W 2
n

+∞∏
m=−∞,m �=n

(
F2
m − ϑ2

)
= 0 . (6.49)

Here, Fn = F0 − nΩ is the photon-induced bias and Wn = |Jn(s/Ω)|W is
the field-dressed tunneling splitting of the TSS, where Jn(x) is the n-th
ordinary Bessel function. Considering the n-photon resonance, we numer-
ically find that, up to extremely high numerical precision, the roots of Eq.
(6.49) are given by

ϑ0 =
√
F2

0 +W 2
0 ,

ϑn�=0 =
√
F2
n +W 2

n ,

ϑk�=n,0 = Fk . (6.50)

Plugging Eqs. (6.50) in the expressions for P∞ given in Ref. [26], see Eqs.
(6) and (7) therein, we find the closed expression for the lineshape of the
n-photon resonance to be
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P(n)∞ (F0) =
F0F2

nW
2
0 (F

2
0 +W 2

0 − F2
n)
JOhm(ϑ0)
ϑ0

+ F2
0 |Fn|W 2

n(F2
n +W 2

n − F2
0 )
JOhm(ϑn)
ϑn

Z0n + Zn0
(6.51)

Zij = W 2
i F

2
j (F

2
i +W 2

i − F2
j )JOhm(ϑi) coth

�ϑi
2kBT

. (6.52)

This result can be simplified upon observing that the second term in
the numerator is small if the driving is not too large, since then W 2

n � W 2
0 .

Moreover, we are interested in the regime F0 � W which is the saturation
regime implying that ν ≈ F0 and in low temperatures. Then, away from
the resonance point at nΩ ≈ F0, the second term in the denominator in Eq.
(6.52) can be neglected and one recovers the standard result, if one uses
that W0 ≈ W which is fulfilled for weak driving. It reads

P(n)∞ (F0) = F0√
F2

0 +W 2
tanh

√
F2

0 +W 2

2kBT
, (6.53)

which gives the correct result away from any n-photon resonance. For the
case at the n-photon resonance at nΩ ≈ F0, one finds a Lorentzian line
shape, i.e.,

P(n)∞ (F0) =
W 2

0 (F0 −nΩ)2
W 2

0 (F0 −nΩ)2 + 2F2
0W

2
nkBT/�

, (6.54)

where we have expanded the second coth term in the denominator (see Eq.
(6.52)) up to lowest order in the argument, which is appropriate since ϑn is
small at resonance. The linewidth of the Lorentzian peak can be calculated
as the full width at half maximum (FWHM)

∆F(n) = 2

√√√√2nΩ
(Wn
W0

)2 kBT
�

+
(Wn
W0

)4 (kBT
�

)2

. (6.55)

Note that this result obtained from the high-frequency approximation is
independent of the damping constant. Moreover, the leading term is the
first term under the square root in Eq. (6.55). Note furthermore that for
the case of infinitesimal driving, the FWHM is not correctly reproduced by
Eq. (6.55) since it would approach zero. However, as it is known from NMR
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within a treatment in terms of the Bloch equation, in this case, the FWHM
is dominated by the dephasing [17], i.e.,

∆F(1)Bloch = 2
√
Γ2
φ +Ω2

RΓφ/ΓR , (6.56)

where ΓR = πα coth(�ν/2kBT)W 2/ν is the relaxation rate and Γφ = ΓR/2+
2πα(F2

0 /ν2)kBT/� [8]. Both rates are of first order in the damping strength
α. Moreover, ΩR is the (single-photon) Rabi frequency. Hence, we have to
include the dephasing rate Γ2

φ in Eq. (6.54), since it cannot be reproduced
by our weak-coupling approach which is only of first order in α. This
finally yields in leading order in the driving strength

∆F(n) = 2

√√√
Γ2
φ +

(Wn
W0

)2

2nΩ
kBT
�
. (6.57)

As follows from Eq. (6.57), the FWHM of the n-photon resonance scales
with the n-th ordinary Bessel function, i.e., ∆F(n) ∼ Jn(s/Ω) as also con-
firmed by experiments [16].

6.6 Conclusions

In conclusion we have investigated the problem of a quantum mechanical
driven two-state system being coupled to a structured environment which
has a localized mode at a frequency Ωp but behaves Ohmically at low
frequencies. We have studied two complementary parameter regimes of
weak and strong coupling to the environment. The interplay of the driving
and the localized mode gives additional features like resonant peaks/dips
in the asymptotic averaged population difference P∞. We have calculated
analytically the lineshape of the resonances in various parameter regimes
and have obtained simple closed expressions for the particular example of
the first blue sideband. We also include the discussion of how the results
are generalized for any sideband. Moreover, we have elaborated the limit
when the localized mode acts as a high-frequency cut-off. Then, the full
width at half maximum of the n-photon resonance has been shown to
scale with the n-th ordinary Bessel function.

Our model finds as well applications in the field of cavity quantum elec-
trodynamics (CQED) with solid state structures [27]. Most interestingly,
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the strong coupling limit of CQED could be reached in superconducting
electrical circuits, with perspective applications ahead.

Finally, we note that a related experiment has been reported recently
by Wallraff et al. [28]. There, a qubit was realized in the form of a Cooper
pair box which couples to a single mode of a cavity which is damped. The
properties of the TSS-HO were probed spectroscopically by measuring the
transmission of the resonator. In other words, a driven HO was considered
while the TSS was kept static. In contrast to that system, here, the TSS was
time-dependent while the HO is treated as static.

6.A Symmetry properties for the dissipative rates for

the first blue sideband

In order to evaluate the stationary averaged population difference P∞, the
rate coefficients Lαβ,α′β′ have to be determined explicitly. For the example
of the resonance at ν ≈ Ω − Ωp (first blue sideband) considered in this
work, we find that the rate coefficients fulfill the symmetry relations

L11,22 = L22,11 = L33,44 = L44,33 = 0, L11,11 = −(L33,11 + L44,11),
L22,22 = −(L33,22 + L44,22), L33,33 = −(L11,33 + L44,33),
L44,44 = −(L11,44 + L22,44), L12,12 = (L22,22 + L11,11)/2,
L11,33 = L44,22, L22,33 = L44,11, L33,22 = L11,44,
L33,11 = L22,44, L22,21 = L21,11, L11,21 = L21,22,
L44,21 = −L21,33, L33,21 = −L21,44, L22,12 = L22,21,
L11,12 = L11,21, L44,12 = L44,21, L33,21 = L33,12,
L12,21 = 0.

(6.58)
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As a consequence, there are eight independent rates given by

L44,22 = 2Losc(ε4,2,−1) cos2
(
θ
2

)
+ 2Lq(ε4,2,0) sin2

(
θ
2

)
−Lq,osc(ε4,2,−1) sinθ ,

L22,44 = 2Losc(ε2,4,1) cos2
(
θ
2

)
+ 2Lq(ε2,4,0) sin2

(
θ
2

)
−Lq,osc(ε2,4,1) sinθ ,

L44,11 = 2Losc(ε4,1,−1) sin2
(
θ
2

)
+ 2Lq(ε4,1,0) cos2

(
θ
2

)
+Lq,osc(ε4,1,−1) sinθ ,

L11,44 = 2Losc(ε1,4,1) sin2
(
θ
2

)
+ 2Lq(ε1,4,0) cos2

(
θ
2

)
+Lq,osc(ε1,4,1) sinθ ,

L21,22 = 1
2

(
Losc(ε3,2,0)− Lq(ε3,2,−1)− Losc(ε4,2,−1)+ Lq(ε4,2,0)

)
sinθ

+1
2(Lq,osc(ε3,2,0)− Lq,osc(ε4,2,−1)) cosθ ,

L21,11 = 1
2

(
Losc(ε3,1,0)− Lq(ε3,1,−1)− Losc(ε4,1,−1)+ Lq(ε4,1,0)

)
sinθ

+1
2(Lq,osc(ε3,1,0)− Lq,osc(ε4,1,−1)) cosθ ,

L21,44 = 1
2

(
Losc(ε1,4,1)+ Losc(ε2,4,1)− Lq(ε1,4,0)− Lq(ε2,4,0)

)
sinθ

+1
2(Lq,osc(ε1,4,1)+ Lq,osc(ε2,4,1)) cosθ ,

L21,33 = 1
2

(
Lq(ε1,3,1)+ Lq(ε2,3,1)− Losc(ε1,3,0)− Losc(ε2,3,0)

)
sinθ

−1
2(Lq,osc(ε1,3,0)+ Lq,osc(ε2,3,0)) cosθ ,

with

Lq(εklm) = 〈e,1,0|eiSXe−iS |g,1,0〉2N(εklm)
= 〈e,0,0|eiSXe−iS |g,0,0〉2N(εklm)

=
4g2W 2Ω2

pN(εklm)

ν2(ν2 −Ω2
p)2

,

Losc(εklm) = 〈g,1,0|eiSXe−iS |g,0,0〉2N(εklm)
= 〈e,1,0|eiSXe−iS |e,0,0〉2N(εklm)

=
(

4g2(W 2(ν2 − 2Ω2
p)− (ν2 −Ω2

p)2)
Ω2
p(ν2 −Ω2

p)2
+ 1

)
N(εklm) ,

Lq,osc(εklm)
N(εklm)

= −2〈e,1,−1|eiSXe−iS|g,1,0〉〈g,1,0|eiSXe−iS |g,0,0〉

= 2〈g,0,1|eiSXe−iS|e,0,0〉〈e,0,0|eiSXe−iS |e,1,0〉

= WF0gs((Ω +Ωp)2 + 2Ω2
p + ν(−Ω +Ωp))

2ν(ν −Ω)Ω(ν −Ω−Ωp)Ωp(ν +Ωp)
,

N(εklm) = N(εk − εl +mΩ) . (6.59)

Note that Losc is the rate containing the zeroth order term in g and s. It
is related to the transition between two states differing by one oscillator
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quantum. This decay is of zeroth order (hence fast) because the oscillator
is coupled directly to the environment. Moreover, Lq gives the rate for
transitions between the excited and ground state of the TSS with the HO
remaining in the same state, and Lq,osc is related to the transition where
both the qubit and the oscillator exchange energy with the environment.
Note that this transition is induced by the driving and involves one photon.

6.B Coefficients for the kernels k±0 (0)

In Sec. 6.4, we have introduced an expansion of the oscillating functions
given in Eq. (6.41). In this appendix we summarize the corresponding
coefficients for completeness.

For the expansion of cos[Q′′(t)], we find

D2m+1 = (−1)m sin (A1)J2m+1(A) cos [(2m+ 1)X] ,

D2m = (−1)m cos (A1)J2m(A) cos (2mX) ,

E2m+1 = (−1)m sin (A1)J2m+1(A) sin [(2m+ 1)X] ,

E2m = (−1)m cos (A1)J2m(A) sin (2mX), (6.60)

where we have introduced

A = e−Γt
√
A2

1 +A2
2 ,

sinX = A2/
√
A2

1 +A2
2 . (6.61)

In the same way, the expansion of sin[Q′′(t)] gives

F2m+1 = (−1)m+1 cos (A1)J2m+1(A) cos [(2m+ 1)X] ,

F2m = (−1)m sin (A1)J2m(A) cos [2mX],

G2m+1 = (−1)m+1 cos (A1)J2m+1(A) sin ([2m+ 1)X] ,

G2m = (−1)m sin (A1)J2m(A) sin [2mX] . (6.62)

Finally, we find for the coefficients of exp[Q(t)−Q1(t)]

Hm = Im(Y) cos (mV) ,

Km = Im(Y) sin (mV) , (6.63)



124 Chapter 6. Spectroscopy of a driven solid-state . . .

where we have introduced

Y = e−Γt
√
Y 2

1 + Y 2
2 ,

tanV = Y2

Y1
. (6.64)

Here, Im is the modified Bessel function of the first kind of orderm.
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Samenvatting

Andreevreflectie vindt plaats aan het grensvlak tussen een normaal me-
taal en een supergeleider. Bij dit bijzondere reflectiemechanisme wordt
een elektron gereflecteerd als een gat. Wanneer het elektron op het Fer-
miniveau is, keert het gat precies terug langs het pad van het elektron.
Andreevreflectie speelt een belangrijke rol in een Andreevbiljart. Een An-
dreevbiljart bestaat uit een zogenaamde “quantum dot” die via een quan-
tumpuntcontact gekoppeld is aan een supergeleider. De quantum dot zelf
is te vergelijken met een biljart, gemaakt in een tweedimensionaal elek-
tronengas. Aangezien er in de quantum dot geen verontreinigingen zijn,
vindt alle reflectie plaats aan de wanden. Wij beschouwen quantum dots
met een zodanige vorm dat de klassieke beweging van een elektron (of gat)
in de dot chaotisch is.

De beweging van elektronen en gaten in een Andreevbiljart wordt be-
schreven door de quantummechanica. Volgens de stelling van Ehrenfest
is de beweging aanvankelijk langs een klassiek pad. Naarmate de tijd vor-
dert zijn de positie en de snelheid steeds minder goed gedefinieerd. Na
een bepaalde tijd is de onzekerheid in de positie van het elektron of gat
even groot als de afmeting van het Andreevbiljart. Dit is de Ehrenfesttijd
τE . De Ehrenfesttijd karakteriseert de overgang van klassieke mechanica
naar quantummechanica.

Als de Ehrenfesttijd veel langer is dan de gemiddelde tijd τD tussen
Andreevreflecties, is een beschrijving in termen van klassieke paden geoor-
loofd. Andreevreflectie maakt alle paden (bij benadering) periodiek, dus
quantisatie volgens de Bohr-Sommerfeld methode is mogelijk. In de te-
genovergestelde limiet τE � τD geeft toevalsmatrixtheorie een goede be-
schrijving. Terwijl toevalsmatrixtheorie voorspelt dat de toestandsdicht-
heid in een chaotisch Andreevbiljart identiek nul wordt voor lage ener-
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gieën (d.w.z. er ontstaat een “gat”), geeft quantisatie van periodieke paden
slechts een geleidelijke afname van de toestandsdichtheid zonder een echt
“gat”. In dit proefschrift wordt een nieuwe theorie gegeven die beide eer-
dere theorieën met elkaar verbindt.

Het idee achter onze theorie is eenvoudig. We quantiseren alle klassie-
ke paden met een verblijftijd T in de quantum dot, die korter is dan de
Ehrenfesttijd door middel van de Bohr-Sommerfeld methode. Het overige
gedeelte van de faseruimte wordt gequantiseerd via toevalsmatrixtheorie
met effectieve parameters. De theorie wordt uitgewerkt in het tweede tot
en met het vijfde hoofdstuk.

Hoofdstuk twee vormt de basis voor de rest van het proefschrift. Voor
een beschrijving van de paden met T < τE is een precieze kennis van de
klassieke beweging vereist. We beschouwen de beweging van een elektron
met een energie E boven het Ferminiveau. Het Andreev gereflecteerde gat
keert niet precies terug langs het pad van het elektron, daarom is het pad
niet precies gesloten maar drijft af in de faseruimte. We hebben gevon-
den dat de tijd T tussen opeenvolgende Andreevreflecties een adiabatisch
behouden grootheid is. Met deze kennis is het mogelijk een uitdrukking
te vinden voor de energieniveaus behorend bij de korte paden. Onze qua-
siklassieke theorie is niet toepasbaar voor lange paden met T > τE . We
nemen aan dat het gedeelte van de faseruimte met lange paden kan wor-
den beschreven door effectieve toevalsmatrixtheorie.

Een computersimulatie is een goede methode om onze theorie te tes-
ten. Een zeer effectief model is de “Andreev kicked rotator”, dat een
stroboscopische beschrijving geeft van een Andreevbiljart. In het derde
hoofdstuk gebruiken we dit stroboscopisch model om de fluctuaties van
het laagste energie niveau te bepalen. De fluctuaties ontstaan omdat we
de positie van de supergeleider veranderen. We vinden dat de amplitude
van de fluctuaties groeit met toenemende verhouding τE/τD . Effectieve
toevalsmatrixtheorie geeft een goede beschrijving van de fluctuaties.

In hoofdstuk vier breiden we onze quasiklassieke theorie uit door de
toevoeging van een zwak magneetveld, dat loodrecht op het Andreevbiljart
staat. De adiabatisch behouden grootheid van de klassieke beweging is nu
niet meer de tijd T maar heeft ook een elektromagnetische component. We
vinden dat een magneetveld het laagste adiabatische niveau verlaagt met
een hoeveelheid die onafhankelijk is van de Ehrenfesttijd. Het magneet-
veld veroorzaakt ook een afname van het laagste niveau van de effectieve
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toevalsmatrixtheorie. Het gat in de toestandsdichtheid verdwijnt bij een
kritisch magneetveld dat afneemt met toenemende Ehrenfesttijd. Onze
bevindingen komen goed overeen met computersimulaties.

In het vijfde hoofdstuk laten we zien dat onze theorie ook kan worden
toegepast op een quantum dot die niet gekoppeld is aan een supergeleider,
maar aan twee elektronenreservoirs. Door dit systeem kan een stroom lo-
pen. Omdat de stroom bestaat uit elektronen met een discrete lading, is er
zelfs bij zeer lage temperaturen ruis. Deze zogenaamde hagelruis neemt
af met toenemende Ehrenfesttijd. Onze theorie voorspelt deze afname en
is in staat deze te relateren aan de specifieke klassieke eigenschappen van
een bepaald systeem.

Het zesde hoofdstuk behandelt een geheel ander systeem, de Joseph-
son-junctie-qubit. De qubit bestaat uit een supergeleidende ring met drie
Josephsonjuncties en kan in een superpositie zijn van een rechtsomdraai-
ende en linksomdraaiende stroom. De qubit wordt gemeten door een
quantummechanisch meetinstrument, dat extra resonanties kan veroor-
zaken. Dit is onlangs gemeten en wij geven een kwantitatieve beschrijving
van het experiment.
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