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Chapter 1

Introduction

1.1 Preface

At the heart of this thesis is the Josephson effect – a condensed matter
physics phenomenon of both fundamental and practical importance, one
of the most exciting aspects of superconductivity. This effect occurs when
a nanostructure, a weak link or an insulating barrier is placed between
two superconductors. Such a device (Josephson junction) can sustain a
dissipationless supercurrent that can flow without voltage bias. The ef-
fect is named after Brian Josephson, who provided its first mathematical
description for the case of the tunneling barrier [1, 2]. The theoretical un-
derstanding and nanofabrication technique developments enabled numer-
ous applications of such tunneling Josephson junctions; among the most
famous ones are SQUID (superconducting quantum interference device)
magnetometers, NIST standard of volt and superconducting qubits [3, 4].
The thesis focuses on the latter application, where further understanding
of the Josephson effect in more complex devices may lead to improved
properties of the qubits.

From the microscopic point of view, the ground states of the super-
conducting leads are condensates of Cooper pairs in a collective symmetry
broken state, described by a complex order parameter. This complex or-
der parameter has a phase, and, in a tunneling Josephson junction, the
supercurrent will depend on the phase difference between the two super-
conductors φ in a non-linear way: I ∼ sinφ. Due to the second Josephson
relation φ̇ ∼ V , where V is the voltage drop across the junction, this
non-linearity makes the junction a non-dissipative non-linear inductor. In
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parallel with a capacitor and in the regime where φ is a quantum variable,
such a system becomes a non-linear quantum oscillator, which happens
to be one of the best pieces of hardware for a qubit. More sophisticated
Josephson junctions may have more internal degrees of freedom and dif-
ferent current-phase characteristics [5]. These can be employed to design
qubits even more robust to dephasing and decay.

The subject of Chapter 2 and Chapter 3 is a superconductor-quantum
dot- superconductor (S-R-S) junction embedded in two different quantum
circuits. In Chapter 2, we explore the circuit where the S-R-S junction is
shunted (connected in parallel) with a capacitance. An essential charac-
teristic of this system is the sensitivity of the spectrum to the fluctuations
of the gate voltage used for the control of the qubit. We make detailed
calculations of the dependence on the gate voltage while reproducing some
previous theoretical predictions that, in some fine-tuned regime, the sen-
sitivity should become extremely small.

In the second circuit, the capacitively shunted junction is addition-
ally shunted with a linear inductor. In Chapter 3, we calculate energy
splittings between states typically used for quantum computation. Such
a system is one of the realisations of the so-called bi-fluxon qubit, where
the coupling between |0〉 and |1〉 states is suppressed due to an additional
conservation law forbidding the transition [6, 7].

Finally, Chapter 4 explores how the Josephson effect is modified in
a junction containing a recently discovered class of magnetic materials:
altermagnet. A distinct feature of such Josephson junctions is that the
energy minimum may be achieved at the non-zero phase difference [8, 9],
unlike in the tunneling junctions.

1.2 Josephson effects
We will start with the simplest type of a Josephson junction: superconductor-
insulator-superconductor (S-I-S) junction. The second and third types are
S-N-S (superconductor-semiconductor-superconductor) and S-R-S (superconductor-
quantum dot-superconductor).

1.2.1 Tunneling Josephson junction

Tunneling (S-I-S) Josephson junction is the most widely used one for su-
perconducting qubits. Usually, it’s made of aluminium leads in the super-
conducting state with aluminium oxide in between; such a device can be
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fabricated with the shadow evaporation technique. Each piece of the su-
perconductors is described by a superconducting wave function ψ = |ψ|eiϕ:
its amplitude corresponds to the superfluid density, and the phase is re-
ferred to as the superconducting phase. Because there is a small but
non-zero overlap between the two wavefunctions, a Cooper pair can tun-
nel, and a non-zero supercurrent will flow. The low energy Hamiltonian
of such a junction is :

H(φ) = −EJ cosφ, (1.1)

EJ is the positive Josephson energy, and φ is the superconducting phase
difference between the two leads. Because the charge (in the units of
the Cooper pair charge) operator is canonically conjugated to phase, the
charge operator is:

n̂ = −i∂φ. (1.2)

Then, the current-phase relation is given by:

I(φ) = 2eEJ sinφ. (1.3)

This is the well-known first Josephson relation. A version of the cel-
ebrated Ambegaokar-Baratoff formula connects EJ to the normal state
conductance GN of the junction [10–12]:

EJ = GN
GQ

∆
8 , GQ = e2

h
, (1.4)

where ∆ is the superconducting gap. If there is a non-zero voltage drop
V across the junction, the Josephson relation says φ̇ = 2eV . This relation
can be derived from gauge invariance reasonings and relates the super-
conducting phase to the flux. It allows to compute the inductance of the
junction L−1

J = ∂2E(φ)
∂φ2 . The non-linear inductance is one of the properties

that make Josephson junctions an important element of superconducting
qubits, as will be discussed further.

1.2.2 Andreev reflection

In the tunneling junction, the Josephson energy and the supercurrent
can be derived using second-order perturbation theory [13]. In an S-N-S
junction, the coupling between the leads generally cannot be treated as
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a perturbation. Therefore, a more microscopic approach to the origin of
the supercurrent is needed. Let us consider a perfect NS (normal metal-
superconductor) interface first. Suppose, from the normal side, there is an
incident electron with energy E < ∆ (measured from the Fermi energy),
meaning it cannot enter the superconductor. Naively, no charge trans-
fer can happen in this situation. Nevertheless, superconductivity allows
charge transfer via Andreev reflection when the electron gets reflected as
a hole [14]. Because the total charge has to be conserved, an additional
Cooper pair was created in the superconductor, so the transferred charge
is 2e. Since the excitation energy inside the normal part has to stay the
same: E = vF (ke − kF ) = −vF (kh − kF ) and ke − kh = 2E/vF . Usu-
ally, the coherence length ξ ≡ vF /∆� 1/kF , so the momenta are almost
the same (Andreev approximation). However, the hole’s velocity will be
the opposite of the electron’s, hence the name reflection. A reverse pro-
cess, when a hole is reflected as an electron, can also happen. One can
match the electron/hole wavefunction to the solution of the Bogoliubov-de
Gennes equation in the superconducting part and obtain that the reflected
hole/electron also acquires a relative phase [13]:

χ = − arccos
(
E

∆

)
∓ ϕ, (1.5)

where −/+ is for the incident electron/hole case.

1.2.3 S-N-S junction

A closed trajectory becomes possible if one has an SNS junction instead
of one NS interface. First, an electron is Andreev reflected as a hole, and
then the hole propagates to the other SN interface and is reflected again
as an electron. Such a bound motion implies the possibility of a state
localized in the junction called the Andreev bound state. Note that a
Cooper pair is transferred between the leads after these two processes so
that such states may carry a supercurrent. Often, one assumes a short
junction limit L� ξ, in which the accumulation of phase due to ballistic
propagation of an electron/hole (ke− kh)L can be neglected. In this case,
the Andreev bound states’ energies obtained from the scattering formalism
are [15]:

EABS(φ) = ∆
√

1− T sin2(φ/2), (1.6)
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where T is the transmission eigenvalue of the junction. These states are
spin-degenerate and are the only ones that contribute to the supercur-
rent in the short-junction limit, as the continuum contribution is negligi-
ble. Usually, there are multiple Andreev bound states that originate from
multiple channels at the Fermi energy. The tunneling Josephson poten-
tial 1.1 can be obtained from 1.6 by the Tailor expansion around Tn = 0,
where n stands for each channel contributing to the in-gap spectrum. The
correspondence reads EJ = ∆∑

n Tn/4. Note that formally, because the
tunneling junctions are usually only 1 atom thick, the scattering matrix
approach for the Andreev bound states’ spectrum does not apply, as one
cannot insert leads inside the normal part of the junction. Nevertheless,
the formula works.

1.2.4 S-R-S junction

The previous model, however, doesn’t describe all the typical experimental
situations. Some of the InAs-Al-shell Josephson junctions rather look like
a small confined region (quantum dot) weakly coupled to the leads (with
the tunneling rates Γ1,Γ2) [16, 17]. We assume that this region hosts a
single spin-degenerate level. If the dwell time τdw = Γ−1 ≡ 1/(Γ1 + Γ2)�
∆−1, then this junction is in the opposite to the short junction τdw =
L/vF � 1/∆ limit, and it will have different properties. In what follows,
we will focus exactly on the tunneling τdw � ∆−1 limit. In a more general
case, the Andreev bound states’ energies cannot be written in a closed
form [5]. We will also assume that the total number of the electrons in
the leads and on the dot is even, such that at 0 temperature, it’s sufficient
to consider only two possible occupation numbers of the quantum dot (0
and 2). Given these assumptions, the low-energy Hamiltonian is [18–21]:

HQD = 4EC(−i∂φ − ng)2 + V (φ) (1.7)
V (φ) = −εrτz − Γ cos(φ/2)τx − δΓ sin(φ/2)τy, (1.8)

where the Pauli matrices act in the occupation number of the dot space,
δΓ = Γ1 − Γ2 and εr is the detuning of the resonant level from the Fermi
energy in the leads. There’s also a capacitive energy with EC = e2/2C
(where C is the capacitance of the junction) due to the dipole moment
generated by Cooper pair tunneling and equilibrium charge ng controlled
by a gate (in the Cooper pair charge units), shown on the circuit. Note
that the Hamiltonian is not 2π-periodic. This is because it is written in a
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2π-anti-periodic basis, with twisted boundary conditions [22]:

Ψ(φ+ 2π) = τzΨ(φ). (1.9)

The Fourier decomposition of these basis states in terms of the states with
well-defined charge is:

Ψ0(φ) =
∑
n∈Z

eiφnΨ0(n),

Ψ2(φ) =
∑

n∈Z+ 1
2

eiφnΨ2(n).
(1.10)

Here, n is the charge transferred across the junction, as this is the variable
related to the dipole moment. In the second sum, the summation goes over
half-integer n because when the quantum dot is occupied twice, it amounts
to 1/2 of the Cooper pair transfer. Hence, the Hamiltonian is 2π−periodic
if one accounts for the aperiodicity of the basis. The eigenvalues of V (φ)
are ±EA(φ), where EA happens to be the same as the Andreev bound
state’s energy (due to spin degeneracy):

EA = ΓA
√

1− T sin2 φ/2, ΓA =
√

Γ2 + ε2r . (1.11)

T = 1− |r|2 is the effective transparency of the junction with r = εr+iδΓ
ΓA .

The spectrum is similar to that of SNS, but the Andreev bound states
are detached from the continuum, and the wavefunctions are different.
The effects of this difference on the qubit are discussed in Chapters 3 and
2. Usually, a quantum dot has a non-negligible (Anderson U) Coulomb
energy. This can make an odd-occupied Andreev bound state the ground
state of the junction [23], especially if the transparency is almost perfect.
However, this energy can be neglected if Γ� U [18] and the quantum dot
cannot be occupied only once at zero temperature if the total number of
electrons in the circuit is even.

1.3 Superconducting qubits
Superconductors offer a promising platform for quantum computation be-
cause: a) A single piece of a superconductor has a non-degenerate ground
state and b) the excitations of this ground state are separated by a su-
perconducting gap. If the qubit’s energies are deep within the gap, the
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coupling to the continuum degrees of freedom is suppressed. Usually, the
superconducting gaps are of the order of ∼ 100 GHz, and the qubits are
operated at the 1− 10 GHz energies, so the system has to be cooled down
to ∼ 10 mK. The most naive qubit would be a quantum version of a
harmonic oscillator: an inductor in parallel with a capacitor. However,
this system has an obvious problem: one cannot address a specific tran-
sition because the levels are equidistant. In the previous section 1.2.1, we
learned that a Josephson junction is a non-linear inductor, which makes
it a useful part of a qubit. The following two subsections briefly discuss
two common types of qubits based on tunneling Josephson junctions.

1.3.1 Transmon qubit

Figure 1.1. Transmon circuit

If a Josephson junction is shunted by a capacitor, similarly as in 1.2.4,
the Hamiltonian of such a circuit is [24, 25]:

Ĥ = 4EC (n̂− ng)2 − EJ cos φ̂. (1.12)

The number of Cooper pairs on the island is an integer, so the boundary
conditions are periodic ψ(φ+2π) = ψ(φ) as ein(φ+2π) = einφ if n ∈ Z. The
eigenvalue problem is mathematically equivalent to that of an electron in
the periodic crystal. ψ satisfies the same differential equation as a Bloch
wave with quasi-momentum ng. One can always make a gauge transfor-
mation ψ → ψe−iφ, which preserves the periodic boundary conditions but
changes ng by 1. Hence, the spectrum will be periodic in ng. We consider
two illustrative limits.
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Figure 1.2. Eigenenergies of the transmon Hamiltonian 1.12 as a function of ng
for different ratios EJ/EC . Energies are given in units of the transition energy
E01 between the ground and first excited state, evaluated at ng = 1/2. Reprinted
figure with permission from J. Koch, Terri M. Yu, J. Gambetta, A. A. Houck,
D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Phys. Rev. A 76, 042319, 2007. Copyright (2007) by the American
Physical Society

Cooper pair box EC � EJ regime

One will typically end up in this situation if the junction is not shunted
by a big capacitor on purpose. The spectrum of the junction is then very
similar to that of a nearly free electron, where the Cooper pair tunneling
introduces the avoided crossings between the charge parabolas. Such a
qubit has a high degree of anharmonicity [26], but its energy depends
strongly on ng. A gate that controls this equilibrium charge typically
fluctuates, leading to the dephasing of the qubit. That is why this regime
is suboptimal, and the next regime we will consider is much better.

Transmon EC � EJ regime

A large capacitor ∼ 100 µm size allows to achieve it. Low-lying levels
are localized in the minima of the potential, and the tunneling between
these minima, also called phase slips, is exponentially suppressed. The

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.76.042319
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tight-binding spectrum for the m-th band is:

Em(ng) = ωp(m+ 1/2)− εm
2 cos(2πng). (1.13)

εm is given by a WKB formula, which is true also for the lowest levels,
where the usual WKB does not work [26]:

εm ' (−1)m 24m+5

m!

√
2
π

(
EJ

2EC

)m
2 + 3

4
e−
√

8EJ/EC . (1.14)

ωp =
√

8EJEC is called plasma frequency, which corresponds to the har-
monic oscillations in the quadratic part of the Josephson potential. The
sensitivity of the spectrum to ng (also called charge dispersion) is expo-
nentially small, but the energy levels are almost harmonic again. Never-
theless, an algebraically small anharmonicity ∼

√
EC/EJ that remains is

sufficient. To illustrate the limits mentioned above, the spectra at various
EJ/EC ratios are plotted in the Figure ??.

1.3.2 Fluxonium qubit

Figure 1.3. Fluxonium circuit

Another way to eliminate the charge dispersion while maintaining a
much larger level of anharmonicity is to implement it in another type of
superconducting qubit called fluxonium [27, 28]. The idea is to get rid of
the superconducting island by shunting it with an inductor:

Ĥ = 4EC(n̂− ng)2 + 1
2EL

(
φ̂+ φext

)2
− EJ cosφ. (1.15)

EL is related to the inductance as EL = (Φ0/2π)2 /L and φext is related
to the flux threaded through the loop φext = Φ/Φ0, where Φ0 = h/2e is
the flux quantum. The charge on the island is not quantized anymore,
so any induced charge ng in the kinetic term can be gauged away, and
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the spectrum is insensitive to it. Phase slips can also happen in the in-
ductor, introducing infinitely many copies of the inductive term shifted
by 2π. However, if the phase slips happen at time scales much larger
than the time scale of the experiment, it’s sufficient to keep only one.
Despite the simplicity of the Hamiltonian, its physics is very rich. We
focus on the regime where EL � ωp & EC � EJ . For the analysis, it
is convenient to write the Hamiltonian in the basis of the Bloch waves
Ψp,s(φ) ≡ 〈φ|s, p〉 = e−ipφup,s(φ). up,s(φ + 2π) = up,s(φ) is periodic and
diagonalizes the ’transmon’ part:(

4EC(n̂− p)2 − EJ cosφ
)
up,s = Es(p)up,s. (1.16)

p ∈ (0, 1] denotes the ’quasi-momentum’ and s denotes the band index.
Ψp,s(φ) are the functions of the non-compact phase and form a complete
orthonormal basis if up,s are normalized to 1 on the circle φ ∈ (0, 2π]. The
phase φ̂ in the basis is expressed as follows:

φ̂ = −i∂p + Ω̂. (1.17)

The matrix elements of this operator [27, 29]

〈p, s|Ω̂|p′, s′〉 = δ(p− p′)Ωs,s′(p) (1.18)

Ωs,s′(p) = −
(2EC
EJ

)1/4 (√
sδs+1,s′ +

√
s+ 1δs′,s−1

)
(1.19)

can be neglected in our limit, such that the Hamiltonian has a block-
diagonal structure:

Hs = EL
2 (−i∂p + φext)2 + Es(p). (1.20)

The wavefunctions in this basis are also periodic ψs(p + 1) = ψs(p). Be-
cause Es(p) = Es(1/4)− εs

2 cos 2πp (1.13), this Hamiltonian is dual (under
the exchange of the quasi-charge and the phase) to transmon. Hence, we
discuss the two regimes again.

Usual fluxonium EL � εs regime

The reason for the title is that it is the most common fluxonium regime,
which is the easiest to achieve experimentally. Like in the EC � EJ regime
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of transmon, Es is a perturbation on the top of the kinetic EL
2 (−i∂p+φext)2

term, whose eigenstates are fluxons:

|2πm, s〉 =
∫ 1

0
dpei2πmp|p, s〉, m ∈ Z. (1.21)

This is again a complete basis of states [27, 29]. In the phase representa-
tion, the fluxons 〈φ|2πm, s〉 are states localized around φ = 2πm minima
of the Josephson energy, originating from the s−th harmonic levels. Es(p)
acts like a weak scattering potential, coupling neighbouring fluxons and
introducing the avoided crossings. Similarly to the Cooper pair box, the
levels are highly anharmonic, but the spectrum depends strongly on the
flux bias φext. One can operate the qubit at φext = π, where one of
the avoided crossings for the lowest band happens, and the first deriva-
tive of the energy difference with flux vanishes. This is a so-called sweet
spot where most of the modern fluxoniums are operated. In the phase
φ space, the |0〉, |1〉 wavefunctions are the symmetric and antisymmetric
superpositions of fluxons localized at φ = −2π and φ = 0. Extremely
large coherence times were achieved with this type of qubit, of the order
of 1ms [30–33].

Blochnium EL � εs regime

This regime is tough to achieve, as it requires very small inductances due
to the exponential suppression of the phase slips. Thus, this regime has
been reached experimentally only marginally [34]. The lowest states are
localized in the quasi-charge minima of E0(p) and are dual to those in the
transmon EJ � EC regime. Hence, in this regime, the qubit’s energies
are insensitive to both ng and φext fluctuations, which is why achieving it
would be highly desirable.

1.4 Minimally twisted bilayer graphene

It was predicted more than 10 years ago that stacking two graphene layers
at the top of each other at a small angle (θ ∼ 1◦) leads to the appearance
of flat bands [35, 36]. Flat bands enable a variety of strongly correlated
phenomena and remarkable tunability of the material [37–39], the study of
which led to the emergence of a new field: twistronics [40]. However, also
at small angles∼ 0.1◦, where interactions can be neglected in certain cases,
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interesting physics can happen [41–43]. The magnetotransport properties
of such a material, called minimally twisted bilayer graphene, are discussed
in Chapter 5 and Chapter 6.
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Figure 1.4. Graphene honeycomb lattice and its Brillouin zone. Reprinted
figure with permission from A. H. Castro Neto, F. Guinea, N. M. R. Peres, K.
S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109, 2009. Copyright
(2009) by the American Physical Society.

Figure 1.5. Graphene band-structure. Reprinted figure with permission from A.
H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim,
Rev. Mod. Phys. 81, 109, 2009. Copyright (2009) by the American Physical
Society.

First, we recall the basic properties of single-layer graphene. The ma-
terial is made of carbon atoms arranged in a hexagonal 2D lattice (lattice
constant 2.46 Å) [44]. The unit cell has two atoms 1.4, which are usu-
ally named A and B. Figure 1.6 shows the band structure in the simplest
tight-binding model. There are two special points (K and K’) in the Bril-
louin zone where the two Dirac cones are (Fig. 1.5), with linear dispersion

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.81.109
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.81.109
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relations E = ±vF |k| in their neighbourhoods. The value of vF is of the
order of 106 m/s. The valley (K or K’) index becomes an almost good
quantum number at low enough energies and in the absence of short-scale
disorder.

Figure 1.6. Lattice structure of Bernal AB stacking configuration of bilayer
graphene and the corresponding Brillouin zone. Reprinted figure with permission
from A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A.
K. Geim, Rev. Mod. Phys. 81, 109, 2009. Copyright (2009) by the American
Physical Society.

Second, we introduce Bernal stacked bilayer graphene, which is the
lowest energy stacking configuration. In an AB (BA) configuration, the
B(A) atoms will be on the top of the centres of the hexagons in the bottom
layers (Fig. 1.6 ) . The effect on the band structure is that the Dirac
cones from the two layers hybridize and become parabolas, as shown in
the Figure 1.7. Two of these parabolas touch at each Dirac point. If
a perpendicular electric field is applied (by gating the material), a gap
proportional to the strength of the field opens. As a result, the material
becomes a semiconductor with a tunable gap. Another important feature
is that each valley has a non-trivial Chern number ±1, even though the
total Chern number is 0 [44].

Finally, when the two layers are stacked at a very small ∼ 0.1◦ angle,
a superlattice with a large ∼ 100 nm unit cell appears [45–47]. Such
twist angles can even happen in nature [48]. Because Bernal stacking
is the lowest energy configuration [44], the lattice will relax into sharply
defined triangular AB/BA domains, as shown in the Figure 1.8. As already
explained, the domains become gapped if a perpendicular electric field is
applied. Gapped AB and BA domains will have the opposite (±1) Chern
numbers for a fixed valley index. As a result, a topological phase transition
happens across each domain wall, and because the Chern number changes
by 2, there will be two chiral modes around each domain for one valley and

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.81.109
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Figure 1.7. Left panel: Band-structure of Bernal stacked bilayer graphene Right
panel: Band-structure of Bernal stacked graphene with perpendicular electric
field applied. Reprinted figure with permission from: A. H. Castro Neto, F.
Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys.
81, 109, 2009. Copyright (2009) by the American Physical Society.

Figure 1.8. Left panel: Moire pattern of minimally twisted bilayer graphene
Reprinted figure with permission from J. D. Verbakel, Q. Yao, K. Sotthewes,
and H. J. W. Zandvliet, Phys. Rev. B 103, 165134, 2021. Copyright (2021)
by the American Physical Society. Right panel: Network model for transport
in electrically gated minimally twisted bilayer graphene. Reprinted figure with
permission from C. De Beule, F. Dominguez, and P. Recher Phys. Rev. Lett.
125, 096402, 2020. Copyright (2020) by the American Physical Society.

spin. The network of these states was experimentally observed with STM
[48, 49], and the absence of inter-valley scattering due to disorder, which
is crucial for the arguments, was confirmed as well [48]. The direction
of propagation of the modes is reversed for the opposite valley, which
ensures the T -reversal symmetry. Typically, it’s assumed that the modes
propagate ballistically along the boundaries of the domains and scatter
according to some scattering matrix in the nodes with AA alignment of the
atoms [41, 43]. This model was successful in describing magnetotransport
experiments [50, 51].

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.81.109
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.81.109
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.165134
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.096402
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.096402
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1.5 Bloch oscillations

An important concept that will be encountered in Chapter 5 and Chapter
6 is Bloch oscillations. This is one of the counterintuitive phenomena in
crystals: if a weak electric field is applied, the velocity of the electrons
will oscillate with frequency eEa (where E is the strength of the electric
field and e is the charge of the electron) due to the Bragg reflection [52,
53]. Despite early predictions, it has not been measured in a crystal, as
for the typical electric fields and lattice constants, the mean free times
of the electrons are typically too low. However, it’s been observed in
superlattices [54–58] and a mathematical analogue of Bloch oscillations in
minimally twisted bilayer graphene, which should be possible to observe,
will be discussed in the Chapter 5.

The simplest model where Bloch oscillations can be explained is a 1D
tight-binding model of non-interacting electrons in a lattice. The disper-
sion relation will be E = h cos ka, where a is the lattice constant, k is the
quasi-momentum and h is the hopping strength. If a sufficiently weak elec-
tric field is applied to the crystal, such that the single-band model stays
intact, this will generate a force on the electrons k̇ = −eE. The equation
is trivial to integrate: k(t) = k0 − eEt. This means that the velocity
v(k) = ∂kE of each electron will oscillate in time due to the periodicity in
k dispersion relation, and an AC current will be generated.

If we imagine a semi-classical wave-packet, localized around z(0) at
the lengthscale � a with some quasi-momentum = q, its position will
oscillate in time too:

z(t)− z(0) =
∫ t

0
∂kε(k)dt′ = h

eE
(cos(k0a− eEta)− cos(k0a)). (1.22)

However, if the wave packet is localized only at the scale of one lattice
constant, and the quasimomentum is not well-defined, the probability den-
sity will have the oscillation pattern of the so-called breathing mode [59],
shown in the Figure 1.9. The horizontal axis corresponds to time and the
vertical axis corresponds to the position (z). The wave packet returns to
the initial lattice site exactly after one period of oscillations: T = 2π

eEa ,
unlike in the semi-classical case, where such return happens twice during
the period.
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Figure 1.9. Breathing mode for a state initially localized at the origin. The
colour scale stands for the probability density of the wave packet. The image
below illustrates that the semi-classical wavepacket returns to the origin twice
during one Bloch period of oscillation, while the breathing mode does so only
once

1.6 Altermagnets

There are two well-known magnetic phases that have collinear spins and
are enabled by exchange interactions: ferromagnetism and antiferromag-
netism. However, in the recent 5 years, a new, third phase was theoreti-
cally predicted: altermagnetism [60–63]. It shares some similarities with
both phases. Like in ferromagnets, the time-reversal symmetry is broken,
which leads to the anomalous Hall effect [63–66], confirmed experimentally
in semiconducting MnTe [67] and metallic RuO2 [68]. Like antiferromag-
nets, altermagnets have no net magnetization [64, 65, 69, 70]. However,
there are also cases where altermagnets behave like neither of the two, one
of them will be considered in this thesis.

The simplest Neel antiferromagnet can be seen as follows. Let’s imag-
ine a 1D crystal lattice of magnetic ions having collinear spins. Every
second spin is flipped with respect to the neighbouring spin, and one can
divide the chain into two opposite spin sub-lattices, which are related by
a translation by one unit cell. Since the Hamiltonian should be sym-
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metric under such a translation, for both spins the electronic dispersion
relation will be the same and the Hamiltonian will be time-reversal sym-
metric, hence the 0 net polarization. Also more sophisticated versions
of antiferromagnets exist, where two spin sub-lattices can be connected
by inversion. However, the magnetic properties of such materials are the
same as those of the Neel antiferromagnets at the qualitative level [69].

Another possibility can theoretically happen; when two sub-lattices
are related by neither inversion nor translation. For example, it can be
a rotation, like in RuO2 [64, 71]. Because the atoms with opposite spins
are rotated by π/2 relative to each other, the dispersion relations for the
two spins are no longer the same, but related by the same rotation. A

Figure 1.10. Example configurations of spins and atoms for three magnetic
phases: ferromagnetism, antiferromagnetism and altermagnetism. In altermag-
netic RuO2, atoms with opposite spins are rotated by π/2. From Savitsky, Zack.
"Researchers discover new kind of magnetism." Science (New York, NY) 383.6683
(2024): 574-575. Reprinted with permission from AAAS.

minimal model for such a material is the following [72] (Fig. 1.11):

H = 1
2m

(
k2
x + k2

y

)
σ0 − t(k2

x − k2
y)σz, (1.23)

where kx, ky are the momenta and σz is the Pauli matrix acting in the spin
space. The first term corresponds to the usual isotropic contribution and
the second term is the altermagnetic one. This term is also referred to as
d-wave magnetism – a magnetic counterpart to the d-wave superconduct-
ing order parameter (in that sense, s-wave magnetism is a ferromagnet)
[65]. It’s immediately obvious that the time-reversal symmetry is bro-
ken, and the Fermi-surface is spin-split. These two important signatures
have been recently verified experimentally [71, 73]. Nevertheless, the net

https://www.science.org/content/article/researchers-discover-new-kind-magnetism
https://www.science.org/content/article/researchers-discover-new-kind-magnetism
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Figure 1.11. Fermi surface of an altermagnetic material. Blue colour stands for
the spin up and red colour stands for the spin down. By Libor Šmejkal - Provided
by the author, CC BY-SA 4.0.

magnetization is 0, since the two Fermi-surfaces are the same up to the
rotation. Note, that unlike spin-orbit coupling, which doesn’t break time-
reversal symmetry, this interaction is quadratic in momentum and is of
non-relativistic origin (it can be caused by exchange interactions, as men-
tioned in the beginning). Due to the latter fact, t is predicted to be quite
large in some materials, up to ∼ 1 eV [65, 72, 74].

Despite the recent discovery, this phenomenon is believed to be quite
common; there are dozens of such materials already [65], some of them
(such as MnTe) were initially believed to be antiferromagnets [75]. One
of the experimental obstacles is the existence of domains, which makes
many of the predicted effects cancel [76]. Despite the difficulty, this novel
magnetic phase is worth studying from both fundamental and practical
points of view, as the unique combination of spin-polarized Fermi surface
and the absence of net magnetization makes it a promising material for
spintronics [65].

A relatively recent direction of research is the study of the interplay
between superconductivity and altermagnetism. A number of interesting
phenomena have been already discovered: orientation-dependent Andreev
reflection [77, 78], π Josephson junction [8, 9] and topological Majorana
modes [79, 80]. In Chapter 4 we study the second effect in a more micro-
scopic and non-perturbative way by calculating the Andreev Bound states’

https://commons.wikimedia.org/w/index.php?curid=145420925
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spectrum for arbitrary transparency. We recover the π junction behaviour
and observe a large anisotropy with respect to the orientation of the al-
termagnet in the normal part. This provides us with an example when
altermagnet behaves neither as a ferromagnet, nor an antiferromagnet: an
antiferromagnetic junction wouldn’t show the π junction behaviour, but
a ferromagnetic junction doesn’t have such large anisotropy.

1.7 This thesis

Bellow I briefly highlight the main results presented in the thesis.

1.7.1 Chapter 2

In the second chapter, we compute analytically the amplitudes of 2π and
4π phase slips occurring in a resonant level capacitively shunted Joseph-
son junction, which determines the charge dispersion of the transmon
qubit. The amplitude for quantum tunneling under the Josephson po-
tential barrier is modified by the Landau-Zener amplitude of adiabatic
passage through an Andreev level crossing, resulting in the suppression
of 2π phase slips. The Landau-Zener amplitude vanishes when the level
is on resonance with the Fermi energy in the leads and the couplings are
symmetric (which corresponds to high effective transparency of the junc-
tion). As a consequence, 4π phase slips become the dominant tunneling
process. The analytical expressions demonstrate this crossover, showing
that a very small residual charge dispersion persists even at perfect trans-
parency. These results are of relevance to the experimental observation of
the vanishing charge dispersion in the InAs-Al shell nanowire transmons
[16, 17].

1.7.2 Chapter 3

The next chapter considers a fluxonium circuit consisting of a capacitively
shunted resonant level junction in parallel with an inductor. In the high-
transparency regime discussed in 1.7.1, fluxons are predominantly coupled
by 4π quantum phase slips. This regime implies that, at the sweet-spot
φext = π, the avoided crossings between (anti-)symmetric superpositions
of degenerate fluxons separated by phase 2π should disappear. We calcu-
late how the fluxonium spectrum is affected by the presence of the resonant
level using low-energy WKB for arbitrary effective transparency. We also
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Figure 1.12. A nanowire transmon device where the vanishing charge disper-
sion was observed [16]. Reprinted figure with permission from Arno Bargerbos,
Willemijn Uilhoorn, Chung-Kai Yang, Peter Krogstrup, Leo P. Kouwenhoven,
Gijs de Lange, Bernard van Heck, and Angela Kou Phys. Rev. Lett. 124,
246802 (2020). Copyright 2020 by the American Physical Society.

show that if the inductive energy of the loop is much smaller than the
plasma frequency of the junction, the low-energy Hamiltonian of the cir-
cuit is dual to that of a topological superconducting island. These findings
can inform experiments on bifluxon qubits as well as the design of novel
types of protected qubits.

1.7.3 Chapter 4

In the fourth chapter, we move away from the qubit applications and
consider a hybrid planar Josephson junction with an altermagnet (d-wave
magnet) inside the normal part. We compute the effect of the altermagnet
on the Andreev bound state spectrum in a non-perturbative way, assuming
the short junction limit. Unlike in a non-magnetic Josephson junction, the
Andreev bound states with opposite spins acquire opposite phase shifts
E(φ ± δφ), such that the spectrum becomes spin-polarized. When the
magnetic order has pure dx−y symmetry with respect to the y direction
perpendicular to the junction, the Andreev bound state spectrum acquires
a simple form:

E = ∆0

√
1− T (ky) sin2 1

2(φ± δφ(ky)), (1.24)

where ky is the transversal momentum (which is a good quantum num-
ber here), T is the transparency of the mode with such a transversal
momentum and δφ is a phase shift that depends on the length of the junc-
tion, altermagnetic coupling, ky and is opposite for opposite spins. We

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.246802
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.246802
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also calculate the corresponding total Josephson energy and supercurrent,
recovering the possibility of π-junction behaviour, which was predicted
earlier [8, 9].

1.7.4 Chapter 5

In this chapter, we investigate the magnetotransport in minimally twisted
bilayer graphene. We use a well-established network model [41–43, 48, 49,
81, 82] of chiral ballistic modes (arranged in a triangular network), which
applies to samples where the inter-valley scattering can be neglected and
an additional perpendicular field is applied. In a certain parametric regime
of the phenomenological model (which is expected to hold in the real sam-
ples), the 2D transport can be mapped to a 1D random walk. One of the
spatial dimensions (along which backscattering of the ballistic modes is
not possible) maps to time in the random walk, and the perpedicular mag-
netic field is mapped onto the electric field. In this way, a mathematical
analogue of 1D Bloch oscillations can be observed in the 2D magneto-
transport of minimally twisted bilayer graphene, as the oscillations in the
magnetoconductace with the magnetic field will have periodicity set by
the Bloch frequency.

1.7.5 Chapter 6

The last chapter concerns magnetotransport in 2D materials with open
Fermi surfaces, which is a generalization of the model considered in the
previous chapter. The stationary Schroedinger equation in the presence of
the magnetic field can be mapped to the evolution equation of a particle
in a 1D crystal in the presence of an electric field (where time maps to the
spatial direction x in which the orbit is open). Due to the Bragg reflection
in the 1D crystal as the particle reaches the Brillouin zone boundary, the
spatial profile of the corresponding 2D density profile will show periodicity
with x. If the wave-function is localized at the lengthscale of the unit cell
for a certain x0, it will be refocused after ∆x = (eaB/h)−1 (a is the
lattice constant and B is the magnetic field). Unlike the usual magnetic
focusing effect due to the Lorentz force with the focal length kF

eB (kF
– Fermi momentum), the focusing effect in this chapter is intrinsically
quantum.
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Chapter 2

Quantum phase slips in a
resonant Josephson junction

2.1 Introduction

The phase difference across a Josephson junction can be driven by quan-
tum fluctuations to change, or "slip", by integer multiples of 2π [83].
Such quantum phase slips often determine the low-frequency behavior
of microwave superconducting circuits [84–89]. In a long chain or loop of
Josephson junctions, or in thin superconducting wires or rings, quantum
phase slips compromise the spatial stiffness of the phase and can suppress
superconductivity [90–97]. In general, quantum phase slips affect the en-
ergy levels of a coherent superconducting circuit [98] and can therefore be
measured with spectroscopic methods.

For instance, in a Cooper-pair-box circuit [24, 99, 100] in the transmon
limit [26], quantum phase slips determine the charge dispersion of the en-
ergy levels [26], i.e. the magnitude of their oscillation as a function of the
charge induced on the superconducting island [see figure 2.1(a-b)]. The
charge dispersion of the fundamental frequency of the circuit is particu-
larly important since it controls the dephasing time of superconducting
qubits [26]. This fact motivated the development of the transmon [26],
where the quantum phase slip amplitude is suppressed by a large ratio
of the Josephson energy EJ and the charging energy EC , resulting in an
exponential suppression of the charge dispersion [101].

Setting aside qubit applications, devices with an appreciable charge
dispersion remain of fundamental interest: thanks to their sensitivity
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to charge parity, they can be used to study quasiparticle poisoning and
dynamics [102–107], and, in a possible future, to measure fermion par-
ity in topological Majorana qubits [108, 109]. These ongoing develop-
ments welcome further theoretical study of quantum phase slips, par-
ticularly given the emergence of hybrid semiconducting-superconducting
qubit devices [110] and novel designs of noise-protected superconducting
qubits [111].

In this chapter, we compute in detail the amplitude of quantum phase
slips in a Josephson junction with a resonant energy level. We describe
and pay particular attention to the competition between coherent 2π and
4π quantum phase slips that occurs in such a junction. The competition
is controlled by two independent parameters: the energy of the resonant
level and the asymmetry between the tunneling rates to the superconduct-
ing leads. The 4π phase slips become dominant close to resonance, and
we argue that even though they were too small to be detected in recent
experiments [16, 17], they can be observed in devices with a larger charg-
ing energy. Towards the end, possible implications for qubit designs are
also discussed. The next section motivates our calculations, placing them
in the context of previous theoretical and experimental research.

2.2 2π and 4π quantum phase slips

The amplitude of coherent quantum phase slips in a weak link is given by
the tunneling amplitude between neighboring minima of the Josephson
potential energy. This amplitude can be qualitatively affected by the type
of weak link where the phase slip occurs. Figure 2.1(c-e) compares three
simple but paradigmatic scenarios: a low-transparency tunnel junction (S-
I-S); a highly transparent single-channel quantum point contact (S-QPC-
S); and finally a junction with a resonant level (S-R-S). As we argue below,
so far the S-R-S scenario has not been fully understood and described,
despite its experimental relevance.

Figure 2.1(c) illustrates the familiar setting of a tunnel junction, such
as a quantum point contact close to pinch-off or an Al oxide junction,
for which the potential energy is ≈ EJ(1− cosφ)1. Quantum phase slips

1A low-transparency QPC differs from an oxide junction because in the former the
entire phase dispersion of the ground state originates from a single transport chan-
nel, and thus a single Andreev bound state, while in the latter from hundreds or even
thousands of transport channels. The two junctions have equivalent ground state prop-
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connect the neighboring minima of the cosine potential, distant by 2π and,
when EJ � EC , they are suppressed exponentially with

√
EJ/EC [26].

This classic result can be obtained using the WKB method or an instanton
approach to the cosine potential [112, 113]. The charge dispersion of the
energy levels is 2e-periodic and, while exponentially small, remains finite
at any value of EJ due to the presence of back-scattering at the tunnel
junction.

Figure 2.1. (a): A Cooper pair box consists of a superconducting island con-
nected to ground by a capacitor and a Josephson junction. A gate voltage Vg
controls the charge induced on the island, qg = CgVg. In the transmon limit of
the Cooper pair box, the charging energy EC is much smaller than the Joseph-
son tunneling strength. (b) The energy levels En of the Cooper pair box oscillate
with ng. The resulting charge dispersion can be determined by measuring the
fundamental frequency ω01 = E1 − E0 as a function of ng, for instance via mi-
crowave spectroscopy. (c-e) Schematic energy spectrum of three different types
of Josephson weak links (top row) and corresponding charge dispersion oscilla-
tions in the Cooper-pair box (bottom row). (c): 2e-periodic dispersion due to 2π
quantum phase slips in a tunnel junction. (d): Absence of charge dispersion in a
quantum point contact at perfect transparency. (e): 1e-periodic dispersion due
to 4π quantum phase slips in a junction with a resonant energy level (e). Dashed
lines in (d) and (e) show the Josephson potential away from perfect transparency,
in which case 2π phase slips are weakly restored.

By contrast, figure 2.1(d) shows the case of a quantum point contact
at perfect transparency. Its distinctive feature is the presence of a level
crossing that disconnects the neighboring minima of the Josephson poten-
tial. In fact, since each potential branch touches the continuum states at
E = 2∆, the Josephson potential is a-periodic [114]. As a consequence,
quantum phase slips are forbidden altogether and the charge dispersion

erties, but different densities of states close to the gap edge; the sketch in figure 2.1c
schematically depicts the first case.
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vanishes [114–116]. Away from perfect transparency, the level crossing be-
comes a narrowly avoided crossing. Quantum phase slips may then occur
again, but only if the phase slips adiabatically though the crossing. Hence,
they are suppressed by the associated Landau-Zener transition amplitude
and, near perfect transparency, it remains much smaller than in a S-I-S
junction with comparable Josephson energy.

This enhanced suppression of the charge dispersion has been recently
observed in spectroscopic measurements of transmon qubits realized with
hybrid InAs/Al nanowire Josephson junctions [16, 17]. However, in these
experiments the condition of almost perfect transparency was achieved
by fine-tuning the nanowire junction to a resonance. As shown in fig-
ure 2.1(e), this scenario differs qualitatively from that of a quantum point
contact.

The normal-state transmission probability of a quantum point contact
does not depend on energy on scales compared to the gap ∆, while in the
presence of a resonance it is a peaked function of energy, with a charac-
teristic width Γ that can be much smaller than ∆. As a consequence, the
Andreev levels in the resonant case are detached from the continuum of
energy levels even at zero phase difference [117, 118], while they always
touch the gap edge for a quantum point contact [15].

This difference has important consequences for quantum phase slips: if
perfect transmission is achieved resonantly, the Josephson potential con-
sists of two 4π-periodic branches [18]. Thus, one expects 4π phase slips to
occur even when 2π phase slips are forbidden. As a result, one predicts a
finite charge dispersion at resonance, but with a modified periodicity of 1e
rather than 2e. In this respect, the situation is similar to that of a topo-
logical Josephson junction with coupled Majorana zero modes [119, 120],
with the crucial difference that in the resonant junction the two branches
of the potential have the same fermion parity.

Given this scenario, it is appropriate to revisit quantum phase slips in
the presence of a resonance, using as a starting point the existing knowl-
edge on resonant Josephson tunneling [117, 118, 121, 122], which has seen
a revival [18] in view of experimental progress on microwave measurements
of Andreev bound states [123–126].
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2.3 Model
We consider a minimal model for a resonant Josephson junction in which
the current between two superconducting electrodes is mediated via a
single spin-degenerate energy level (see figure 2.2). The parameters of
the model are the two tunneling rates Γ1 and Γ2 between the leads and
the resonant level, and the energy εr of the resonant level, measured with
respect to the Fermi level in the leads. In what follows, we will refer to εr
as the detuning.

We consider the case in which Γ1,2 � ∆, the superconducting gap in
the leads. In this limit, it is possible to integrate out the fermionic degrees
of freedom of the superconductors and obtain a simple effective Hamilto-
nian for the coupled dynamics of the superconducting phase difference φ
and of the resonant level. The effective Hamiltonian is

H = 4EC(i∂φ + ng)2 + V (φ) (2.1)

Here, EC is the charging energy between the two electrodes, and ng =
qg/(2e) the charge induced by the electrostatic gates coupled to them,
measured in units of 2e. The operator −i∂φ counts the number of Cooper
pairs transferred between the two superconductors. The matrix-valued
potential energy V (φ) is [18–21]

V = −εr τz − Γ cos(φ/2) τx − δΓ sin(φ/2) τy , (2.2)

where we have introduced the total tunneling rate

Γ = Γ1 + Γ2 , (2.3)

and the asymmetry parameter

δΓ = Γ1 − Γ2 . (2.4)

The Pauli matrices τx,y,z encode the dynamics of the two-level system
in which the resonant level is either empty (τz = +1) or occupied by a
Cooper pair (τz = −1).

The adiabatic eigenvalues ±EA of the potential in Eq. (2.2) reproduce
the well-known formula for the Andreev levels in a single-channel junction:

EA(φ) =
√
ε2r + Γ2 cos2(φ/2) + δΓ2 sin2(φ/2) (2.5)

≡ ΓA
√

1− T sin2 φ/2 , (2.6)
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with Γ2
A = Γ2 + ε2r and T = 1 − |r|2 the transparency of the junction,

controlled by the reflection coefficient

r = εr + iδΓ
ΓA

. (2.7)

Figure 2.2. Illustration of the model of Eqs. (2.1) and (2.2). (a): A Josephson
junction consisting of quantum dot (orange) with a single energy level. The
detuning εr of the energy level from the Fermi level of the leads and the tunneling
rates Γ1, Γ2 can be controlled via gate electrodes. (b): Transport of Cooper pairs
across the two insulating barriers is mediated by the spin-degenerate resonant
level.

The salient features of the Andreev spectrum are the following. First,
at perfect transparency, which is achieved when εr = δΓ = 0 so that r = 0,
the spectrum evolves into two decoupled, 4π-periodic branches with energy
±Γ cos(φ/2), with a zero-energy level crossing at φ = π. Second, , as long
as ΓA � ∆, the Andreev bound state energy is well detached from the
continuum spectrum for all values of φ, including φ = 0 [see figure 2.1(e)].
This fact, in particular, justifies neglecting excited states in the continuum
when considering the adiabatic dynamics of the phase difference.

The derivation of the effective Hamiltonian of Eq. (2.1), which is car-
ried out in appendix ??, also yields the appropriate boundary condition
for the spinor wave functions

Ψ(φ+ 2π) = τzΨ(φ). (2.8)

This twisted boundary condition incorporates a constraint on the dynam-
ics that comes from charge conservation: if a Cooper pair occupies the
resonant level, it must be subtracted from one of the two superconduc-
tors. In other words, the tunneling of a Cooper pair between one of the
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two superconductors and the dot counts as half of a Cooper pair trans-
fer between the two superconductors. This is the humble origin of the
4π-periodicity of the tunneling terms in the effective Hamiltonian.

We also point out that, despite the complete similarity at the level
of the Andreev spectrum, Eq. (2.5), the effective two-level Hamiltonian
of Eq. (2.1) is not the same as the corresponding two-level Hamiltonian
for a quantum point contact [127, 128]. Besides the aforementioned fact
that the Andreev levels are fully detached from the continuum, the main
physical difference is that in the limit T → 0 a sub-gap state is present
in the resonant level model (provided that εr is small enough), while no
sub-gap state remains for the quantum point contact.

These circumstances can be elucidated by inspecting the energy spec-
trum in the absence of tunneling, at Γ1 = Γ2 = 0, see figure 2.3(a). It
consists of familiar parabolas with energy E = 4Ec (n− ng)2, each corre-
sponding to a charge q = 2en transferred between the superconductors.
If the resonant level is empty, n is integer, leading to a set of parabolas
centered around integer values of ng. On the other hand, if the resonant
level is occupied, n is half-integer, leading to a second set of parabolas cen-
tered around half-integer values of ng. The resulting energy spectrum is
always at least 2e-periodic as a function of ng, and it becomes 1e-periodic
if εr = 0. If |εr| < EC , as in figure 2.3(a), there are two degeneracy points
per period at which parabolas cross, otherwise only a single degeneracy
point per period remains.

The effect of small but finite tunneling rates on the energy spectrum
is shown in figure 2.3(b). A small Γ1 hybridizes the resonant level with
the left superconductor, and thus opens avoided crossings at the degen-
eracy points between energy levels corresponding to n and n + 1

2 (with
n integer). Conversely, a small Γ2 hybridizes the resonant level with the
right superconductor, and thus opens avoided crossings at the degeneracy
points between energy levels corresponding to n and n− 1

2 (again, with n
integer). If the tunneling rates are different, namely if δΓ 6= 0, the avoided
crossing have different magnitudes.

These simple arguments indicate that the energy spectrum will be
2e-periodic away from the resonant condition in which both εr = 0 and
δΓ = 0. At resonance, the energy spectrum is 1e-periodic in ng, as illus-
trated in figure 2.3(c), since all the charge parabolas are aligned and the
hybridization of the resonant level is balanced across the two leads.

Our discussion so far has been perturbative in nature, and it applies
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directly to the weak tunneling regime TΓA . EC of figure 2.3. However,
the conclusions regarding the periodicity of the energy spectrum remain
valid in the strong tunneling regime, where they can be understood in
terms of the relative strength of 2π and 4π phase slip amplitudes. This
will be the focus of the next section.

2.4 WKB analysis
In this section we are going to derive approximate solutions for the energy
levels of the Hamiltonian of Eq. (2.1) under the boundary condition (2.8)
using the WKB approximation. The latter applies to the strong tunnel-
ing regime, defined as the parameter regime where the bandwidth of the
Josephson potential is much larger than the charging energy: T ΓA � EC .
In this limit, the low-lying energy levels near the bottom of the potential
are almost harmonic, with exponentially small corrections dictated by the
tunneling under the potential barrier. The calculation of the latter re-
quires particular care near perfect transparency, |r| � 1.

After moving the induced charge ng from the Hamiltonian to the
boundary condition via a gauge transformation Ψ → eiφngΨ, the prob-
lem to be solved is the stationary Schrödinger equation

− 4ECΨ′′ + VΨ = (−ΓA + E) Ψ . (2.9)

We have shifted the zero of the energy E to the bottom of the Josephson
potential, which is at energy −ΓA, so that the eigenvalues are all positive.
We are interested in solutions near the bottom of the potential, E � TΓA.
In the WKB approximation, the solution Ψ is taken to be a wave with a
locally-varying wave vector

k±(φ) =
√
E − ΓA ∓ EA(φ)

4EC
. (2.10)

where the ± index labels the two branches of the potential with energy
±EA. The wave vector is real (imaginary) when E is above (below) the
potential energy.

The periodic boundary conditions (2.8) ensure that we need to solve
Eq. (2.9) in a 2π interval, say [−π, π]. In this interval, the − branch has a
classically available region between the two turning points at ±φc, which
are defined by the condition

E − ΓA + EA(φc) = 0. (2.11)
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On the other hand, the + branch is classically forbidden in the entire
interval, and thus for this branch the WKB ansatz consists of evanescent
waves everywhere.

The WKB ansatz fails at the classical turning points, where the WKB
momentum vanishes, and also, for small r, at φ = π, because the adi-
abatic eigenstates (i.e. the spinors χs such that V χs = sEAχs) rotate
rapidly with the phase. In both cases, it is possible to linearize the po-
tential V (φ) at the problematic boundary and, from the solutions of the
resulting differential equations, use the method of matching asymptotes to
derive connection formulas for the WKB solutions on the two sides of the
boundary. At φ = ±φc, the linearization involves only the σ = −1 energy
branch and, as is well known, it leads to the Airy differential equation
for the solutions close to the turning point [129]. In the case of the level
crossing at φ = π, the linearization involves both branches. It leads to the
2 × 2 system of equations of the Landau-Zener problem with imaginary
time [114], mathematically equivalent to a Weber differential equation
whose solutions are parabolic cylinder functions [130].

The result of these calculations, which are reproduced in detail in
appendix 2.8, is a bound state equation for the energy which takes the
form:

cosσ = w e−τ cos(2πng + δ) + e−ρe−τ cos(4πng) (2.12)

On the left hand side, σ is the integral of k− over the classically available
region,

σ(E) =
∫ φc

−φc

√
E − ΓA + EA(φ)

4EC
dφ . (2.13)

On the right hand side, τ and ρ are WKB tunneling integrals, respectively
under the smaller barrier of the − branch and the larger barrier of the +
branch:

τ(E) =
∫ 2π−φc

φc

√
ΓA − E − EA(φ)

4EC
dφ , (2.14)

ρ(E) =
∫ π

−π

√
ΓA − E + EA(φ)

4EC
dφ . (2.15)

Furhermore, on the right hand side of Eq. (2.12), w represents the ampli-
tude for the wave function to remain on the lower branch when evolving
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through the avoided crossing. It is given by

w =
√

2π
λ

e−λ λλ

Γ(λ) , (2.16)

with

λ = |r|
2

4
ΓA
Γ

√
ΓA
EC

(2.17)

the parameter controlling adiabaticity: w tends to one for λ � 1 (adi-
abatic limit), while w ∼

√
2πλ for λ � 1. Note, in particular, that w

vanishes when r = 0 (diabatic limit). Finally, in Eq. (2.12), −δ is the
phase of the complex reflection coefficient r.

Before proceeding to solve the bound state equation, it is useful to
discuss its structure. The first and second term on the right hand side of
Eq. (2.12) originate from 2π and 4π phase slips respectively, as revealed
by their different periodicity with respect to the induced charge ng. The
latter can be understood in terms of the Aharonov-Casher effect: in a 4π
phase slip, the phase variable wraps around the circle twice, and so the
wave function picks up a phase factor of 4πng. The comparison of the
two terms also tells us that 2π phase slips dominate 4π phase slips when
weρ � 1, while in the opposite limit weρ � 1 the 4π-periodic component
dominates. Finally, we note that the appearance of the phase shift δ is a
consequence of the twisted boundary conditions (2.8).

Neglecting the occurrence of quantum phase slips means setting to
zero the exponentially small tunneling amplitudes e−τ and e−ρ on the
right hand side of Eq. (2.12). In this case the left hand side yields a
Bohr-Sommerfeld quantization condition for the energy levels En in the
Josephson potential,

σ(En) = π
(
n+ 1

2

)
, (2.18)

with n = 0, 1, 2 . . . The effect of quantum phase slips can then be in-
troduced as a small correction δn to the eigenvalues En obtained via the
Bohr-Sommerfeld condition. This correction is the charge dispersion of the
n-th energy level due to quantum phase slips. Expanding the left hand
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side of Eq. (2.12) as described in appendix 2.8 leads to the expression

δn = (−1)n+1

σ′n
we−τn cos(2πng + δ)

+ (−1)n+1

σ′n
e−ρne−τn cos(4πng)

− τ ′n
2(σ′n)2w

2e−2τn cos(4πng + 2δ) . (2.19)

We adopted a shortened notation for the tunneling integrals evaluated at
the eigenergies, e.g. τn ≡ τ(En).

Equation (2.19) is the central result of this chapter: it describes the
oscillations of the energy levels of the S-R-S transmon circuit as a function
of the induced charge, including the effects of 2π and 4π quantum phase
slips on equal footing. The first term of Eq. (2.19) gives the contribution
to the charge dispersion coming from 2π phase slips, which coincides with
the one computed in Ref. [114, 116]. This term yields a charge dispersion
with a period of 2e and it vanishes as r → 0, since in this limit w → 0.
The second term gives the contribution coming from 4π phase slips, which
is finite in the limit r → 0. The last term is a 4π-periodic correction to
the first term, of higher order in the tunneling integral τn. We retain it
here since, as w increases, it becomes as large as the second term in the
crossover between 2π- and 4π-dominated regimes, and eventually larger
when w ≈ 1.

Our next goal is to compare these analytical results with numerical
results. To do so, we provide approximate expressions for the quantities
appearing in Eq. (2.19) in terms of the model parameters. To begin with,
in the limit TΓA � EC in which it is appropriate to approximate the po-
tential as a parabola, the Bohr-Sommerfeld condition gives the harmonic
spectrum

En =
√

2T ΓAEC
(
n+ 1

2

)
≡ ωp

(
n+ 1

2

)
. (2.20)

We introduced the Josephson plasma frequency ωp for later convenience.
The anharmonic corrections to En are of order

√
EC/TΓA and will be

neglected.
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Evaluating the tunneling integrals at these energies we obtain

e−τn =
√

2π
n!

(
b2ωp
4EC

)n+ 1
2
e−aωp/EC (2.21)

e−ρn = e−(c/
√
T )ωp/EC+d

√
T (n+1/2) (2.22)

where a, b, c, d are positive numerical coefficients that depend weakly on
T , and whose explicit expressions are given in appendix 2.9. Finally, we
also find

σ′n = π

ωp
, (2.23)

τ ′n = 1
ωp

log
4EC(n+ 1

2)
b2ωp

. (2.24)

By simple replacement of Eqs. (2.21)-(2.24) into Eq. (2.19), it is possible
to obtain explicit asymptotic expressions for the different contributions to
the charge dispersion as a function of the model parameters.

2.5 Results
Armed with these expressions, we can compare the energy levels obtained
from the WKB ansatz with those obtained from a numerical diagonaliza-
tion of the Hamiltonian (2.1) in the charge basis. The comparison serves
both as a verification of the results obtained analytically and as a way
to illustrate the behavior of the quantum phase slips amplitude versus
the model parameters. To do so, it is convenient to extract the 2e- and
1e-periodic components of the charge dispersion δn(ng):

δn(ng) = δ2e
n cos(2πng + β2e

n ) + δ1e
n cos(4πng + β1e

n ) (2.25)

This equation is just a re-writing of the right hand side of Eq. (2.19) as a
Fourier series. In particular, δ2e

n tracks the amplitude of the first term in
Eq. (2.19), originating from 2π phase slips, while δ1e

n tracks the amplitude
of the second and third term in Eq. (2.19), originating from 4π phase slips;
β2e
n and β1e

n are the corresponding total phase shifts.
In figure 2.4, we show the evolution of δ2e

n and δ1e
n for both the ground

(n = 0) and first excited (n = 1) states, as the three model parameters
Γ, δΓ and εr are swept at fixed EC . The parameter sweep is such that
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the left end of the figure corresponds to the weak tunneling regime (Γ =
EC), finite asymmetry (δΓ/EC = 0.5), and finite detuning from resonance
(εr/EC = 0.5). On the other hand, the right end of the figure corresponds
to the strong tunneling regime (Γ/EC = 15) and the resonant condition
δΓ = εr = 0.

The first panel shows the exponential suppression of the charge disper-
sion as the tunneling rate Γ is increased at fixed δΓ and εr. This behavior
is familiar from conventional transmon model [26] and it originates from
the increase in the Josephson potential barrier height due to the increase of
Γ. The second panel shows that the trend continues as the asymmetry δΓ
is tuned to zero at fixed Γ and εr. This is because the effect of decreasing
δΓ at fixed detuning is to increase TΓA and, thus, the Josephson poten-
tial barrier height. Up to now, both δ2e

n and δ1e
n exhibit a similar trend,

because in these parameter ranges their magnitudes are both controlled
by the exponent τn.

The third panel of figure 2.4 shows the effect of tuning the level to
resonance. The 2π phase slip amplitude δ2e

n drops to zero linearly to-
wards resonance, because as the reflection coefficient r approaches zero,
non-adiabatic effects related to the narrowly avoided crossing at φ = π
start to kick-in, and the Landau-Zener parameter w vanishes. On the
other hand, the 4π phase slip amplitude δ1e

n saturates to a finite value
determined by the exponent ρn, which is not sensitive to the closing of
the avoided crossing. Eventually, the 4π-periodic component overcomes
the 2π-periodic component of the charge dispersion at a value of εr de-
termined by the condition w ≈ e−ρn , which depends slightly on n, as the
figure shows. This crossover is well captured by the WKB solutions. In
fact, figure 2.4 shows that the agreement between the asymptotic WKB
results and the numerically determined eigenvalues is reasonable even at
values of Γ/EC not much larger than one, especially for the ground state
n = 0.

The right panel of figure 2.4 also shows that if Γ� EC , the crossover
to the 4π-dominated regime only happens very close to resonance and
at charge dispersion levels so small to be practically unobservable. For
instance, in figure 2.4, δ1e

n saturates at a value of order 10−6EC for n = 1,
reached when εr ≈ 10−5EC . However, the effect becomes more striking,
and experimentally detectable, when the ratio Γ/EC is reduced.

To highlight this, in figure 2.5 we show the scaling of the charge
dispersion when the tunneling strength Γ is varied while maintaining



36 Chapter 2. Quantum phase slips in a resonant Josephson junction

the resonant condition. Here we focus on the average energy difference
ω̄01 =

∫ 1
0 dng (E1−E0), where E1 and E0 are the numerically determined

eigenvalues of the Hamiltonian, and on the peak-to-peak amplitude δω01
of its charge dispersion δ1− δ0. These are the quantities that can be more
easily measured in a typical microwave spectroscopy experiment such as
those in Refs. [16, 17], which we have in mind as a feasible way to test our
predictions. We note that, in principle, the charge dispersion of energy
levels is also accessible in the I-V characteristic of the junction [131–133].

Furthermore, we compare the behavior predicted by the resonant level
model with that of a conventional transmon device described by the Hamil-
tonian

H = 4EC(i∂φ + ng)2 − EJ cosφ (2.26)

with periodic boundary conditions on a 2π interval. In the resonant level
model, ω̄01 and δω01 were both computed numerically for increasing Γ/EC
at fixed δΓ = 0 and εr = 0. For the transmon model, the same quanti-
ties were instead computed increasing EJ/EC , and they reproduce the
well-known curve for the charge dispersion of a transmon [26]. Via the
parametric plot of the observable quantities ω̄01 and δω01, computable for
both models despite the different set of parameters, a direct comparison
can be made.

The comparison shows that, while the charge dispersion decays expo-
nentially in both models, the effect is much stronger in the presence of a
resonant level. This is because we are essentially comparing the tunnel-
ing amplitude under a −Γ cos(φ/2) barrier and that under a −EJ cosφ
barrier: the former corresponds to a higher potential and a longer tunnel-
ing path, and is therefore exponentially smaller than the latter. Thus, as
Refs. [16, 17] pointed out, resonant tunneling provides a way to reach a
target charge dispersion while keeping the superconducting island closer
to the Cooper-pair box limit of weak tunneling (Γ & EC rather than
Γ� EC). For instance, in order to achieve δ01/EC ≈ 10−3 it is necessary
to reach a ratio ω01/EC ≈ 15 (that is, EJ/EC ≈ 32) in the model of
Eq. (2.26), but it may be enough to reach the ratio ω01/EC ≈ 3 (that is,
Γ/EC ≈ 5) using the resonant level model of Eq. (2.1).

This fact is convenient for qubit design, since it mitigates a practical
trade-off at play in the transmon: reducing the charge dispersion increases
the dephasing time, but at the cost of an increase of device footprint and
capacitive losses, due to the need for a large capacitor. However, the
suppression of 2π phase slips, which is at the basis of the advantageous
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scaling of figure 2.5, requires fine-tuning the junction to a resonance. Thus,
the effect will be very sensitive with respect to noise, especially to noise
in the detuning parameter εr, which would originate from charge noise in
the gates required to tune the resonant level.

To illustrate this important point, in figure 2.6 we show the evolution
of ω01(ng) as εr is varied from positive to negative through zero, in the
case of a rather weak tunneling Γ/EC = 5. In the top panel, we see how
the charge dispersion evolves from a conventional 2e-periodic oscillation
with a maximum at ng = 0 (εr > 0), to a 1e-periodic curve at resonance
(εr = 0, black dashed line), to a shifted 2e-periodic curve with a maximum
at ng = 1/2 (εr < 0). The plot illustrates how the suppression of the
charge dispersion occurs because the charge dispersion changes sign as εr
passes through zero, signaling the ground state occupation of the resonant
level by a Cooper pair when εr < 0. Neglecting 4π phase slips, the dashed
line at εr = 0 would be flat.

In the bottom panel of figure 2.6 we show the 2e- and 1e-periodic am-
plitudes δ1e

01 ≡ δ1e
1 − δ1e

0 and δ2e
01 ≡ δ2e

1 − δ2e
0 , extracted from the curves

in the top panel (computed in a wider εr range). The 4π phase slip am-
plitude stays approximately constant, while the 2π phase slip amplitude
goes through a dip at resonance, with its minimum value at εr = 0 deter-
mined by the presence of a small, residual asymmetry (δΓ ≈ 10−4EC in
figure 2.6) While the region dominated by 4π phase slips has widened with
respect to the right panel of figure 2.4 due to the smaller ratio Γ/EC , it
still occurs in a relatively narrow interval, |εr| /EC . 0.01. The dephasing
time of the plasma oscillation would be dictated by 4π phase slips only if
time-dependent noise in the detuning parameter εr were to be contained
in this interval. Nevertheless, the plot also shows that in this parameter
regime it would be feasible, with reasonable experimental resolution, to
detect the occurrence of 4π phase slips at resonance via a spectroscopic
measurement of the ω01(ng) curve. Indeed, the residual charge dispersion
at resonance is ≈ 2 × 10−3EC in figure 2.6, and thus it would fall in the
MHz frequency range for realistic values of EC/h ∼ 1 GHz.

2.6 Conclusions

We have studied in detail the quantum phase slips occurring in a Joseph-
son junction in the presence of a resonant level mediating the tunneling
of Cooper pairs. It was known since Ref. [114] that 2π phase slips are
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fully suppressed in the presence of a level crossing in the Andreev spec-
trum. Here, we have extended this result by computing the amplitude
of 4π phase slips, which remain finite in the presence of a level crossing
and provide the mechanism by which the charge dispersion of the super-
conducting island remains finite, albeit possibly very small. Our central
result is Eq. (2.19): obtained within the WKB approximation, it provides
asymptotic expressions for the energy levels of a Cooper-pair box in the
transmon limit, including the effect of both 2π and 4π quantum phase
slips, and yielding results in good agreement with numerical simulations
2. To conclude this chapter we discuss several implications of our results.

2.6.1 Experimental observability of 4π phase slips in trans-
mon circuits

The suppression of 2π phase slips occurs in a fairly narrow parameter
range near resonance (εr = 0) and symmetric barriers (δΓ = 0). Within
this parameter range, a crossover to a regime dominated by 4π phase
slips occurs (see figure 2.6). The width of the crossover region around
resonance, as well as the residual level of charge dispersion at resonance
given by 4π phase slips, both increase with decreasing Γ/EC .

Although the suppression of 2π phase slips at resonance has been ob-
served in Refs. [16, 17], coherent 4π quantum phase slips were not ob-
served. We attribute this fact to the large ratio Γ/EC of those measure-
ments. Our calculations predict that coherent 4π quantum phase slips
should be observable with the same technology of existing experiments,
only in devices with larger charging energy. For instance, let us consider a
situation in which EC/h = 1 GHz, εr = δΓ = 0 and Γ/h = 3 GHz. Then,
our model predicts that ω01 ≈ 2.16 GHz while δω01 ≈ 33 MHz, easily in
the range of detectable frequency shifts.

The direct comparison with a transmon qubit based on a conventional
tunnel junction with Josephson energy −EJ cosφ shows that the resonant
level provides a much lower charge dispersion at a fixed ratio of the qubit
frequency to the charging energy (see figure 2.5). We have discussed crit-
ically the possible implications of this fact for qubit design, emphasizing
that the circuit is likely to remain sensitive to charge noise modulating
the energy of the resonant level.

2The code and notebooks used to generate the numerical results in this work are
available on Zenodo [134]
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2.6.2 Connection to novel qubit designs

Our results are relevant for the recently introduced bi-fluxon qubit [7],
which uses a superconducting island tuned to the charge degeneracy point
as a way to implement resonant Cooper pair tunneling with a 4π-periodic
effective Josephson energy. Indeed, the model of Eqs. (2.1) and (2.2) also
applies to such a case: the two degenerate charge states of the island, with
charge differing by 2e, map to the resonant level in our model being empty
or occupied. In this mapping, the parameters εr and δΓ indicate the de-
tuning from the charge degeneracy point of the island and the asymmetry
between two tunnel junctions. For noise protection, the bi-fluxon qubit
relies on the suppression of 2π quantum phase slips and ideally operates
in a regime where only 4π quantum phase slips are present. Our detailed
results on the competition of 2π and 4π quantum phase slips, especially
at finite detuning or junction asymmetry, are therefore relevant for its
design.

A difference between the S-R-S transmon model studied in this chap-
ter and the bi-fluxon is that the circuit of the latter features an inductive
shunt, similar to the fluxonium circuit [28]. In the presence of an induc-
tive loop, quantum phase slips couple coherently persistent current states
characterized by a differing number of fluxons trapped in the loop [27]. By
tuning the applied flux, it is therefore possible to measure separately the
amplitude for 2π and 4π phase slips, making such a device ideal to observe
the crossover between 2π and 4π-dominated regimes. In fact, a fluxonium
circuit with a weak link of the S-R-S type could be a competitive version
of the bi-fluxon qubit. We leave the analysis of this topic to future work.

2.6.3 Connection to Majorana zero modes

Our calculations also have a close connection with models of supercon-
ducting islands with Majorana zero modes (MZMs) [135, 136]. It is known
that the 4π Josephson effect occurring in a junction between topological
superconductors (due to the presence of a pair of coupled MZMs) [119,
120] suppresses the occurrence of 2π phase slips, leaving only the occur-
rence of 4π phase slips [137–139]. Even the boundary condition of Eq. (2.8)
has a precise counterpart in models with topological superconducting is-
lands, where it arises due to a fermion parity constraint on the BCS wave
function [135, 140]. In fact, the model of Eq. (2.1), together with the
boundary conditions, can be mapped exactly to a model of four MZMs,
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two per superconducting side, coupled across a weak link. Such a model of
four coupled MZMs could arise, for instance, because of finite-size effects
in a topological nanowire [141].

2.6.4 Generality of our results

Finally, let us discuss the generality of our results. The regime with dom-
inating 4π phase slips should persist even outside of the strict domain
of validity of the model in Eq. (2.2), because it is a consequence of the
presence of a level crossing in the Andreev spectrum rather than of the
precise form taken by the Josephson potential energy. For instance, the
assumption Γ � ∆ could be relaxed; doing so would modify the phase
dependence of the Andreev spectrum and the precise values of the WKB
integrals, but not the essential feature that 2π phase slips are suppressed
at resonance.

Similar conclusions can be drawn about multi-channel extensions of
the single-channel model of Eq. (2.2). If the additional channels are not
resonant, they simply provide a 2π-periodic contribution to the Josephson
energy (a similar contribution is also provided by the above-gap, continu-
ous part of the spectrum). This contribution will increase the height of the
Josephson potential barrier, and thus lower all the quantum phase slips
amplitudes, but it will not affect the resonant suppression of 2π phase
slips illustrated in figure 2.6. The resonant suppression is controlled by
the parameter w of Eq. (2.16), and thus by the most transparent channel
only. Qualitative deviations from our central result, Eq. (2.19) are there-
fore only expected in the fine-tuned case where more than one transport
channel achieves near-perfect transparency (|r|2 �

√
EC/ΓA).

Our results also remain valid in the presence of a finite interaction
energy U for the double-occupancy of the resonant level, a term neglected
in this chapter. This is true at least as long as U � Γ, since such a
weak interaction would only renormalize the couplings in the effective
Hamiltonian of Eq. (2.1) [18]. For larger U , a transition to an odd-parity
doublet ground state occurs close to resonance, diminishing the relevance
of Eq. (2.1), which applies to an even-parity singlet ground state. The
study of quantum phase slips when the junction is in the doublet ground
state is an interesting problem left to future research.
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2.7 Appendix: Derivation of the low-energy Hamil-
tonian

In this appendix, we derive Eq. (2.1) starting from the model of a level
tunnel-coupled to two superconductors. Similar derivations have appeared
in the literature before, e.g. in Refs. [18, 19]. Here we propose a simple
derivation that motivates and clarifies the use of the boundary conditions
of Eq. (2.8). The starting point is the following Hamiltonian:

H = Hsc +Hdot +Htunn +Hc . (2.27)

The first term Hsc is the Hamiltonian of the two superconductors,

Hsc =
∑
αnσ

ξn c
†
αnσcαnσ −∆

∑
αn

(
e−iφαc†α↑c

†
α↓ + h.c.

)
(2.28)

where α = 1, 2 denotes the two leads, n enumerates their spin-degenerate
single-particle states with energy ξn, σ =↑, ↓ is the spin quantum number,
∆ is the pairing gap, and φα is the superconducting phase in the two leads.

The second term is the Hamiltonian of the resonant level:

Hdot = εr
∑
σ

(
d†σdσ − 1

2

)
, (2.29)

where the operator d†σ, dσ create and annihilate an electron with spin σ on
the resonant level. For simplicity, we omit an Anderson U . The limitations
of this choice are discussed in the main text and are not crucial for what
follows. The third term is the tunneling Hamiltonian between the leads
and the energy level in the dot:

Htunn =
∑
αnσ

tα
(
d†σcαnσ + h.c.

)
. (2.30)

Again for simplicity, we only consider spin-conserving tunneling. In the
presence of both time-reversal symmetry and spin-rotation symmetry, the
couplings tα can be chosen to be real.

Finally, the last term is the charging energy between the two leads:

Hc = 4EC(N − ng)2 (2.31)

where EC = e2/2C is the charging energy and ng the dimensionless charge
induced by gates, and N is the charge transferred between the two leads.
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Both N and ng are expressed in units of the Cooper pair charge 2e. Ex-
plicit expressions for EC and ng in terms of the capacitances and gate
voltages of a capacitive network of two islands are given in Ref. [13]. In
writing the charging energy, we have neglected the capacitance between
the superconductors and the quantum dot hosting the energy levels, as
well as the capacitance between the superconductors and any gates which
may control the quantum dot.

At the mean-field level description of superconductivity, N is an op-
erator which includes separate contributions from both the paired and
unpaired electrons:

N = 1
2(N1 −N2) + 1

4
∑
nσ

(
c†1nσc1nσ − c†2nσc2nσ

)
. (2.32)

Here, we denoted with N1, N2 the number of Cooper pairs in each super-
conductor. They are operators with integer spectrum obeying the follow-
ing commutation rules:

[Nα, e
±iφβ ] = ±δαβ e±iφβ . (2.33)

We stress the fact that the operator N keeps count of the charge trans-
ferred between the superconductors in units of 2e. Thus, a transfer of
a Cooper pair between superconductors (N1 → N1 ± 1, N2 → N2 ∓ 1)
changes N by one unit (e.g. N → N ± 1). On the other hand, a trans-
fer of a single electron changes N by ±(1/2). Simply, yet amusingly, the
transfer of a Cooper pair from either superconductor to the quantum dot
also changes N by ±(1/2).

It is convenient to use a gauge transformation that removes the op-
erators eiφα from Hsc and which also simplifies the form of the charging
energy [142]. The gauge transformation is H → UHU †, with:

U = U1U2 , Uα = exp
(
iφα
2
∑
nσ

c†αnσcαnσ

)
(2.34)

In this new gauge, we have the following changes:

Hsc →
∑
αnσ

ξn c
†
αnσcαnσ −∆

∑
αn

(
c†α↑c

†
α↓ + h.c.

)
,

Hc → 4EC(N − ng)2 ,

Htunn →
∑
αnσ

tα
(
e−iφα/2 d†σcαnσ + h.c.

)
, (2.35)
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and Hdot → Hdot. Note how the tunneling terms now contain operators
e±iφα/2, which shift Nα by one half.

The next step is to diagonalize Hsc and rewrite the tunneling Hamil-
tonian in terms of Bogoliubov quasiparticle operators:

cαn↑ = uαnΓαn↑ + vαnΓ†αn↓ (2.36)

cαn↓ = uαnΓαn↓ − vαnΓ†αn↑ (2.37)

with u2
n = 1

2(1 + ξn/εn), v2
n = 1

2(1− ξn/εn), and ε2n = ξ2
n + ∆2. After the

Bogoliubov rotation, the Hamiltonian changes as follows:

Hsc →
∑
αnσ

εn Γ†αnσΓαnσ

Htunn →
∑
αnσ

tα
[
e−iφα/2 d†σ

(
unΓαnσ + σvnΓ†αnσ̄

)
+eiφα/2

(
unΓ†αnσ + σvnΓαnσ̄

)
dσ
]
,

with the other terms left untouched.
At this point, assuming that ∆ is the largest energy scale in the prob-

lem, we would like to integrate out the quasi-particles in the leads and
derive an effective Hamiltonian describing the low-energy coupled dynam-
ics of the condensate and of the quantum dot. Assuming that the total
number of electrons in the system is even, a generic wave function in the
even-parity low-energy space can be written as

|Ψ〉 =
∑
n∈Z

Ψ0(n) |n〉 |0〉+
∑

n∈Z+ 1
2

Ψ2(n) |n〉 |2〉 , (2.38)

where |n〉 are states with a given number of Cooper pairs transferred:
N |n〉 = n |n〉, |0〉 denotes the empty dot state, and |2〉 = d†↑d

†
↓ |0〉 denotes

the state in which the dot is occupied by a pair.
Using old-fashioned perturbation theory to the second order in the

tunneling term, and integrating out states with unpaired quasiparticles,
we obtain the following eigenvalue problem, written in terms of the wave
function amplitudes Ψ0(n) and Ψ2(n):
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[
E − 4EC(n− ng)2 + εr

]
Ψ0(n) = −Γ1 Ψ2(n− 1

2)− Γ2 Ψ2(n+ 1
2) ,
(2.39)[

E − 4EC(n− ng)2 − εr
]

Ψ2(n) = −Γ2 Ψ0(n− 1
2)− Γ1 Ψ0(n+ 1

2) ,
(2.40)

where Γα = ∑
n(2t2αvnun)/εn = πt2α/δα, with δα the level spacing in

the superconductor. A Fourier series,

Ψ0(φ) =
∑
n∈Z

eiφn Ψ0(n) , (2.41)

Ψ2(φ) =
∑

n∈Z+ 1
2

eiφn Ψ2(n) , (2.42)

yields the effective Hamiltonian of the main text, acting on the spinor
wave function

Ψ(φ) =
[
Ψ0(φ)
Ψ2(φ)

]
(2.43)

The boundary condition of Eq. (2.8) follows from the fact that Ψ0(φ +
2π) = Ψ0(φ) while Ψ2(φ+ 2π) = −Ψ2(φ).

2.8 Appendix: WKB solution

In this appendix we derive the bound state equation (2.12) of the main
text, applying the WKB approach to the Schrödinger equation HΨ =
(−ΓA + E)Ψ for the Hamiltonian in Eq. (2.1).

We find it convenient to rotate the Hamiltonian such that the cos(φ/2)
term in the potential appears on the diagonal: the basis of the eigenstates
of V (φ) at εr = 0. The transformation consists of a rotation of Ψ by −π/2
around the y-axis. Simultaneously, as already mentioned in the main text,
we also multiply the wave function by a phase that gets rid of ng in the
Hamiltonian, so that the transformation is

Ψ→ eiφng ei(π/4)τyΨ (2.44)
H → eiφngei(π/4)τyH e−iφnge−i(π/4)τy . (2.45)
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Since
ei(π/4)τy = 1√

2

[
1 1
−1 1

]
, (2.46)

the transformation amounts to sending

H → −4EC∂2
φ + εrτx − Γ cos(φ/2)τz − δΓ sin(φ/2) τy . (2.47)

In this new basis, the boundary condition is also different:

Ψ(φ+ 2π) = −τxei2πngΨ(φ) (2.48)

In the calculation that follows we will make use of the adiabatic eigenstates
of the potential V (φ) after the transformation, which in matrix form is
given by

V (φ) =
[
−Γ cos(φ/2) εr + iδΓ sin(φ/2)

εr − iδΓ sin(φ/2) Γ cos(φ/2)

]
(2.49)

The two eigenvectors V (φ)χ± = ±EA(φ)χ± are:

χ+ = N−1/2(φ)
[
EA − Γ cos(φ/2)
εr − iδΓ sin(φ/2)

]
(2.50a)

χ− = N−1/2(φ)
[
−εr − iδΓ sin(φ/2)
EA − Γ cos(φ/2)

]
(2.50b)

with a normalization factor given by

N (φ) = 2EA(EA − Γ cos(φ/2)) . (2.51)

For later use we note the following property of these spinors:

χ+(2π + φ) = eiδ(φ) τx χ+(φ) , (2.52)
χ−(2π + φ) = −e−iδ(φ) τx χ−(φ) . (2.53)

where δ(φ) is the phase of εr + iδΓ sin(φ/2).
To solve the Schödinger equation, we split the interval [−π, π] into four

regions as follows:

• Region I: φ ∈ (−π,−φc), where φc is the classical turning point such
that ΓA − EA(φc) = E.

• Region II: φ ∈ (−φc, φc).
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• Region III: φ ∈ (φc, π).

• Region IV: φ ∈ (π, 2π − φc).

Within each region we can write the solution using the WKB ansatz, with
either oscillatory or decaying/growing solutions. In detail:

ΨI = A1 χ−√
κ1

e
−
∫ φ
−π κ1dφ′ + A2 χ−√

κ1
e

+
∫ φ
−π κ1dφ′+ (2.54)

+ A3 χ+√
κ2

e
−
∫ φ
−π κ2dφ′ + A4 χ+√

κ2
e

+
∫ φ
−π κ2dφ′ , (2.55)

ΨII = B1 χ−√
k1

cos (π4 +
φ

∫
−φc

k1 dφ
′) + 2B2 χ−√

k1
sin (π4 +

φ

∫
−φc

k1 dφ
′)+ (2.56)

+ B3 χ+√
κ2

e
−
∫ φ
−φc

κ2dφ′ + B4 χ+√
κ2

e
+
∫ φ
−φc

κ2dφ′ , (2.57)

ΨIII = C1 χ−√
κ1

e
−
∫ φ
φc
κ1dφ′ + C2 χ−√

κ1
e

+
∫ φ
φc
κ1dφ′+ (2.58)

+ C3 χ+√
κ2

e
−
∫ φ
φc
κ2dφ′ + C4 χ+√

κ2
e

+
∫ φ
φc
κ2dφ′ , (2.59)

ΨIV = D1 χ−√
κ1

e−
∫ φ
π
κ1dφ′ + D2 χ−√

κ1
e+
∫ φ
π
κ1dφ′+ (2.60)

+ D3 χ+√
κ2

e−
∫ φ
π
κ2dφ′ + D4 χ+√

κ2
e+
∫ φ
π
κ2dφ′ . (2.61)

For brevity, we have introduced the following wave vectors (note that the
notation differs slightly with that of Eq. (2.10) in the main text):

k1 =
√
E − (ΓA − EA)

4EC
, (2.62)

κ1 =
√

(ΓA − EA)− E
4EC

, (2.63)

κ2 =
√

(ΓA + EA)− E
4EC

. (2.64)

The sixteen complex coefficients A1, . . . D4 must be determined via appro-
riate matching conditions at the boundaries between the different regions.
The matching condition between regions IV and I will be determined via
the boundary condition (2.48). The boundaries between regions I-II, II-III
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and III-IV are meant to be fuzzy, and one must make use of appropriate
connection formulas for the WKB solutions by obtaining approximate so-
lutions that are valid across the boundaries. This is what we do next.

To connect solutions at the boundary between region I and II, we can
use the standard WKB connection formulas that originate from linearizing
the potential around the classical turning point, and then solving the Airy
equations. One obtains:

A1
A2
A3
A4

 =


e+τ1 0 0 0

0 e−τ1 0 0
0 0 e+τ2 0
0 0 0 e−τ2



B1
B2
B3
B4

 (2.65)

with τ1 =
∫ π
φc
κ1 dφ

′ and τ2 =
∫ π
φc
κ2 dφ

′.
For the boundary between region II and III we can also use the stan-

dard WKB connection formulas based on the Airy equation, except that
we must first take some care to rewrite the wave function in region II so
that it is expressed in terms of integrals that have the boundary point φc
as the upper end of the integration domain.

After some trigonometric manipulations one obtains the following con-
nection matrix:

B1
B2
B3
B4

 =


2 cosσ − sin σ 0 0
sin σ 1

2 cosσ 0 0
0 0 e+ρ1 0
0 0 0 e−ρ1



C1
C2
C3
C4

 (2.66)

where ρ1 =
∫ φc
−φc κ2dφ

′ .
Notice that so far the connections matrices (2.65) and (2.66) leave the

two branches of the Andreev spectrum decoupled. This situation breaks
down at the boundary between regions III and IV at φ = π. This is the
position where Andreev levels cross at perfect transparency, and where
they couple in the presence of a small but finite back-scattering. When
the level crossing is narrowly avoided, the adiabatic spinors (2.50) vary
rapidly with phase and the WKB ansatz, which relies on a slow variation
of the spinors with φ, breaks down. To proceed we must linearize the
potential around φ = π, giving the equation:

− 4ECΨ′′ + Vπ Ψ + ΓAΨ = 0 . (2.67)

where
Vπ = εrτx + 1

2Γ(φ− π)τz − δΓτy (2.68)
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In Eq. (2.67) we set E = 0 since the level crossing is at energies much
higher than the bottom of the Josephson potential: thus, the form of
the solutions around φ ≈ π will not be sensitive to the precise position
of low-lying energy levels. Inspired by the fact that we need to connect
asymptotically to the wave functions in region II, we try an ansatz of the
form:

Ψ = Ψπe
σκ(φ−π) (2.69)

with σ = ±1 and κ =
√

ΓA/4EC . Inserting the ansatz in Eq. (2.67) and
neglecting the term ∝ Ψ′′π results in the following equation for Ψπ:

− σω0Ψ′π + VπΨπ = 0 (2.70)

with ω0 = 8ECκ. Adopting the spinor notation Ψπ = (u, d)T , we obtain
the following coupled linear differential equation for u and d:

−σ(ω0/Γ)u′ + r̃ d+ 1
2 (φ− π)u = 0 (2.71)

−σ(ω0/Γ) d′ + r̃∗ u− 1
2 (φ− π) d = 0 (2.72)

where we introduced a complex reflection coefficient r̃:

r̃ ≡ εr + iδΓ
Γ . (2.73)

Note that this reflection coefficients differs from the one introduced in the
main text in Eq. (2.7) because of the presence of Γ instead of ΓA in the
denominator. The difference arises because the linearized problem is not
sensitive to the bandwidth ΓA of the potential, but only to its slope Γ at
φ = π. The phase of r̃ is the same as that for r, and can be gauged away
from the linearized equations, by setting d → de−iδ/2 and u → ueiδ/2.
Furthermore, it is also convenient to shift and rescale the coordinate,

x =
√

Γ
ω0

(φ− π) . (2.74)

After these two steps we obtain

−σu′ +
√
λ d+ 1

2 xu = 0 (2.75)
−σd′ +

√
λu− 1

2 x d = 0 (2.76)

where the prime now refer to differentiation with respect to x and we have
introduced

λ ≡ |r̃|2 (Γ/ω0) , (2.77)
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the same parameter introduced in Eq. (2.17) of the main text. Proceeding
by substitution we obtain the two equations (one for each value of σ):

u′′ +
(
−λ− σ

2 −
x2

4

)
u = 0 (2.78)

which must be considered separately and, combined, give the four indepen-
dent solutions we are looking for. They are instances of the Weber differen-
tial equation and are solved in terms of parabolic cylinder functionsDp(x),
which satisfy the differential equation D′′p(z) + (p + 1

2 − z
2/4)Dp(z) = 0.

In our case we are dealing with p = −λ when σ = −1 and p = −λ − 1
when σ = +1.

Let us solve the two cases separately, beginning with σ = −1. The
general solution for u is the linear combination u(x) = c1D−λ(x) +
c2
√
λDλ−1(ix). The corresponding solution for d(x) can be obtained using

known recursion formulas for parabolic cylinder functions, which read:

D′p(z)− pDp−1(z) + 1
2zDp(z) = 0 , (2.79)

D′p(z) +Dp+1(z)− 1
2zDp(z) = 0 . (2.80)

Using these formulas we obtain d(x) = c1
√
λD−λ−1(x) + ic2Dλ(ix). Due

to a symmetry of the problem, the solutions for σ = +1 can be obtained
from these by sending x → −x and exchanging u and d, so that, overall,
the general solution is

Φ(x) = c1e
−κ̃x

[
D−λ(x)√
λD−λ−1(x)

]
+ c2e

−κ̃x
[√

λDλ−1(ix)
iDλ(ix)

]

+ c3e
+κ̃x

[√
λD−λ−1(−x)
D−λ(−x)

]
+ c4e

+κ̃x
[

iDλ(−ix)√
λDλ−1(−ix)

]
. (2.81)

Here, κ̃ = κ
√
ω0/Γ. This solution captures the interval around φ = π

where diabatic effects not captured by the WKB ansatz may occur. This
region has a width ∼

√
λ. Thus, the solution has to be matched with ΨIII

from Eq. (2.58) for x� −
√
λ and with ΨIV from Eq. (2.60) for x�

√
λ.

For the matching purposes, it’s useful to derive the asymptotic behaviour
of these WKB solutions. In the case of ΨIII, to do so we must first rewrite
the WKB solution such that the integrals run up to the level crossing.
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Thus, we rewrite Eq. (2.58) as

ΨIII = C1 χ−√
κ1

e−τ1 e
+
∫ π
φ
κ1dφ′ + C2 χ−√

κ1
e+τ1 e

−
∫ π
φ
κ1dφ′

+ C3 χ+√
κ2

e−τ2 e
+
∫ π
φ
κ2dφ′ + C4 χ+√

κ2
e+τ2 e

−
∫ π
φ
κ2dφ′ . (2.82)

Let’s introduce the distance R from the level crossing, R = |x|. When
R�

√
λ, the asymptotes for the adiabatic spinors are:

χ−(−R) ∼
[
−1√
λ/R

]
, (2.83)

χ+(−R) ∼
[√

λ/R
1

]
, (2.84)

χ−(R) ∼
[
−
√
λ/R
1

]
, (2.85)

χ+(R) ∼
[

1√
λ/R

]
. (2.86)

Note that χ±(−R) = ±τxχ±(R). Taking into account the fact that, ap-
proaching the level crossing,

κ1,2 ≈ κ∓ 1
2

√
4λ+R2

√
Γ
ω0
, (2.87)

we obtain the following expressions for the WKB integrals:∫ π

φ
κ1 dφ

′ = κ̃R− 1
4R

2 − 1
2λ− λ log R+ λ log

√
λ ,∫ π

φ
κ2 dφ

′ = κ̃R+ 1
4R

2 + 1
2λ+ λ log R− λ log

√
λ . (2.88)

Finally, when κ� R�
√
λ, one has that

1
√
κ1,2

≈ 1√
κ

(2.89)

The condition κ � R �
√
λ is the necessary condition for the existence

of a range of coordinates where asymptotes can be matched. In practice,
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it requires the transition region around the level crossing at φ = π to be
narrow enough to be far away from the classical turning point at φ = φc.
Note that this condition is automatically satisfied since κ ∝ (ΓA/EC)1/2

while
√
λ ∼ (ΓA/EC)1/4.

With all that said, the expression approaching the level crossing from
region III is:

ΨIII ∼
(
C1√
κ
e−τ1 e−λ/2 λλ/2

)
eκ̃R e−R

2/4R−λ χ−(−R)

+
(
C2√
κ
e+τ1 e+λ/2 λ−λ/2

)
e−κ̃R eR

2/4Rλ χ−(−R)

+
(
C3√
κ
e−τ2 e+λ/2 λ−λ/2

)
eκ̃R eR

2/4Rλ χ+(−R)

+
(
C4√
κ
e+τ2 e−λ/2 λλ/2

)
e−κ̃R e−R

2/4R−λ χ+(−R) (2.90)

while the one for ΨIV, obtained from Eq. (2.54), is:

ΨIV ∼
(
D1√
κ
eλ/2 λ−λ/2

)
e−κ̃R eR

2/4Rλ χ−(R)

+
(
D2√
κ
e−λ/2 λλ/2

)
eκ̃R e−R

2/4R−λ χ−(R)

+
(
D3√
κ
e−λ/2 λλ/2

)
e−κ̃R e−R

2/4R−λ χ+(R)

+
(
D4√
κ
eλ/2 λ−λ/2

)
eκ̃R eR

2/4Rλ χ+(R) (2.91)

These two expressions must now be compared to and matched with the
expansion of Eq. (2.81). The matching procedure will yield us a connection
matrix between the wave function coefficients in regions III and IV. This
connection matrix will take the form:

C1
C2
C3
C4

 =


eτ1 0 0 0
0 e−τ1 0 0
0 0 eτ2 0
0 0 0 e−τ2

M

D1
D2
D3
D4

 (2.92)

where M is a 4 × 4 matrix whose elements must be determined via the
matching procedure. We expect half of the matrix elements of M to
be zero, because the exponentially decaying sector is decoupled from the
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exponentially growing sector, as assumed by the ansatz (2.69). More in
detail, the matrix M will have the following structure,

M =


m11 0 m12 0

0 m′11 0 m′12
m21 0 m22 0

0 m′21 0 m′22

 (2.93)

with two interleaved 2× 2 sub-blocks M+ and M− which separately con-
nect exponentially decaying and growing solutions on either side of the
level crossing:

M− =
(
m11 m12
m21 m22

)
, (2.94)

M+ =
(
m′11 m′12
m′21 m′22

)
. (2.95)

To simplify the derivation of M , we will make use of two useful identities
that connect M+ and M− and thus allow to shorten the calculation.

The first identity is

detM+ = detM− . (2.96)

It follows from the fact that, given two spinors Φ1 = (u1, d1)T and Φ2 =
(u2, d2)T which are solutions of Eq. (2.75), one has

d

dx
det [Φ1|Φ2] = 0 , (2.97)

where [Φ1|Φ2] is the matrix obtained joining the two spinors:

[Φ1|Φ2] ≡
(
u1 u2
d1 d2

)
. (2.98)

To verify this property one observes that:
d

dx
det [Φ1|Φ2] = det[Φ′1|Φ2] + det[Φ1|Φ′2] (2.99)

= σ det[OΦ1|Φ2] + σ det [Φ1|OΦ2] ,

where σ = ±1 and O = 1
2xτz +

√
λτx . The last passage in the equation

above follows directly from Eq. (2.75). To conclude the argument, one
notices that

det[OΦ1|Φ2] = det(O) det [Φ1|O−1Φ2] (2.100)
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Furthermore, in our case, O−1 = −det−1(O)O. Thus,

det[OΦ1|Φ2] = −det[Φ1|OΦ2] (2.101)

The conclusion is that

det [Φ1|Φ2] = constant . (2.102)

Let us apply it to the case in which Φ1 and Φ2 are the two exponentially
decaying solutions (σ = −1) of Eq. (2.75) that enter Eq. (2.81) with coef-
ficients c1 and c3. We observe that the det[Φ1,Φ2] must remain constant
also for the matched asymptotic expansions of Φ1 and Φ2 on either side
of the crossing. A direct calculation gives

det[Φ1|Φ2] = −D1D3
κ̃

(2.103)

for x�
√
λ, and, using (2.92)

det[Φ1|Φ2] = −D1D3
κ̃

detM− (2.104)

for x� −
√
λ. It follows that detM− = 1. The reasoning is analogous for

σ = 1, so detM+ = 1 too.
The second identity we will make use of is a pseudo-inverse identity

which relates M+ and M−:

M+ = τz(M−)−1τz (2.105)

The idea behind this identity is that, as noticed earlier, there is a reflection
symmetry around the level crossing: namely, if [u(x), d(x)]T is a solution
of Eq. (2.75), then [d(−x), u(−x)]T is also a solution. This symmetry maps
decaying solutions to growing ones and thus it suggests that there must
be a relation betweenM+ andM−. Applying this symmetry argument to
the asymptotic solutions and observing that their spinors obey χ±(−x) =
±τxχ±(x), one arrives at the identity (2.105).

At this point we have to find the elements of M− by looking at the
asymptotic expansion of the parabolic cylinder functions [130], which can
be applied term by term to (2.81) and then compared to the WKB asymp-
totes in Eq. (2.90) and (2.91). For instance, the last term in (2.81) has
the following asymptotic behaviour (recall that R = |x|):[√

λDλ−1(ix)
iDλ(ix)

]
∼ ie−iπλ/2 eR2/4Rλ χ+(−R) (2.106)
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for x� −
√
λ and[√

λDλ−1(ix)
iDλ(ix)

]
∼ ieiπλ/2 eR2/4Rλ χ−(R) (2.107)

for x�
√
λ. Matching these asymptotes with Eq. (2.90) and (2.91) yields

the matrix elements

m11 = 0 , (2.108)
m21 = e−iπλ . (2.109)

The third term in (2.81) has the asymptotic expansion[
D−λ(x)√
λD−λ−1(x)

]
∼ −eiπλe−R2/4R−λ χ−(−R)

+
√

2π√
λΓ(λ)

eR
2/4Rλ χ+(−R) (2.110)

for x�
√
λ and [

D−λ(x)√
λD−λ−1(x)

]
∼ e−R2/4R−λ χ+(R) (2.111)

for x�
√
λ. Again by comparison with (2.90) and (2.91), we derive

m22 = w (2.112)

where w is the same as defined in the main text Eq. (2.16). The determi-
nant identity for M− then yields

m12 = −eiπλ (2.113)

This completes the matrix M−. The matrix M+ can the be derived using
the pseudo-inverse identity, and both can be combined into the final form
for the connection matrix M entering Eq. (2.92):

M =


0 0 −eiπλ 0
0 w 0 −eiπλ

e−iπλ 0 w 0
0 e−iπλ 0 0

 (2.114)
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The final step is to find the connection matrix at the boundary be-
tween region IV and I. In order to do so, we impose the twisted boundary
conditions (2.48) evaluated at the point at φ = π + ε:

ΨIV(π + ε) = −τx e2πingΨI(−π + ε) (2.115)
Using Eq. (2.52), this leads to two equations:

e−iδ (D1 +D2) = e2πing (A3 +A4) (2.116)
e+iδ (D1 +D2) = −e2πing (D3 +D4) (2.117)

where δ is the phase of εr − iδΓ. We need two more equations, which we
can get from taking the derivative of Eq. (2.48) at φ = π + ε:

Ψ′IV(π + ε) = −τx e2πingΨ′I(−π + ε) , (2.118)
to be computed neglecting the change in the slow components of the WKB
wave functions. This leads to the following connection matrix:

D1
D2
D3
D4

 = e2πing


eiδ 0 0 0
0 eiδ 0 0
0 0 −e−iδ 0
0 0 0 −e−iδ



A1
A2
A3
A4

 (2.119)

Putting together Eqs. (2.65), (2.66), (2.114) and (2.119), we obtain
a linear system of equation that must be satisfied by the coefficients in
region I. After some matrix multiplication this linear system takes the
form:

~A = e2πing M1M2M3 ~A (2.120)
with ~A = (A1, A2, A3, A4)T and

M1 =


2eτ cosσ − sin σ 0 0

sin σ 1
2e
−τ cosσ 0 0

0 0 eρ 0
0 0 0 e−ρ

 (2.121)

M2 =


0 0 −eiπλ 0
0 w 0 −eiπλ

e−iπλ 0 w 0
0 e−iπλ 0 0

 (2.122)

M3 =


eiδ 0 0 0
0 eiδ 0 0
0 0 −e−iδ 0
0 0 0 −e−iδ

 . (2.123)
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The WKB integrals that appear in these matrices are those defined in the
main text Eq. (2.13), (2.14), and (2.15). A non-trivial solution occurs only
if

det
(
1− e2πingM1M2M3

)
= 0 (2.124)

This condition yields a transcendental equation for the energy E, taking
the form:

cosσ = 4eρeτ [cos(4πng) + eρw cos(2πng + δ)]
1 + e2ρ (4e2τ + w2) + 2eρw cos(2πng − δ)

(2.125)

Using the fact that e−ρ � 1 and we−τ � 1, we can simplify the denomi-
nator on the right hand side as follows:

1 + e2ρ
(
4e2τ + w2

)
+ 2eρw cos(2πng − δ) ≈ 4e2ρe2τ .

Thus, the transcendental equation takes the simpler form reported as
Eq. (2.12) in the main text:

cosσ = e−ρe−τ cos(4πng) + w e−τ cos(2πng + δ) (2.126)

Note that the energy enters the bound state equation via the WKB inte-
grals σ, ρ and τ , where it appears in both the integrand and the limits of
integration.

As observed in the main text, to solve this equation a good starting
point is to set the right hand side to zero, since it contains only exponen-
tially small terms. The zeros of the left hand side occur if

σ(En) = π(n+ 1
2) . (2.127)

When taking into account the right hand side, some corrections will
come from the 4π−phase slip term e−ρe−τ cos(4πng) and others will come
from the 2π phase slip term w e−τ cos(2πng + δ). We are not interested
in the corrections smaller than the corrections from 4π phase slips, so the
cross-terms are neglected. For the rest, we can distinguish the following
three situations:

1. we−τ � e−ρ−τ : it only makes sense to keep the leading order cor-
rections in we−τ to each of the harmonics in the dispersion relation

2. we−τ ≈ e−ρ−τ : we keep the leading order we−τ corrections and the
first order e−ρ−τ – corrections
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3. we−τ � e−ρ−τ : enough to keep only the first order in e−ρ−τ .

We can conclude that in any situation it is enough to keep the leading
order in we−τ and the first order in e−ρ−τ for the second harmonic, al-
though having something of the order of e−ρ−τ and ignoring higher order
corrections in we−τ may look inconsistent when we−τ � e−ρ−τ .

Let’s introduce the following notation:

E = En + δE(1) + δE(2) + ∆En + ... (2.128)

Where δE(m) stand for m-th order corrections in we−τ (0-th in e−ρ−τ )
and ∆En for the first order corrections in e−ρ−τ . By solving Eq. (2.126)
with iterative expansions, we find:

∆En = (−1)n+1

σ′n
e−ρne−τn cos(4πng) , (2.129)

δE(1)
n = (−1)n+1

σ′n
we−τn cos(2πng + δ) . (2.130)

δE(2)
n = −w

2e−2τn cos2(2πng + δ)
(σ′n)2

(
τ ′n + σ′′n

2σ′n

)
(2.131)

The corrections have quite intuitive meaning. The term with τ
′ comes

from the fact that after we consider the first order in we−τ contribution,
different energies see different heights of the tunneling barrier. The term
proportional to σ′′n/σ′n is due to second order corrections to σn when the
splitting δE(1)

n is included, and it vanishes in the harmonic limit. On the
other hand, as will be shown in the next appendix, τ ′n is logarithmically
large when TΓA � EC and thus cannot be neglected. This leads to the
solution presented in the main text, Eq. (2.19). Note that in the main
text we have omitted the ng-independent part of δE(2)

n , which does not
affect the charge dispersion.

2.9 Appendix: Evaluation of the WKB integrals
In this appendix we derive expressions (2.21), (2.22), (2.23), and (2.24)
from the main text. In doing so we assume that ΓAT � EC and thus only
look at leading contributions in the ratio TΓA/EC to the WKB integrals.
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In this limit, the Bohr-Sommerfeld condition σ(En) = π(n + 1
2) can be

evaluated by expanding the integrand of σ(E) around φ = 0, and adjusting
the position of the classical turning point accordingly. The result is:

σ(E) = πE

ωp
, (2.132)

where ωp is the plasma frequency introduced in the main text. The result
above immediately yields Eq. (2.20) of the main text as well as Eq. (2.23),
σ′(E) = π/ωp.

With respect to the integral ρ(E), one can see that the coefficients c
and d in Eq. (2.22) are given by the integrals

c(T ) = 1√
8

∫ π

−π

√
1 + u(φ) dφ , (2.133)

d(T ) = 1√
8

∫ π

−π

dφ√
1 + u(φ)

(2.134)

where u(φ) = EA(φ)/ΓA. The only WKB integral which is relatively
non-trivial to calculate is τn:

τn =
√

ΓA
EC

∫ π

φn

√
1− yn − u(φ) dφ, (2.135)

where yn = En/ΓA and ±φn are the classical turning points for En. It is
convenient to split τn into three parts:

τn

√
EC
ΓA
≈
∫ π

ε

√
1− u(φ) dφ− yn

2

∫ π

ε

1√
1− u(φ)

dφ+
∫ ε

φn

√
1− yn − u(φ)dφ

(2.136)

Here, ε is small enough so that sin2 ε/2 � 1 but big enough such that√
1− yn − u can be expanded in yn. By splitting these terms further, we

may arrive at a representation in terms of elliptic functions:

I ≈
∫ π

0

√
1− u(φ) dφ− lim

ψ→0

yn
2

∫ π

ψ

1√
1− u(φ)

dφ−
∫ ε

0

√
1− u(φ) dφ

(2.137)

+ lim
ψ→0

yn
2

∫ ε

ψ

1√
1− u(φ)

dφ+
∫ ε

φn

√
1− yn − u(φ) dφ = i1 − i2 + i3 + i4 + i5

(2.138)
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Since φn, ε � 1, i3 + i4 + i5 is quite straightforward to calculate and is
equal to :

i3 + i4 + i5 = −
√
T

2
sin2 φn

2
2 +

sin2 φn
2

2

√
T

2 ln
sin2 φn

2
ψ2 , ψ → 0 (2.139)

For i1 we obtain the representation

i1 = −4 |r|√
1 + |r|

F (µ(0), k) + 8 |r|√
1 + |r|

Π(µ(0), 1, k) (2.140)

where F,Π are elliptic integrals of the first and second kind, and

µ(φ) = arcsin
√
u(ϕ)− |r|
u(ϕ) + |r| , (2.141)

k =
√

1− |r|
1 + |r| (2.142)

Similarly, for i2 we obtain:√
ΓA
EC

i2 = (2n+ 1)
√

2 |r|√
1− |r|(1 + |r|)

× (2.143)

× lim
ψ→0

(
2Π(µ(ψ), 1

k2 , k)− (1− |r|)F (µ(0), k)
)

(2.144)

Putting all the pieces together, we obtain Eq. (2.21) of the main text with
the coefficients

b = lim
ψ→0

ψ e

√
2|r|√

1−|r|(1+|r|)

(
2Π(µ(ψ), 1

k2 ,k)−(1−|r|)F (µ(0),k)
)
, (2.145)

a =
√

8 |r|
(1 + |r|)

√
1− |r|

(−F (µ(0), k) + 2Π(µ(0), 1, k)) . (2.146)

These coefficients were already reported in Ref. [116]. In a similar way,
for τ ′(En) we find:

τ
′
n = 1

ωp
ln 2En

ΓATb2
(2.147)
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Figure 2.3. Energy spectrum of the model in the weak tunneling limit. We recall
that ng is the charge induced on the island in units of 2e. (a): Energy levels of the
model of Eq. (2.1) with εr/EC = 0.2, Γ1 = Γ2 = 0. Note that charge parabolas
with the dot empty (occupied) are centered around integer (half-integer) values
of ng. (b): Energy levels with Γ/EC = 0.12 and δΓ/EC = 0.06. Blue and red
circles identify avoided crossings opened by a finite Γ1 and Γ2, respectively. (c):
Energy levels for εr = 0, δΓ = 0 and Γ/EC = 0.8. In panels (b) and (c) the
dashed lines represent the charge parabolas for Γ1 = Γ2 = 0.
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Figure 2.4. Dispersion of the energy levels of the resonant model of Eq. (2.1)
versus the model parameters, as the system is tuned from the de-tuned weak-
tunneling regime (left end of the plot) to the resonant strong-tunneling regime
(right end of the plot). The quantities shown are the 2e- and 1e-periodic com-
ponents of the charge dispersion δn(ng) of the n-th energy level, for n = 0 and
n = 1. For each quantity we show both the WKB prediction (solid or dashed
line) as well as numerical prediction via the diagonalization of the Hamiltonian
(dots). In the left panel, Γ/EC is varied at fixed εr/EC = 0.5 and δΓ/EC = 0.5.
In the middle panel δΓ/EC is varied at fixed Γ/EC = 15 and εr/EC = 0.5. In
the third panel εr/EC is varied at fixed Γ/EC = 15 and δΓ = 0. Note that in
the right panel the horizontal axis is also on a log scale.
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Figure 2.5. Comparison of the charge dispersion scaling in the resonant model
(solid line) versus the traditional Cooper-pair box (transmon) model. We plot the
peak-to-peak amplitude of the charge dispersion of the fundamental frequency
ω01 = E1 − E0 versus the averaged (over ng) value of ω01. For the resonant
model, the curve shown is obtained varying the ratio Γ/EC with δΓ = εr = 0,
while for the transmon model of Eq. (2.26) it is obtained varying EJ/EC . In the
first case, δ01 is dictated by 4π phase slips under a −Γ cos(φ/2) barrier, while in
the second case by 2π phase slips under a −EJ cosφ barrier.
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Figure 2.6. (a): Evolution of the energy difference ω01 = E1−E0, where E1 and
E0 are the two lowest eigenvalues of Eq. (2.1), determined numerically, as a func-
tion of ng, for different values of the detuning εr varying between εr/EC = 0.04
(dark green) to εr/EC = −0.04 (dark brown). The black dashed line emphasizes
the doubling of the periodicity at εr = 0. Other parameters are Γ/EC = 5,
δΓ/EC = 10−4. (b): Amplitudes of the 2e- and 1e-periodic components of the
charge dispersion as the resonant level is swept through resonance.
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Chapter 3

Tunneling of fluxons via a
Josephson resonant level

3.1 Introduction

The inductively shunted Josephson junction plays an important role in
the field of superconducting quantum devices [143, 144]. The inductive
link changes the topology of the circuit from that of an island to that of
a loop, removing the 2e charge quantization associated with a supercon-
ducting island. The charge sensitivity of the device is exchanged for its
flux sensitivity [27], which is exploited in the design and operation of the
fluxonium qubit [28, 30–33]. Furthermore, a large shunting inductance
suppresses the sensitivity to flux noise, as recently demonstrated in the
blochnium qubit [34]. For this reason, the inductive shunt is a common
feature of noise-protected qubit designs [111].

The minimal circuit that models this class of superconducting devices
is simple: it consists of an inductor, a capacitor and a Josephson element
connected in parallel [Fig. 3.1(a)]. The inductor and the Josephson junc-
tion form a loop through which an applied magnetic flux Φ is threaded.
The circuit supports persistent current states, also known as fluxons, in
which the superconducting phase winds by an integer multiple m of 2π
when circling the loop [94]. Fluxons are coupled by quantum phase slips
occurring at the Josephson junction 1, which change m by an integer
∆m (see Fig. 3.2).

1In principle, phase slips may also occur at other points in the loop, through the
inductor. We neglect this possibility, which is analyzed in Ref. [89]
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Figure 3.1. (a) Circuit of the inductively shunted Josephson junction. (b) A
junction realized by a resonant level with a tunable energy εr and Cooper pair
tunneling rates Γ1 and Γ2.

In a typical Josephson element, e.g. in a tunnel junction, the ampli-
tude of 2π quantum phase slips (∆m = 1) is much larger than that of 4π
quantum phase slips (∆m = 2). However, if Cooper pair tunneling across
the Josephson element is resonant – a type of weak link we call the Joseph-
son resonant level – 2π quantum phase slips are suppressed [22, 114–116]
and 4π quantum phase slips become the dominant coupling between flux-
ons. The bifluxon qubit proposal [7] achieves resonant tunneling using as
a Josephson element a series of two (almost) identical tunnel junctions
separated by a small superconducting island tuned (close) to a charge
degeneracy point. Alternatively, resonant tunneling can also occur in a
semiconductor junction, via an isolated energy level forming in a quantum
dot [117, 118, 121], as represented in Fig. 3.1(b). In the latter system, ex-
periments have demonstrated the drastic suppression of 2π quantum phase
slips close to resonance [16, 17], but not yet the occurrence of the regime
dominated by 4π quantum phase slips [22].

In this chapter, motivated by these experimental developments, we
study in detail the energy spectrum of an inductively shunted junction
with a Josephson coupling mediated by a single energy level [Fig. 3.1(b)].
We focus on the avoided crossings between energy levels directly connected
to the quantum phase slip amplitudes, and measurable via microwave
spectroscopy. We provide analytical expressions, backed by numerics, that
capture the entire crossover between 2π- and 4π-dominated regimes near
the resonance, as well as the regime away from resonance.

We also show that, when the inductive energy of the loop becomes
much smaller than the Josephson plasma frequency, the circuit is well
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described by a low-energy theory dual to that of a topological supercon-
ducting island. The duality we uncover extends a known duality between
a superconducting loop and a superconducting island [86]. It does so by
including an additional degree of freedom: the fluxon parity of the loop
(i.e. the parity of m), which we show to be dual to the fermion par-
ity of the island. Similar to fermion parity states encoded non-locally
in Majorana zero modes, states with opposite fluxon parity have disjoint
support in phase and provide a two-fold quasi-degeneracy to the energy
spectrum; thus, they become an attractive degree of freedom to encode
qubit states [7, 145]. We discuss the implications of our findings for the
design of protected qubits [111, 145] in the concluding section.

3.2 Model
Given a capacitance C and an inductance L, the inductively shunted junc-
tion of Fig. 3.1(a) is described by the quantum Hamiltonian [27]:

Ĥ = 4EC n̂2 + 1
2EL(φ̂+ φext)2 + V (φ̂) , (3.1)

where EC = e2/2C and EL = (Φ0/2π)2/L. The parameter φext = 2πΦ/Φ0
gives the applied flux Φ through the inductive loop in units of the flux
quantum Φ0 = h/2e. The Cooper pair number n̂ and phase φ̂ are conju-
gate variables satisfying [φ̂, n̂] = i.

The potential term V (φ̂) gives the Josephson energy, which for a tunnel
junction would be the familiar −EJ cos φ̂. For the case in which Joseph-
son coupling is mediated by an isolated energy level, as in Fig. 3.1(b), a
minimal model for the potential is:

V (φ̂) = −Γ cos(φ̂/2)τx − δΓ sin(φ̂/2)τy − εrτz . (3.2)

Here, the Pauli matrices τx, τy, τz act on the two-level system correspond-
ing to the resonant level being empty or doubly occupied; Γ = Γ1 + Γ2
and δΓ = Γ1 − Γ2 are the sum and difference of the 2e tunneling rates Γ1
and Γ2 between the two leads and the resonant level; and finally εr is the
energy of the resonant level [see Fig. 3.1(b)]. This model for the Joseph-
son resonant level has been discussed in Refs. [18, 19, 22]. Among other
things, these works discuss the role of a charging energy of the resonant
level, as well as the effect of additional transport channels and the contin-
uum part of the density of states; all elements which we do not include in
our work for simplicity.
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Figure 3.2. Potential landscape of the model of Eq. (3.1). We depict the two
branches of the potential energy U(φ) = 1

2EL(φ + φext)2 ± EA(φ). (a) When
the external flux is equal to half a flux quantum, fluxons are localized around
the Josephson potential minima at φ = 0, 2π (wave functions shown in orange).
Fluxons can tunnel between the minima via a 2π quantum phase slip (purple
arrow). (b) When the external flux is zero, fluxons localized around φ = ±2π
can tunnel via 4π quantum phase slips. Because of the second branch of the
potential, the 4π quantum phase slips can follow two interfering paths labeled a
and b (solid and dashed arrows), as described in the text.

The potential in Eq. (3.2) also applies to the bifluxon circuit deep
in the charging regime of the middle island [7], but parameters have a
slightly different meaning: Γ1 and Γ2 are Josepshon energies of two tunnel
junctions, and εr is the energy difference between two even-parity charge
states of the superconducting island.

Fluxonium devices are typically operated in a parameter regime such
that there is approximately one bound state in each of the local minima of
the modulated potential of Eq. (3.1) [28]. These bound states are fluxons
with a parabolic energy dispersion ≈ 1

2EL(2πm+ φext)2 [see Fig. 3.3(a)],
and become degenerate for particular values of φext. At the degeneracy
points, quantum phase slips create coherent superpositions of fluxons.

In particular, at φext = π the potential landscape is a degenerate
double well for fluxons with m = 0 and m = −1, which couple via 2π
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quantum phase slips [see Fig. 3.2(a)]. At φext = 0, instead, fluxons with
m = ±1 occupy degenerate minima symmetrically placed around φ = 0,
and are coupled by 4π quantum phase slips [see Fig. 3.2(b)]. When V (φ) =
−EJ cosφ, the 4π quantum phase slips have a much smaller amplitude
than 2π ones, since they are a higher-order process involving two 2π-slips
[27].

This is not necessarily the case for the Josephson resonant level [Eq. (3.2)],
because of the presence of a second branch corresponding to an excited
Andreev pair in the junction [146]. Indeed, the matrix-valued potential
V (φ̂) has eigenvalues ±EA, with

EA = ΓA
√

cos2(φ/2) + |r|2 sin2(φ/2) , (3.3)

where
ΓA =

√
Γ2 + ε2r , (3.4)

and
r = εr + iδΓ

ΓA
(3.5)

is the reflection amplitude of the junction.
The excited energy branch +EA is shown as a black dashed line in

Fig. 3.2(a,b). The relevant feature of Eq. (3.3) is an avoided crossing of
magnitude |r|ΓA at φ = ±π,±3π, . . . . In the next section we show that
in the limit r → 0, when the branches cross, the amplitude of 2π phase
slips vanishes. The system thus enters the regime in which 4π phase slips
are dominant.

3.3 Wentzel–Kramers–Brillouin (WKB) analysis
An observable consequence of quantum phase slips are avoided crossings
in the flux dependence of the energy spectrum of the circuit, see Fig. 3.3.
There, ∆2π is the splitting of the crossing between states with m = 0
and m = −1 at φext = π; it originates from 2π phase slips. ∆4π is
the splitting of the crossing between states with m = −1 and m = 1 at
φext = 0; it originates from 4π phase slips. The magnitude of these avoided
crossings can be computed using the WKB method [129], with calculations
similar to the one described in detail in Ref. [22]. One must perform
separate calculations to determine ∆2π and ∆4π, respectively using the
two potential landscapes at φext = π and φext = 0 [Fig. 3.2(a,b)]. In both
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Figure 3.3. (a) Energy spectrum as a function of flux, φext. The blue and
red insets zoom in on the avoided crossings due to 2π and 4π quantum phase
slips respectively (the vertical span of the insets is 1 GHz). The energies are
computed numerically from Eq. (3.1), with EC/h = 2.5 GHz, EL/h = 0.25 GHz,
Γ/h = 5 GHz, δΓ/h = εr = 0.5 GHz. These parameters correspond to a reflection
coefficient |r| = 0.14. The dashed gray lines illustrate the resonant case in which
εr = δΓ = 0 and so r = 0. (b) Comparison of the avoided crossings ∆2π and ∆4π
when sweeping system parameters. For all curves, we fix EC/h = 2.5 GHz and
EL/h = 0.25 GHz. The pink and green data show results obtained approaching
resonance in two different ways. In both cases we set Γ/h = 10 GHz. In green,
εr/h is varied between 0 and 1 GHz, with δΓ = 0. In pink, δΓ/h is varied instead
between 0 and 1 GHz, with εr = 0. For both curves, |r| ≈ 0.1 on the right side of
the plot, and tends towards 0 on the left side of the plot, where δΓ = εr = 0 and
∆2π vanishes. Dots are computed numerically by diagonalizing Eq. (3.1), while
dashed lines are obtained from the WKB result of Eqs. (3.6) and (3.9). The grey
dots show the low-transparency scaling obtained from numerical diagonalization
of Eq. (3.1) with V (φ̂) = −EJ cos φ̂, varying EJ/h between 10 and 40 GHz. The
dashed line corresponds to the T � 1 limit of Eqs. (3.6) and (3.9), with the
correspondence EJ = ΓAT/4.

cases, the presence of a second branch of the potential crucially modifies
the WKB tunneling amplitude under the barrier separating different local
minima [22, 114–116, 136].

In this section, we discuss the implications of this fact using a WKB
calculation appropriate for the parameter regime typical of fluxonium
qubits, in particular with respect to the value of EL. In the next sec-
tion, the results are generalized to arbitrarily low values of the inductive
energy.

For the 2π quantum phase slips at φext = π, under validity conditions
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discussed at the end of the Section, one obtains

∆2π = w(r)ωp
(
b20ωp

2πEC

)1/2

exp
(
−b1

ωp
EC

+ b2
EL
ωp

)
. (3.6)

where
ωp =

√
2TΓAEC , T = 1− |r|2 , (3.7)

and b0, b1, b2 are numerical coefficients which depend smoothly on the
transmission probability T . They are given in Appendix 3.6. The pre-
factor w(r) is given by

w =
√

2π
λ

e−λλλ

Γ(λ) , λ = |r|
2

4
ΓA
Γ

√
ΓA
EC

. (3.8)

with Γ(λ) the gamma function evaluated at λ, not to be confused with
tunneling rates. The amplitude w vanishes when r → 0, making the
fluxon bound states degenerate at φext = π. The parameter λ sets the
scale for the crossover into the degenerate regime: the suppression of ∆2π
takes place when λ � 1, namely when |r|2 �

√
EC/Γ, while w ≈ 1 in

the opposite limit λ � 1. The mechanism behind the suppression is the
imaginary-time Landau-Zener transition across the avoided crossing [114].

The WKB calculation of ∆4π is more delicate, because there are two
tunneling paths between the minima at φ = ±2π, labeled a and b in
Fig. 3.2(b). They differ by the branch of the potential that they take
between the two avoided crossings at φ = ±π. Path a takes place via the
lower branch of the potential. It consists of the sequence of two 2π phase
slips, passing through a classically available region around φ = 0. Path
b, instead, takes place via the excited branch of the potential and passes
through a single 4π-wide tunneling barrier.

Notably, the two contributions interfere. The interference phase is
that of the reflection amplitude r = |r| eiα, which distinguishes the path
going through the avoided crossings from the one which does not. The
sensitivity of energy levels to the phase acquired at the avoided crossing is
akin to the Landau-Zener-Stückelberg interference [147]. The final result
for the energy splitting takes the form

∆4π =
√

∆2
a + ∆2

b − 2 ∆a ∆b cos(2α) . (3.9)
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Here, ∆a is the contribution due to the sequence of two 2π phase slips. It
takes the form:

∆a = ∆2
2π

4π2EL

(
b20ωp
2EC

)2π2EL/ωp

(3.10)

where ∆2π is the same as given in Eq. (3.6). Note that this contribution
vanishes when r → 0. On the other hand, ∆b is the amplitude of a direct
4π quantum phase slip. It does not vanish at resonance, and is given by

∆b = ωp

(
b20ωp

2πEC

)1/2

exp
(
−b3

√
ΓA
EC

+ b4
EL
ωp

+ b5

)
(3.11)

with b3, b4, b5 another three coefficients smoothly depending on T , also
given in Appendix 3.6.

The results of Eq. (3.6) and (3.9) are illustrated in Fig. 3.3. The
parametric plot of ∆4π versus ∆2π shows that, close to resonance, ∆2π
vanishes and ∆4π remains finite. The 4π-dominated regime is approached
differently depending on whether the junction is tuned to resonance by
varying δΓ or by varying εr. When δΓ 6= 0, α = π/2 in Eq. (3.9), and so
∆a and ∆b can never cancel out. When εr 6= 0, α = 0, and so complete
cancellation (∆4π = 0) occurs at the value of εr such that ∆a = ∆b.

Eqs. (3.6) and (3.9) are valid when EC � ΓAT/4, EL � ωp, and
max(∆2π,∆4π) � EL, and apply only to the splitting of fluxons belong-
ing to the lowest harmonic level in the relevant potential minima. The
first condition is required for the validity of the semiclassical WKB ap-
proach. The second condition guarantees that we can disregard fluxons
originating from the other harmonic levels inside the wells. Finally, the
third condition allows us to ignore the presence of the higher-energy min-
ima of the potential energy. The assumed hierarchy of energy scales is
in line with experimentally reported parameters of fluxonium devices [28,
148, 149], with better accuracy in the “heavy” regime EC � ΓAT/4 [148,
149].

In Eqs. (3.6) and (3.11) we include contributions to the WKB expo-
nent proportional to the small parameter EL/ωp. These contributions
originate from the lifting of the energy minima of the periodic potential
V (φ), as well as the change in the WKB momentum due to the EL term.
Although they are sub-leading contributions to the WKB integrals, and
are subtle to compute, we find that they are important for the agreement
with numerical calculations in the parameter regime of the aforementioned
experiments, such as the parameters used in Fig. 3.3.
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Figure 3.4. Energy spectrum as a function of decreasing inductive energy EL.
(a) Energy levels determined from direct numerical diagonalization of Eq. (3.1);
the parameters are EC/h = 2.5 GHz, Γ/h = 5 GHz, φext = 0, εr/h = 10 MHz
and δΓ = 0, corresponding to r ≈ 0.002, very close to resonance. As EL → 0,
the energy levels tend to fill the areas shaded in red and green. These correspond
to the energy bands defined in Eq. (3.15) for s = 0, 1. The bandwidth of the
s = 0 band is barely resolvable at about 16 MHz and so it is also indicated
by the red arrow. (b) Result of the numerical diagonalization of the effective
Hamiltonian Hs of Eq. (3.18), separately for s = 0, 1. The quantum phase slip
amplitudes used in the effective Hamiltonian are A0 ≈ 2.8 MHz, B0 ≈ 6.6 MHz;
and A1 ≈ 7.8 MHz, B1 ≈ 133 MHz. While the effective spectrum in (b) faithfully
reproduces the clustering of energy levels into bands, it does not capture avoided
crossings in (a) that originate from the inter-band couplings. (c) Low-lying energy
levels computed for the s = 0 band at φext = π both on resonance (δΓ = ε = 0)
and off-resonance (δΓ = εr = 0.5 GHz, i.e., |r| ≈ 0.14). The low-energy effective
parameters are A0 = 0 and B0 ≈ 6.6 MHz for the resonant case, and A0 ≈
160 MHz and B0 ≈ 7.3 MHz for the off-resonant case. The panel illustrates the
different degeneracy of energy levels that is observed in the two cases: degenerate
doublets in the resonant case split off-resonance due to 2π quantum phase slips.

As long as EC � ΓAT/4, Eqs. (3.6) and (3.9) remain valid also in the
low-transparency regime T � 1, away from resonance. In fact, in the limit
T � 1, Eq. (3.6) and (3.9) match exactly the results of an equivalent WKB
calculation done with the tunnel junction potential V (φ̂) = −EJ cos φ̂,
provided that one sets EJ = ΓAT/4 so that ωp =

√
8EJEC . In this off-

resonant regime one always has ∆4π � ∆2π, as shown by the gray lines
in Fig. 3.3.
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3.4 Duality with a topological superconducting
island

We now ask what happens to the low energy spectrum when EL is lowered,
so that the assumption EL � max(∆4π,∆2π) behind the results from the
last section is violated and the discussed eigenstates are delocalized over
more minima.

The scaling of the energy spectrum of Eq. (3.1) towards the limit
EL → 0 is shown in Fig. 3.4. In the limit EL � ωp, as more and more
local minima of the potential appear at energies below ωp, we observe
the condensation of bands of narrowly spaced energy levels. We now
derive an effective Hamiltonian appropriate to describe this regime, via
similar steps as those described in Ref. [27] for the standard fluxonium
Hamiltonian. The derivation will establish the duality with the topological
superconducting island mentioned in the introduction.

To begin with, when EL � ωp, it becomes convenient to write the
Hamiltonian (3.1) in the eigenbasis of its EL → 0 limit. The eigenfunctions
can be represented in the following way:

Ψns(φ) = e−inφuns(φ) ≡ 〈φ | n, s〉. (3.12)

Here, s is an integer number that refers to a band index and n is a con-
tinuous variable, n ∈ [0, 1). By substitution into (3.1), the spinor wave
functions uns(φ) satisfy a transmon-like equation:

[4EC(−i∂φ − n)2 + V (φ)]uns = Es(n)uns, (3.13)

with the boundary condition that was derived in Ref. [22]:

uns(φ+ 2π) = τzuns(φ) . (3.14)

Note that uns are defined on the circle φ ∈ [0, 2π) and, at a fixed n,
they form an orthonormal basis with respect to the band index s. This
ensures that Ψns(φ), which are functions of a non-compact phase, form
an orthonormal basis with different s and n.

This eigenvalue problem was analyzed in Ref. [22], where we showed
that the eigenspectrum takes the form:

Es(n) = εs +As cos(2πn+ αs) +Bs cos(4πn+ βs) . (3.15)

Here, As and Bs are the 2π and 4π quantum phase slip tunneling ampli-
tudes for the periodic potential V (φ), and αs and βs are associated phase
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shifts. The bands are harmonically spaced, εs ≈ ωp(s+ 1
2), while As and

Bs are exponentially small in ωp/EC . Detailed expressions as a function
of EC , Γ, δΓ and εr are derived in Ref. [22] and restated in Appendix 3.7.
The simple form above for the energy bands was derived via the WKB
method. It is accurate for EC � ΓAT/4 and for low-lying bands.

For the lowest band, the parameters A0 and B0 are closely connected
to the quantities ∆2π and ∆4π computed in the previous section. In par-
ticular, A0 can be identified with the limit EL/ωp → 0 of ∆2π in Eq. (3.6),
but the same is not true for B0, since in Eq. (3.9) the ratio ∆2π/EL ap-
pears as well (i.e., both A0 and B0 contribute to ∆4π). We have verified
numerically that the low-energy spectrum of the s = 0 band, discussed in
more detail below, matches the expressions for the energy splittings given
in Eqs. (3.6) and (3.9). This is true provided EL is low enough to neglect
the sub-leading EL/ωp terms in those equations, but large enough so that
EL � max(∆2π,∆4π) as required in the previous section.

In the basis |n, s〉, the phase operator is represented as φ̂ = −i∂n − Ω̂.
It couples different bands only via the connection matrix elements Ωss′ :

〈n, s| Ω̂
∣∣n′, s′〉 = δ(n− n′)Ωss′(n)

Ωss′(n) = i

∫ 2π

0
u†ns∂nuns′dφ

(3.16)

These can be evaluated in the same limit where (3.15) was calculated:

Ωss′(n) ≈ −
( 8EC

ΓAT

)1/4 (√
sδs′,s+1 +

√
s+ 1δs′,s−1

)
. (3.17)

The interband couplings can be neglected for EC � ΓAT/4. Therefore,
the original Hamiltonian of Eq. (3.1) separates into blocks labelled by the
band index s:

Hs = 1
2EL(−i∂n + φext)2 + Es(n) . (3.18)

It must be solved with the periodic boundary conditions ψs(n+1) = ψs(n).
The eigenvalues of this block-diagonal Hamiltonian, shown in the right
panel of Fig. 3.4, compare favorably to the numerical solution of the full
Hamiltonian, Eq. (3.1), shown in the left panel of Fig. 3.4.

The fluxon states localized around minima φ = 2πm with integer m
are related to |n, s〉 via the Fourier transform:

|2πm, s〉 =
∫ 1

0
dne2πimn |n, s〉 . (3.19)
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It is easy to see that, at resonance, As vanishes and the parity of m
becomes conserved. With this in mind, we introduce in lieu of |n, s〉 a
new basis |n, σ, s〉 endowed with a spin-like degree of freedom related to
the fluxon parity:

|n, ↑, s〉 = |n, s〉+ |n+ 1/2, s〉√
2

, (3.20)

|n, ↓, s〉 = |n, s〉 − |n+ 1/2, s〉√
2

, (3.21)

with n ∈ [0, 1/2). In terms of these basis states,

|2πm, s〉 =
√

2
∫ 1/2

0
dn |n, σ, s〉 e2πimn , (3.22)

where m is even for σ = ↑ and odd for σ = ↓.
The Hamiltonian Hs in this doubled space reads

Hs = 1
2EL(i∂n − φext)2 +Asσx cos(2πn+ αs)

+Bs cos(4πn+ βs) + εs . (3.23)

The Pauli matrices act on the spin-like degree of freedom and the boundary
conditions in the halved Brillouin zone become twisted:

ψs(n+ 1
2) = σzψn(n) . (3.24)

Although Eq. (3.23) is just a re-writing of Eq. (3.18), it illuminates the
fact that the low-energy description is precisely dual to that of a super-
conducting island shunted to ground by a topological Josephson junction
with coupled Majorana zero modes [see Fig. 3.5(a)]. The Hamiltonian of
such an island is [140, 150–152]

HM = 4EC(i∂φ − ng)2 + EM iγ1γ2 cos(φ/2)
− EJ cosφ . (3.25)

Here, the first term is the charging energy of the island, ng is the in-
duced charge in units of 2e, EJ represent standard Cooper pair tunneling,
and the last term represents single-charge tunneling due to the Majorana
zero modes γ1 and γ2 coupled across the topological junction (the frac-
tional Josephson effect). Note that there are four Majorana zero modes
in the model, with γ0 and γ1 located on the island and γ2 and γ3 located
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on the ground plane (see Fig. 3.5). Although only γ1 and γ2 appear in
the Hamiltonian, the boundary condition for Eq. (3.25) depends on the
fermion parity operator of the island iγ0γ1:

ψ(φ+ 2π) = (−1)p ψ(φ) , (3.26)

with p = (1 − iγ0γ1)/2 = 0 or 1 if the parity is even or odd. The opera-
tor iγ0γ1 appearing in the boundary condition anticommutes with iγ1γ2
appearing in the Hamiltonian, just like the fluxon parity σz entering the
boundary condition of Eq. (3.24) anticommutes with σx.

As illustrated in Fig. 3.5(a) and (b), the duality is established via
the following correspondences: φ ↔ 4πn, φext ↔ 4πng, EC ↔ 2π2EL,
EJ ↔ Bs, EM ↔ As. The operator iγ1γ2 changes the fermion parity of
the island, just like the operator σx changes the fluxon parity. The phase
shifts αs and βs can be included in the correspondence by adding a relative
phase between the EM and EJ terms, which could arise for instance in
a superconducting quantum interference device (SQUID) configuration.
Finally, we note a difference between this duality and the one between
the Cooper-pair box and the phase-slip junction discussed by Mooij and
Nazarov [86]: in our case, 2π quantum phase slips are dual to charge
1e tunneling, rather than 2e tunneling. This different mapping means
that the duality of Mooij and Nazarov cannot be recovered simply by
disregarding 4π phase slips.

It follows from the duality that, in the limit of low EL, the flux disper-
sion of the energy levels of the circuit is equivalent to the charge dispersion
of the energy levels of a superconducting island governed by Eq. (3.25).
The first consequence of the duality is illustrated in Fig. 3.4(c), where
we focus on the lowest energy levels of the s = 0 band when φext = π.
In this case, at resonance, fluxon parity provides a two-fold degeneracy
to the energy spectrum of the circuit, which is broken by 2π quantum
phase slips away from resonance. The flux dispersion of energy levels
away from this point is instead shown in Fig. 3.5: when 2π2EL � B0, the
circuit is in a “Cooper-pair box regime”: the energy levels are essentially
given by parabolas with small avoided crossings at degeneracy points [see
Fig. 3.5(b)]. On the other hand, when 2π2EL � B0, the circuit is in a
“transmon regime” [see Fig. 3.5(c)], characterized by a flattening of the
dispersion of energy levels as a function of flux. The spacing between these
flat energy levels depends on the value of A0. If A0 = 0, the energy levels
become fluxon-parity degenerate doublets at all values of the flux in the
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limit EL → 0, with a spacing between doublets ∼
√
ELB0 [dashed lines

in Fig. 3.5(c)]. A finite but small 2π quantum phase slip amplitude splits
the doublets by an amount ≈ A0 [solid lines in Fig. 3.5(c)].

3.5 Conclusion

The difficulty of measuring directly the 4π-dominated regime occurring at
resonance lies in the smallness of 4π quantum phase slips. This was the
reason, for instance, that the effect of 4π quantum phase slips was not de-
tected in the transmon experiments of Ref. [16, 17]. The results of Fig. 3.3
show that measuring the 4π-dominated regime should be feasible in circuit
with typical fluxonium parameters: EC/h = 2.5 GHz and EL/h = 0.25
GHz. At perfect resonance, when ∆2π vanishes, ∆4π/h ≈ 5 MHz if
Γ/h ≈ 5 GHz: albeit small, splittings of this magnitude have been de-
tected and exploited in heavy fluxonium circuits [148, 153]. Larger values
of ∆4π can be obtained by decreasing ΓA/EC (somewhat exiting the do-
main of validity of our WKB results).

The 4π-dominated regime is narrow: with the parameters of Fig. 3.3,
one needs εr/Γ . 10−3 and δΓ/Γ . 10−3 to achieve ∆2π . ∆4π. For
bifluxon circuits, it may be difficult to limit the asymmetry δΓ, which is
set by the fabrication of the tunnel junctions [154, 155] and cannot be
tuned afterwards, unless SQUIDs are added to the design for the purpose.
For semiconductor junctions, instead, a difficulty would be to maintain εr
and δΓ in such narrow ranges in the presence of charge noise. However,
we argue that semiconductor junctions present a qualitative advantage
relative to the bifluxon: stronger coupling between the weak link region
and the superconducting leads can be achieved without sacrificing anhar-
monicity, namely without compromising the two-level approximation used
in the model for the weak link [156]. As we explain below, the possibility
to increase Γ without exiting the regime of validity of the model may be
beneficial to find a parameter regime which offers more benevolent condi-
tions to observe the 4π-dominated regime.

The duality derived in Sec. 3.4 is suggestive for the design of protected
qubits. In the topological superconducting island, the regime EM = 0
defines a parity-protected qubit [108]: as long as EJ � EC , noise acting
on the island can neither dephase nor flip the qubit encoded in the parity
of the Majorana pair. In our inductive loop, a similar regime corresponds
to the resonant condition A0 = 0 together with the condition 2π2EL �
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B0 [7]. In this regime, noise in the loop cannot dephase or flip the qubit
encoded in the fluxon parity of the loop. The former process is suppressed
exponentially in the ratio

√
8B0/(2π2EL).

From the theoretical point of view, both models discussed in Sec. 3.5
can be cast as a one-dimensional tight-binding model in which the nearest-
neighbor hopping (EM or A0) can become smaller than the next-nearest
neighbor hopping (EJ or B0); the hopping represents tunneling of charge
or flux depending on the side of the duality. When the nearest-neighbor
hopping is set to zero but the next-nearest neighbor hopping is not, the
one-dimensional lattice disconnects in two separate pieces, corresponding
to “even” and “odd” sites of the lattice. Protected qubits can then be
encoded in the parity degree of freedom: parity states are degenerate
and have disjoint support. The degeneracy is broken by the inductive or
charging energy, which assigns different energies to even and odd sites, but
does not couple them 2. With this general picture in mind, it becomes
intuitive to see that the duality can be extended to other circuits – for
instance, a transmon with both a cos(φ) and a cos(2φ) Josephson element
– thus defining a sort of equivalence class of different models of protected
superconducting qubits. Dualities of this type have also been discussed in
Ref. [157].

From a practical point of view, an immediate problem with the pro-
tected regime of our model is the requirement for extreme smallness of
EL: to the best of our knowledge, the current record in the literature
stands at EL/h ≈ 65 MHz [34], likely higher than what would be needed
for the condition 2π2EL � B0. A related issue is that the level spacing
would be in the MHz range, requiring some active cooling to reach the
quantum regime at accessible temperatures (milliKelvin scale). At low
values of EL – often reached via high-kinetic inductance thin-films with
very low Cooper-pair densities – the occurrence of phase slips across the
inductor, neglected here, may also have to be taken into account. A com-
mon strategy to minimize all the problems mentioned so far is to increase
the quantum phase slip rates as well as the plasma frequency, essentially
trying to maximize both ΓA and EC while keeping the ratio ΓA/EC con-
stant and of order one. Using superconductors with a larger energy gap
than Al in the resonant level junction would allow more room to increase

2When dealing with the Hamiltonian (3.25), one has to keep in mind that the bound-
ary conditions (3.26) are twisted. After one makes a gauge transform to change the
boundary conditions to periodic, the equilibrium charge ng in the kinetic term is shifted
differently for different parities.
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ΓA without exiting the tunneling limit. It is also essential to minimize the
quasiparticle poisoning rate of the quantum dot (which is an analogue of
the poisoning events of the Cooper pair box island in the bifluxon [7]), as
our model (3.2) assumes even occupation numbers of the Andreev bound
state.

Even then, the protected regime is fine-tuned by the need for the reso-
nant condition to eliminate 2π quantum phase slips, which couple fluxons
of different parity, breaking the parity protection. Possible circuit exten-
sions that work around this fine-tuning problem were already discussed in
the bifluxon proposal of Ref. [7] and could be adapted to semiconductor
junctions as well.

Despite these obstacles, the existence of a protected regime, corrob-
orated by the duality derived in this work, will make it interesting and
rewarding to reach the hard-to-reach parameter regime in which the in-
ductive energy becomes much smaller than the quantum phase slip rates.

3.6 Appendix: Definitions of the coefficients

In this Appendix, we give the explicit expressions for the coefficients
b0, b1, b2, b3, b4, b5 used in the previous sections of this chapter. We in-
troduce auxiliary definitions first:

u(φ) = EA(φ)/ΓA =
√

1− T sin2(φ/2) , (3.27)

µ(φ) = arcsin
√
u(ϕ)− |r|
u(ϕ) + |r| , (3.28)

h = |r|
(1 + |r|)

√
1− |r|

, (3.29)

k =
√

1− |r|
1 + |r| . (3.30)

Then b0 and b1 are defined in terms of elliptic integrals of the first and
second kind, as follows:

b0 = lim
ψ→0

ψ e
√

2h[2Π(µ(ψ),k−2,k)−(1−|r|)F (µ(0),k)] (3.31)

b1 =
√

8h [−F (µ(0), k) + 2Π(µ(0), 1, k)] . (3.32)
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For the rest of the coefficients, we have:

b2 =
√
T

8

∫ π

0

(π2 − φ2)dφ√
1−

√
1− T cos2 φ/2

. (3.33)

b3 =
√

2T b1 +
∫ π

0

√
1 + u(φ)dφ (3.34)

b4 =
√
T

8

∫ π

0

[
φ(4π − φ)√

1− u(φ)
+ 4π2 − φ2√

1 + u(φ)

]
dφ , (3.35)

b5 =
√
T

8

∫ π

0

dφ√
1 + u(φ)

. (3.36)

3.7 Appendix: Expressions for the low-energy
Hamiltonian parameters

The expressions below are given in Ref. [22], where As, Bs are denoted
δ2e
s , δ

1e
s and αs, βs are denoted β2e

s , β
1e
s respectively. We state them here for

convenience. They have been derived using parabolic cylinder functions
near the minima of the Josephson potential. The intermediate expressions
(3.37), (3.39), (3.40) are different from [22], but the results for As, αs and
Bs, βs are the same after the substitution of (3.39) into (3.37), (3.40).
The 2π-tunneling amplitude and phase for a band s are given by:

As = wωp
zπ

e−τs , αs = π(s+ 1)− α (3.37)

z = s!es+1/2

(s+ 1/2)s+1/2
√

2π
, (3.38)

with w and α as defined in the main text. Here, τs is some WKB integral
that can be evaluated to:

e−τs = z
√

2π
s!

(
b20ωp
4EC

)s+ 1
2

exp
(
−b1

ωp
EC

)
. (3.39)

Note that the expression for As=0 coincides with Eq. (3.6) when EL/ωp →
0.
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For 4π phase slips, there are two terms contributing to the overall
amplitude Bs and phase βs, which are defined by the equality:

Bs cos(4πn+ βs) = (−1)s+1ωp
πz

e−ρse−τs cos (4πn)

+ w2ωp
2π2z2 log

 b20ωp

4EC
(
s+ 1

2

)
 e−2τs cos (4πn− 2α) . (3.40)

Here ρs is another WKB integral, this time evaluating to

ρs = (b3 −
√

2Tb1)
√

ΓA
EC
− b5 (2s+ 1). (3.41)
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Figure 3.5. (a) Schematic illustration of the duality between a supercondcting
loop (left) with 2π and 4π phase slip elements A0 and B0 and a topological
superconducting island (right) with 1e and 2e tunnel couplings EM and EJ . The
four grey dots on the right represent four Majorana zero modes, two on the
island and two on the ground. Φ and Vg are the flux and voltage applied to the
loop and island, corresponding to the tuning parameters φext = 2πΦ/Φ0 and
ng = CVg/2e. (b) Dispersion of the three lowest energy levels of the circuit as a
function of flux, obtained from diagonalization of the s = 0 band Hamiltonian of
Eq. (3.18). We set EC/h = 2.5 GHz and Γ/h = 5 GHz, and εr/h = δΓ/h = 10
MHz. In these conditions, the quantum phase slip parameters of Eq. (3.18) are
A0 ≈ 3.3 MHz and B0/h ≈ 6.7 MHz. The dashed parabolas are the energies
of uncoupled fluxons, which are dual to uncoupled charge states. Labels relate
avoided crossings to model parameters on either side of the duality. (c) Flux
dispersion of the energy levels of the circuit for lower values of EL, illustrating
the “transmon” regime. The solid lines are obtained for the same parameters
as in panel (b), while the dashed lines are obtained at resonance: εr = δΓ = 0.
In this case, A0 = 0 and energy levels gather in almost degenerate doublets. In
panel (b), B0/(2π2EL) ≈ 0.3, while in panel (c) B0/(2π2EL) ≈ 3.3 and 6.6. Note
that the vertical energy scale changes between plots, following the reduction in
EL.
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Chapter 4

Phase-shifted Andreev
levels in an altermagnet
Josephson junction

4.1 Introduction

Altermagnets (metals with a d-wave magnetization that ”alternates” di-
rection in momentum space) differ from ferromagnets and antiferromag-
nets in that they combine a spin-polarized Fermi surface with a vanishing
net magnetization [64, 65, 69, 70]. Candidate altermagnetic materials
include RuO2, MnTe, and Mn5Si3 [67, 72, 158, 159]. The interplay of
altermagnetism and superconductivity produces unusual effects [160], in-
cluding orientation-dependent Andreev reflection [77, 78], negative critical
supercurrent with finite-momentum Cooper pairing [8, 9], and topological
Majorana modes [79, 80].

A basic building block for these effects is the altermagnet Josephson
junction, in which two s-wave superconductors (gap ∆0, phase difference
φ) are connected by a d-wave magnetic region (see Fig. 4.1). The subgap
excitations are Andreev levels, electron-hole superpositions confined to
the junction. If the length L of the junction is short compared to the
superconducting coherence length ξ0 = ~vF/∆0, there is one Andreev
level per spin direction and per transverse mode.

For a non-magnetic Josephson junction the Andreev levels are spin-
degenerate, and the φ-dependence of the excitation energy is given by
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Figure 4.1. Josephson junction consisting of a pair of superconductors (pair
potential ∆0, phase difference φ) connected by an altermagnet. We consider a
short planar junction, W � ξ0 � L.

[161]

E = ∆0

√
1− T sin2(φ/2), (4.1)

where T ∈ (0, 1) is the transmission probability through the junction of
an electron mode at the Fermi level in the normal state.

Here we investigate how the altermagnet modifies the excitation spec-
trum. For unit transmission through a planar junction the cos(φ/2) An-
dreev band is split into spin-polarized branches. The splitting is a phase
shift ±δφ that depends on the angle θ of the junction with the crystalline
axis of dxy-wave symmetry. For θ = 0 the relation (4.1) with φ 7→ φ± δφ
still holds for non-unit transmission. We test these analytical predictions
with a computer simulation of a tight-binding model of the altermagnet
Josephson junction.

These results provide an alternative description of the 0–π transition
reported recently [8, 9], where the sign of the critical current oscillates
with increasing L. The description is particularly simple for θ = 0, when
the phase shift δφ is proportional to the transverse momentum ky, so
∂E/∂φ ∝ ∂E/∂ky. The supercurrent I ∝

∫ kF
−kF

dky(dE/dφ) is therefore
directly given by an energy difference — the integral operation cancels the
derivative. The resulting critical current Ic oscillates ∝ (sin δφmax)/δφmax,
with δφmax ∝ kFL.
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4.2 Altermagnet Josephson junction

We consider the Josephson junction geometry of Fig. 4.1, consisting of a
pair of superconducting regions (x < 0 and x > L) connected by a non-
superconducting magnetic metal (0 < x < L). The superconducting pair
potential ∆ has s-wave symmetry, while the magnetization has the d-wave
symmetry characteristic of an altermagnet. The junction has length L and
width W .

For large width W , and without impurity scattering, we may assume
translational invariance in the y-direction, so that the transverse momen-
tum ky is a good quantum number. We work in the short-junction regime
L� ξ0.

The excitation spectrum is described by the Bogoliubov-De Gennes
(BdG) Hamiltonian

H(k) =
(
H0(k) ∆

∆∗ −σyH∗0 (−k)σy

)
, (4.2)

H0(k) = ~2

2m(k2
x + k2

y)− µ

+ ~2

m
t1kxkyσz + ~2

m
t2(k2

y − k2
x)σz. (4.3)

The σα’s are Pauli spin matrices, k = (kx, ky) is the electron momentum
(two-dimensional, for simplicity), and µ = ~2k2

F/2m = 1
2mv

2
F is the Fermi

energy. In what follows we set ~ = 1 and the electron mass m = 1
(restoring units in the final results).

The d-wave exchange interaction is characterised by two dimensionless
parameters t1 and t2, which depend on the angle θ of the altermagnet-
superconductor (AS) interface relative to the crystalline axes,

t1 = 2t0 cos 2θ, t2 = t0 sin 2θ. (4.4)

The parameter t0 is of order 10−1 [72]. For θ = 0 the magnetization has
pure dxy-wave symmetry, for θ = π/4 it has pure dx2−y2-wave symmetry.

The 4 × 4 Hamiltonian (4.2) decouples into 2 × 2 blocks H↑ and H↓.
The blocks are spin-polarized in the sense that electrons and holes occupy
opposite spin bands, so that each block describes quasiparticles with a
definite magnetic moment.
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We consider the spin-up block

H↑(k) =
(
H+(k) ∆

∆∗ −H−(k)

)
, (4.5)

H±(k) = 1
2(k2

x + k2
y)− µ± t1kxky ± t2(k2

y − k2
x). (4.6)

The spin-down block H↓ is obtained by switching t1 7→ −t1, t2 7→ −t2.
Near the Fermi level (E = 0) we may linearize the kx-dependence of

H↑ at given momentum ky, parallel to the AS interfaces at x = 0 and
x = L. In the altermagnet region 0 < x < L, where ∆ = 0, we have

H↑ = (v̄ − τzδv)νzτz(kx −Q0 −Qzτz). (4.7)

The Pauli matrix τz acts on the electron-hole degree of freedom, while νz
distinguishes right-movers from left-movers.

In Eq. (4.7) we have introduced the velocities

v± = vF

√
1± 2t2 − (ky/kF)2(1− t21 − 4t22) ≡ v̄ ± δv, (4.8)

and momentum offsets

Q0 = kF(1− 4t22)−1(νz(v̄ − 2t2δv)/vF − 2t1t2ky/kF
)
,

Qz = kF(1− 4t22)−1(νz(2t2v̄ − δv)/vF − t1ky/kF
)
.

(4.9)

For later use we also define

Q±0 = kF(1− 4t22)−1(±(v̄ − 2t2δv)/vF − 2t1t2ky/kF
)
,

Q±z = kF(1− 4t22)−1(± (2t2v̄ − δv)/vF − t1ky/kF
)
.

(4.10)

4.3 Andreev levels without normal reflection
Andreev reflection at x = 0 and x = L converts electrons into holes, with
absorption of the missing charge of 2e into the superconducting condensate
[14]. It coexists with normal reflection, without charge conversion. In this
section we neglect normal reflections, we will include these in the next
section.

Andreev reflection from electron to hole with energy E, at a pair po-
tential ∆ = ∆0e

iφ, is associated with a phase shift e−iφ−iα(E), where

α(E) = arccos(E/∆0) ∈ (0, π), |E| < ∆0. (4.11)
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The phase shift for reflection from hole to electron is e+iφ−iα(E). We set
∆ = ∆0e

iφ/2 at the left superconductor (x < 0) and ∆ = ∆0e
−iφ/2 at the

right superconductor (x > L).
The condition for a bound state is that the phase increment on a round-

trip x = 0 7→ L 7→ 0 is a multiple of 2π. For kFL � µ/∆0 (equivalently,
L� ξ0, the short-junction regime) we may ignore the energy dependence
of the phase shift accumulated in the normal region, while retaining the
energy dependence of the Andreev reflection phase shift α(E). This gives
the bound-state condition

φ+ 2LQ±z = ±2α(E) mod (2π). (4.12)

The ± sign distinguishes whether the right-moving quasiparticle is an
electron or a hole. The contribution Q0 to the phase shift cancels in the
round-trip, only the increment Qz contributes.

We thus obtain two branches of Andreev levels E±↑ , with

E±↑ = ±∆0 sign (sinψ±↑ )| cos 1
2ψ
±
↑ |, (4.13a)

ψ±↑ = φ+ 2LQ±z . (4.13b)

We have added the subscript ↑ as a reminder that these are the bound
states of H↑. For H↓ one replaces L 7→ −L.

In a non-magnetic Josephson junction the Andreev levels are spin de-
generate, with a cosine phase dependence [162]: E = ±∆0 cos(φ/2). As
illustrated in Fig. 4.2, the altermagnet breaks up the cosine into branches
that are phase shifted by a spin-dependent amount. Each branch con-
nects the edges of the gap at ±∆0, where the bound states merge with
the continuous spectrum. Electron-hole symmetry (±E symmetry of the
spectrum) is ensured by the identity

Q+
z (ky) = −Q−z (−ky)⇒ E±↑ (ky) = −E∓↓ (−ky). (4.14)

4.4 Including normal reflection
An electron incident on the superconductor may be Andreev reflected as
a hole, but it may also be reflected as an electron. Such normal reflection
can be modeled by the insertion of a tunnel barrier at the two ends of the
altermagnet. We assume that the barrier potential V (x) does not break
the translational invariance along the y-direction, so that the transverse
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Figure 4.2. Phase dependence of the Andreev levels, computed from Eq. (4.13)
for t1 = t2 = 0.1, kFL = 20, ky/kF = 1/2. There are four levels at each
value of the phase difference, distinguished by the spin direction ↑, ↓ and by
the ± sign of the current ∝ dE/dφ which they carry. Another four levels at
ky/kF = −1/2 ensures the electron-hole symmetry of the spectrum. Normal
reflections are neglected in this calculation.

momentum ky remains a good quantum number. We also assume the
potential is spin-independent.

A simple solution of the scattering problem is possible for pure dxy-
wave pairing (t2 = 0). The BdG Hamiltonian then reads

H =
[1

2k
2
x + 1

2k
2
y + V (x)− µ

]
τz

+ 1
2
[
t1(x)kx + kxt1(x)

]
kyσz

+ ∆0(x)
[
τx cosφ(x)− τy sinφ(x)

]
. (4.15)

The x-dependence of the magnetization and pair potential is included to
describe the entire junction profile. The anticommutor of t1(x) and kx
ensures the hermiticity of H [77].

We make the unitary transformation H 7→ U(x)HU †(x), with

U(x) = exp
(
iτzσzky

∫ x

0
t1(x′)dx′

)
, (4.16)

resulting in

H =
(1

2k
2
x + 1

2(1− t21)k2
y + V (x)− µ

)
τz

+ ∆0(x)
(
τx cos φ̃(x)− τy sin φ̃(x)

)
, (4.17)
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where φ̃(x) = φ(x) + 2σzky
∫ x

0 t1(x′) dx′ is a spin-dependent phase differ-
ence.

So for a given ky and given spin direction, the altermagnet Josephson
junction is equivalent to a nonmagnetic Josephson junction with phase
difference φ ± 2kyLt1. The factor 1 − t21 that multiplies k2

y in Eq. (4.17)
amounts to an anisotropic mass, this factor can be set to unity for t1 �
1. We can then use the known result (4.1) for the Andreev levels in a
nonmagnetic Josephson junction,

E±↑ (ky) = ±∆0

√
1− T (ky) sin2(φ/2− kyLt1),

E±↓ (ky) = ±∆0

√
1− T (ky) sin2(φ/2 + kyLt1),

(4.18)

where T (ky) is the transmission probability through the junction in the
normal state (∆0 = 0).

If t2 is nonzero we do not have such a closed-form and general expres-
sion for the Andreev levels. We specify to the case of a tunnel barrier at
each AS interface, with tunnel probability Γ (the same at x = 0 and at
x = L). The scattering matrix calculation in App. (4.8) gives the spin-up
Andreev levels E±↑ as the two solutions of the nonlinear equation

(1− Γ)2 cos
(
2α(E) + L(Q+

z −Q−z )
)

+ cos
(
2α(E)− L(Q+

z −Q−z )
)
−

−Γ2 cos
(
φ+ L(Q+

z +Q−z )
)

= 2(1− Γ) cos
(
L(Q+

z −Q−z )
)
+

+4(1− Γ) cos
(
L(Q+

0 −Q
−
0 )
)
(1− E2/∆2

0).
(4.19)

The spin-down Andreev levels E±↓ are the solutions of Eq. (4.19) upon
replacement of L by −L.

As a check, if we now set t2 = 0 we have Q+
z = Q−z , Q+

0 = −Q−0 , and
Eq. (4.19) has the solution (4.18) with

T (ky) = Γ2

2(1− Γ) cos 2LQ+
0 + 1 + (1− Γ)2 . (4.20)

This is indeed the normal-state transmission probability through a double-
barrier junction, at momentum Q+

0 =
√
k2

F − (1− t21)k2
y.

If t2 6= 0 Eq. (4.19) can readily be solved numerically. As illustrated in
Fig. 4.3, crossings in the spectrum between levels of the same spin become
anticrossings.
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Figure 4.3. Same as Fig. 4.2, but now including normal reflections at each
AS interface. The spectra are calculated from Eq. (4.19) for two values of the
transmission probability Γ, at t1 = t2 = 0.1, kFL = 20, ky/kF = 1/2.

4.5 Comparison with computer simulations

To test these analytical predictions we have discretized the BdG Hamilto-
nian (4.3) on a square lattice and computed the subgap excitation spec-
trum numerically (see App. 4.9). These computer simulations fully in-
clude the normal reflections at the AS interfaces and they do not rely on
the short-junction approximation.

In Fig. 4.4 we compare with the analytical predictions that ignore
normal reflection. As expected, the main effect of normal reflection at the
AS interfaces is to transform the crossings between same-spin branches
into anticrossings. The effect is most pronounced when t1 and t2 are
both nonzero: In the two cases of pure dxy-wave or pure dx2−y2-wave
magnetization the crossings are only weakly affected.

In Fig. 4.5 we test the relation (4.18) between the Andreev levels and
the normal-state transmission probability in the case of dxy-wave pairing.
The agreement is quite good, without any adjustable parameter.
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4.6 Josephson energy and supercurrent
The supercurrent in the short-junction regime is carried entirely by the
bound states, the continuous spectrum does not contribute [5, 161] 1. In
equilibrium at inverse temperature β the supercurrent I is given by the
phase derivative of the Josephson energy F ,

I = 2e
~
d

dφ
F, F = −

∑
E>0

1
2E tanh

(1
2βE

)
, (4.21)

where ∑E>0 is a sum over the transverse momentum ky and spin ↑, ↓ of
the Andreev levels in the interval (0,∆0).

In the absence of normal reflections, we find from Eqs. (4.13) and
(4.14) that

F = −
∑
ky

∑
s=±

1
2εs∆0 tanh(1

2εsβ∆0), (4.22a)

εs =
∣∣cos(φ/2 + sLQ+

z )
∣∣. (4.22b)

The transverse momenta range over the interval (−kmax, kmax), with

kmax = kF

√
1− 2t2

1− t21 − 4t22
. (4.23)

in view of Eq. (4.8). In a junction of width W � L, ξ0, and at zero
temperature, one has

I(φ) = −e∆0
~

W

2π

∫ kmax

−kmax
dky

d

dφ
(ε+ + ε−). (4.24)

The integral over ky in Eq. (4.24) can be carried out in closed form for
the case t2 = 0 of a pure dxy-wave magnetization, when εs = | cos(φ/2 −
st1kyL)|. We find

I = I0
2α

(
| cos(φ/2− α)| − | cos(φ/2 + α)|

)
, (4.25)

with I0 = (e∆0/~)(kmaxW/π) and α = t1kmaxL.
1Our analysis applies to a symmetric Josephson junction, where the superconductors

on both sides of the interface have the same gap ∆0. In a strongly asymmetric junction
one would also need to include contributions to the supercurrent from the continuous
spectrum, see L.-F. Chang and P. F. Bagwell, Ballistic Josephson-current flow through
an asymmetric superconductor–normal-metal–superconductor junction, Phys. Rev. B
49, 15853 (1994).
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The critical current from Eq. (4.25) is given by

Ic = I0
sin 2α

2α , (4.26)

see Fig. 4.6. A negative sign of Ic means that the maximum supercurrent
is reached in the interval −π < φ < 0. When Ic < 0 the Josephson energy
is minimal at φ = π rather than at φ = 0, the altermagnet Josephson
junction has become a π-junction [8, 9].

With increasing L a negative critical current first appears in the in-
terval π/2 < t1kmaxL < π. At L = L∗ ≡ 3π/(4t1kmax) one has Ic =
−(2/3π)I0, so the negative Ic is comparable in magnitude to the value
I0 at L = 0. Note that this characteristic length L∗ is still in the short-
junction regime provided that t1 is not too small, we need ∆0/µ� t1 � 1.

These results are not changed qualitatively if we include a dx2−y2 con-
tribution to the magnetization, see Fig. 4.7. In the case t1 = 0 of a pure
dx2−y2-wave magnetization the negative critical current first appears in
the interval π/2 < t̃2kmaxL < π, with

t̃2 = 1
2(1− 2t2)−1/2 − 1

2(1 + 2t2)−1/2 = t2 +O(t22). (4.27)

All of this was without normal reflections. We consider the effect of a
tunnel barrier (transmission probability Γ) at each AS interface in the case
of pure dxy-wave magnetization, when we have the closed-form expression
(4.18) for the Andreev levels. As illustrated in Fig. 4.8, the barrier reduces
the magnitude of the critical current, but its sign remains unchanged. For
Γ � 1 the critical current (4.26) is reduced by a factor Γ, because only
the transmission resonance peaks (unit height, width Γ) contribute.

We can compare our analytical result (4.25) for the supercurrent-phase
relationship with Ref. [8], which studies the same system in a different
formulation. (The numerical study of Ref. [9] does not contain results
that can be directly compared with ours.) While qualitatively we find the
same sign changes in the critical current with increasing L, the decay rate
of the oscillations is different in Ref. [8]: Ic ∝ L−3/2 instead of the 1/L
decay in Eq. (4.26). Moreover, Eq. (4.25) is strongly nonsinusoidal, while
Ref. [8] finds I(φ) ∝ sinφ. The absence of higher harmonics suggests a
perturbative approximation (Γ � 1). We emphasise that our result is
fully non-perturbative.
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4.7 Conclusion

In summary, we have extended the scattering theory of nonmagnetic
Josephson junctions to the case of an altermagnetic junction. The basic
effect of the d-wave magnetization is to spin-polarize the Andreev levels,
by giving the spin-up and spin-down spectra E(φ) opposite phase shifts
±δφ.

For a planar junction aligned along the crystalline axes of dxy-wave
symmetry the phase shift is proportional to the transverse momentum
ky, which upon integration of dE/dφ over ky gives the simple closed-form
result (4.25) for the supercurrent.

As noticed previously [8, 9], the altermagnet Josephson junction under-
goes 0–π transitions with increasing junction length L, where the critical
current changes sign. Our approach is non-perturbative in the trans-
mission probability through the junction, producing the strongly non-
sinusoidal current-phase relationship of Figs. 4.6 and 4.7. To observe this
the junction length L should be below the superconducting coherence
length ξ0 and also below the mean free path l for impurity scattering.
The characteristic value of L for a negative critical current is 3π/(4t1kF),
which for t1 ' 0.1 and kF ' 109 m−1 amounts to a realistically short
junction length of L ' 20 nm.

4.8 Appendix: Scattering matrix calculation of
the Andreev levels

We consider the altermagnet Josephson junction of Fig. 4.1, with a tunnel
barrier (transmission probability Γ) at x = 0 and x = L. We calculate
the Andreev level spectrum by means of the scattering formulation of Ref.
[161].

The scattering matrix S(E) of electrons (e) and holes (h) at energy
E, incident on the altermagnet from the left (L) or the right (R) with
transverse momentum ky, has the block-diagonal form

S(E) =
(
Se(E) 0

0 Sh(E)

)
,

Ψout = SΨin, Ψ = (ψe,L, ψe,R, ψh,L, ψh,R).
(4.28)

Without the tunnel barrier and at the Fermi level (E = 0) one would have
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simply

Se(0) =
(

0 exp(−iL[Q−0 +Q−z ])
exp(iL[Q+

0 +Q+
z ]) 0

)
, (4.29a)

Sh(0) =
(

0 exp(−iL[Q+
0 −Q+

z ])
exp(iL[Q−0 −Q−z ]) 0

)
, (4.29b)

in terms of the momentum offsets defined in Eq. (4.10).
Multiple reflections by the two barriers change this into

Se(0) = 1
1 + (1− Γ)eiLKe

( √
1− Γ(1 + eiLKe) Γ exp(−iL[Q−0 +Q−z ])

Γ exp(iL[Q+
0 +Q+

z ]) −
√

1− Γ(1 + eiLKe)

)
,

(4.30a)
Ke = Q+

0 −Q
−
0 +Q+

z −Q−z , (4.30b)

Sh(0) = 1
1 + (1− Γ)eiLKh

( √
1− Γ(1 + eiLKh) Γ exp(−iL[Q+

0 −Q+
z ])

Γ exp(iL[Q−0 −Q−z ]) −
√

1− Γ(1 + eiLKh)

)
,

(4.30c)
Kh = −Q+

0 +Q−0 +Q+
z −Q−z . (4.30d)

We set ∆ = ∆0e
iφ/2 at the left superconductor (x < 0) and ∆ =

∆0e
−iφ/2 at the right superconductor (x > L). The condition for a bound

state is
Det [1−R(E)S(E)] = 0, (4.31)

in terms of the scattering matrix S(E) of the normal region and the An-
dreev reflection matrix

R(E) = e−iα(E)
(

0 Reh
Rhe 0

)
,

Reh = R∗he =
(
eiφ/2 0

0 e−iφ/2

)
.

(4.32)

The function α(E), given by Eq. (4.11), varies on the scale of ∆0.
The energy scale on which S(E) varies is of order Γv̄/L. If L � Γv̄/∆0
it is consistent to evaluate S(E) at E = 0, while retaining the energy
dependence of R(E).

Substitution of of Eqs. (4.30) and (4.32) into Eq. (4.31) gives the de-
terminantal equation (4.19) from the main text.
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4.9 Appendix: Tight-binding calculations
For the computer simulations we discretized the altermagnet Hamiltonian
(4.3) on a square lattice (lattice constant a, mass m, and ~ all set to
unity),

H0 = 2− cos kx − cos ky − µ
+ t1 sin kx sin kyσz + 2t2(cos kx − cos ky)σz. (4.33)

In the two superconducting regions we set t1 = 0 = t2 and couple the
electron and hole blocks by a pair potential ∆0e

±iφ/2. We keep the same
chemical potential µ throughout.

The system is infinitely extended in the y-direction. In the x-direction
the altermagnet is in the interval 0 < x < L, while the superconductors
occupy the regions−LS < x < 0 and L < x < LS . The length LS is chosen
much larger than the superconducting coherence length ξ0 =

√
2µ/∆0. We

took µ = 0.5 and ∆0 = 5 · 10−4, hence ξ0 = 2000. With L = 20 we are
therefore deep in the short-junction regime. The tight-binding model is
implemented by means of the Kwant toolbox [163].

For Fig. 4.5 we inserted a tunnel barrier at x = 0 and x = L, by locally
modifying the hopping matrix elements. The transmission probability T
through the junction was calculated separately for ∆0 = 0, so that there
are no adjustable parameters in the comparison with the analytics.
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Figure 4.4. Andreev level spectra in the altermagnet Josephson junction, for
kFL = 20, ky/kF = 1/2, and different choices of t1, t2. The solid curves re-
sult from the numerical solution of the BdG equation on a lattice. The dashed
curves are the analytical predictions (4.13), in which normal reflections at the
AS interfaces are neglected (blue for spin-up, red for spin-down).
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Figure 4.5. Solid curves: Andreev levels for dxy-wave pairing in the presence
of a tunnel barrier at the two AS interfaces (kFL = 20, ky/kF = 1/2). The
normal-state transmission probability T = 0.75 through the junction was ob-
tained directly from the computer simulation (by setting ∆0 ≡ 0). The dashed
curves are the analytical prediction (4.18), for the same value of T (blue for
spin-up, red for spin-down).
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Figure 4.6. Phase dependence of the Josephson energy (top panel, in units of
F0 = ∆0kmaxW/π) and the supercurrent (lower panel, in units of I0 = (e/~)F0)
in the altermagnet Josephson junction, for different lengths L of the junction [in
units of L∗ = 3π/(4t1kmax)]. In the interval 2/3 < L/L∗ < 4/3 the Josephson
energy is maximal rather than minimal at φ = 0, resulting in a negative critical
current. These are results for pure dxy-wave magnetization (t2 = 0) and without
normal reflection (Γ = 1).
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Figure 4.7. Current-phase relationship for the case of pure dxy-wave magne-
tization (black, t2 = 0, t1 = 0.1, kFL = 25), pure dx2−y2 -wave magnetization
(red, t1 = 0, t2 = 0.1, kFL = 20) and the equal weight case (blue, t1 = t2 = 0.1,
kFL = 15).

Figure 4.8. The black curve shows the supercurrent (4.25) without normal
reflections, the blue and red curves include normal reflections from a barrier
at each AS interface [transmission probability Γ, Andreev levels given by Eqs.
(4.18)) and (4.20)]. Each curve is for the same junction length L = L∗ and dxy
magnetization strength t1 = 0.1 (with t2 = 0).
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Chapter 5

Bloch oscillations in the
magnetoconductance of
twisted bilayer graphene

5.1 Introduction

It is one of the early counterintuitive predictions of solid state physics that
an electric field in a crystal induces an oscillatory electron motion [52,
53] 1: While the momentum ~k increases linearly with time, according to
~k(t) = eEt in an electric field E , the corresponding velocity v(t) ∝ sin k(t)
in a Bloch band (unit lattice constant) has a periodic time dependence,
with frequency ωB = eE/~. The amplitude A ≈ ∆/eE of the Bloch
oscillations is set by the energy band width ∆.

Electronic Bloch oscillations have been studied in the time domain at
THz frequencies in semiconductor superlattices [54–57, 164, 165] and in
graphene bilayers [58]. With few exceptions [166], and unlike the familiar
Aharonov-Bohm oscillations [167], Bloch oscillations do not typically play
a role in quantum transport, which is probed in the energy domain at low
frequencies. Here we show that Bloch oscillations may appear in the mag-
netoconductance of a two-dimensional (2D) system, a twisted graphene
bilayer, by virtue of a mapping to a quantum walk in one space and one
time dimension.

1Historical note: The oscillatory motion follows from equation 48 in Bloch’s 1929
paper [52], but this was not noticed until Zener pointed it out in 1934 [53]. See https:
//hsm.stackexchange.com/q/14442/1697

https://hsm.stackexchange.com/q/14442/1697
https://hsm.stackexchange.com/q/14442/1697
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Figure 5.1. Moiré lattice in a twisted graphene bilayer. Triangular domains
of AB and BA stacking are indicated by different colors. Domain walls conduct
a current I = V G between narrow source and drain contacts (width W , a dis-
tance L apart). This is a four-terminal geometry, including two additional wide
grounded contacts at the left and right.

The magnetic field B perpendicular to the bilayer maps onto a parallel
electric field E ↔ Bv/2, with v the Fermi velocity. As a consequence,
the conductance measured between two point contacts at a distance L
oscillates periodically in B. These Bloch magnetoconductance oscillations
appear at much weaker fields, smaller by a factor L over lattice constant,
than the known Aharonov-Bohm oscillations in twisted bilayer graphene
[50, 51, 168, 169].

5.2 Network model

We start from the established network model of minimally twisted bilayer
graphene [41–43, 48, 49, 81, 82]: Two layers of graphene are misaligned by
a rotation angle θ ≈ 0.1◦, forming a moiré pattern of triangular domains
with different stacking (AB versus BA) of the carbon atoms on the A and
B sublattices of the two layers. (See Fig. 5.1.) An interlayer bias voltage
gaps out the interior of the AB and BA domains, leaving a conducting
network formed by AB/BA domain walls that meet at angles of 60◦ on
a metallic node. The lattice constant a = a0[2 sin(θ/2)]−1 of the moiré
pattern is of the order of 100 nm, two orders of magnitude larger than the
atomic lattice constant a0 of graphene.

The direction of motion along a domain wall is tied to the valley de-
gree of freedom. (The spin degree of freedom is decoupled from the motion
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and plays no role in what follows.) In a single valley each domain wall
supports two modes, both of the same chirality (propagating in the same
direction with velocity v). Neglecting intervalley scattering (justified for
a � a0 with smooth disorder, and experimentally verified [48]) the scat-
tering process at a node thus involves 6 incoming and 6 outgoing mode
amplitudes, related by a scattering matrix S of the form [41, 168]:

S · {a1, a2, a3, a
′
1, a
′
2, a
′
3}> = {b1, b2, b3, b′1, b′2, b′3}>,

a1, a
′
1

a3, a
′
3

a2, a
′
2

b1, b
′
1

b3, b
′
3

b2, b
′
2

, S =
(
S1 S2
S†2 −S†1

)
, (5.1a)

S1 = eiα
√
Pd1

(0 1 1
1 0 1
1 1 0

)
+ eiβ11

√
Pf1, (5.1b)

S2 =
√
Pd2

( 0 1 −1
−1 0 1
1 −1 0

)
− 11

√
Pf2. (5.1c)

The 3 × 3 submatrices S1 and S2 describe intramode and intermode
scattering, respectively. Forward scattering happens with probability Pf =
Pf1 + Pf2, scattering with a ±120◦ deflection happens with probability
Pd = Pd1 + Pd2. Unitarity of S requires that

Pf1 + Pf2 + 2Pd1 + 2Pd2 = 1,
cos(β − α) = 1

2(Pd2 − Pd1)(Pf1Pd1)−1/2 ∈ [−1, 1].
(5.2)

To reduce the number of free parameters, we take equal intra-channel
and inter-channel probabilities: Pf1 = Pf2 = 1

2Pf and Pd1 = Pd2 =
1
4(1 − Pf ). Then β = α + π/2 and we are left with the two parameters
Pf ∈ [0, 1] and α ∈ [0, π/2]. The parameter α governs the appearance of
closed loops of scattering sequences [168]. At α = 0, the network does not
support closed loops (quasi-1D transport), while for α = π/2 closed loops
dominate (2D transport).

The propagation between two nodes along a domain wall introduces a
phase factor eiEa/~v, at energy E. The scattering matrix (5.1) of the nodes
is assumed to be energy independent, so the scattering sequences consist
of instantaneous nodal scattering events, spaced by the constant time a/v.
A stroboscopic (Floquet) description of the scattering is then appropriate
[170, 171]. In the quasi-1D regime this corresponds to a quantum walk.
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Figure 5.2. Network of domain walls with two realizations of the quantum
walk in a single valley (blue and red arrows). Even and odd parity chiral modes
are indicated by solid and dashed lines. Forward scattering at a node preserves
the parity, while a deflection switches the parity. The quantum walk propagates
along the y-axis with step size ay = 1

2
√

3 a, the x-axis playing the role of time
(t ↔ 2x/v). The unit cell of the lattice, of area aay and enclosing a flux Φ, is
indicated in blue.

5.3 Quantum walk

Two scattering sequences in the quasi-1D regime (α = 0) are shown in
Fig. 5.2. The solid and dashed lines distinguish even and odd parity
modes in a given valley, both propagating in the same direction. (The
counterpropagating modes are in the other valley.) We can interpret a
scattering sequence as a quantum walk [172], with time step t0 = a/v.
There are six independent quantum walks, rotated relative to each other
by 60◦, three in one valley and three in the other valley. We focus on one
of these.

At each step the x-coordinate is increased by a/2. The y-coordinate
changes by ±1

2a
√

3 ≡ ±ay, the even parity mode moves up and the odd
parity mode moves down. The wave amplitudes ψ = (ψ+, ψ−) of the
even and odd parity states form a pseudospin degree of freedom, which is
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Figure 5.3. Two Bloch bands ε±(ky) of the quantum walk, computed from Eq.
(5.5) for Pf = 1/2. The band width ∆ is indicated.

rotated at each node by the 2× 2 matrix [168]2

R =
(
eiπ/4

√
Pf

√
1− Pf√

1− Pf −e−iπ/4
√
Pf

)
. (5.3)

The corresponding time evolution of a state (at stroboscopic intervals
t = 0, 1, 2, . . .× t0) is given by

ψt+t0 = T Rψt, (5.4)

T ψ(y) =
(
ψ+(y − ay), ψ−(y + ay)

)
= e−iay k̂yσzψ(y).

The operator T displaces the particle up or down depending on its pseu-
dospin σz. Eq. (5.4) represents a 1D quantum walk along y in the fictitious
time t = 2x/v, with momentum operator k̂y = −i∂/∂y.

The eigenvalues e−iεt0 of the evolution operator T R in momentum
representation are given by

ε±t0 = ± arccos[
√
Pf sin(ayky − π/4)] + π/2, (5.5)

plotted in Fig. 5.3. The single-valley bandstructure of the quasi-1D regime
[41] is given by three copies rotated by 120◦ of the dispersion relation

E
(n)
± (kx, ky) = ~ε±(ky) + 2πn~/t0 + ~vkx/2, n ∈ Z. (5.6)

2The unitary transformation S 7→ USU† that decouples the 6× 6 scattering matrix
(5.1) into 2 × 2 submatrices is U = e−i(π/4)σyei(α/2)σz . The Pauli matrices act on
the two modes in each domain wall. The decoupling needs α = 0 and Pd1 = Pd2; if
Pf1 6= Pf2 the phase π/4 in Eq. (5.3) is replaced by arctan

√
Pf1/Pf2.



108 Chapter 5. Bloch oscillations in twisted bilayer graphene

5.4 Bloch oscillations
A perpendicular magnetic field B = ∇×A (in the z-direction) introduces
a phase shift −e

∫
A · dl at each time step (taking the electron charge as

+e). For A = (−By,Ba/4, 0) the time evolution (5.4) is modified into 3

ψt+t0 = eiφŷ/ayT Rψt, φ = πΦ/Φ0. (5.7)

The operator ŷ is defined by ŷψt(y) = yψt(y). The flux Φ = Baay is the
flux through a unit cell (two domain wall triangles) and Φ0 = h/e is the
flux quantum. The same phase shift φ would be produced by a fictitious
electric field E ≡ Bv/2. The corresponding Bloch frequency is

ωB = ayeE/~ = φ/t0. (5.8)

Since the width of the Bloch band (5.5) is ∆ = (2~/t0) arcsin
√
Pf , the

amplitude of the Bloch oscillations is

A ≈ ∆/eE = (2ay/φ) arcsin
√
Pf . (5.9)

The 1D quantum walk in an electric field has been analyzed theoret-
ically [59, 173–175] and realized experimentally in the context of optics
[176, 177] and atomic physics [178]. A spatially localized wave packet
evolves in a characteristic “breathing mode” with envelope [59]±A sin(ωBt/2).
In our case, where time t 7→ 2x/v maps onto space, this implies the enve-
lope

yenvelope(x) = ±(2ay/φ) arcsin
√
Pf × sin(φx/a). (5.10)

A numerical simulation of the network model shown in Fig. 5.4 agrees
nicely with this breathing mode envelope. For nonzero α side branches
appear at a 120◦ orientation with the breathing mode, which we explain
in terms of magnetic breakdown.

5.5 Magnetic breakdown
In semiclassical approximation the motion of an electron in a magnetic
field B can be obtained from the equi-energy contours in zero field: Be-
cause ~k̇ = eṙ × B, the real-space orbit of a wave packet at energy E

3The constant y-component of the vector potential A = (−By,Ba/4, 0) is chosen
such the resulting phase shift does not depend on the parity of the chiral mode. We need
this for the mapping to an electric field induced phase shift. All results are obviously
gauge independent, but this gauge simplifies the analysis.
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Figure 5.4. Numerical simulations of electron scattering in a twisted graphene
bilayer, in a magnetic field (φ = πΦ/Φ0 = 0.03). Electrons at energy E = 0
are injected in a single mode and in a single node at (x, y) = (0, 0). They then
propagate through the network following the scattering matrix (5.1). We take
Pf1 = Pf2 = 1/4, Pd1 = Pd2 = 1/8 and compare two values of α. The blue color
scale gives the intensity |ψ|2 of the scattering state. The red curve in panel a) is
the envelope of the breathing mode predicted by Eq. (5.10).

follows the contour E(k) = E upon rotation by 90◦ and rescaling by a
factor l2m = ~/eB (magnetic length squared).

We calculate the equi-energy contours 4 from the scattering matrix
(5.1), see Fig. 5.5. At α = 0 three oscillating contours rotated by 120◦
cross near k = 0. A wave packet moves along these open orbits with
velocity dk/dt = v/l2m. A nonzero α opens up a gap ∆k ' α/a at
each crossing, thereby allowing the wave packet to be deflected by ±120◦.
Magnetic breakdown refers to the tunneling of the wave packet through
the gap [179, 180]. This happens with the Landau-Zener probability
T = exp[−c(lm∆k)2], where c is a coefficient of order unity 5. We conclude

4The bandstructure E(k) of the infinite network, as a function of the Bloch mo-
mentum k = (kx, ky), is given by the eigenvalues eiEa/~v of the matrix product Ω =
S · diag (eik·l+ , eik·l− , eik·l0 , eik·l+ , eik·l− , eik·l0 ), with lattice vectors l± = 1

2a(1,±
√

3),
l0 = (−a, 0).

5The coefficient c = 1
4π tan(ϑ/2) in the magnetic breakdown probability T =

e−c(lm∆k)2
is determined by the angle ϑ ∈ (0, π) at which the equi-energy con-
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-

Figure 5.5. Equi-energy contours E(kx, ky) = 0 at zero magnetic field, com-
puted for Pf1 = Pf2 = 1/4, Pd1 = Pd2 = 1/8, α = 0.1. A magnetic field drives
a wave packet in the direction of the arrows. Points of magnetic breakdown
(tunneling between two contours) are encircled. The resulting open orbits are
distinguished by different colors.

that the breathing mode remains predominantly uncoupled from the side
branches provided that (αlm/a)2 � 1⇒ α2 � Φ/Φ0.

All of this is for the case of equal intra-channel and inter-channel prob-
abilities. We have investigated numerically what happens if we relax
this assumption. A difference between Pd1 and Pd2 increases the gap,
(a∆k)2 ≈ α2 + (Pd1 − Pd2)2. A difference between Pf1 and Pf2 has no
effect on the gap, it weakly affects the coefficient c.

5.6 Conductance

The breathing mode visualized in Fig. 5.4 can be detected via the conduc-
tance, in the geometry of Fig. 5.1, with source and drain contacts aligned
along a domain wall. We have tested this by computer simulation.

tours approach the avoided crossing, dependent on the relative direction of motion:

)ϑ or ϑ For typical parameters we have ϑ ≈ 60◦ ⇒ c ≈ 0.45.
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Figure 5.6. Outgoing modes at the left (source contact) and incoming modes at
the right (drain contact). Red and blue arrows distinguish pairs of modes in the
two valleys. For contacts of width W = N × a

√
3 the transmission matrix t from

source to drain has dimension 8N × 8N . The diagram shows the case N = 1.
The full network in the simulation has length L along the x-axis and width much
larger than the contact width W along the y-axis.

The transmission matrix tnm from mode m in the source contact to
mode n in the drain contact is calculated in the network model [41]. There
are 8N outgoing (incoming) modes in the source (drain) contact, dis-
tributed over N = W/a

√
3 unit cells (see Fig. 5.6). Four of the eight

modes per unit cell are in one valley and four are in the other valley.
The two-terminal conductance follows from

G = G0
∑8N
n,m=1|tnm|2, (5.11)

with G0 = 2e2/h the conductance quantum (the factor of two accounts
for the spin). In the quasi-1D regime only two of the eight modes per unit
cell contribute to the conductance, corresponding to the breathing mode.
Note that the current is highly valley polarized: the red modes in Fig.
5.6 give a negligible contribution to G, because they are backscattered
into the source at the nodes. A rotation of the contact alignment by 60◦
switches the transmission from one valley to the other.

The conductance is a maximum whenever a node of the breathing
mode coincides with the drain contact, so if the separation L of source
and drain is an integer multiple of πa/φ = aΦ0/Φ. As a function of
magnetic field the conductance then oscillates with period 6

∆Φ = Φ0 × a/L⇒ ∆B = (h/e)(ayL)−1. (5.12)
6The periodicity (5.12) refers to the magnetoconductance oscillations from the

breathing mode near Φ = 0. Because of gauge invariance, copies exist near higher
fields Φp = Φ0/p (p = 1, 2, . . .), with smaller periodicity ∆Φp = (Φ0/p)× a/L.
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Figure 5.7. Calculation of the magnetic field dependence of the conductance
in the geometry of Fig. 5.1. Source and drain contacts are separated by L and
have a width of N unit cells (W = N × a

√
3). The parameters of the network

model are the same as in Fig. 5.4. Different values of α are compared, for wide
contacts (panels a,b) and narrow contacts (panels c,d). The Bloch oscillation
period ∆Φ from Eq. (5.12) is indicated. Full transmission of the breathing mode
corresponds to G/G0 = 2N .

This is what we observe in the computer simulation [181], see Fig.
5.7. To resolve the Bloch oscillations the width W of source and drain
contacts should be smaller than the amplitude A ∝ 1/B of the breathing
mode, which explains why the oscillations die out with increasing magnetic
field. The oscillations become more robust to nonzero α if both the width
and the separation of the contacts are reduced, because then the larger
magnetic field scale promotes the magnetic breakdown that enables the
breathing mode.

5.7 Conclusion

In closing, we have shown that the breathing mode that is the hallmark of
Bloch oscillations in a periodic potential can be observed in the magneto-
conductance of minimally twisted bilayer graphene. The spatial resolution
that is needed to resolve the oscillatory electron motion requires narrow
source and drain contacts, which is presumably why these low-field oscil-
lations have not yet been observed. Panels c,d in Fig. 5.7 correspond to a
contact width W = a

√
3 ≈ 0.25µm at a twist angle θ ≈ 0.1◦.

For a contact separation of L = 50 a ≈ 7µm the periodicity of the mag-
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netoconductance oscillations is ∆B ≈ 2.4mT. This is two orders of mag-
nitude below the fields at which quantum Hall interferometry (Aharonov-
Bohm and Shubnikov-De Haas oscillations) becomes operative [50, 51,
168, 169]. There is room to reduce the contact separation, which will help
to mitigate disorder effects — L should be shorter than the mean free
path.

The key requirement for the appearance of the breathing mode is the
quasi-1D regime, in which open orbits govern the magnetoconductance,
enabled by magnetic breakdown. Support for this regime can be found in
microscopic calculations of the band structure [81], that show equi-energy
contours qualitatively similar to those in Fig. 5.5. The observation of the
low-field magnetoconductance oscillations predicted here would then be a
striking demonstration of Bloch oscillations in the solid state.
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Chapter 6

Breathing mode in
open-orbit
magnetotransport:
a magnetic lens with a
quantum mechanical focal
length

6.1 Introduction

The Lorentz force from a magnetic field may act as a lens for electrons,
by focusing their trajectories down to a point of size limited only by their
wave length. In the solid state such electron optics was pioneered half a
century ago by Sharvin and Tsoi [182–184], enabled by the availability of
single crystals with mean free paths of several millimeters — well above
the typical focal lengths of the magnetic lens. Geometric optics is suffi-
cient in metals [185, 186], in semiconductors and in graphene the larger
wave length introduces diffraction and interference effects [187–190]. Ir-
respective of these quantum effects, the magnetic focusing itself is still an
essentially classical effect — the focal length is given by the classical cy-
clotron radius pF/eB (ratio of Fermi momentum and magnetic field). In
what follows we will describe a magnetic focusing effect that is intrinsically
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quantum mechanical. The focusing mechanism is Bragg reflection at Bril-
louin zone boundaries, resulting in a parametrically larger focal length,
with Fermi momentum pF replaced by the Bragg momentum transfer ~/a
(inverse lattice constant).

We build on our recent study of magnetotransport in twisted bilayer
graphene [191], where a precise mathematical mapping was found onto
Bloch oscillations in an electric quantum walk [173–175]. The mapping of
space onto time and magnetic field onto electric field was shown to result
in a “breathing mode” [59, 165], a wave function that periodically expands
and contracts. The mapping relied on the special nature of the scattering
problem in the graphene bilayer [168], where electrons propagate in topo-
logically protected chiral modes on a triangular network of domain walls
[42, 43].

Here we take a broader perspective and develop a general theory for
breathing modes that applies to any band structure which supports open
orbits in a magnetic field. It applies in particular to layered materials
with a strongly anisotropic dispersion, of recent interest in this context
[166, 192]. We present both a fully quantum mechanical calculation and a
semiclassical description of the breathing mode, and test this by comparing
with computer simulations of a tight-binding model.

6.2 Calculation of the breathing mode
An open orbit in the Brillouin zone is an equi-energy contour that crosses
the Brillouin zone boundaries. In the repeated zone scheme it therefore
runs through the whole reciprocal space, without closing on itself. The
open orbits in a plane perpendicular to an applied magnetic field govern
the electrical transport properties. We orient the field in the z-direction
and focus on an open orbit in the x–y plane. An example on the 2D square
lattice is shown in Fig. 6.1.

As an effective low-energy description of an open orbit we consider a
two-dimensional (2D) Bloch band near the Fermi energy EF = 0 in the
first Brillouin zone, described by the Hamiltonian

H = ~vxkx + ε(ky). (6.1)

The momentum operator is k = −i∂/∂r. The open orbit has the equi-
energy contour ε(ky) + ~vxkx = 0, with ε(ky) = ε(ky + 2π/ay) for lattice
constant ay.
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Figure 6.1. Equi-energy contours of the 2D dispersion E(kx, ky) = −2 cos kx −
cos ky (dimensionless units). The black dotted square indicates the Brillouin
zone, the red curve is an open orbit at the Fermi energy EF = 0, given by
kx + ε(ky) = 0, with ε(ky) = − arccos(− 1

2 cos ky).

The vector potential is introduced via the substitution ~k 7→ ~k− eA
(taking the electron charge as +e). We choose the gaugeA = (−yB(x), 0, 0),
corresponding to the magnetic field B =

(
0, 0, B(x)

)
. We will later spe-

cialize to the case B(x) = B0 of a constant field.
Eigenstates Ψ(x, ky) of H at energy E = 0, in a mixed coordinate-

momentum representation, satisfy

ivx(−~∂x + eB(x)∂ky)Ψ(x, ky) = −ε(ky)Ψ(x, ky). (6.2)

A similar partial differential equation has been studied in the context
of Wannier-Stark localization [193], and we can adapt that method of
solution.

We define the field integral

C(x) =
∫ x

0
B(x′) dx′, (6.3)

and note that

~∂xf
(
~ky + eC(x)

)
= eB(x)∂kyf

(
~ky + eC(x)

)
, (6.4)
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for any function f . We thus find the solution

Ψ(x, ky) = Ψ
(
0, ky + (e/~)C(x)

)
exp

(
−iω(x, ky)

)
, (6.5)

ω(x, ky) =
∫ x

0

dx′

~vx
ε
(
ky + (e/~)C(x)− (e/~)C(x′)

)
. (6.6)

For an initial condition Ψ(0, ky) ≡ 1 that is localized at y = 0 we obtain
the real space profile

ψ(x, y) = ay

∫ 2π/ay

0

dky
2π e

iyky exp
(
−iω(x, ky)

)
. (6.7)

The first moment of the transverse displacement vanishes,

〈y〉x = ay

∞∑
m=−∞

m|ψ(x,may)|2

= iay

∫ 2π/ay

0

dky
2π Ψ∗(x, ky)∂kyΨ(x, ky)

= ay

∫ 2π/ay

0

dky
2π ∂kyω(x, ky) = 0. (6.8)

The second moment is given by

〈y2〉x = a2
y

∞∑
m=−∞

m2|ψ(x,may)|2

= ay

∫ 2π/ay

0

dky
2π |∂kyΨ(x, ky)|2

= ay

∫ 2π/ay

0

dky
2π

(
∂kyω(x, ky)

)2
. (6.9)

Specializing now to a constant magnetic field, we have C(x) = B0x
and

ω(x, ky) = (eB0vx)−1
∫ ky+eB0x/~

ky
dq ε(q). (6.10)

We conclude that

ψ(x+ 2π~/eB0ay, y) = ψ(x, y)e−iα, (6.11)

for some constant phase α, so the density |ψ(x, y)|2 is periodic in x with
period

` = h

eB0ay
= axΦ0

Φ . (6.12)
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Here Φ = Baxay is the flux through a unit cell and Φ0 = h/e is the flux
quantum.

The transverse displacement has variance

〈y2〉x = ay
(eB0vx)2

∫ 2π/ay

0

dky
2π
(
ε(ky + eB0x)− ε(ky)

)2
, (6.13)

which vanishes when x = n`, n = 1, 2, . . .— the breathing mode refocuses
to a single lattice site.

6.3 Tight-binding model
We test this analytical theory numerically on the tight-binding model of a
2D square lattice (lattice constant ax = ay = a) with anisotropic nearest-
neighbor hopping energies tx and ty in the x- and y-directions. In the
plots we take ty/tx ≡ τ = 1/2. The Hamiltonian is

H = −tx cos axkx − ty cos ayky. (6.14)

We set the Fermi level in the middle of the band, EF = 0, where the open
orbits are given by

axkx = ± arccos
(
−τ cos ayky

)
+ 2πn, n ∈ Z, (6.15)

see Fig. 6.1.
The geometry is shown in Fig. 6.2. The conductor has dimensions L

in the x-direction and W in the y-direction. Point contacts (width δW )
at x = 0 and x = L are a source and drain for electrical current. We im-
plement hard-wall boundary conditions at |y| = W/2 (by terminating the
lattice) and absorbing boundary conditions at x = 0, L, |y| > δW/2 (by
attaching ideal leads to ground). The grounded leads are not essential for
the magnetoconductance oscillations, they help to improve the resolution
by removing a background signal from electrons that are not focused by
the lens.

The point contacts at x = 0, L, |y| < δW/2 connect to heavily doped
metallic leads, at chemical potential µlead much larger than the band width
ty in the conductor. Only a small fraction ty/µlead of the N ≈ δW/a prop-
agating modes in the leads will couple effectively to the conductor, namely
those modes that have transverse momentum small compared to longitu-
dinal momentum. For ty/µlead � 1 we may thus remove the transverse
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Figure 6.2. Layout of the tight-binding model, a 2D square lattice with
anisotropic hopping energies. Strong and weak bonds are distinguished by thicker
and thinner lines. The colors distinguish the conductor (blue), source and drain
point contacts (red), and grounded terminals (grey).

hoppings in the leads, which are then described by the Hamiltonian (6.14)
with ty = 0. The perpendicular magnetic field is introduced in the hopping
matrix elements via the Peierls substitution.

We use the tight-binding package Kwant [134, 163] to calculate the
scattering matrix of the six-terminal-structure in Fig. 6.2. The N × N
transmission matrix t from source to drain then gives the conductance
G = (e2/h) Tr tt†.

The breathing mode injected into the conductor by a single mode in
the lead is shown in Fig. 6.3. It has the expected periodicity of ∆x =
` = aΦ0/Φ. In Fig. 6.4 we compare the variance of the spread in the y-
direction as obtained from the tight-binding model with the result (6.13).
For the open-orbit dispersion we take

ε(ky) = (~vx/a) arccos(−τ cos aky), (6.16)

corresponding to one of the two branches in Eq. (6.15). The agreement is
very good, without any adjustable parameter. The small oscillations with
periodicity a present in the numerics are due to interference of the two
branches of the dispersion relation, which we have neglected in Eq. (6.16).
See App. 6.7 for a calculation that includes the interference effect.
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Figure 6.3. Blue data points: Wave function profile |ψ(x, y)|2 injected into the
conductor by a single mode in the lead, for two magnetic fields (corresponding to
focal lengths ` ≡ aΦ0/Φ = L and ` = L/4). The wave function is normalized such
that unit current is injected. The red curves in panel b) show two semiclassical
orbits, calculated at the same magnetic field value as the breathing mode, to
illustrate that the semiclassical orbits oscillate twice as rapidly as the breathing
mode envelop.

Because ~k̇ = eṙ × B, the trajectory yc(x) of a semiclassical wave
packet is obtained from the equi-energy contour ~vxkx + ε(ky) = 0 upon
the transformation ~kx 7→ eB0y, ~ky 7→ −eB0x, thus

yc(x) = (eB0vx)−1ε(−eB0x/~). (6.17)

A pair of semiclassical orbits is plotted in Fig. 6.3b (red curves), in order
to emphasize the fact that the envelope of the breathing mode is not
simply the superposition of two semiclassical orbits. Let us study the
semiclassical correspondence in more detail.

6.4 Semiclassical approximation
For that purpose we consider (for a state ψ(x, y) normalized to unity) the
intensity profile ρx(y) = |ψ(x, y)|2 in the weak-field semiclassical regime
Φ � Φ0. We Fourier transform ρx(y) with respect to y, substitute Eq.
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Figure 6.4. Variance of the spread in the y-direction as a function of the distance
x from the point source. The smooth red curve is calculated from Eq. (6.13), the
black curve with small oscillations is the numerical result from the tight-binding
model. The numerical data is obtained by converting the wave function profile in
Fig. 6.3a to a normalized intensity profile ρx(y) = |ψ(x, y)|2/

∑
y |ψ(x, y)|2, and

then computing
∑
y y

2ρx(y).

(6.7) for ψ(x, y), retain only intensity variations with small wave number
q, and finally Fourier transform back 1:

∑
y

ρx(y)eiqy = ay

∫ 2π/ay

0

dky
2π

× exp
(
iω(x, q + ky)− iω(x, ky)

)
= ay

∫ 2π/ay

0

dky
2π exp

(
iq∂kyω(x, ky) +O(q2)

)
, (6.18)

⇒ ρx(y) = a2
y

∫ 2π/ay

0

dky
2π δ(∂kyω(x, ky)− y). (6.19)

Now y is treated as a continuous variable (with ∑y 7→ a−1
y

∫
dy).

1We note that the expression for the variance 〈y2〉x = a−1
y

∫
dy y2ρx(y) which follows

from the semiclassical density profile (6.19) is identical to the result (6.9) which we ob-
tained without making the semiclassical approximation. We have no more fundamental
explanation for this correspondence. It does not carry over to higher moments.
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Figure 6.5. Superposition of semiclassical orbits that satisfy yc(x0−x)−yc(x0)−
y = 0, with x0 varied between 0 and `. The open orbit yc(x) is given by Eqs.
(6.16) and (6.17), the parameters are those of Fig. 6.3a. The caustic is indicated
in red.

For a constant magnetic field B0 this can be worked out to

ρx(y) = a2
yeB0vx

∫ 2π/ay

0

dky
2π

× δ
[
ε(ky + eB0x/~)− ε(ky)− eB0vxy

]
. (6.20)

In view of Eq. (6.17) the semiclassical density profile (6.20) can be rewrit-
ten as a superposition of displaced semiclassical orbits,

ρx(y) = (ay/`)
∫ `

0
dx0 δ

[
yc(x0 − x)− yc(x0)− y

]
. (6.21)

In Fig. 6.5 we have plotted this superposition for the same parameters
as in the tight-binding simulation of Fig. 6.3a. The profiles match very
well. The semiclassical calculation identifies the envelope as a caustic: an
accumulation of classical trajectories with an infinite density, regularized
by the finite wave length in the quantum calculation.

Eq. (6.20) allows for a semiclassical estimate for the amplitude of the
breathing mode: Since ρx(y) ≡ 0 for all x when |y| > (eB0vx)−1 maxk1,k2 |ε(k1)−
ε(k2)| ≡ (eB0/~)−1∆kx or, equivalently, when |y| > maxx1,x2 |yc(x1) −
yc(x2)| ≡ ∆yc, we arrive at the relation

∆yB = 2∆yc = 2(~/eB0)∆kx (6.22)

between the amplitude ∆kx of the open orbit in momentum space, on
the one hand, and the amplitudes ∆yB and ∆yc of breathing mode and
semiclassical orbit in real space, on the other hand.
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The ratio R = ∆yB/` = (ay/π)∆kx is a magnetic field independent
characteristic of the open orbit. For the anisotropic dispersion (6.14) one
has

R ≡ ∆yB/` = (2ay/πax) arcsin(ty/tx). (6.23)

The ratio equals 1/3 for the parameters in Fig. 6.3 (ay = ay, tx = 2ty).

6.5 Magnetoconductance oscillations

In the double point-contact geometry of Fig. 6.2 the breathing mode man-
ifests itself as a conductance peak when the point contact separation L
is an integer multiple of the period `. This is the magnetoconductance
oscillation studied in the context of twisted bilayer graphene in Ref. [191].
The magnetic field periodicity is

∆B = h

eaL
. (6.24)

A simulation of the tight-binding model in Fig. 6.6 shows the effect.
The amplitude of the oscillations decays with increasing field because the
point contact width δW is no longer able to resolve the decreasing ampli-
tude ∆yB of the breathing mode. In terms of the dimensionless parameter
ξ(B) = (1/R)(δW/ay)(Φ/Φ0) we calculate that the ratio Gmin/Gmax of
the minima and maxima of the conductance oscillations follows the curve
2:

Gmin
Gmax

=
{
ξ(B) if ξ(B) < 1/2,
1− 1

4ξ(B)−1 if ξ(B) > 1/2.
(6.25)

This agrees quite nicely with the numerics (blue curve in Fig. 6.6, without
any fit parameter.

To make contact with Refs. [166, 192], we note that magnetoconduc-
tance oscillations with the same period (6.24) — upon exchange of L by
W — can be observed without any point contacts, so without focusing of
wave profiles. Instead of a current flowing along the open orbit the cur-
rent should then flow perpendicularly to the open orbit, see Fig. 6.7. This

2Eq. (6.25) follows from a calculation of the fraction of the injected breathing
mode that can enter the opposite point contact when L = (n + 1/2)`, so at the
conductance minimum. This fraction equals Gmin/Gmax and is given by the integral
(δW∆yB)−1 ∫ δW/2

−δW/2 dx
(
min
[
δW/2, x+ ∆yB/2

]
−max

[
−δW/2, x−∆yB/2

])
.
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Figure 6.6. Conductance G (in units of the conductance quantum G0 = e2/h,
per spin degree of freedom), as a function of magnetic field B = Φ/a2, computed
from the tight-binding model in the point contact geometry shown in the inset
(parameters L/a = 1000, W/a = 440, δW/a = 51). The breathing mode at
the first conductance peak is shown in red. The periodicity of the oscillations
is ∆Φ/Φ0 = a/L = 10−3. Full refocusing of the breathing mode without any
backscattering would give a conductance peak of NG0 with N = 51 injected
modes. The blue dashed curve is the calculated decay (6.25) of the amplitude of
the conductance oscillations.

is the geometry first studied by Pippard [194] 3, to explain conductance
oscillations with period Φ0/aW in cadmium [195, 196]. We refer to Refs.
[166, 192] for a comprehensive theory and experiment on these magneto-
conductance oscillations. Note that magnetic lensing plays no role in the
Pippard geometry, one needs the spatial resolution of a point contact to
excite a breathing mode.

3In connection with the simulations shown in Fig. 6.7, we note that these are for
specular reflection at the boundary. That a disordered boundary is not needed for
the magnetoconductance oscillations due to open orbits was pointed out by O. V.
Kirichenko, V. G. Peschansky, and S. N. Savelieva, Static skin effect in metals with
open Fermi surfaces, Sov. Phys. JETP 50, 977 (1979).
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Figure 6.7. Same as Fig. 6.6, but now with the current flowing perpendicularly
to the open orbits (a few are shown as red trajectories; parameters W/a = 1000,
L/a = 440, no point contacts, δW = W ). The conductance has a minimum
when an open orbit fits in the width of the conductor, so when B = nΦ0/aW ,
n = 1, 2, . . ..

6.6 Conclusion

In summary, we have presented a magnetic lensing effect with an unusually
long focal length, set by the Bragg momentum ~/a rather than the Fermi
momentum pF. At a field of 1 T and for a lattice constant a = 0.5 nm the
focal length ` = h/eBa ≈ 8 µm — an order of magnitude larger than in
semiconductor electron focusing experiments [167]. Magnetic focusing is
an effective way to study scattering processes [197] and in clean systems
a large focal length would be an advantage.

The quantum mechanical origin of the focusing effect, Bragg reflection
at Brillouin zone boundaries, does not imply that the magnetic lens needs
long-range phase coherence — the breathing mode only requires phase
coherence on the scale of the lattice constant. We note the contrast with
the Aharanov-Bohm effect, where a magnetoconductance oscillation with
period h/eS would require phase coherence over distances of order

√
S.

The oscillation period (6.24) has S = aL but only requires phase coherence
over a length a, irrespectively of how large L might be.
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We have applied the general theory to a simple model of an anisotropic
dispersion, appropriate for the layered material (delafossites) studied in
Refs. [166, 192] (with a ratio τ ' 10−2 between in-plane and out-of-plane
hopping energies, and mean free paths of 20µm [198]). For such a strong
anisotropy the open orbits in the Brillouin zone are essentially decoupled
from each other, allowing for closed-form expressions for the breathing
mode in the fully quantum regime, Eq. (6.7), and in the semiclassical
approximation, Eq. (6.21).

More complicated band structures would allow for multiple open orbits
coupled by magnetic breakdown. The magnetic lens may then exhibit a
complex pattern of caustics, one example (relevant for twisted bilayer
graphene [191]) is analysed in App. 6.8.

6.7 Appendix: Calculation of the interference
oscillations in the root-mean-square displace-
ment

The tight-binding model calculation in Fig. 6.4 shows small oscillations
on the scale of the lattice constant, which are absent in the analytical
curve. To include these, we consider both branches of the equi-energy
contour (6.15). These produce two open-orbit dispersions ±ε(ky), with
two corresponding wave function profiles ψ±. With reference to Eq. (6.7)
we have ψ+(x, y) = ψ(x, y) and ψ−(x, y) = ψ∗(x,−y).

We take an equal weight superposition 2−1/2(ψ+ + ψ−). The aver-
age displacement remains equal to zero, the mean square displacement
becomes〈

y2
〉
x

= ay

∫ 2π/ay

0

dky
2π

(
∂kyω(x, ky)

)2
[1− cos 2ω(x, ky)]. (6.26)

The result, see Fig. 6.8, has oscillations with a somewhat smaller ampli-
tude than in the numerics of Fig. 6.4, but the periodicity agrees nicely.

6.8 Appendix: Magnetic lens for multiple cou-
pled open orbits

In the main text we considered the magnetic lens that results from a
single open orbit in the Brillouin zone. As a more complicated example,
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Figure 6.8. Variance of the spread in the y-direction as a function of the distance
x from the point source, calculated from Eq. (6.26). This figure can be compared
with Fig. 6.4, where the interference oscillations are neglected.

Figure 6.9. Panel a: Equi-energy contours in momentum space consisting of
three sets of open orbits, at relative orientation of 120◦. The arrows indicate
the direction of motion in a magnetic field. The solid contours produce, upon
rotation by 90◦, the multi-branched real-space trajectory yc(x) shown in panel
b. A trajectory initially moving in the +x direction branches out into the −x
direction at the intersection points indicated by red dots. Higher order branch-
outs are not considered, these would contribute with reduced amplitude.

we show in Fig. 6.9a the equi-energy contours of minimally twisted bilayer
graphene [168], with three open orbits at a relative orientation of 120◦. At
an intersection an electron can switch from one orbit to the other, a pro-
cess known as magnetic breakdown. The corresponding multi-branched
classical trajectory yc(x) is shown in Fig. 6.9b. If we now apply the semi-
classical formula (6.21) we obtain the complex pattern of caustics shown
in Fig. 6.10.
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Figure 6.10. Superposition of the semiclassical orbits yc(x) from Fig. 6.9b that
satisfy yc(x0 − x)− yc(x0)− y = 0, with x0 varied between 0 and `.

In Ref. [191] a fully quantum mechanical calculation was presented for
the wave function profile. The semiclassical calculation well reproduces
the qualitative features. Notice in particular that the side branches at
an orientation of 120◦ are not simply copies of the main breathing mode.
There is an extinction of the amplitude between two oscillations, which
one might have suspected to be an interference effect. Instead it can be
fully reproduced from a trajectory description.
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Summary

A Josephson junction is a device where a thin insulating barrier or a nanos-
tructure is placed between two superconducting leads. A superconductor
is characterized by an order parameter that is a complex number. The
phase difference ∆φ between the order parameters of the two supercon-
ducting leads is a coordinate typically used to describe the state of the
junction. Such a junction is essential to superconducting qubits that store
quantum information due to its anharmonic spectrum. Therefore, under-
standing the physics of these junctions is crucial for predictions of the
qubit’s main qualities, such as the dephasing and relaxation time. Most
modern superconducting qubits use Josephson junctions with an insulat-
ing barrier (tunneling junction). One of this thesis aims is to explore other
possibilities that may allow for better properties of the qubit.

Chapter 2 considers a qubit with a Josephson junction containing a
single resonant level connected in parallel with a capacitor (capacitive
shunt). For the control of the qubit, it is necessary to have a gate control-
ling the charge on the capacitor. However, fluctuations of the energy of
the qubit with the gate voltage (charge dispersion) decrease the dephasing
time. The charge dispersion is typically reduced by making the capacitor
very large. However, this also increases the size of the qubit and the dielec-
tric losses. In this Chapter, we study how the charge dispersion changes
if a resonant level junction is used instead of the tunneling one. We show
that, for the same transition frequency and capacitance of the qubit, the
charge dispersion can be significantly reduced in some fine-tuned regimes.

In Chapter 3 we add an additional inductive shunt to the circuit con-
sidered in Chapter 2. The spectrum of the qubit doesn’t depend on the
gate voltage, but such a circuit can be used to implement a so-called bi-
fluxon qubit, where a conservation law forbids its decay. We also show
that for a sufficiently large inductance, the Hamiltonian of the circuit is
dual to a topological superconducting island.
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Chapter 4 concerns a planar Josephson junction with an altermag-
netic material in between two superconductors. Altermagnetism is a new
kind of magnetic order with a spin-polarized Fermi surface and broken
time-reversal symmetry, but with zero net magnetization. We take a mi-
croscopic approach to the problem and look at how the states localized
at the junction – Andreev bound states – are affected by altermagnetism.
We derive that these states are spin-split and observe that for certain
ranges of the junction’s length, the minimum of the energy of the junc-
tion is achieved at ∆φ = π rather than at ∆φ = 0 (as in most Josephson
junctions, such as the tunneling one). This type of junction can be a
useful element for the creation of qubits protected against relaxation. It
can provide a stable π phase bias in circuits implementing elements with
conserved parity of Cooper pairs. The parity can act as a conserved quan-
tity limiting the relaxation of the qubit. This type of qubit is dual to the
bifluxon qubit mentioned in the previous paragraph.

In Chapter 5, we investigate magnetotransport in minimally twisted
bilayer graphene. Minimally twisted bilayer graphene is a 2D material
made of two graphene layers twisted at a very small angle ∼ 0.1◦ with
respect to each other. The material typically relaxes to a superlattice
of domains with two relative upper and bottom layer alignments. If a
perpendicular electric field is applied, the transport in such a material is
dominated by a network of ballistic channels propagating along the do-
mains. We study the dependence of the conductance of such a sample as
a function of the perpendicularly applied weak magnetic field. The con-
ductance shows oscillations that can be mapped to the Bloch oscillations
of electrons in a 1D crystal.

In Chapter 6, we study magnetotransport in 2D materials, where the
Fermi surface is open in one direction. This is a generalization of the
situation studied in Chapter 5. We show that such materials feature a
magnetic focusing effect with the focusing length ∆x = (eaB/h)−1 (where
B is the applied magnetic field and a is the lattice constant). This effect
is distinct from the usual magnetic focusing effect due to the Lorentz force
and has no classical analogue. We also generalize our results to the case
of multiple open orbits weakly coupled with each other.



Samenvatting

Een Josephson-junctie bestaat uit een dunne isolerende barrière of een na-
nostructuur die tussen twee supergeleidende draden wordt geplaatst. Een
supergeleider wordt gekarakteriseerd door een ordeparameter die een com-
plex getal is. Het faseverschil ∆φ tussen de ordeparameters in de beide
draden beschrijft de toestand van de junctie. Zo’n junctie is essentieel
voor supergeleidende qubits die quantuminformatie opslaan. Daarom is
het begrijpen van de fysica van deze juncties cruciaal voor voorspellingen
van de belangrijkste eigenschappen van de qubit, zoals de coherentie en
relaxatietijd. De meeste moderne supergeleidende qubits gebruiken Jo-
sephson juncties met een isolerende barrière (tunnel-juncties). Een van
de doelen van dit proefschrift is om andere mogelijkheden te onderzoeken
die betere eigenschappen van de qubit mogelijk maken.

Hoofdstuk 2 beschouwt een qubit met een Josephson junctie die een
enkel resonant energiniveau bevat dat parallel is geschakeld met een con-
densator. Voor de besturing van de qubit is een elektrode nodig die de la-
ding op de condensator regelt. Schommelingen van de energie van de qubit
met de spanning verminderen echter de coherentietijd. De schommelingen
worden meestal verminderd door de condensator erg groot te maken. Dit
vergroot echter ook de grootte van de qubit en de dielektrische verliezen.
In dit hoofdstuk bestuderen we hoe de ladingsdispersie verandert als er
een resonante koppeling wordt gebruikt in plaats van de tunnel-koppeling.
We laten zien dat, voor dezelfde overgangsfrequentie en capaciteit van de
qubit, de ladingsdispersie aanzienlijk kan worden verminderd in sommige
regimes.

In hoofdstuk 3 voegen we een extra inductief element toe aan de scha-
keling die in hoofdstuk 2 is beschreven. Het spectrum van de qubit hangt
niet af van de poortspanning, maar een dergelijke schakeling kan worden
gebruikt om een zogenaamde bifluxon qubit te implementeren, waarbij
een behoudswet het verval verbiedt. We laten ook zien dat voor een vol-
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doende grote inductantie de Hamiltoniaan van de schakeling duaal is aan
een topologisch supergeleidend eiland.

Hoofdstuk 4 gaat over een Josephson junctie met een altermagnetisch
materiaal tussen twee supergeleiders. Altermagnetisme is een nieuw soort
magnetische orde met een spin-gepolariseerd Fermi-oppervlak en gebroken
tijd-omkeringssymmetrie, maar met nul netto magnetisatie. We benade-
ren het probleem microscopisch en bekijken hoe de gelocaliseerde toestan-
den gelokaliseerd in de junctie - Andreev-gebonden toestanden - worden
beïnvloed door altermagnetisme. We leiden af dat deze toestanden spin-
gepolariseerd zijn en observeren dat voor bepaalde lengtes van de junctie,
het minimum van de energie van de junctie wordt bereikt bij ∆φ = π
in plaats van bij ∆φ = 0 (zoals in de meeste Josephson juncties, zoals
de tunnel-junctie). Deze eigenschap kan nuttig zijn voor het maken van
qubits die beschermd zijn tegen relaxatie.

In hoofdstuk 5 onderzoeken we magnetotransport in minimaal getwist
tweelaagig grafeen. Minimaal getwist tweelaagig grafeen is een twee-
dimensionaal materiaal dat bestaat uit twee lagen grafeen die onder een
zeer kleine hoek (1/10de graad) ten opzichte van elkaar gedraaid zijn.
In het materiaal ontstaat een superrooster van domeinen met twee rela-
tieve uitlijningen van de bovenste en onderste laag. Als er een loodrecht
elektrisch veld wordt aangelegd, wordt het transport in zo’n materiaal
gedomineerd door een netwerk van geleidende toestanden die zich voort-
planten langs de domeinranden. We bestuderen de afhankelijkheid van
de geleiding van een dergelijk systeem als functie van een loodrecht aan-
gelegd zwak magnetisch veld. De geleiding vertoont oscillaties die een
manifestatie zijn van Bloch oscillaties van elektronen.

In hoofdstuk 6, tenslotte, bestuderen we magnetotransport in twee-
dimensionale materialen, waarbij het Fermi-oppervlak in één richting open
is. Dit is een veralgemening van de situatie die in hoofdstuk 5 is bestu-
deerd. We laten zien dat dergelijke materialen een magnetisch lens-effect
hebben. Dit effect verschilt van het gebruikelijke magnetische lens-reffect
als gevolg van de Lorentzkracht en heeft geen klassieke analogie. We ver-
algemenen onze resultaten ook naar het geval van meerdere open banen
die zwak aan elkaar gekoppeld zijn.



Пiдсумки

Джозефсонiвський контакт — це пристрiй, у якому тонкий iзолюючий
бар’єр або наноструктура розмiщена мiж двома надпровiдними еле-
ктродами. Надпровiдник характеризується параметром порядку, який
є комплексним числом. Рiзниця фаз мiж параметрами порядку двох
електродiв ∆φ зазвичай використовується як координата для опису
стану контакту. Такий контакт є важливою компонентою надпровiд-
них кубiтiв, завдяки ангармонiчнiчностi спектру. Тому розумiння фi-
зики цих контактiв є ключовим для опису основних характеристик
кубiта, таких як час дефазування та релаксацiї. Бiльшiсть сучасних
надпровiдних кубiтiв використовують Джозефсонiвськi контакти з iзо-
люючим бар’єром (тунельнi контакти). Однiєю з цiлей цiєї дисертацiї є
дослiдження iнших рiзновидностей контактiв, якi можуть забезпечити
кращi властивостi кубiта.

У роздiлi 2 розглядається кубiт з Джозефсонiвським контактом,
що мiстить один резонансний рiвень, пiдключений паралельно до кон-
денсатора (ємнiсна шунтовка). Для керування кубiтом необхiдно мати
затвор, що контролює заряд на конденсаторi. Однак, коливання енергiї
кубiта при змiнi напруги на затворi (зарядова дисперсiя) зменшують
час дефазування. Зарядова дисперсiя зазвичай зменшується шляхом
збiльшення ємностi конденсатора. Проте це також збiльшує фiзичний
розмiр кубiта та дiелектричнi втрати. У цьому роздiлi ми дослiджуємо,
як змiнюється зарядова дисперсiя, якщо замiсть тунельного контакту
використовується контакт з резонансним рiвнем. Ми показуємо, що
при тiй самiй частотi переходу та ємностi кубiта, зарядова дисперсiя
може бути значно зменшена в деяких точно налаштованих режимах.

У роздiлi 3 ми додаємо додаткову iндуктивну шунтовку до схеми,
розглянутої в роздiлi 2. Спектр кубiта не залежить вiд напруги на
затворi, але така схема може бути використана для реалiзацiї так зва-
ного бiфлюксонного кубiта, де закон збереження забороняє переходи
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мiж рiвнями, що використовуються для обчислень. Ми також пока-
зуємо, що при достатньо великiй iндуктивностi гамiльтонiан системи
є дуальним до зарядового кубiта з топологiчним Джозефсонiвським
контактом.

Роздiл 4 стосується планарного Джозефсонiвського контакту з аль-
термагнiтним матерiалом мiж двома надпровiдниками. Альтермагне-
тизм — це новий вид магнiтного порядку зi спiн-поляризованою Фермi-
поверхнею i порушеною Т-симетрiєю, але з нульовою сумарною нама-
гнiченiстю. Ми пiдходимо до проблеми з мiкроскопiчної точки зору
i дослiджуємо, як альтермагнетизм впливає на стани, локалiзованi в
контактi — Андреєвськi зв’язанi стани. Ми отримуємо, що цi стани роз-
щепленi по спiну, i спостерiгаємо, що для певних дiапазонiв довжини
контакту, мiнiмум енергiї досягається при ∆φ = π, а не при ∆φ = 0 (як
у бiльшостi Джозефсонiвських контактiв, таких як тунельний). Такий
тип контакту може бути корисним елементом для створення кубiтiв
захищених вiд релаксацiї.

У роздiлi 5 ми дослiджуємо магнiтотранспорт у мiнiмально скру-
ченому двошаровому графенi. Мiнiмально скручений двошаровий гра-
фен — це 2D матерiал, утворений двома шарами графену, скрученими
пiд дуже малим кутом ∼ 0.1◦ один до одного. Матерiал зазвичай ре-
лаксує до надґратки доменiв iз двома можливими вiдносними вирiв-
нюваннями верхнього та нижнього шарiв. Якщо прикласти перпенди-
кулярне електричне поле, транспорт у такому матерiалi визначається
мережею балiстичних каналiв, що проходять уздовж доменiв. Ми до-
слiджуємо залежнiсть провiдностi такого зразка як функцiю прикла-
деного перпендикулярного слабкого магнiтного поля. Провiднiсть де-
монструє осциляцiї, математично еквiвалентнi осциляцiям Блоха еле-
ктронiв в 1D кристалi.

У роздiлi 6 ми дослiджуємо магнiтотранспорт у 2D матерiалах, де
Фермi-поверхня вiдкрита в одному напрямку. Це узагальнення ситуа-
цiї, дослiдженої в роздiлi 5. Ми показуємо, що такi матерiали характе-
ризуються ефектом магнiтного фокусування з довжиною фокусування
∆x = (eaB/h)−1 (де a – це постiйна ґратки, а B – напруженiсть магнi-
тного поля). Цей ефект вiдрiзняється вiд звичайного ефекту магнiтно-
го фокусування через силу Лоренца i не має класичного аналога. Ми
також узагальнюємо нашi результати на випадок декiлькох вiдкритих
орбiт, слабо зв’язаних мiж собою.
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Stellingen
behorende bij het proefschrift

Hybrid Josephson junctions and their qubit applications

1. Resonant Cooper pair tunneling allows for a qubit with a reduced charge
dispersion at a fixed ratio of the qubit frequency to the charging energy.

Chapter 2

2. When the inductive energy of a superconducting loop becomes much smaller
than the Josephson plasma frequency, the circuit is well described by a low-
energy theory dual to that of a topological superconducting island.

Chapter 3

3. A Josephson junction with d-wave magnetization has spin-polarized An-
dreev levels.

Chapter 4

4. The oscillatory electron motion known as a Bloch oscillation can be ob-
served in DC electrical transport.

Chapter 5

5. Observation of the 4π-periodic Josephson effect does not necessarily imply
the tunneling of single electrons.

6. The coherence time T2 of state-of-the-art Andreev spin qubits is most likely
limited by the coupling to nuclear spins.

7. A material that is proven to be an altermagnet does not yet exist.

8. Circuit realizations of efficient Josephson diodes are the easiest to fabricate.

9. Quasiparticle poisoning is not a relevant limitation on the coherence time
of currently existing qubits.

10. The current grant system slows down scientific progress because the best
researchers spend a significant amount of time writing and evaluating grant
proposals.

Tereza Vakhtel
Leiden, 3 September 2024
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