
Tangent fermions:
massless fermions on a lattice

Proefschrift

ter verkrijging van
de graad van doctor aan de Universiteit Leiden,

op gezag van rector magnificus prof. dr. ir. H. Bijl,
volgens besluit van het college voor promoties

te verdedigen op woensdag 3 juli 2024
klokke 13:45

door

Álvaro Donís Vela
geboren te Valladolid, Spanje

in 1996



Promotores: Prof. dr. C. W. J. Beenakker
Prof. dr. J. Tworzydło (University of Warsaw)

Promotiecommissie: Prof. dr. S. J. van der Molen
Prof. dr. A. Achúcarro
Dr. V. Cheianov
Prof. dr. D. Tong (University of Cambridge)
Dr. M. Wimmer (Technische Universiteit Delft)

Cover:
Two tulips, one faceted and one fully rendered, represent the concepts

of discreteness and continuity. Their stems are interlaced and wrapped in
a ribbon, forming a Möbius strip in reference to non-Abelian braiding and
topology. Several key formulas accompany the lines of the painting.

By Yevheniia Cheipesh.



To my family





Contents

1 Introduction 1
1.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Topological protection of the Dirac cone and no-go theorem

in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Methods to discretize the Dirac equation . . . . . . . . . . 5

1.3.1 Sine dispersion . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Sine plus cosine dispersion . . . . . . . . . . . . . . 8
1.3.3 Staggered lattice dispersion . . . . . . . . . . . . . 8
1.3.4 Linear sawtooth dispersion . . . . . . . . . . . . . 10
1.3.5 Tangent dispersion . . . . . . . . . . . . . . . . . . 11

1.4 Chiral superconductors . . . . . . . . . . . . . . . . . . . . 14
1.5 Non-abelian anyons and braiding . . . . . . . . . . . . . . 15
1.6 This thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Massless Dirac fermions on a space-time lattice with a
topologically protected Dirac cone 23
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 Time-independent problem . . . . . . . . . . . . . 25
2.1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Space-time discretization without zone boundary disconti-
nuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.1 Split-operator technique . . . . . . . . . . . . . . . 28

v



Contents

2.2.2 Smooth zone boundary crossings . . . . . . . . . . 30
2.3 Stability of the Dirac point . . . . . . . . . . . . . . . . . 32

2.3.1 Protection by time-reversal symmetry . . . . . . . 32
2.3.2 Protection by chiral symmetry . . . . . . . . . . . 33

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.A Bandstructures for v = 2−1/2 a0/δt . . . . . . . . . . . . 37
2.B Bandstructure in the checkerboard potential . . . . . . . . 38
2.C Real-space formulation of the split-operator discretized evo-

lution operator . . . . . . . . . . . . . . . . . . . . . . . . 39
2.C.1 Implicit finite-difference equation . . . . . . . . . . 39
2.C.2 Computational efficiency . . . . . . . . . . . . . . . 41

3 Reflectionless Klein tunneling of Dirac fermions: Com-
parison of split-operator and staggered-lattice discretiza-
tion of the Dirac equation 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Brillouin zone doubling . . . . . . . . . . . . . . . . . . . 45
3.3 Klein tunneling . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.A Two methods of space-time discretization of the Dirac equation 52

3.A.1 Staggered lattice approach . . . . . . . . . . . . . . 52
3.A.2 Split-operator approach . . . . . . . . . . . . . . . 54

3.B Gap opening for the staggered lattice discretization . . . . 55
3.C Klein tunneling of naive fermions . . . . . . . . . . . . . . 56

4 Method to preserve the chiral-symmetry protection of
the zeroth Landau level on a two-dimensional lattice 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.2 Zeroth Landau level . . . . . . . . . . . . . . . . . 60
4.1.3 2D lattice formulation . . . . . . . . . . . . . . . . 61
4.1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Gauge invariant lattice fermions with a tangent dispersion 62
4.3 Chirality-resolved zeroth Landau level . . . . . . . . . . . 64

4.3.1 Lattice obstruction to chirality polarization . . . . 64
4.3.2 Proposed work-around . . . . . . . . . . . . . . . . 65

4.4 Robustness of the flat band . . . . . . . . . . . . . . . . . 66
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 68

vi



Contents

5 Chirality inversion of Majorana edge modes in a Fu-Kane
heterostructure 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Chirality inversion . . . . . . . . . . . . . . . . . . . . . . 72
5.3 No chirality inversion in a p-wave superconductor . . . . . 76
5.4 Transport signatures . . . . . . . . . . . . . . . . . . . . . 77
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.A Calculation of the dispersion relation . . . . . . . . . . . . 81
5.B Calculation of the charge and spin of the Dirac mode . . . 82
5.C Doppler-boosted edge modes in a chiral p-wave superconductor 83
5.D Details of the tight-binding simulation . . . . . . . . . . . 84
5.E Derivation of Eq. (5.15) . . . . . . . . . . . . . . . . . . . 87

5.E.1 Calculation of the transferred charge . . . . . . . . 87
5.E.2 Calculation of the electrical conductance . . . . . . 90

6 Dynamical simulation of the injection of vortices into a
Majorana edge mode 93
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Model and device . . . . . . . . . . . . . . . . . . . . . . . 95

6.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.2 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . 98
6.2.3 Computation of observables in the evolved many-

body state . . . . . . . . . . . . . . . . . . . . . . . 99
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3.1 Quantized charge measurement . . . . . . . . . . 101
6.3.2 Parity switch of edge-vortices . . . . . . . . . . . . 101
6.3.3 Topological protection of the edge vortices . . . . . 104

6.4 Long junction dynamics . . . . . . . . . . . . . . . . . . . 105
6.4.1 Quasi-particle excitation spectrum . . . . . . . . . 106
6.4.2 Trapped excitations . . . . . . . . . . . . . . . . . 106
6.4.3 Particle number in the junction . . . . . . . . . . . 109

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.A Time-evolution of single-body operators in BdG . . . . . . 111

6.A.1 From second to first quantization . . . . . . . . . . 111
6.A.2 Convergence . . . . . . . . . . . . . . . . . . . . . 112
6.A.3 Proof of time evolution method . . . . . . . . . . . 115

6.B Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.B.1 Time evolution of the parity operator . . . . . . . 117
6.B.2 Convergence of parity . . . . . . . . . . . . . . . . 119

vii



Contents

6.C Supplemental results . . . . . . . . . . . . . . . . . . . . . 119
6.C.1 Local representation of observables . . . . . . . . . 119
6.C.2 Current density in the long junction regime . . . . 120

Bibliography 121

Samenvatting 135

Summary 137

Resumen 139

Curriculum Vitæ 141

List of publications 143

viii



CHAPTER 1

Introduction

1.1. Preface
A fundamental concept in condensed matter physics is that the effective

behavior of electrons is strongly influenced by the medium in which they
exist. An example of this is graphene, in which electrons are effectively
massless. The symmetry of its celebrated honeycomb lattice imposes a
band structure with two gap closings at two points in the Brillouin zone
(BZ) [1, 2] around which the dispersion relation is a Dirac cone (Fig. 1.1)

E2 = v2(p2
x + p2

y). (1.1)

These points are called Dirac points and the Hamiltonian describing the
low energy excitations around each of them is respectively

H± = −iℏv(∂xσx ± ∂yσy). (1.2)

This Hamiltonian realises the Dirac equation for massless fermions with
velocity v in 2D, where the sign choice fixes the chirality of the particles.1
The presence of two species of massless Dirac fermions with opposite
chirality is not an accident but a consequence of a fundamental fact about

1For massless particles chirality and helicity coincide.
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1 Introduction

lattice Hamiltonians. Nielsen and Ninomiya [3] proved, in the context
of high energy physics, that the following statements about a lattice
Hamiltonian cannot be simultaneously true:

The Hamiltonian is local.

The Hamiltonian preserves chiral symmetry.

The sum of chiralities of the Dirac points in the Brillouin zone is not
zero.

This no-go theorem seems to imply that we cannot have a crystal with
a single species of massless fermions. However, nature often manages to
find a way around our expectations, and 3D topological insulators (3DTIs)
are an example of this. These materials have a gapped bulk but a gapless
surface whose low energy dispersion relation consists of a single Dirac cone.
Nature is showing us that we can have a single species of massless chiral
fermions as long as they are embedded in a lattice of larger dimension.

Yet, this does not mean that in order to simulate the 2D surface modes of
a 3DTI we need to spend resources representing the whole 3D lattice. The
problem of building a lattice model with a single Dirac cone is commonly
referred to as the fermion doubling problem and it is well known in the
field of lattice gauge theories where there have been many ways of tackling
it [4–7]. The main part of this thesis focuses on addressing this problem
within the framework of topological condensed matter by developing the
tangent fermions approach, a scheme pioneered by Stacey that breaks the
locality assumption [8].

The present chapter is dedicated to laying out some fundamental con-
cepts related to the fermion doubling problem, as well as showing how
3DTIs can be used to build chiral superconductors and introducing the
concept of non-Abelian braiding.

1.2. Topological protection of the Dirac
cone and no-go theorem in 2D

Since disorder is unavoidable in real materials, we would like it to be
accurately featured by our discretization scheme. One crucial trait of
massless fermions on the surface of topological materials is the gapless
nature of the Dirac cone even when disorder is present. This robustness is
referred to as topological protection, and it relies on the presence of either

2



1.2 Topological protection of the Dirac cone and no-go theorem in 2D

Figure 1.1: Band structure of graphene in the first Brillouin zone. Inset:
Conical dispersion relation (Dirac cone) around the gap closings (Dirac points).

chiral or symplectic symmetries2 but also on the Dirac cone to be the only
one in the Brillouin zone.

In this section, we demonstrate how chiral and symplectic symmetries
provide this topological protection for local Hamiltonians in 2D. By doing
it, we also uncover the main obstacle to achieving it in a lattice model.
Namely, that a local discretization of the 2D Dirac Hamiltonian cannot
have an unpaired Dirac cone, unless it breaks both chiral and symplectic
symmetries.

Chiral symmetry

A system has chiral symmetry if there exists a unitary and hermitian chi-
rality operator Γ that anticommutes with the Hamiltonian. The conditions
on Γ imply that it has two eigenspaces with eigenvalues ±1 respectively
and Γ2 = 1. Also, the anticommutation with the Hamiltonian implies

⟨ψ±|H |ϕ±⟩ = ⟨ψ±| Γ2H |ϕ±⟩ = − ⟨ψ±| ΓHΓ |ϕ±⟩ = − ⟨ψ±|H |ϕ±⟩ ,
(1.3)

being |χ+⟩ (|χ−⟩) a state of positive (negative) chirality. So in the basis
of eigenstates of Γ, the diagonal blocks of H are zero. We can then write

2Crystalline symmetries can also stabilize the Dirac point, in which case we talk about
“fragile” topological protection [9].
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1 Introduction

our Hamiltonian by blocks as3

H(k) =
(

0 A†(k)
A(k) 0

)
. (1.4)

Given a closed loop γ in the reciprocal space along which detA ̸= 0, we
can define a winding number as

W = 1
2π Im

∮
γ

∇k log (detA(k)) · dk. (1.5)

If the Hamiltonian is local, A(k) is continuous and single valued. This
implies that W must be integer and therefore we can use it as a topological
invariant to classify Hamiltonians and loops. If there are no zeros of detA
inside of γ, then the loop can be contracted to a point and W = 0.

From equation (1.2), it follows that at a Dirac point detA(kD) vanishes.
This means that a loop containing a Dirac point cannot be contracted
to a point. Indeed, calculating the winding number along such loop, one
finds that it is equal to the chirality of the cone W = ±1. If we then
continuously deform the Hamiltonian (always making sure that detA does
not vanish on the loop), since W cannot change, the Dirac cone can only
move around, but never gap out. Therefore, we say that the Dirac cone is
topologically protected.

In general, the winding number of a loop is equal to the sum of the
chiralities of the Dirac points that it encloses, so a loop surrounding two
Dirac points with opposite chiralities has W = 0. In consequence, pairs
of Dirac cones with opposite chiralities can gap each other out without
changing W . This means that only unpaired Dirac cones are protected.

The winding number can also help us derive the no-go theorem in 2D.
The winding number of the loop γe that goes along the edges of the
Brillouin zone will be equal to the sum of the chiralities of all the Dirac
cones in the Brillouin zone.4 For this loop, the integral (1.5) can be
separated into four integrals along each of the edges of the Brillouin zone.
Due to the periodicity of H(k), these integrals must cancel out by pairs,
so the sum of the chiralities of the Dirac points in the BZ is always zero.

3In the most general case, A does not need to be a square matrix. In that case,
there is always a set of states of fixed chirality pinned to zero energy, and the
following discussion must be slightly adapted. Since this is not the case for the
Dirac Hamiltonian, we will not get into these details.

4If there is a Dirac point on the edges of the Brillouin zone, we can always sligthly
deform our path γe to avoid it while making sure that the whole BZ is contained in
the loop and the argument still applies.

4



1.3 Methods to discretize the Dirac equation

This proves that if the Hamiltonian is local and has chiral symmetry, it
cannot have a single unpaired Dirac cone.

Symplectic symmetry

The time reversal symmetry of spinful systems is called symplectic
symmetry. If it holds, Kramers theorem applies [10]. This theorem
dictates that all eigenstates of the Hamiltonian must be doubly degenerate.
Since time reversal maps k → −k, a band crossing is necessary at time
reversally invariant momenta (TRIMs) for any local Hamiltonian (namely,
continuous in reciprocal space).5 Therefore, a Dirac cone at a TRIM is
protected by symplectic symmetry.

If both chiral and symplectic symmetries are maintained, the Brillouin
zone contains a Dirac point at zero energy at each TRIM. There are 2d
such time-reversally invariant momenta in d dimensions, so 4 in 2D. If we
then break symplectic symmetry we can move the Dirac points around and
gap them out pairwise by merging two Dirac cones with opposite winding
number. However, we can not end up with an unpaired Dirac cone unless
we also break chiral symmetry, spoiling the topological protection.

In the next section, we review the most commonly used discretization
methods for the Dirac Hamiltonian, and in 1.3.5 we introduce the tangent
fermions approach which breaks the locality condition to find a work
around: a nonlocal discretization can have discontinuities or poles in the
dispersion relation, which may “hide” a Dirac point.

1.3. Methods to discretize the Dirac
equation

We now turn to the overview of methods to discretize the 2D Dirac
Hamiltonian,

H0 = ℏv(kxσx + kyσy) = ℏv
(

0 −i∂x − ∂y
−i∂x + ∂y 0

)
, (1.6)

focusing on the case that the massless electrons can move freely on the
x–y plane, without any electromagnetic fields. The Dirac fermions have
energy independent velocity v. The Pauli spin matrices σ are coupled
to the momentum k = −i∂r. In Eq. (1.6) the spin-momentum locking
is such that the spin points parallel to the momentum. The alternative

5a point kT of the Brillouin zone is at a TRIM if 2kT is a reciprocal lattice vector.
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1 Introduction

perpendicular spin-momentum locking (kxσy − kyσx) can be obtained by
a unitary transformation of H0, so we need not distinguish the two cases
here.

The energy-momentum relation (dispersion relation) of the Dirac Hamil-
tonian,

E(k)2 = (ℏv)2(k2
x + k2

y), (1.7)

consists of a pair of cones that touch at the point k = 0 — the Dirac point.
When the Hamiltonian is discretized on a lattice the dispersion relation
becomes periodic: E(k + K) = E(k) for any reciprocal lattice vector K.
Momenta which are not related by a reciprocal lattice vector form the
Brillouin zone. For some discretization methods the Dirac point at k = 0
is copied at other points in the Brillouin zone (fermion doubling).

The Dirac Hamiltonian (1.6) satisfies the two symmetry relations intro-
duced in the previous section,

chiral symmetry: σzH0σz = −H0,

symplectic symmetry: σyH∗
0σy = H0.

(1.8)

The complex conjugation is taken in the real-space basis, so the sign of both
momentum and spin is inverted by the symplectic symmetry operation.
For each discretization method we will check whether the symmetries (1.8)
are preserved or not.

The topological protection of the Dirac point relies on the absence
of fermion doubling and on the conservation of at least one of the two
fundamental symmetries (1.8). The linearity of the dispersion relation,
E ∝ |k|, may be a desirable feature, but it is not essential for the protection.
What is essential for a practical method is that the eigenvalue problem
can be solved using linear algebra of sparse matrices.

In Table 1.1 we summarize the properties of the various discretization
schemes that we will discuss. Each discretization has its own dispersion
relation, which reduces to the linear dispersion near the physical Dirac
point at the center k = 0 of the Brillouin zone. The distinguishing
properties include:

the symmetries that the discretization does or does not preserve —
the chiral symmetry which defines the handedness of the particles
and the symplectic symmetry which is the time-reversal symmetry
for spin-1/2 particles;

the number of Dirac points in the Brillouin zone (1 if there is no
fermion doubling);

6



1.3 Methods to discretize the Dirac equation

dispersion chiral symplectic Dirac locality top.
symm. symm. points prot.

sine ✓ ✓ 4 ✓ ×
sine+cosine ([11]) × × 1 ✓ ×
staggered ([12]) ✓ × 2 ✓ ×

linear sawtooth ([13]) ✓ ✓ 1 × ×
tangent ([8]) ✓ ✓ 1 ×(✓) ✓

Table 1.1: Five approaches to discretize the Dirac equation on a 2D lattice.
The presence or absence of a property is indicated by ✓ or ×, respectively. The
tangent dispersion has a nonlocal Hamiltonian, but it allows a local formulation
of a generalized eigenproblem (hence the ✓ in parentheses). Only the tangent
dispersion has an unpaired and topologically protected Dirac point.

the locality of the discretization, meaning whether the discretized
Hamiltonian only couples nearby lattice points;

and finally the presence or absence of the protection against gap
opening by disorder.

1.3.1. Sine dispersion
We start with a square lattice, lattice constant a, and discretize the

derivative operator by the first order finite difference:

∂xf(x, y) 7→ (2a)−1[f(x+ a, y) − f(x− a, y)], (1.9)

and similarly for ∂yf(x, y). Notice that ea∂x = eiakx is the translation
operator, ea∂xf(x) = f(x+ a). The discretization (1.9) therefore gives the
Hamiltonian

Hsine = (ℏv/a)(σx sin akx + σy sin aky), (1.10)

with the sine dispersion

Esine(k)2 = (ℏv/a)2(sin2 akx + sin2 aky). (1.11)

Chiral symmetry and symplectic symmetry (1.8) are both preserved by
the Hamiltonian Hsine, but there is fermion doubling: In the Brillouin zone
|kx| < π/a, |ky| < π/a there are Dirac points at each of the time-reversally
invariant momenta: the center k = 0, the corners |kx| = |ky| = π/a

7



1 Introduction

and the midpoints kx = 0, |ky| = π/a and ky = 0, |kx| = π/a. The four
corners and opposite midpoints are related by a linear combination of
reciprocal lattice vectors K = (2π/a, 0) and K ′ = (0, 2π/a), so there are
4 inequivalent Dirac points in the Brillouin zone.

1.3.2. Sine plus cosine dispersion

An effective way to remove the spurious Dirac points is to gap them
by the addition of a momentum dependent magnetization µ(k)σz to the
Dirac Hamiltonian. If µ vanishes at k = 0 the physical Dirac point at the
center of the Brillouin zone is unaffected. This is the approach introduced
by Wilson [11, 14]. A quadratic µ ∝ k2 is discretized on a square lattice,
resulting in the Hamiltonian

HWilson = (ℏv/a)(σx sin akx + σy sin aky) +m0σz(2 − cos akx − cos aky),
(1.12)

with the sine plus cosine dispersion

EWilson(k)2 = (ℏv/a)2(sin2 akx + sin2 aky) +m2
0(2 − cos akx − cos aky)2.

(1.13)
The Dirac points of the sine dispersion acquire a gap ∝ m0, only the Dirac
point at k = 0 remains gapless.

Fermion doubling in Wilson’s approach is avoided at expense of a
breaking of both chiral and symplectic symmetries. The product of these
two symmetries is preserved,

σxH
∗
Wilsonσx = −HWilson, (1.14)

which is sufficient for some applications [15–18].

1.3.3. Staggered lattice dispersion

Much of the particle physics literature follows Susskind’s approach
[12, 19], which applies a different lattice to each of the two components of
the spinor wave function Ψ = (u, v). The two lattices are staggered, see Fig.
1.2, displaced by half a lattice constant. The momentum operator transfers
from one lattice to the other, which amounts to a diagonal displacement by
a distance of a/

√
2, as expressed by the translation operators eia(kx±ky)/2.

The discretized Dirac Hamiltonian still acts on the original lattice (black

8



1.3 Methods to discretize the Dirac equation

Figure 1.2: Left: Staggered pair of grids for the discretization of Dirac fermions
in Susskind’s approach. The black and white dots distinguish the u and v
amplitudes of the spinor wave function Ψ = (u, v). Right: The square shows the
Brillouin zone in momentum space, the red dots indicate two inequivalent Dirac
points.

dots in Fig. 3.1). The unitary transformation with operator

Ustagger =
(

1 0
0 eia(kx+ky)/2

)
(1.15)

initializes the pair of staggered lattices (u component on the black dots,
v-component on the white dots). The Hamiltonian then takes the form

HSusskind =
√

2ℏv
a
U†

stagg.
(
σx sin[a(kx−ky)/2]+σy sin[a(kx+ky)/2]

)
Ustagg..

(1.16)
Check that the 2π/a periodicity in the kx and ky components is maintained:
the minus sign picked up by the sine terms is canceled by the unitaries.

In terms of the rotated momenta qx = (kx−ky)/
√

2, qy = (kx+ky)/
√

2,
normalized such that |q|2 = |k|2, one has

HSusskind = ℏv[qxσx + qyσy + O(q2)], (1.17)

so the Dirac Hamiltonian (1.6) is recovered in the continuum limit.
The corresponding dispersion relation

ESusskind(k)2 = 2(ℏv/a)2(sin2[(kx − ky)/2] + sin2[(kx + ky)/2]
)

(1.18)

has two inequivalent Dirac points in the Brillouin zone, at the center and
at the corner. Compared to the sine discretization the staggered lattice
has reduced the number of Dirac points from four to two, but fermion

9



1 Introduction

doubling has not been fully eliminated. Chiral symmetry is preserved, but
symplectic symmetry is broken by the relative displacement of the two
spinor components.

More generally, on a d-dimensional lattice the sine dispersion has 2d
inequivalent Dirac points in the Brillouin zone (one at each time-reversally
invariant momentum), and the staggered lattice reduces that by one half.
For d = 1 this is sufficient to avoid fermion doubling. In that case the
Susskind Hamiltonian (1.16) is equivalent (up to a unitary transformation)
to the 1D Wilson Hamiltonian

HWilson(kx, ky = 0) = (ℏv/a)σx sin akx +m0σz(1 − cos akx) (1.19)

for the special value m0 = ℏv/a. The resulting sin(akx/2) dispersion is
shown in Fig. 1.3 (green curve).

1.3.4. Linear sawtooth dispersion

The discretization schemes discussed in the previous subsection are all
local, in the sense that they produce a sparse Hamiltonian: each lattice
site is only coupled to a few neighbors. If one is willing to abandon the
locality of the Hamiltonian, one can eliminate the fermion doubling by a
discretization of the spatial derivative that involves all lattice points,

∂xf(x, y) 7→ a−1
∞∑
n=1

(−1)nn−1[f(x− na, y) − f(x+ na, y)]

= a−1
∞∑
n=1

(−1)nn−1(e−na∂x − ena∂x)f(x, y) = a−1(ln ea∂x)f(x, y).

(1.20)

This discretization scheme goes by the name of slac fermions [13, 20] in
the particle physics literature. It has also been implemented in a condensed
matter context [21–24].

In momentum representation, the Hamiltonian takes the form

HSLAC = −i(ℏv/a)
(
σx ln eiakx + σy ln eiaky

)
, (1.21)

where the branch cut of the logarithm is taken on the negative real axis.
The corresponding dispersion

ESLAC(k)2 = (ℏv)2 (k2
x + k2

y) for |kx|, |ky| < π/a, (1.22)

10



1.3 Methods to discretize the Dirac equation

Figure 1.3: Dispersion relations of Dirac fermions on a 1D lattice, for four
different discretization schemes. One with fermion doubling (black curve, Esine)
and three without fermion doubling: EWilson (green curve, for m0 = ℏv/a, when
ESusskind = EWilson), ESLAC (red curve), and EStacey (blue curve). Inequivalent
Dirac points are indicated by a red dot. The first Brillouin zone is the interval
|k| < π/a, the plot is extended to |k| < 2π/a to show the dispersion on both
sides of the Brillouin zone boundary.

is a linear sawtooth, with a cusp at the edge of the Brillouin zone (see
Fig. 1.3, red curve). Fermion doubling is avoided and both chiral and
symplectic symmetries are preserved.

1.3.5. Tangent dispersion

The approach pioneered by Stacey [8, 25] seems a minor modification of
the slac approach — but it has far reaching consequences. The nonlocal
derivative (1.20) is modified by removal of the 1/n factor,

∂xf(x, y) 7→ 2a−1
∞∑
n=1

(−1)n[f(x− na, y) − f(x+ na, y)]

= 2a−1
∑
n

(−1)n(e−na∂x − ena∂x)f(x, y)

= −(2i/a) tan(ia∂x/2)f(x, y). (1.23)

11
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The corresponding Hamiltonian

HStacey = (2ℏv/a)
[
σx tan(akx/2) + σy tan(aky/2)

]
, (1.24)

has a tangent dispersion,

EStacey(k)2 = (2ℏv/a)2 [tan2(akx/2) + tan2(aky/2)
]
. (1.25)

The cusp at the Brillouin zone boundary has been replaced by a pole (see
Fig. 1.3, blue curve).

As in the slac approach, the Stacey approach avoids fermion doubling
while preserving chiral and symplectic symmetries, at the expense of a
nonlocal Hamiltonian. The key merit of the tangent dispersion is that the
nonlocality can be removed by transforming the eigenproblem HΨ = EΨ
into a generalized eigenproblem HΨ = EPΨ, with local operators H and
P on both sides of the equation. This transformation is possible because
the tangent is the ratio of two operators, sine and cosine, that have a local
representation on the lattice.

Ref. [8] formulated the generalized eigenproblem by means of finite
differences on a pair of staggered grids. This produces operators H and
P that are local but not Hermitian, which is problematic in a numerical
implementation. The alternative formulation of Ref. [26] resolves this issue,
resulting in the generalized eigenproblem

HΨ = EPΨ, P = 1
4 (1 + cos akx)(1 + cos aky),

H = ℏv
2a
[
σx(1 + cos aky) sin akx + σy(1 + cos akx) sin aky

]
.

(1.26)

Both operators H and P are Hermitian and P is also positive definite.6
Both are sparse matrices, only nearby sites on the lattice are coupled. This
combination of properties allows for an efficient calculation of the energy
spectrum. In order to do this in practice, it is essential to formulate this
problem in real space.

6To avoid the complications from a noninvertible P, one can choose a lattice with
periodic boundary conditions over an odd number of sites; then all eigenvalues of P
are strictly positive.
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1.3 Methods to discretize the Dirac equation

Real-space formulation of the generalized eigenproblem.

The generalized eigenproblem (1.26) of tangent fermions can be formu-
lated in the position basis upon the substitution

eiakα 7→
∑

n

|n⟩⟨n + eα|. (1.27)

The sum over n = nxex + nyey, with nx, ny ∈ Z, is a sum over lattice
sites on the 2D square lattice (lattice constant a).

We thus have the equation HΨ = EPΨ, with on the left-hand-side the
operator

H = − iℏv
a

D · σ, D = (Dx, Dy), (1.28a)

Dx = 1
8

∑
n

(
2|n⟩⟨n + ex| + |n⟩⟨n + ex + ey| + |n⟩⟨n + ex − ey|

)
− H.c.,

(1.28b)

Dy = 1
8

∑
n

(
2|n⟩⟨n + ey| + |n⟩⟨n + ex + ey| + |n⟩⟨n + ey − ex|

)
− H.c.,

(1.28c)

and on the right-hand-side the operator P = Φ†Φ with

Φ = 1
4

∑
n

(
|n⟩⟨n| + |n⟩⟨n + ex| + |n⟩⟨n + ey| + |n⟩⟨n + ex + ey|

)
.

(1.29)

The abbreviation H.c. stands for “Hermitian conjugate”. Both operators
H and P are local, only nearby lattice points are connected.

By way of illustration, we work out the expectation value

⟨ψ|Φ†Φ|ψ⟩ =
∑

n

|ψ̃n|2, ψ̃n = 1
4 (ψn+ψn+ex

+ψn+ey
+ψn+ex+ey

). (1.30)

One can interpret this in terms of the two staggered lattices shown in Fig.
1.4. The field ψ̃ = Φψ is defined on a white lattice point as the average of
the amplitudes of the wave function ψ on the four adjacent black lattice
points.

13
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Figure 1.4: Staggered pair of grids to represent the two fields ψ and ψ̃ = Φψ.
Figure from Ref. [26]. CC BY 4.0 license

1.4. Chiral superconductors
As shown by Fu and Kane, a 3DTI can be used to engineer a chiral

superconductor [27] by proximitizing it with an s-wave superconductor.
The Bogoliubov-de Gennes Hamiltonian corresponding to such system is

H =
(
ℏvk · σ − µ ∆∗

∆ −ℏvk · σ + µ

)
. (1.31)

The unitary transformation given by

U =
(

exp
(
−iπ4 (sin θkσx − cos θkσy)

)
0

0 exp
(
iπ4 (sin θkσx − cos θkσy)

)) ,
(1.32)

being θk the polar angle of k, transforms our Hamiltonian into

UHU† =


ℏv|k| − µ 0 0 ∆∗e−iθk

0 −ℏv|k| − µ −∆∗eiθk

0 −∆e−iθk ℏv|k| + µ 0
∆eiθk 0 0 −ℏv|k| + µ

 . (1.33)

For µ ≫ |∆|, the low energy spectrum is given by the first and fourth
blocks, so we can project on them to obtain

HC =
(
ℏv|k| − µ ∆∗e−iθk

∆eiθk −ℏv|k| + µ

)
. (1.34)

Since the superconducting phase along the normal Fermi surface winds
once, this effective Hamiltonian realises a chiral superconductor. These
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Figure 1.5: Low energy band structure in x direction of a tight-binding version
of the Hamiltonian 1.31 for a periodic system in y direction (left) and a finite
system with magnetic boundaries (right). In the finite system, we can appreciate
two gapless edge modes with opposite velocity. The boundaries also lift the
degeneracy of the bulk bands.

systems are topological [28], and they can host chiral edge modes. This is
only possible if time reversal symmetry is broken. Since Hamiltonian 1.31
does not break it, the boundaries must. This is achieved by a magnetization
term in z direction. The corresponding band structure is shown in Fig.
1.5.

In [29], they used this realisation of a chiral superconductor to observe
the gap closing caused by a net superconducting current [30]. This happens
due to the Doppler shift δE of the bands ε(p) caused by the Cooper pair
momentum ps [31],

δE(p) = ps · ∂ε(p)
∂p

. (1.35)

In chapter 5, we study the effect of a net supercurrent on the chiral edge
modes of such system.

1.5. Non-abelian anyons and braiding

A fundamental property that distinguishes fermions from bosons is
their exchange statistics. This term refers to how the state of a system
transforms when two particles are exchanged. We can express it as

|Ψ21⟩ = U |Ψ21⟩ . (1.36)
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For fermions the wavefunction changes sign, U = −1, while for bosons it
stays the same, U = 1. A detail that is often overlooked in this regard is
the fact that we can mean two different things by “particle exchange” [32].
On one hand, we can switch the quantum numbers of two particles. The
statistics of fermions under this notion of exchange is responsible for the
Pauli exclusion principle.

On the other hand, we can think of exchanging two particles by adiabati-
cally driving them to each other’s position without encountering each other
along the way. In 3D, the Berry phase associated to such an exchange can
only take the values ±1, corresponding to bosons and fermions respectively.
However, in 2D there can exist particles that acquire any phase.7 We call
this particles anyons, and for them U = eiθ.

If the ground state of a 2D system with two particles is degenerate, there
is still a more general scenario. In such case, it is possible for the exchange
to produce a linearly independent state. Particles with this behavior are
called non-Abelian anyons and their exchange is described by a unitary
transformation U rather than just a phase.

Kitaev managed to show how this property can be exploited to build
a fault-tolerant quantum computer [33]. The idea is to encode a set of
qubits in the ground state of a system of non-Abelian quasiparticles and
use exchange operations to implement quantum gates on them. The world
lines of the quasiparticles during this process interlace each other, and
every possible braid results in a specific unitary transformation, hence the
term non-abelian braiding. These systems store information non-locally
and this makes the process immune to decoherence.

The first physical systems found to host non-Abelian anyons were frac-
tional quantum Hall states at some specific filling factors (e.g. ν = 5/2)
[34, 35], but recently more attention has been given to topological super-
conductors like the ones described in the previous section. A φ = h/2e
magnetic flux tube threading a 2D topological superconductor creates an
Abrikosov vortex in the superconducting pairing that binds a zero energy
state. This state is called Majorana zero mode (MZM) because it is its
own particle-hole partner.

A qubit can be encoded in the parity of two MZMs, i.e. in the filling
of the fermionic degree of freedom that is split between them. Since the
total parity of a superconductor is fixed, the minimal example of braiding
with MZMs requires two pairs of these quasiparticles. Braiding one MZM
from the first pair around another from the other pair induces a transfer

7The reason behind this difference comes down to the fact that in the 2D space, a
loop around the origin cannot be contracted to a point without crossing it, while in
3D this can be done by lifting up the loop in the third dimension.
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1.5 Non-abelian anyons and braiding

Figure 1.6: Schematics of the implementation of a σx gate on the state ψin =
|+⟩ |−⟩ to turn it into ψout = |−⟩ |+⟩.

of a fermion between the pairs. This transformation corresponds to a σx
gate (see [36]). A measurement of the state can be carried out by fusing a
pair and measuring the corresponding parity.

A big obstacle stands in the way of implementing this protocol in practice,
namely the fact that adiabatically moving around individual Abrikosov
vortices is beyond our current technical capabilities. Fortunately, another
kind of non-Abelian quasiparticles that can exist on the chiral edges of
topological superconductors provides us with a solution. We are not
referring to the ordinary edge Majorana fermions, which are Bogoliubov
excitations with fermionic statistics, but to a special kind of many-body
excitation called edge-vortex. They consist of a π-phase kink on the
Majorana edge ground state, which is stable due to the reality condition of
Majorana wavefunctions [37]. These excitations have non-Abelian statistics
and they propagate along the edge of the superconductor at the edge mode
velocity.

In chapter 6, we demonstrate a protocol to inject, braid and fuse edge
vortices proposed by Beenakker et al. [38]. Although we model the
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process with a proximitised Chern insulator, a proximitised 3DTI surface
surrounded by magnetic regions with opposite magnetizations would realise
the same low energy phenomenology.

1.6. This thesis
Although the overarching theme of this thesis falls within the topic of

lattice massless fermions, two distinct parts can be established. Chapters 2,
3 and 4 are devoted to developing various aspects of the tangent fermions
discretization method, such as the implementation of time evolution or the
inclusion of a magnetic field in a gauge invariant way. In contrast, chapters
5 and 6 study specific phenomena associated to chiral superconductors,
using both analytical and numerical methods.

Chapter 2
As discussed in section 1.2, symmetries are crucial for the topological

protection of a single Dirac cone. However, they will only provide such
protection if the Hamiltonian is continuous in the whole reciprocal space,
including across the edges of the Brillouin zone. This is often overlooked
in many discretization methods.

In this chapter, we introduce a way to solve the time-dependent Dirac
equation for massless fermions on a lattice that is discrete not only in
space but also in time. The resulting evolution operator has unique
properties. It preserves chiral and symplectic symmetries, it avoids fermion
doubling and, remarkably, it is continuous across the edge of the energy-
momentum Brillouin zone. We explicitly show how other methods fail to
keep the gaplessness of the Dirac cone while in ours it is robust against
any chiral or symplectic symmetry preserving perturbations. Since our
dispersion relation reads tan2(ε/2) = tan2(kx/2) + tan2(ky/2), we refer to
our approach as the method of tangent fermions.

Chapter 3
Apart from the robustness of the Dirac cone, another well known property

of massless fermions is a phenomenon known as “Klein tunneling”. It
consists on the impossibility of backscattering of electrons that encounter
a potential step perpendicular to their direction of motion, irrespective of
the size of the barrier. This happens because such backscattering would
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1.6 This thesis

Figure 1.7: Band structure for slac (left) and tangent fermions (right). The
bands are discontinuous accross the edge of the Brillouin zone only in the former.

require a spin switch, which is forbidden in chiral symmetry preserving
systems.

However, this phenomenon may be spoiled by fermion doubling because
of scattering to another Dirac cones in the Brillouin zone. To avoid this,
a staggered space-time lattice discretization has been developed in the
literature, with one single Dirac cone in the Brillouin zone of the original
square lattice. In this chapter we show that the staggering doubles the size
of the Brillouin zone, which actually contains two Dirac cones. We find
that this fermion doubling causes a spurious breakdown of Klein tunneling,
which can be avoided by the alternative single-cone discretization scheme
introduced in chapter 2.

Chapter 4
The presence of a magnetic field B in a system of fermions induces Lan-

dau quantization, a phenomenon consisting on the emergence of separate
flat energy bands known as Landau levels. While this happens for both
massive and massless fermions, in the latter case the spectrum contains a
particular Landau level at zero energy that is absent in the former. This
“zeroth Landau level” is special because it has a well defined chirality,
which makes its flatness robust against chirality preserving disorder.

However, a lattice discretization with fermion doubling or chiral sym-
metry breaking can spoil this protection, inducing a broadening of the
zeroth Landau level when B has spatial fluctuations. In this chapter, we
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Figure 1.8: Klein tunneling. The incoming electron (red) can only be trans-
mitted, switching its momentum and keeping its spin and velocity (green).

extend the tangent fermions approach to allow for the incorporation of
magnetic fields and show how this can be used to obtain robust zeroth
Landau levels.

Chapter 5
The right panel of Fig. 1.5 shows the band structure of a spinful chiral

superconductor –more specifically, a Fu-Kane heterostructure– for zero
supercurrent. In this chapter we explore the effect a non-zero net super-
current parallel to the edges of such system and find out that something
special happens at a critical value of the Cooper pair momentum ∆2

0/µvF.
At this point, the velocity of one of the Majorana edge modes switches
sign –we call this a chirality inversion–, a process that is accompanied by
the emergence of two new states at the Fermi energy.

This chirality inversion leaves traces in the transport properties of the
system. Firstly, the heat conductance is doubled because now there are
twice as many modes that can transport energy. Secondly, the newly
generated modes have non-zero charge, so electrical current can now
be transported, and therefore the system acquires a non-zero electrical
conductance. We also show that the chirality inversion is a unique signature
of Majorana fermions in a spinful topological superconductor: it does not
exist for spinless chiral p-wave pairing.
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1.6 This thesis

Figure 1.9: Edge vortex injector of [38].

Chapter 6
As introduced in section 1.5, the chiral edge modes of a topological

supercondutor can carry non-Abelian excitations. These so-called edge-
vortices are a π-phase “twist” of the wavefunctions of the edge Bogoliubov
quasiparticles below the Fermi energy. These many-body excitations are
made up of chiral edge modes which propagate along the edge of the
system at the same velocity. Therefore, edge-vortices themselves must do
the same.

In [38], Beenakker et al. proposed that such edge-vortices can be
injected on the edges of a topological superconductor by splitting it with a
Josephson junction and applying an h/2e flux bias over it. In this chapter,
we demonstrate it by dynamically simulating the process using a lattice
model. Essentially, this amounts to numerically solving the time-dependent
Schrödinger equation for the ground state of the superconducting device.

We show how the braiding of edge-vortices with bulk vortices results in a
parity switch analogous to the one represented in Fig. 1.6. We also confirm
the prediction made in [38] that the braiding process can be detected
electrically. More crucially, our approach allows us to account for the
dynamics of the junction and go beyond exisiting analytic descriptions
that rely on the adiabatic approximation. Our study also reveals that
if the flux bias is implemented too fast, residual excitations can remain
trapped in the Josephson junction, spoiling the parity switch.
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CHAPTER 2

Massless Dirac fermions on a space-time lattice with a
topologically protected Dirac cone

2.1. Introduction

2.1.1. Objective
A three-dimensional (3D) topological insulator has gapless surface states

with a conical dispersion [39, 40]. This Dirac cone is protected by Kramers
degeneracy, no perturbation that preserves time-reversal symmetry can
gap it out — provided that the top and bottom surfaces remain uncoupled,
to prevent Dirac cones from annihilating pairwise [41].

To study the dynamics of Dirac fermions on a computer, one needs to
discretize the Dirac equation

iℏ
(
∂

∂t
+ vσ · ∂

∂r

)
Ψ(r, t) = V (r)Ψ(r, t) (2.1)

for the two-component spinor Ψ(r, t) (with velocity v and Pauli spin matri-
ces σα). The electrostatic potential V preserves time-reversal symmetry, so
one would expect the Dirac cone to remain gapless for any time-reversally
invariant discretization scheme that avoids fermion doubling [3] (only
zero-energy states at momentum k = 0).
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protected Dirac cone

Figure 2.1: Quasi-energy bandstructure ε(kx, ky) for the linear sawtooth dis-
persion (red) and for the tangent dispersion (yellow). The surfaces are computed,
respectively, from the two equations (εδt+ 2πn)2 = (a0kx)2 + (a0ky)2, n ∈ Z,
and tan2(εδt/2) = tan2(a0kx/2) + tan2(a0ky/2). Only the first Brillouin zone is
shown, the full bandstructure is periodic in momentum kα with period 2π/a0 and
periodic in quasi-energy ε with period 2π/δt. Near k = 0 both discretizations
have the Dirac cone ε2 = v2(k2

x + k2
y) of the continuum limit, with velocity

v = a0/δt. A potential that varies rapidly on the scale of the lattice constant
can gap out the Dirac cone for the linear sawtooth dispersion, but not for the
tangent dispersion.

The objective of this chapter is, firstly, to demonstrate that this expecta-
tion is incorrect, it does not apply to the split-operator technique [42] for
the discretization of the time-evolution operator, which is commonly used
[43–45] because of its computational efficiency. Then, secondly, we will
show how a “drop-in” modification of the algorithm can restore a gapless
Dirac cone — without reducing the computational efficiency (scaling as
N lnN in the number of lattice sites).

We consider a 2+1-dimensional space-time lattice with lattice constants
a0 in space and δt in time. In the split-operator technique the derivative
operator d/dx is evaluated in momentum representation as the linear func-
tion k in the first Brillouin zone |k| < π/a0 — periodically repeated as a
sawtooth for larger momenta. The drop-in modification that we propose is
to replace k by (2/a0) tan(a0k/2). The computational efficiency of the al-
gorithm is not compromised, but the effect on the quasi-energy–momentum
band structure is crucially important: While the linear sawtooth disper-
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Figure 2.2: Three 1D dispersion relations, corresponding to a local discretiza-
tion of the derivative operator d/dx (black curve) and to two alternative nonlocal
discretizations (red and blue curves).

sion introduces discontinuous derivatives at Brillouin zone boundaries, the
tangent dispersion produces a smooth band structure, see Fig. 2.1. As we
will show, a potential that varies rapidly on the scale of a0 is able to gap
out the Dirac cone in the former case but not in the latter case.

By way of introduction, before we embark on the space-time discretiza-
tion, we first discuss the simpler time-independent problem, when only
space is discretized.

2.1.2. Time-independent problem

Consider a one-dimensional (1D) lattice along the x-axis, and first take
V ≡ 0. Different ways to discretize the derivative d/dx will produce
different energy-momentum dispersion relations ±E(k). (The ± sign
distinguishes the chirality of the massless Dirac fermions, left-movers
versus right-movers.) What all dispersions have in common is that they
are periodic with period 2π/a0 and vanish linearly at k = 0. We compare
three alternatives, see Fig. 2.2.

The local discretization df/dx 7→ [f(x+ a0) − f(x− a0)]/(2a0) gives a
sine dispersion

Elocal(k) = ℏv
a0

sin(a0k), (2.2)

which vanishes also at the boundary |k| = π/a0 of the first Brillouin zone
(fermion doubling). A nonlocal discretization, which couples f(x) to distant
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lattice points, can remove the spurious Dirac cone at nonzero momentum.
The socalled “slac discretization” [13, 20] produces a dispersion relation
that is strictly linear within the first Brillouin zone |k| < π/a0. The
dispersion has the 2π-periodic sawtooth form1

ESLAC(k) = ℏv
a0

mod (a0k, 2π,−π). (2.3)

Now apply the staggered potential V (x) = V cos(πx/a0), switching from
+V to −V between even and odd-numbered lattice sites. This potential
couples the states at k and k + π/a0, as described by the Hamiltonian

HV (k) =
(
E(k) V/2
V/2 E(k + π/a0)

)
. (2.4)

The Brillouin zone is halved to |k| < π/2a0, with the band structure

EV (k) = 1
2E(k)+ 1

2E(k+π/a0)± 1
2

√
V 2 + [E(k) − E(k + π/a0)]2. (2.5)

A gap opens in the Dirac cone for both the local and slac discretizations,
of size

δElocal = V, δESLAC = V 2a0

2πℏv + O(V 4). (2.6)

What we learn from this simple calculation is that removing the second
cone at |k| = π/a0 is not enough to protect the Dirac cone at k = 0 from
becoming gapped if the potential varies rapidly on the scale of the lattice
constant. What happens is that the large gap ∆ in the dispersion at
k = π/a0 is folded onto k = 0 by the staggered potential, resulting in a
minigap δE = V 2/∆ for V ≪ ∆. To avoid the gap opening we thus need
a pole ∆ → ∞ in the dispersion at the Brillouin zone boundary.

An alternative discretization due to Stacey [8] gives the dispersion

E(k) = (2ℏv/a0) tan(a0k/2), (2.7)

with a pole at k = π/a0. And indeed, substitution of Eq. (2.7) into Eq.
(2.5) shows that no gap opens at k = 0 (see Fig. 2.3).

1The function mod (q, 2π,−π) ≡ q − 2π
⌊

q+π
2π

⌋
∈ [−π, π) gives q modulo 2π with an

offset −π. (The floor function ⌊x⌋ returns the greatest integer ≤ x.) The mod
function is discontinuous at q = π, jumping from −π to π, we arbitrarily assign to
mod (π, 2π,−π) the value of −π. The choice mod (π, 2π,−π) ≡ 0 would produce in
Fig. 2.3 an isolated doubly degenerate state at E = 0 = k, disconnected from the
slac bands.
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Figure 2.3: Band structure for three different spatial discretizations of the 1D
Dirac Hamiltonian, with a staggered potential equal to ±2ℏv/a0 on even and
odd-numbered lattice sites. The curves are computed from Eq. (2.5), with E(k)
given by Eqs. (2.2), (2.3), and (2.7) for the three discretizations. A gap opens
at k = 0 for the local discretization and for the slac discretization, but not for
the Stacey discretization.

The merits of the Stacey discretization for the time-independent problem
were studied in Refs. [46] (at the level of the scattering matrix) and in Ref.
[26] (at the level of the Hamiltonian). It was shown that the eigenvalue
equation HΨ = EΨ can be discretized into a generalized eigenvalue
problem HΨ = EPΨ with local Hermitian tight-binding operators on both
sides of the equation.2 Basically, a local formulation of the generalized
eigenvalue problem is possible because tangent is the ratio of sine and
cosine, which represent local tight-binding operators on a lattice. If all
one would care about would be the presence of a pole in the dispersion at
k = π/a0, one could work with other functions than the tangent, but the
tangent dispersion combines this property with the possibility of a local
algorithm.

2The Stacey discretization is local in the sense that the operators H and P in the
generalized eigenvalue problem HΨ = EPΨ can be represented by sparse Hermitian
matrices. If we would write this as a strict (non-generalized) eigenvalue problem,
P−1HΨ = EΨ, we would find that the operator P−1H is nonlocal (it is not sparse).
There is therefore no violation of the Nielsen-Ninomiya no-go theorem [3], which
only applies to strict eigenvalue problems.
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2.1.3. Outline

So much for the introduction to the time-independent discretization.
In what follows we turn to the dynamical problem, by generalizing the
approach of Refs. [8, 26, 46] to the discretization of space and time. In the
next section 2.2 we show that the time discretization removes the pole in
the tangent dispersion, which becomes a smooth function of momentum k
and quasi-energy ε (yellow bands in Fig. 2.1). In Sec. 2.3 we then prove
that the Dirac point remains gapless for any perturbation that preserves
either time-reversal symmetry or chiral symmetry — even if it varies
rapidly on the scale of the lattice constant.

In contrast, the quasi-energy bandstructure of the linear sawtooth dis-
persion has discontinuous derivatives at the Brillouin zone boundaries (red
bands in Fig. 2.1). These spoil the protection of the Dirac cone, which is
gapped by a staggered potential.

A key feature of the approach presented in Sec. 2.2 is that it requires
only a small modification of the usual split-operator technique, involving
the replacement of the linear momentum operator appearing in the time-
evolution operator by its tangent. Since this operator is evaluated in
momentum representation, the replacement is immediate. It does not
degrade the computational efficiency of the algorithm, which retains the
favorable N lnN scaling in the number of lattice sites (limited only by the
efficiency of the fast Fourier transform).

An alternative implementation which is fully in real space is possible,
taking the form of an implicit finite-difference equation AΨ(t+δt) = BΨ(t)
with sparse matrices A and B. This formulation is a bit more cumbersome
to explain, we present it an appendix.

2.2. Space-time discretization without zone
boundary discontinuities

2.2.1. Split-operator technique

The Dirac Hamiltonian

H = vk · σ + V (r) (2.8)

is the sum of a kinetic term that depends on momentum k and a potential
term that depends on position r. (We set ℏ to unity.) The split-operator
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2.2 Space-time discretization without zone boundary discontinuities

Figure 2.4: Momentum dependence of the quasi-energy for the free evolution
operator U , given by Eq. (2.9) with V = 0, computed from Eq. (2.11) in the
2+1 dimensional case. The space and time discretization units are related by
a0 = vδt. Only the first Brillouin zone (2.12) is shown.

technique [42] separates these two terms in the time-evolution operator,

Ψ(t+ δt) = e−iHδtΨ(t), e−iHδt = U + O(δt)3,

U = e−iV (r)δt/2e−ivδtk·σe−iV (r)δt/2,
(2.9)

with an error term that is of third order in the time slice δt [47].

Space is discretized on a square or cubic lattice (lattice constant a0 in
each direction). The periodicity of the Brillouin zone is enforced by the
substitution

k · σ 7→ a−1
0

∑
α

σα mod (a0kα, 2π,−π). (2.10)

In 1D this is the linear sawtooth dispersion of Fig. 2.2, red curve. A discrete
fast Fourier transform is inserted between the kinetic and potential terms,
so that each is evaluated in the basis where the operators k and r are
diagonal. The computational cost scales as N lnN for N lattice sites.

The eigenvalues eiεδt of the unitary operator U define the quasi-energies
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2 Massless Dirac fermions on a space-time lattice with a topologically
protected Dirac cone

Figure 2.5: Cut through the bandstructure of Fig. 2.4 along the line kx = ky ≡
k (left panel) and along the kx-axis (right panel). In the former direction the
dispersion has a discontinuous slope at the Brillouin zone boundaries (dotted
lines).

ε modulo 2π/δt. For free motion, V = 0, these are given by

(ε+ 2πn/δt)2 = v2
∑
α

k2
α, n ∈ Z, |kα| < π/a0. (2.11)

The 2+1 dimensional band structure in the first Brillouin zone

B = {kx, ky, ε| − π < εδt, kxa0, kya0 < π} (2.12)

is plotted in Fig. 2.4 for v = a0/δt, when the dispersion is strictly linear
along the kx and ky-axes. (Alternatively, for v = 2−1/2 a0/δt the dispersion
is strictly linear along the diagonal lines kx = ±ky, the corresponding
plots are in App. 2.A.)

The band structure repeats periodically upon translation by ±2π/a0 in
the kx, ky directions and by ±2π/δt in the ε direction. Upon crossing a
zone boundary the dispersion has a discontinuous derivative, see Fig. 2.5.

2.2.2. Smooth zone boundary crossings

To remove the discontinuity at the Brillouin zone boundary we modify
the kinetic term in the evolution operator (2.9) in two ways: Firstly
we approximate the exponent by a rational function (Cayley transform
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2.2 Space-time discretization without zone boundary discontinuities

[48, 49]),

e−ivδtk·σ =
1 − 1

2 ivδtk · σ

1 + 1
2 ivδtk · σ

+ O(δt3). (2.13)

The error of third order in the time slice is of the same order as the error
in the operator splitting, Eq. (2.9).

Secondly we replace kα by (2/a0) tan(a0kα/2), defining the modified
evolution operator

Ũ = e−iV (r)δt/2 1 − i(vδt/a0)
∑
α σα tan(a0kα/2)

1 + i(vδt/a0)
∑
α σα tan(a0kα/2)e

−iV (r)δt/2. (2.14a)

The inverse of the sum of Pauli matrices can be worked out, resulting in

Ũ = e−iV (r)δt/2 [1 −
∑
α χ

2(kα)]σ0 − 2i
∑
α σαχ(kα)

1 +
∑
α χ

2(kα) e−iV (r)δt/2. (2.14b)

We abbreviated χ(k) = (vδt/a0) tan(a0k/2) and σ0 is the 2×2 unit matrix.
This looks more complicated than Eq. (2.9), but it can be computed equally
efficiently since in both equations each operator is evaluated in the basis
where it is diagonal.

The required periodicity when kα 7→ kα+2π/a0 is automatically ensured
by the replacement of the linear momentum by the tangent, it does not
need to be enforced by hand as in Eq. (2.10). Although tan(a0kα/2) has a
pole when kα = π/a0, this pole is removed in the evolution operator (2.14)

— which has no singularity at the Brillouin zone boundaries.

The eigenvalues eiεδt of Ũ for free motion, V = 0, are given by

tan2(εδt/2) = (vδt/a0)2
∑
α

tan2(a0kα/2), (2.15)

plotted in Figs. 2.6 and 2.7. Comparison with Figs. 2.4 and 2.5 shows
that the zone boundaries are now joined smoothly. The dispersion is
approximately linear near k = 0 and exactly linear along the lines kx = 0
and ky = 0 if we choose the discretization units such that v = a0/δt. (See
App. 2.A for the case v = 2−1/2 a0/δt, when the linear dispersion is along
kx = ±ky.)
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2 Massless Dirac fermions on a space-time lattice with a topologically
protected Dirac cone

Figure 2.6: Same as Fig. 2.4, but now for the modified evolution operator
(2.14) (with vδt/a0 = 1).

2.3. Stability of the Dirac point

2.3.1. Protection by time-reversal symmetry
The condition of time-reversal symmetry for the unitary evolution oper-

ator U reads
σyU

∗σy = U−1, (2.16)

where the complex conjugation should be taken in the real space rep-
resentation, when k = −i∇ changes sign. The time-reversal operator,
σy × complex conjugation, squares to −1, so Kramers theorem applies:
In the presence of a periodic potential V , when momentum k remains a
good quantum number, the eigenvalues at k = 0 should be at least doubly
degenerate.3

Kramers degeneracy implies a band crossing at k = 0 — provided that
the bands depend smoothly on k — hence this applies to the evolution

3Kramers theorem may be more familiar for a Hermitian operator, the proof for a
unitary operator proceeds similarly: If Uψ = eiϕψ with ϕ ∈ R, and σyU∗σy = U−1,
then Uσyψ∗ = σy(σyU∗σyψ)∗ = σy(U−1ψ)∗ = eiϕσyψ∗, thus ψ and σyψ∗ are
eigenstates of U with the same eigenvalue. They cannot be linearly related, because
if ψ = λσyψ∗ for some λ ∈ C, then σyψ∗ = −λ∗ψ = −|λ|2σyψ∗, which is impossible
for ψ ̸= 0. Hence the eigenvalue eiϕ is at least doubly degenerate.
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2.3 Stability of the Dirac point

Figure 2.7: Cut through the bandstructure of Fig. 2.6 along the line kx = ky ≡
k (left panel) and along the kx-axis (right panel). In all directions the dispersion
smoothly crosses the Brillouin zone boundaries (dotted lines).

operator Ũ for the tangent dispersion, but not to the operator U for the
linear sawtooth dispersion. We conclude that the Dirac point of Ũ is
protected by time-reversal symmetry, while the Dirac point of U is not.

We demonstrate this difference for the checkerboard potential

V (x, y) = V cos[(π/a0)(x+ y)]. (2.17)

(The calculation is described in App. 2.B.) In Fig. 2.8 we show the three
ways in which this potential can affect the Dirac point. The evolution
operator Ũ shows the modification T0, while U shows T−, see Fig. 2.9.
The other option T+ appears in Fig. 2.3 and in App. 2.A.

2.3.2. Protection by chiral symmetry

Chiral symmetry of the evolution operator is expressed by

σzUσz = U−1. (2.18)

Since U−1 = U†, this implies that U can be decomposed in the block form

U =
(

A B
−B† C

)
, A = A†, C = C†. (2.19)
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2 Massless Dirac fermions on a space-time lattice with a topologically
protected Dirac cone

Figure 2.8: Top row: Dirac point in the quasi-energy dispersion ε(k). Bottom
row: Three topologically distinct modifications of the dispersion by the checker-
board potential. Only the Dirac point preserving modification T0 is allowed for
an evolution operator that depends smoothly on momentum.

We consider a 2D periodic potential, so that momentum k = (kx, ky) is a
good quantum number. The band structure has winding number [50]

W = 1
2π Im

∮
Γ
dk · ∂k ln detB(k) ∈ Z (2.20)

along a contour Γ in the Brillouin zone on which detB does not vanish.4
This is a topological invariant, it cannot change in response to a continuous
perturbation [51]. A Dirac point within the contour is signaled by W = ±1.
While pairs of Dirac points of opposite winding number can annihilate, a
single Dirac point is protected by chiral symmetry — provided that the
evolution operator is continuous.

The 2D Dirac Hamiltonian has chiral symmetry when V ≡ 0. An
in-plane magnetization

M(x, y) = µx(x, y)σx + µy(x, y)σy (2.21)

preserves the chiral symmetry. We are thus led to compare the two

4One has detB ̸= 0 on Γ if the quasi-energy ε(k) does not cross 0 or π on that contour
[50]. This prevents us from extending the contour along the entire first Brillouin
zone, when the winding number should vanish.
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2.3 Stability of the Dirac point

Figure 2.9: Quasi-energy bandstructure for the evolution operators U (panels
a,c) and Ũ (panels b,d), in the presence of the 2D checkerboard potential (2.17)
(for V = 2/δt = 2 v/a0). Panels c,d show a cut through the bandstructure for
kx = ky ≡ k.

evolution operators

U = e−iM(x,y)δt/2e
−i(vδt/a0)

∑
α=x,y

σα mod (a0kα,2π,−π)
e−iM(x,y)δt/2,

(2.22)

Ũ = e−iM(x,y)δt/2 1 − i(vδt/a0)
∑
α=x,y σα tan(a0kα/2)

1 + i(vδt/a0)
∑
α=x,y σα tan(a0kα/2)e

−iM(x,y)δt/2.

(2.23)

Both satisfy the chiral symmetry relation (2.18), Ũ is a continous function
of k while U is not.

The implication for the stability of the Dirac point is shown in Fig. 2.10,
where we compare the bandstructure in the presence of the checkerboard
magnetization

M(x, y) = µσx cos[(π/a0)(x+ y)] (2.24)

(see App. 2.B). A gap opens for U (linear sawtooth dispersion), while the
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2 Massless Dirac fermions on a space-time lattice with a topologically
protected Dirac cone

Figure 2.10: Quasi-energy bandstructure for the evolution operators U (panel
a) and Ũ (panel b), in the presence of the checkerboard magnetization (2.24)
(for µ = 2/δt = 2 v/a0).

Dirac point for Ũ (tangent dispersion) remains unaffected.

2.4. Conclusion
In conclusion, we have presented a method to cure a fundamental

deficiency of the split-operator technique for the space-time discretization
of the Dirac equation [42]. The linear sawtooth representation of the
momentum operator preserves the time-reversal and chiral symmetries
of the continuum limit, but it breaks the topological protection of the
Dirac cone that these symmetries should provide. The deficiency originates
from the discontinuity of the discretized time-evolution operator at the
boundaries of the Brillouin zone. We have demonstrated the breakdown
of the topological protection for a simple model: a periodic potential (or
magnetization) on a 2D square lattice (lattice constant a0) which couples
the Dirac point at k = 0 to the zone boundaries at k = π/a0.

To restore the topological protection we modify the split-operator tech-
nique without compromising its computational efficiency, basically by
replacing a0k in the evolution operator by 2 tan(a0k/2). Since the momen-
tum operators are evaluated in the basis where they are diagonal, this is a
“drop-in” replacement — it does not degrade the N lnN efficiency of the
split-operator algorithm.

One open problem of the split-operator technique that is not addressed
by our modification is the difficulty to incorporate the vector potential in a
gauge invariant way [52]. For that purpose it would be useful to formulate
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2.A Bandstructures for v = 2−1/2 a0/δt

Figure 2.11: Free evolution (V = 0) bandstructures of U (left panel) and of Ũ
(right panel), for v = 2−1/2 a0/δt.

the split-operator technique fully in real space. This is done in Ref. [45]
for the original approach with the linear sawtooth momentum operator.
In App. 2.C we show that our tangent modification also allows for a real
space formulation.

The availability of a single-cone discretization scheme which is efficient
and which does not break the topological protection is a powerful tool for
dynamical studies of massless Dirac fermions. One application to Klein
tunneling has been published recently [53].

2.A. Bandstructures for v = 2−1/2 a0/δt
The bandstructures in the main text are for space-time discretization

units such that v = a0/δt, when the dispersion is strictly linear along the
lines kx = 0 and ky = 0. Alternatively, one can have a strictly linear
dispersion along the diagonals kx = ±ky, by choosing v = 2−1/2 a0/δt.
The bandstructures of U and Ũ for free evolution are shown in Fig. 2.11.

For v = 2−1/2 a0/δt the checkerboard potential in the main text varies
along the diagonals where U is continuous, so it does not affect the Dirac
point. Instead we choose here a staggered potential V (x, y) = V cos(πx/a0)
that varies along the x-axis. [In Eq. (2.26) we thus replace (kx +π, ky +π)
by (kx + π, ky).] The effect on U is the T+ gap-opening process of Fig. 2.8,
while the Dirac point of Ũ is unaffected, see Fig. 2.12. We can also take the
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2 Massless Dirac fermions on a space-time lattice with a topologically
protected Dirac cone

Figure 2.12: Same as Fig. 2.11, but now in the presence of the potential
V (x, y) = V cos(πx/a0) with V = 2 δt. The bandstructures for the staggered
magnetization M(x, y) = µσx cos[(π/a0)x] look very similar.

staggered magnetization M(x, y) = µσx cos[(π/a0)x], with bandstructures
very similar to those in Fig. 2.12.

2.B. Bandstructure in the checkerboard
potential

In this appendix we choose v = a0/δt and set the discretization units
a0, δt to unity. We compute the eigenvalues of the evolution operators
U and Ũ in the presence of the 2D checkerboard potential V (x, y) =
V cos[π(x+y)]. This potential couples states at (kx, ky) and (kx+π, ky+π)
with amplitude V/2.

We denote by U0(k) and Ũ0(k) the free evolution operators, for V = 0,
given by

U0(k) = exp (−i
∑
ασα mod (kα, 2π,−π)) , (2.25a)

Ũ0(k) =
1 − i

∑
α σα tan(kα/2)

1 + i
∑
α σα tan(kα/2) . (2.25b)
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2.C Real-space formulation of the split-operator discretized evolution
operator

The quasi-energies eiε are the eigenvalues of the 4 × 4 matrices

U = V
(
U0(kx, ky) 0

0 U0(kx + π, ky + π)

)
V, (2.26a)

Ũ = V
(
Ũ0(kx, ky) 0

0 Ũ0(kx + π, ky + π)

)
V. (2.26b)

The 2 × 2 blocks at (kx, ky) and (kx +π, ky +π) are coupled by the matrix

V = exp
[
− i

2

(
0 V/2
V/2 0

)]
=
(

cos(V/4) −i sin(V/4)
−i sin(V/4) cos(V/4)

)
. (2.27)

Results for V = 2 are plotted in Fig. 2.9.
For Ũ the Dirac point at k = 0 is not affected by the checkerboard

potential. In contrast, for U the T− modification of Fig. 2.8 replaces the
band crossing at k = 0 by four band crossings at ±(q, q) and ±(q,−q),
with

cos
(
π − 2q√

2

)
= cos

(
π√
2

)
cos(V/2) ⇒ q = 0.067V 2 + O(V 4). (2.28)

The calculation for a checkerboard magnetization M(x, y) = (µxσx +
µyσy) cos[π(x+ y)] proceeds entirely similar, upon replacement of V by

M = exp
[
− i

4

(
0 µx − iµy

µx + iµy 0

)]
. (2.29)

The bandstructure for µx = 2, µy = 0 is shown in Fig. 2.10. For evolution
operator U the spectrum acquires a gap ∆ϵ = 0.095µ2

x + O(µ4
x). For Ũ

the Dirac cone remains gapless.

2.C. Real-space formulation of the
split-operator discretized evolution
operator

2.C.1. Implicit finite-difference equation
The discretized Dirac equation for the tangent dispersion, Ψ(t+ δt) =

ŨΨ(t) with Ũ given by Eq. (2.14), can be rewritten as a local implicit
finite-difference equation in real space — without requiring a Fourier
transform to momentum space.
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2 Massless Dirac fermions on a space-time lattice with a topologically
protected Dirac cone

We introduce the translation operator rα 7→ rα + a0 on a square or
cubic lattice, given by Tα = ea0∂α , with ∂α = ∂/∂rα = ikα. We note the
identity

i tan(a0kα/2) = Tα − 1
Tα + 1 . (2.30)

The product operators

D0 = 1
4

∏
α

(Tα + 1), Dα = 1
2 (Tα − 1)

∏
α′ ̸=α

(Tα′ + 1) (2.31)

couple nearby sites on the lattice.

The split-operator evolution equation

Ψ(t+ δt) = e−iV (r)δt/2 1 − i(vδt/a0)
∑
α σα tan(a0kα/2)

1 + i(vδt/a0)
∑
α σα tan(a0kα/2)e

−iV (r)δt/2Ψ(t)

(2.32)
can be rewritten identically in terms of these local operators,(
D0 + vδt

2a0

∑
α

σαDα

)
eiV (r)δt/2Ψ(t+ δt) =

=
(
D0 − vδt

2a0

∑
α

σαDα

)
e−iV (r)δt/2Ψ(t).

(2.33)

The finite-difference equation (2.33) of the form AΨ(t+ δt) = BΨ(t) is
called “implicit”, because one needs to solve for the unknown Ψ(t + δt)
given the known Ψ(t). The matrices A and B are both sparse, each of
the N sites on the 2D square lattice is only coupled to its four nearest
neighbors. The method of nested dissection then allows for an efficient
solution of the finite difference equation [54–56]: There is an initial N3/2

overhead from the LU decomposition of the matrix A, but subsequently
the computational cost per time step scales as N lnN with the number of
lattice sites, which is the same scaling as the split-operator algorithm.
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2.C Real-space formulation of the split-operator discretized evolution
operator

2.C.2. Computational efficiency
To check the efficiency of the discretization schemes we have calculated5

the spreading of a wave packet in a 2D disordered lattice (of M × M
sites, with periodic boundary conditions in x- and y-directions). We take
a random potential V (x, y) which varies independently on each of the
N = M2 sites, uniformly in the interval (−0.5, 0.5) × ℏv/a0. The initial
state is

Ψ(x, y, 0) = (4πw2)−1/2eik0xe−(x2+y2)/2w2
(

1
1

)
, (2.34)

with parameters k0 = 0.5/a0, w = 30 a0. We follow the time evolution for
T = 103 time steps δt = 2−1/2a0/v.

We compare the run time of the finite-difference code for a range of values
of N , distinguishing the time tinitial spent on the initial LU decomposition
from the run time tevolution per time step needed for the subsequent
evolution of the wave packet. (The full run time of the code is tinitial +
Ttevolution.)

The data shown in Fig. 2.13 is consistent with the expected scaling
tinitial ∝ N3/2 and tevolution ∝ N lnN . The storage requirements also scale
as N lnN , governed by the number of nonzero matrix elements in the LU
decomposition.

We also show in the same plot the run time per time step for the split-
operator algorithm. There is no initialization overhead in that case, the
full run time is set by the N lnN cost of the fast Fourier transform.

5The computer code used in Sec. 2.C.2 to test the efficiency of the split-operator and
finite-difference algorithms is available at the Zenodo repository: https://dx.doi.
org/10.5281/zenodo.7057254
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2 Massless Dirac fermions on a space-time lattice with a topologically
protected Dirac cone

Figure 2.13: Demonstration of the favorable N lnN scaling with the number
N of lattice points of the single-cone discretization scheme with the tangent
dispersion. The plot at the left shows the run time tevolution per time step for the
evolution of the wave packet (3.7) through a disordered 2D system: red symbols
for the split-operator approach, blue symbols for the implicit finite-difference
approach. The latter approach has an initial overhead tinitial ∝ N3/2 from the
LU decomposition, shown in the right plot.
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CHAPTER 3

Reflectionless Klein tunneling of Dirac fermions:
Comparison of split-operator and staggered-lattice

discretization of the Dirac equation

3.1. Introduction
Massless Dirac fermions have an energy-independent velocity, so if they

move uphill in a potential landscape they are not slowed down. Even an
infinitely high potential barrier cannot stop a particle approaching along
a field line. This counterintuitive behavior is referred to as the Klein
paradox, and the perfect transmission through a potential barrier is called
Klein tunneling. It plays a central role in the “electron quantum optics”
of Dirac materials, such as graphene, topological insulators, and Weyl
semimetals [57, 58].

The Dirac fermions on the two-dimensional (2D) surface of a 3D topo-
logical insulator are of particular interest because they work around the
“no-go” theorem for the impossibility to place a single species of massless
Dirac fermions on a lattice [3]. The work-around consists in spatially
separating two Dirac cones, one on the top surface and one on the bottom
surface of the insulating material [59, 60]. An unpaired Dirac cone is
topologically protected: electrostatic disorder cannot open up a gap and
Klein tunneling is fully reflectionless.
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3 Reflectionless Klein tunneling of Dirac fermions: Comparison of
split-operator and staggered-lattice discretization of the Dirac equation

Computer simulations of the electron dynamics on the 2D surface could
work with a 3D lattice, but because this is computationally expensive
there is a need for methods to implement a single Dirac cone on a 2D
lattice.1 Here we compare two such methods, using Klein tunneling as a
test case for the presence or absence of fermion doubling.

Both methods discretize the time-dependent Dirac equation,

iℏ
∂

∂t
Ψ(r, t) = v0

∑
α=x,y

(pα + eAα)σαΨ(r, t) + VΨ(r, t), (3.1)

where v0 is the energy-independent velocity of the massless electrons (Dirac
fermions), V and A are scalar and vector potentials, and the σα’s are Pauli
spin matrices. One method works in real space on a staggered space-time
lattice [61, 62], the other method is the one introduced in chapter 2, and
it works in Fourier space using a split-operator technique [63].

The staggered-lattice discretization is due to Hammer, Pötz, and Arnold
(HPA) [61, 62], and has been applied to a variety of problems in con-
densed matter physics [64–67]. For free fermions (V,A ≡ 0) it has the
bandstructure

sin2(εδt/2) = γ2
∑
α=x,y

sin2(a0kα/2), γ ≡ v0δt

a0
≤ 1√

2
. (3.2)

Here a0 and δt are the lattice constants in space and time; k and ε are
crystal momentum and quasi-energy.2

The split-operator discretization [63] builds on early work of Stacey
[8, 26, 46]. The bandstructure has the same form as Eq. (3.2) — but with
the sine replaced by a tangent,3

tan2(εδt/2) = γ2
∑
α=x,y

tan2(a0kα/2). (3.3)

A unique property of the HPA technique is that it is fully gauge invariant
[61, 62]. It is also highly efficient, because the time evolution is governed by

1An overview of methods to avoid fermion doubling in the context of lattice gauge
theory can be found in chapter 4 of David Tong’s lecture notes: https://www.damtp.
cam.ac.uk/user/tong/gaugetheory.html.

2The quasi-energy ε is such that Ψ(t+ δt) = eiεδtΨ(t), so the quasi-energy spectrum
repeats itself with period 2π/δt.

3The tangent tan(a0kα/2) has a pole at the Brillouin zone boundary kα = ±π/a0,
but the pole cancels from Eq. (3.3), which has a continuous quasi-energy dispersion
ε(k) for any real γ.
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3.2 Brillouin zone doubling

a direct, rather than implicit, difference equation, which moreover is local
in real space. These features are lacking in the split-operator discretization
[63], which motivated us to compare the two approaches in some detail.

Our central finding, presented in Sec. 3.2, is that the bandstructure
(3.2) from the staggered-lattice discretization actually has two inequivalent
Dirac cones in the first Brillouin zone: The Dirac points at k = 0 and
k = (2π/a0, 0) are not related by a reciprocal lattice vector. This Brillouin
zone doubling is avoided in the split-operator discretization. We assess
the consequences for Klein tunneling in Sec. 3.3 and conclude in Sec. 4.5.

3.2. Brillouin zone doubling
The HPA technique modifies a staggered lattice discretization known as

Susskind fermions [12, 19] and implemented in 2+1 space-time dimensions
in Ref. 68. In that approach the two components of the spinor Ψ = (u, v)
are discretized on separate lattices, displaced (staggered) from each other
by a0/2 and evaluated at alternating time slices (see Fig. 3.1a).

The Susskind fermion quasi-energy bandstructure [68],

cos2 εδt = (1 − γ2 + γ2 cos a0kx cos a0ky)2, γ ≤ 1, (3.4)

has two inequivalent Dirac cones in the first Brillouin zone B shown in Fig.
3.1c, defined by

B = {kx, ky ∈ R| − π/a0 < kx, ky ≤ π/a0}. (3.5)

This is an improvement over the naive discretization, without staggering,
which would have four inequivalent Dirac cones, at (a0kx, a0ky) = (0, 0),
(π, π), (π, 0), and (0, π). Susskind fermions do not have the last two, but
the first two Dirac cones remain.

In Fig. 3.1b,d we show the HPA modification of the staggered lattice
discretization. Comparison with Fig. 3.1a,c shows that the HPA unit
cell has one half the area of the unit cell of the original square lattice.
Accordingly, the first Brillouin zone B′, defined by

B′ = {kx, ky ∈ R| − 2π/a0 < |kx ± ky| ≤ 2π/a0}, (3.6)

has twice the area of B.
Inspection of the HPA dispersion (3.2) then shows that, indeed, within

B there is only a single Dirac cone, at k = 0. However, within B′ there
is a second cone at the corner k = (2π/a0, 0), see Fig. 3.2. (The other
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Figure 3.1: Comparison of two types of staggered grids for the spatial discretiza-
tion of Dirac fermions, in the Susskind fermion approach (panel a, corresponding
Brillouin zone B in panel c) and in the HPA modification (panel b, Brillouin zone
B′ in panel d). The black and white dots distinguish the u and v amplitudes of
the spinor wave function Ψ = (u, v). The blue squares give the unit cell of the
lattice in real space, the grey square is the first Brillouin zone in momentum
space, the red dots indicate two inequivalent Dirac points.

Brillouin zone corners are related by a reciprocal lattice vector, so they
are equivalent.) We conclude that, once we account for the Brillouin zone
doubling, the HPA discretization still suffers from fermion doubling.

3.3. Klein tunneling
The second Dirac cone at the corner of the Brillouin zone B′ is at a

relatively large momentum, so it will not play a role if the potentials are
smooth: only momenta near k = 0 then matter and fermion doubling
becomes irrelevant. But realistic disorder potentials may well vary on the
scale of the lattice constant, and then fermion doubling has noticeable
consequences.

We investigate that here for Klein tunneling [57, 58]: Massless Dirac
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3.3 Klein tunneling

Figure 3.2: Quasi-energy bandstructure (3.2) of the HPA staggered lattice
discretization, for γ = 1/

√
2, in the first Brillouin zone B′ given by Eq. (3.6).

There are two inequivalent Dirac cones, at center and corner of the Brillouin
zone.

fermions are transmitted with unit probability when they approach a
potential barrier at normal incidence, because conservation of chirality
does not allow backscattering within a single Dirac cone. Coupling to a
second cone will spoil that.

We contrast the numerical results following from the HPA staggered
lattice technique [61] with those obtained using a manifestly single-cone
discretization method [63] — a split-operator implementation of the Stacey
discretization [8, 26, 46]. Both methods are summarized in App. 3.A and
our numerical codes are available in a repository.4

We calculate the time dependence of a state Ψ(x, y, t) incident along the
x-axis on a rectangular barrier of height V0 and width 50 a0. The initial
state is a Gaussian wave packet,

Ψ(x, y, 0) = (4πw2)−1/2eik0xe−(x2+y2)/2w2
(

1
1

)
, (3.7)

with parameters k0 = 0.5/a0, w = 30 a0 and normalization condition

4Our numerical codes are available at DOI:10.5281/zenodo.5877460.
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Figure 3.3: Three snapshots of the time-dependent simulation of Klein tun-
neling, in two alternative methods of discretization of the Dirac equation. A
potential barrier of height V0 = 1.41 ℏ/δt is located between the dotted lines. A
wave packet at lower energy (Ē = 0.35 ℏ/δt) is normally incident on the barrier.
The color scale shows |Ψ|2 normalized to unit peak height at each of the three
times.

∫
|Ψ|2 dr = 1. We choose the time step δt such that γ = v0δt/a0 = 1/

√
2.

The mean energy is Ē = ℏv0k0 = 0.35 ℏ/δt, much less than the barrier
height. The transmission probability T is obtained from the integral of
|Ψ|2 over the area to the right of the barrier, at the late time t = 549 δt.

As shown in Figs. 3.3 and 3.4, when V0 is larger than Ē the wave packet
is fully transmitted when the Dirac equation is discretized using the split-
operator method, but not in the HPA staggered lattice discretization.5
For example, when V0 = 2Ē we find, respectively, T = 1.00 and T = 0.87.
We attribute the difference to fermion doubling.

To establish this, we have repeated the calculation with a periodic

5When V0 is close to Ē the wave packet disperses side ways and backwards in the
barrier region, hence the dashed dip in Fig. 3.4. This is not a lattice artefact, the
dip would also appear in the continuum description.
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3.3 Klein tunneling

Figure 3.4: Transmission probability T through the potential barrier of Fig. 3.3,
as a function of the barrier height V0. The blue and red curves are for, respectively,
the split-operator discretization and the staggered lattice discretization. The
mean energy Ē = 0.35 ℏ/δt of the incident wave packet (3.7) is indicated, as
well as the finite bandwidth πℏ/δt of the staggered discretization. For the split-
operator discretization T ≈ 1 once V0 ≳ Ē, while for the staggered discretization
T drops significantly below 1 well before V0 − Ē reaches the bandwidth.

modulation of the barrier height,

V (x, y) =
{

0 if |x/a0 − 300| > 25,
V0 + δV sin q0x if |x/a0 − 300| < 25.

(3.8)

The wave number q0 = 2π/a0 − 2k0 is chosen such that it couples a right-
moving state at energy Ē = ℏv0k0 in the Dirac cone centered at k = (0, 0)
to a left-moving state in the Dirac cone centered at k = (2π/a0, 0). As
explained in Fig. 3.5, this coupling is forbidden by chirality conservation for
the split-operator discretization, while it is allowed for the staggered lattice
discretization. Fig. 3.6 shows that, indeed, a small potential modulation
causes a nearly complete suppression of the transmission (T = 0.06) for
the latter discretization only.

The suppressed transmission can be understood as the consequence of
the opening of a gap at the Dirac point in the barrier region. The gapless
Dirac cone is protected by time-reversal symmetry if there is only a single
cone, but fermion doubling breaks that topological protection [41]. In App.
3.B we calculate the bandstructure for the staggered lattice discretization
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Figure 3.5: Dispersion relation along the kx-axis for the split-operator dis-
cretization [solid curve, given by tan(εδt/2) = ±γ tan(a0kx/2)], and for the stag-
gered lattice discretization [dashed curve, given by sin(εδt/2) = ±γ sin(a0kx/2)],
both plotted for γ = 1/

√
2. The color red or blue distinguishes the eigenvalue

±1 of σx (the chirality). The vectors K and K′ are reciprocal lattice vectors
for, respectively, the tangent and sine dispersions. A scalar potential can only
couple branches of the same chirality. The momentum transfer q0 thus leads
to backscattering for the sine dispersion but it is forbidden for the tangent
dispersion.

in the presence of the periodic potential V (x, y) = V0 cos(2πx/a0). Along
the ky = 0 axis it is given by

sin2(εδt/2) = (V0δt/2)2 + γ2 sin2(a0kx/2)
1 + (V0δt/2)2 . (3.9)

The gap at k = 0 equals 2V0 for V0δt ≪ 1.

One might wonder at this stage whether the staggered lattice discretiza-
tion is in any way an improvement over the naive discretization of the
Dirac equation, without any staggering of the grid points. The staggering
reduces the number of Dirac points in the 2D Brillouin zone from four to
two — this is one advantage. But the coupling between the Dirac points
is equally detrimental to Klein tunneling in the two discretization schemes,
see App. 3.C.
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3.4 Conclusion

Figure 3.6: Same as Fig. 3.3, but for the modulated potential step (3.8) (with
parameters V0 = 0.71 ℏ/δt, δV = 0.071 ℏ/δt, Ē = 0.35 ℏ/δt).

3.4. Conclusion
In conclusion, we have uncovered a difficulty of staggered space-time

lattice discretizations of the Dirac equation. In 2D staggered fermions a la
Susskind have two Dirac cones in the Brillouin zone [12]. To eliminate this
lattice artefact known as fermion doubling, Hammer, Pötz, and Arnold
[61] introduced a space-time lattice with bandstructure

ε = ±2 arcsin
(
v
√

sin2(kx/2) + sin2(ky/2)
)

(3.10)

(in units where a0 and δt are 1). The Susskind fermion Brillouin zone is
−π < kx, ky < π and in that Brillouin zone the bandstructure (3.10) has
only a Dirac cone at the origin k = 0.

What we have found is that this bandstructure is accompanied by
Brillouin zone doubling: Along the kx-axis it extends from −2π < kx < 2π,
so the Dirac cone at k = (2π, 0) is independent from the one at the origin

— they are not related by a reciprocal lattice vector. We have shown that
this fermion doubling has physical consequences in the breakdown of Klein
tunneling.

To ascertain that fermion doubling is at the origin of these effects,
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we have compared with an alternative space-time discretization using a
split-operator technique [63], with bandstructure

ε = ±2 arctan
(
v
√

tan2(kx/2) + tan2(ky/2)
)
. (3.11)

The replacement of sine by tangent avoids the Brillouin zone doubling,
essentially because sin(k/2) is 4π-periodic in k, while tan(k/2) is 2π-
periodic. The Dirac cones at k = 0 and k = (2π, 0) are now equivalent,
related by a reciprocal lattice vector, and indeed we recover the Klein
tunneling with unit probability expected for massless Dirac fermions.

The staggered lattice discretization has one feature that the split-
operator discretization lacks: the possibility to include the vector potential
in a fully gauge invariant way via the Peierls substitution [61, 62]. In
chapter 4 we adapt the real space formulation of App. 2.C.1 to do precisely
this.

3.A. Two methods of space-time
discretization of the Dirac equation

In the main text we compare results from two space-time lattice dis-
cretizations of the Dirac equation, the staggered lattice approach of Ref.
61 and the split-operator approach of Ref. 63. We summarize these two
methods.

3.A.1. Staggered lattice approach

Hammer, Pötz, and Arnold [61] discretize the 2 + 1 dimensional Dirac
equation on the space-time lattice shown in Fig. 3.7. The two components
of the wave function Ψ = (u, v) are evaluated on two different lattices,
staggered in both space and time. The v-lattice is obtained from the
u-lattice by a translation of δt/2 in the time direction and by a0/2 in
the x-direction. A translation of either u-lattice or v-lattice by a0/2 in
the x-direction without a time translation defines a third lattice of points
Snms = (xn, ym, ts), the red points in Fig. 3.7. Each of these three lattices
is face-centered square in the x–y plane, with the unit cell and Brillouin
zone B′ of Fig. 3.1b,d.

The finite-difference equation for the u component is (abbreviating
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Figure 3.7: Space-time lattice in the HPA method of staggered lattice dis-
cretization of the 2+1 dimensional Dirac equation [61]. The u and v components
of the spinor wave function Ψ = (u, v) are indicated by black and white dots,
respectively. The finite differences are evaluated at the red points.

γ = v0δt/a0)

i[u(xn, ym, ts + 1
2δt) − u(xn, ym, ts − 1

2δt)] =
= − iγ[v(xn + 1

2a0, ym, ts) − v(xn − 1
2a0, ym, ts)]

− γ[v(xn, ym + 1
2a0, ts) − v(xn, ym − 1

2a0, ts)]

+ δt

2ℏV (xn, ym, ts)[u(xn, ym, ts + 1
2δt) + u(xn, ym, ts − 1

2δt)], (3.12a)

for (xn, ym, ts ± 1
2δt) on the u-lattice. The arguments of the v-component

are then located on the v-lattice. Similarly, the finite-difference equation
for the v-component is
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i[v(xn, ym, ts + 1
2δt) − v(xn, ym, ts − 1

2δt)] =
= − iγ[u(xn + 1

2a0, ym, ts) − u(xn − 1
2a0, ym, ts)]

+ γ[u(xn, ym + 1
2a0, ts) − u(xn, ym − 1

2a0, ts)]

+ δt

2ℏV (xn, ym, ts)[v(xn, ym, ts + 1
2δt) + v(xn, ym, ts − 1

2δt)], (3.12b)

for (xn, ym, ts ± 1
2δt) on the v-lattice. The computational cost of the

solution of these difference equations scales linearly in N on an N -site
lattice.

The quasi-energy bandstructure for V = 0 is given by

sin2(εδt/2) = γ2[sin2(a0kx/2) + sin2(a0ky/2)]. (3.13)

The requirement of a real quasi-energy ε restricts γ2 ≤ 1/2. The band-
structure in the first Brillouin zone is plotted in Fig. 3.2, for γ = 1/

√
2.

Figs. 3.3 and 3.6 show at time slice ts both |v(xn, ym, ts)|2 and |u(xn +
1/2, ym, ts + 1/2)|2, each on its own staggered lattice. Because these
amplitudes vary little over a lattice spacing other ways to compute |Ψ|2,
by averaging over nearby sites [61], do not make a significant difference.

3.A.2. Split-operator approach
The split-operator approach of Ref. 63 uses the same regular square

lattice for both u and v components (Brillouin zone |kx|, |ky| < π/a0). The
time evolution Ψ(t+ δt) = UΨ(t) is given by the unitary operator product
(“split operator”)

U = e−iV (r)δt/2ℏF−1 1 − iγ
∑
α σα tan(a0kα/2)

1 + iγ
∑
α σα tan(a0kα/2)

· Fe−iV (r)δt/2ℏ. (3.14)

The Fourier transform F performs a change of basis, so that the r-
dependent operators are evaluated in the real-space basis and the k-
dependent operators are evaluated in the momentum basis — at minimal
computational cost. The cost of a Fast Fourier Transform scales as N logN
on an N -site lattice.

The eigenvalues eiεt of U for V = 0 depend on k according to

tan2(εδt/2) = γ2[tan2(a0kx/2) + tan2(a0ky/2)]. (3.15)
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Figure 3.8: Quasi-energy bandstructure (3.15) of the split-operator discretiza-
tion, for γ = 1/

√
2, in the first Brillouin zone B given by Eq. (3.5). There is

only a single Dirac cone, at the center of the Brillouin zone.

The quasi-energy ε is real for any γ > 0. The bandstructure in the first
Brillouin zone is plotted in Fig. 3.8, for γ = 1/

√
2.

3.B. Gap opening for the staggered lattice
discretization

Because the staggered lattice discretization has two Dirac cones in the
Brillouin zone, the gapless Dirac point is not protected by time-reversal
symmetry — a gap can open without violating Kramers degeneracy. Here
we show this by an explicit calculation.

The gap opening mechanism can be described as “fold and split”: a
potential that varies on the scale of the lattice constant a0 folds the Dirac
cone at k = (2π/a0, 0) onto the cone at k = (0, 0), and then the upper and
lower cone can split apart while preserving the double degeneracy required
by Kramers theorem.

We consider the periodic potential V (x, y) = V (x+a0, y) = V (x, y+a0)
and solve the finite difference equations (3.12) for the Bloch state Ψ(x+
a0, y, t) = eia0kxΨ(x, y, t), Ψ(x, y+ a0, t) = eia0ky Ψ(x, y, t). There are four
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independent equations, involving the spinor amplitudes

u1(t) = u(0, 0, t− δt/2), u2(t) = u(a0/2, a0/2, t− δt/2),
v1(t) = v(a0/2, 0, t), v2(t) = v(0, a0/2, t), (3.16)

and potential values VA = V (0, 0), VB = V (a0/2, a0/2), VC = V (a0/2, 0),
VD = V (0, a0/2). The four equations can be written in the matrix form

P


u1(t+ δt)
u2(t+ δt)
v1(t+ δt)
v2(t+ δt)

 = Q


u1(t)
u2(t)
v1(t)
v2(t)

 ,

P =


i/δt− VA/2 0 0 0

0 i/δt− VB/2 0 0
i(eia0kx − 1) e−ia0ky − 1 i/δt− VC/2 0

1 − eia0ky i(1 − e−ia0kx) 0 i/δt− VD/2

 ,

(3.17a)

Q =


i/δt+ VA/2 0 i(e−ia0kx − 1) e−ia0ky − 1

0 i/δt+ VB/2 1 − eia0ky i(1 − eia0kx)
0 0 i/δt+ VC/2 0
0 0 0 i/δt+ VD/2

 .

(3.17b)

The eigenvalues eiεδt of the matrix product P−1Q give the bandstructure
ε(kx, ky). One readily recovers Eq. (3.2) for V (x, y) ≡ 0. For the potential
V (x, y) = V0 cos(2πx/a0) we set VA = VD = V0, VB = VD = −V0. Along
the line ky = 0 we then find the result (3.9), with a gap at k = 0 of size

∆ε = 4
δt

arcsin
(

V0δt/2√
1 + (V0δt/2)2

)
. (3.18)

We note that the topological protection of the Dirac cone for the split-
operator discretization (3.14) was established in chapter 2 and in Ref.
63.

3.C. Klein tunneling of naive fermions
Fig. 3.4 compares the Klein tunneling probability for staggered-lattice

and split-operator discretizations. For completeness, here we compare to
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Figure 3.9: Same as Fig. 3.4, but now comparing the staggered-fermion dis-
cretization (solid curve) with the naive discretization (dashed curve). To have
the same band width πℏ/δt in both cases we rescaled v0 such that γ = 1/

√
2 in

the former case and γ = 2 in the latter case.

the naive discretization, without any staggering.
We discretize the Dirac equation (3.1) on a space-time lattice by means

of the Crank-Nicolson method,(
1 − iδt

2ℏH
)

Ψ(r, t+ δt) =
(

1 + iδt

2ℏH
)

Ψ(r, t), (3.19)

HΨ(r, t) = V (r)Ψ(r, t)

+ ℏv0

2ia0

∑
α=x,y

σα[Ψ(r + a0r̂α, t) − Ψ(r − a0r̂α, t)]. (3.20)

The unit vectors r̂x, r̂y point in the x- and y-directions. The vector
potential may be included by Peierls substitution, but here we take zero
magnetic field.

The naive-fermion bandstructure

tan2(ϵδt/2) = 1
4γ

2(sin2 a0kx + sin2 a0ky), γ = v0δt/a0, (3.21)

has four inequivalent Dirac points in the first Brillouin zone, at a0k =
(0, 0), (0, π), (π, 0), and (π, π). The staggered discretization reduces that
to two Dirac points.

The naive-fermion band width in the x-direction is (4ℏ/δt) arctan(γ/2).
This is smaller than the band width (4ℏ/δt) arcsin γ of the staggered dis-
cretization — as expected, because the staggering introduces additional
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lattice points in the unit cell (see Fig. 3.1). To compare the two discretiza-
tion schemes at the same band width, we take γ = 1/

√
2 for the staggered

discretization and γ = 2 for the naive discretization — then in both cases
the band width is πℏ/δt.

Results are shown in Fig. 3.9. We conclude that the staggering does not
significantly improve the Klein tunneling.
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CHAPTER 4

Method to preserve the chiral-symmetry protection of
the zeroth Landau level on a two-dimensional lattice

4.1. Introduction

4.1.1. Objective

We address, in a different context, a problem originating from lattice
gauge theory: How to place fermions on a lattice in a way that respects
both gauge invariance and chiral symmetry [3, 8, 11, 12, 19, 69–71]. Our
context is topological insulators [72], three-dimensional (3D) materials
having an insulating bulk and a conducting surface, with massless Dirac
fermions as the low-energy excitations. The Landau level spectrum of
massless Dirac fermions is anomalous, the zeroth Landau level is a flat
band pinned to zero energy irrespective of the magnetic field strength
[73, 74].

Our objective is to model the surface states on a two-dimensional (2D)
lattice, without breaking the chiral symmetry that protects the zeroth
Landau level from broadening by disorder. Let us introduce the problem
in some detail.
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Figure 4.1: Slab of a topological insulator in a perpendicular magnetic field
B. Landau levels form on the top and bottom surface at energy |E| ∝

√
n,

n = 0, 1, 2, . . ., symmetrically arranged around E = 0. The density of states
(DOS) of the zeroth Landau level is not broadened by a spatially fluctuating B,
provided that the slab thickness d is sufficiently large that the two surfaces are
decoupled.

4.1.2. Zeroth Landau level

In a magnetic field B, perpendicular to the surface of the topological
insulator, Landau levels form at energies En = ±ℏω

√
n, n ∈ N, with

ω ∝
√
B. The zeroth Landau level E0 = 0 is magnetic-field independent

[75–78]. If the perpendicular field strength has spatial fluctuations, for
example, because of ripples on the surface, all Landau levels are broadened
except the zeroth Landau level [79].

The E = 0 flat band is protected by a chiral symmetry, a unitary
and Hermitian operator Γ that anti-commutes with the Hamiltonian [80].
Indeed, the massless 2D Dirac Hamiltonian

HD = vℏkxσx + vℏkyσy (4.1)

anticommutes with the Pauli matrix σz, and this symmetry is preserved if
one introduces a space-dependent vector potential by ℏk 7→ ℏk − eA(r).

Topological considerations [81–83] then enforce the existence of an N -
fold degenerate eigenstate at E = 0, with N the number of flux quanta
through the surface. The flat band has a definite chirality, meaning that
it is an eigenstate of Γ = σz with eigenvalue ±1 determined by the sign of
the magnetic field.

If we consider a topological insulator in the form of a slab (see Fig.
6.1), the top and bottom surfaces each support a zeroth Landau level,
of opposite chirality. The two flat bands will mix and split if the slab is
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so thin that the wave functions of opposite surfaces overlap, but in thick
slabs this breakdown of the topological protection is exponentially small
in the ratio of slab thickness and penetration depth.

4.1.3. 2D lattice formulation

A numerical simulation of the 3D system is costly, it would be more
efficient to retain only the surface degrees of freedom. If we discretize the
2D surface on a square lattice (lattice constant a), the Hamiltonian must
be periodic in the momentum components with period 2π/a. The sin ak
dispersion has the proper periodicity, but it suffers from fermion doubling
[71]: a spurious massless degree of freedom appears at k = π/a.

We contrast two lattice formulations that avoid fermion doubling: an
approach due to Wilson [11] with a sine+cosine dispersion, and an approach
due to Stacey [8] with a tangent dispersion.

In Wilson’s approach [11] the discretized Dirac Hamiltonian is

HWilson = (ℏv/a)
∑
α=x,y

σα sin akα

+ ∆σz
∑
α=x,y

(1 − cos akα). (4.2)

The cosine term ∝ ∆σz avoids fermion doubling, the only low-energy
excitations are near k = 0, but it breaks chiral symmetry: HWilson no
longer anticommutes with Γ = σz.

The alternative approach due to Stacey [8] has a tangent dispersion,

HStacey = (2ℏv/a)
∑
α=x,y

σα tan(akα/2). (4.3)

Fermion doubling is avoided without breaking chiral symmetry, at the
expense of a nonlocal Hamiltonian: While sines and cosines of momentum
only couple nearest neighboring sites, the tangent of momentum represents
a long-range coupling.

The merit of Stacey’s approach is that the nonlocal Schrödinger equation
HStaceyΨ = EΨ can be cast in the form of a generalized eigenvalue problem,

HΨ = EPΨ, (4.4)
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with local operators H,P given by [26]

H = ℏv
2aσx(1 + cos aky) sin akx

+ ℏv
2aσy(1 + cos akx) sin aky, (4.5a)

P = 1
4 (1 + cos akx)(1 + cos aky). (4.5b)

Because H and P are sparse Hermitian operators, and P is positive
definite,1 the generalized eigenvalue problem (4.4) can be solved efficiently.

4.1.4. Outline

We wish to show that the topological protection of the zeroth Landau
in a 3D topological insulator can be obtained in a purely 2D formulation.
To preserve chiral symmetry we work with the tangent dispersion, in the
local representation (4.5).

The first step is to introduce the vector potential in a gauge invariant
way — without breaking the locality of the generalized eigenvalue problem.
We do this in the next Section 4.2. In Sec. 4.3 we calculate the Landau
level spectrum. The zeroth Landau level contains states of both chiralities,
we show that these can be spatially separated by adjoining +B and −B
regions. The robustness of the flat band is assessed in Sec. 4.4. We
conclude in Sec. 4.5.

4.2. Gauge invariant lattice fermions with a
tangent dispersion

In Ref. 26 it was shown how the magnetic field can be incorporated in
the generalized eigenvalue problem (4.5) in a way that is gauge invariant
to first order in the flux through a unit cell. Here we will go beyond that
calculation, and preserve gauge invariance to all orders.

For ease of notation we set ℏ and the lattice constant a both equal to
unity in most equations that follow. The electron charge is taken as +e,
so that the vector potential enters in the Hamiltonian as k 7→ k − eA.

1The operator P is in general only positive semidefinite. It becomes positive definite
if we choose an odd number of lattice points with periodic boundary conditions in
the x– and y–directions.
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We recall the definition of the translation operator,

Tα ≡ eik̂α =
∑

n

|n⟩⟨n + eα|. (4.6)

The sum over n is a sum over lattice sites on the 2D square lattice, and
eα ∈ {ex, ey} is a unit vector in the α-direction. The Peierls substitution
ensures gauge invariance by the replacement

Tα 7→ Tα =
∑

n

eiϕα(n)|n⟩⟨n + eα|,

ϕα(n) = e

∫ n

n+eα

Aα(r) dxα.
(4.7)

Note that the A-dependent translation operators no longer commute,

TyTx = e2πiφ/φ0TxTy, (4.8)

where φ is the flux through a unit cell in units of the flux quantum
φ0 = h/e.

One could now apply the Peierls substitution directly to the Hamiltonian
HStacey from Eq. (4.3), but then one runs into the obstacle noted in Ref.
26: The transformation to a local generalized eigenvalue problem only
succeeds to first order in A, higher order terms become nonlocal. Here we
therefore follow a different route.

We rewrite the operators H and P from Eq. (4.5) in terms of the
translation operators (4.6) and apply the Peierls substitution (4.7) at that
level. Noting that 1 + cos kα = 1

2 (1 + Tα)(1 + T †
α), sin kα = 1

2i (Tα − T †
α),

we define

H = ℏv
8iaσx(1 + Ty)(Tx − T †

x )(1 + T †
y )

+ ℏv
8iaσy(1 + Tx)(Ty − T †

y )(1 + T †
x ), (4.9a)

P = ΦΦ†, (4.9b)
Φ = 1

8 (1 + Tx)(1 + Ty) + 1
8 (1 + Ty)(1 + Tx). (4.9c)

Since Tx and Ty do not commute the order matters: In Eq. (4.9) we have
ordered these translation operators such that H and P remain Hermitian,
and moreover P remains positive definite. Both these properties are
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essential for an efficient solution of the generalized eigenvalue problem

HΨ = EΦΦ†Ψ. (4.10)

For completeness we note that a scalar potential V and a magnetization
M can be included by adding to H the terms

H 7→ H + ΦV Φ† + Φ(M · σ)Φ†. (4.11)

The potential V and perpendicular magnetization Mz break chiral sym-
metry, while the parallel magnetizations Mx and My preserve it.

4.3. Chirality-resolved zeroth Landau level

4.3.1. Lattice obstruction to chirality polarization
The Landau levels of the Dirac Hamiltonian (4.1) are dispersionless flat

bands at energies ±En given by [73, 74]

En = v
√

2nℏe|B|, n = 0, 1, 2, . . . . (4.12)

Each Landau level has the same degeneracy N = number of flux quanta
through the system. Both chiralities C = ±1 (eigenvalues of σz) contribute
equally to each nonzero Landau level: ⟨n|σz|n⟩ = 0 for n ≥ 1. The zeroth
Landau level, however, is polarized: ⟨0|σz|0⟩ = signB.

The topological protection of the zeroth Landau level rests on this
chirality polarization: The chirality index I of the zero-mode, equal to the
number of states with C = +1 minus the number of states with C = −1,
is equal to I = (signB)N . If chiral symmetry is maintained the index is a
topological invariant [81–83], preventing a broadening of the flat band.

All of this is for the continuum description. The fundamental obstacle
faced by lattice fermions is that the chirality polarization of the zeroth
Landau level is lost: A no-go theorem by Stacey [69] enforces that any
gauge invariant lattice regularization of the Dirac Hamiltonian which
preserves chiral symmetry must have the same number of zero-modes for
either chirality. Hence, on the lattice I = 0 and the topological protection
breaks down.

That gauge invariance on a lattice is incompatible with a nonzero
chirality index might be understood by a topological argument: A uniform
magnetic field can be concentrated into an array of h/e flux tubes, each
of which is fully contained within a unit cell. The chirality index cannot
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4.3 Chirality-resolved zeroth Landau level

Figure 4.2: Solid lines: Dispersionless Landau levels in a uniform magnetic field
B0 = (1/201)(h/ea2), calculated from the generalized eigenvalue equation (4.10)
in the gauge A = −B0yx̂. (Energies are plotted in units of E1 =

√
2ℏev2B0.)

The dashed lines indicate the continuum limit (4.12). At each kx-value there are
two independent eigenstates in the zeroth Landau level, one with spin up and
one with spin down. The other Landau levels each have only a single eigenstate
at a given kx, without any spin polarization.

change by such a smooth deformation, but the resulting magnetic field
distribution may be gauged away on the lattice, hence I must be equal to
zero.

4.3.2. Proposed work-around
In accord with these general considerations we have verified by explicit

calculation (see Fig. 4.2) that the generalized eigenvalue problem (4.10)
has an N -fold degenerate zero-mode E0 = 0 in both the C = +1 and
C = −1 manifold.

To recover the chirality-resolved zeroth Landau we propose a method to
spatially separate the opposite chirality manifolds: We double the system
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Figure 4.3: Same calculation as in Fig. 4.2, but for the non-uniform magnetic
field profile with separate regions of ±B0 = ±(1/202)(h/ea2). The full profile
of length 4L0 + a = 405 a is repeated periodically along the y-axis and is
translationally invariant along the x-axis. The scattered data points near the
Brillouin zone boundaries (with a nearly vertical dispersion, see expanded inset)
are a lattice artefact.

by adjoining a +B and −B region. Since then I = 0 by construction, the
zeroth Landau level in each of the two regions could be chirality polarized
without violating the no-go theorem.

Our numerics, see Figs. 4.3 and 4.4, shows that this is indeed what
happens: the states in the zeroth Landau level with C = ±1 are fully
contained in the ±B region.

In the next section we will check to what extent this spatial separation
of the chiralities is sufficient to protect the flat band.

4.4. Robustness of the flat band
We introduce chirality-preserving disorder by randomly varying the

perpendicular magnetic field component B(x, y). The random field is
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Figure 4.4: Wave function intensity profile in the zeroth Landau level for the
band structure of Fig. 4.3, evaluated at kx = 0. As indicated, the eigenstates
with chirality C = ±1 (eigenvalue of σz) are spatially separated in the regions
with magnetic field ±B0.

drawn independently on each lattice site, uniformly in the interval (0, 2B0)
in the positive field region and in the interval (−2B0, 0) in the negative
field region.

For the sake of illustration, it is helpful to first keep the translational
invariance in the x-direction, so that B(y) fluctuates only as function of y.
We can then still plot a band structure as a function of kx, see Fig. 4.5.
All flat bands are destroyed by the disorder, except for the zeroth Landau
level, which remains completely dispersionless. The spatial separation of
the states of opposite chirality is crucial for this topological protection: In
Fig. 4.6 we show that without it the zeroth Landau does broaden in the
presence of disorder.

We next consider a disordered field B(x, y) that fluctuates in both x–
and y–directions. The wave number kx is then no longer a good quantum
number, instead of a band structure we plot the density of states near
E = 0, to assess whether the zeroth Landau level is broadened. As shown
in Fig. 4.7a the density of states peak persists with only a slight broadening
in the disordered system.

Earlier studies of the Landau level spectrum of lattice fermions use
Wilson’s sine+cosine dispersion [84, 85], which breaks the chiral symmetry.
In the Wilson Hamiltonian (4.2) the zeroth Landau level is displaced from
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Figure 4.5: Same calculation as in Fig. 4.3, but now for a magnetic field that
varies randomly in the y-direction. The zeroth Landau level is protected from
broadening because the states of opposite chirality are spatially separated.

E = 0 by the ∆-dependent offset

δE = 1
2eBa

2∆/ℏ. (4.13)

The Wilson mass ∆ is of order ℏv/a to effectively gap out the low energy
excitations at k = π/a, hence δE ≃ eBav.

In Fig. 4.7b we show results for the density of states, computed from
the Wilson Hamiltonian for the same magnetic field value as in Fig. 4.7a.
Without disorder the only difference with the tangent dispersion is the
shift (4.13) of the zeroth Landau level, but with disorder the difference is
quite dramatic.

4.5. Conclusion
In summary, we have shown how the quantum Hall effect in a 3D

topological insulator can be simulated on a 2D lattice. In a sense, the top
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Figure 4.6: Same calculation as in Fig. 4.2, but now for a magnetic field that
varies randomly in the y-direction. The zeroth Landau level contains states of
opposite chirality which are not spatially separated, so they split in the presence
of disorder.

and bottom surfaces in the slab geometry of Fig. 6.1 are unfolded onto a
plane. The inward and outward pointing magnetic field then corresponds
to adjoining +B and −B regions, each with a zeroth Landau level of
opposite chirality.

From a methodological point of view our work provides a gauge invariant
way to discretize the Dirac equation on a lattice without breaking chiral
symmetry. We note that earlier attempts to achieve this were not succesful
[53, 62]. The defining equation (4.10) of tangent fermions has the form
of a generalized eigenvalue problem, HΨ = EPΨ, with local Hermitian
operators H,P on both sides of the equations — allowing for an efficient
solution.

The alternative method of Wilson fermions works with a conventional
eigenvalue problem, HWilsonΨ = EΨ, that is local and gauge invariant,
so it is certainly efficient. However, it breaks chiral symmetry, and it
therefore lacks the topological protection of the zeroth Landau level.
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Figure 4.7: Density of states per unit cell for the tangent dispersion (a) and
for the sine+cosine dispersion (b), with and without disorder in the magnetic
field. (The disordered data is averaged over 1000 realizations.) The energy
resolution is 2 · 10−4 E1, so that a peak of height 25/E1 corresponds to a
degeneracy of 1 state per 200 unit cells. Both panels refer to the same magnetic
field B0 = (1/202)(h/ea2), and the same disorder strength B ∈ (0, 2B0). The
geometry of panel a) is the ±B0 field profile of Fig. 4.4 (L0 = 101 a), while panel
b) is for a single square of dimensions 202 a× 202 a. In both cases we impose
periodic boundary conditions in the x– and y–directions. The parameter ∆ in
the Wilson Hamiltonian (4.2) is set at ℏv/a.

In the previous chapters and Ref. 63 we have established the topological
protection of the Dirac cone of tangent fermions in zero magnetic field.
The present chapter completes this line of investigation by showing how
the topological protection can be extended to the zeroth Landau level in a
magnetic field. Our computer codes and numerical data are available at a
repository DOI:10.5281/zenodo.7495175.
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CHAPTER 5

Chirality inversion of Majorana edge modes in a
Fu-Kane heterostructure

5.1. Introduction
The chiral edge modes of the quantum Hall effect in a semiconductor have

a superconducting analogue [28]: A two-dimensional (2D) superconductor
with broken time-reversal symmetry and broken spin-rotation symmetry
can enter a phase in which the gapped interior supports gapless edge
excitations. This is called a topological superconductor, because the
number of edge modes is set by a topological invariant [40, 86, 87]. Each
edge mode contributes a quantized unit of thermal conductance, producing
the thermal quantum Hall effect [88]. The edge modes are referred to as
Majorana modes, since the quasiparticle excitations at the Fermi level are
their own antiparticle — being equal-weight superpositions of electrons
and holes.

Chiral edge modes have not yet been conclusively observed in a su-
perconductor [89, 90], due in part to the complexity of heat transport
measurements at low temperatures. In this work we propose an electrical
signature of a chiral edge mode, triggered by the chirality inversion when
a supercurrent flows along the boundary.

Our study was motivated by the recent experimental observation of
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the Doppler effect from a superflow in a topological superconductor [29].
The 2D electron gas of massless Dirac fermions on the surface of the
topological insulator Bi2Te3 is proximitized by the superconductor NbSe2,
so that a gap ∆0 opens up at the Fermi level µ. An in-plane magnetic
field B induces a screening supercurrent over a London penetration depth
λL, which boosts the Cooper pair momentum by an amount K ≃ eBλL,
in-plane and perpendicular to B. The Doppler effect [30, 91] shifts the
quasiparticle energy by δE = vFK, closing the gap when K exceeds
K∗ = ∆0/vF [92–94].

The ingredient we add to the system of Ref. 29 is the confinement
produced by a magnetic insulator (EuS) with magnetization perpendicular
to the surface layer (see Fig. 6.1). This is the Fu-Kane proposal [27] for
chiral Majorana modes. Our key finding is that the superflow inverts the
chirality of a Majorana mode moving in the opposite direction once K
exceeds Kc = K∗∆0/µ — so well before the gap closing transition for
∆0 ≪ µ. This chirality inversion can be detected in a transport experiment,
both in thermal and in electrical conduction.

5.2. Chirality inversion
We base our analysis on the 2D Dirac-Bogoliubov-de Gennes Hamiltonian

of a topological insulator surface (Fermi energy µ = vFkF, ℏ ≡ 1) with
induced s-wave superconductivity at Cooper pair momentum K,

H =
(
vFk · σ − µσ0

)
τz +

(
vFK · σ +Mσz

)
τ0 + ∆0σ0τx. (5.1)

The vectors k, σ, K have only x and y components, in the plane of the
surface. The magnetization M points in the z-direction. The σ and τ Pauli
matrices act, respectively, on spin and electron-hole degrees of freedom.1

We confine the electrons to a strip of width W parallel to the y-axis, by
setting M = 0 for |x| < W/2 and M → +∞ for |x| > W/2. Integrating

−ivFσxτz∂xψ = −Mσzτ0ψ ⇒ vF∂xψ = −Mσyτzψ (5.2)

from x = ±W/2 to ±∞, and demanding a decaying wave function, we

1The Hamiltonian (5.1) locks the spin in the direction of motion, via the term kxσx +
kyσy . Rashba spin-orbit coupling would lock the spin in the perpendicular direction,
via kxσy − kyσx. The two Hamiltonians are related by a unitary transformation, so
we can choose one type of coupling without loss of generality. The σy-polarization
of the Dirac edge mode that we find for the Hamiltonian (5.1) (with a boundary
parallel to the y-axis) corresponds to a σx-polarization for the Rashba Hamiltonian.
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5.2 Chirality inversion

Figure 5.1: Schematic of the Fu-Kane heterostructure [27], a topological insu-
lator with induced s-wave superconductivity (gap ∆0, Fermi velocity vF, Fermi
energy µ). The surface electrons are confined to a channel (width W ) by a pair
of magnetic insulators with perpendicular magnetization. Counterpropagating
Majorana edge modes are indicated by red arrows. The blue arrows indicate the
superflow (Cooper pair momentum K). The Doppler effect boosts the velocity of
the Majorana mode on the left edge, while the right edge mode slows down and
inverts its direction of motion when K > ∆2

0/µvF. At that chirality inversion a
Dirac mode appears on the right edge, moving oppositely to the superflow.

obtain the boundary condition

ψ(x, y) = ±σyτzψ(x, y) at x = ±W/2. (5.3)

The spinor structure of the wave function at the boundaries is therefore a
superposition of

|u1⟩ =
(
i
1

)
⊗
(

1
0

)
, |u2⟩ =

(
−i
1

)
⊗
(

0
1

)
(5.4)

at x = −W/2 and a superposition of τx|u1⟩, τx|u2⟩ at x = W/2.

We seek the wave function profile ψ(x, y) = eikyyψ(x) at energy E
and wave vector ky parallel to the boundary. The superflow momentum
K = (0,K) is oriented along the boundary. Integration of the Schrödinger
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equation Hψ = Eψ gives ψ′(x) = Ωψ(x) ⇒ ψ(W/2) = eWΩψ(−W/2) with

Ω = i(E/vF)σxτz + i(µ/vF)σxτ0 − iKxσ0τz +Kσzτz

+ kyσzτ0 + (∆0/vF)σxτy. (5.5)

The boundary condition (5.3) dictates that ψ(−W/2) is a superposition
of the states |u1⟩, |u2⟩, while ψ(W/2) is orthogonal to these two states.
This gives the determinantal equation

det Ξ = 0, Ξnm = ⟨un|eWΩ|um⟩, (5.6)

from which we determine the spectrum E(ky). In the limit W → ∞ of
uncoupled edges we find near ky = 0 the Majorana edge mode dispersion2

E± = ±vFky
∆2

0 + v2
FK

2 ± vFKµ

∆2
0 ∓ vFKµ+ µ2

→ vFky(K/kF ± ∆2
0/µ

2) for µ ≫ ∆0. (5.7)

The ± sign distinguishes the modes on opposite edges. These are Majorana
modes, because they are nondegenerate and transform into themselves
when charge conjugation maps E 7→ −E and ky 7→ −ky.

The group velocity of an edge mode equals dE/dky, and hence we
conclude from Eq. (5.7) that a chirality inversion appears with increasing
K, such that for K > Kc both Majorana edge modes propagate in the
same direction. This is illustrated in Fig. 5.2. The critical Kc equals

Kc = 2∆2
0/vF√

4∆2
0 + µ2 + µ

→ ∆2
0

vFµ
for µ ≫ ∆0. (5.8)

Since the gap in the bulk spectrum does not close until K = K∗ = ∆0/vF
the bulk remains gapped in the inverted regime — only the edge modes
propagate at the Fermi energy (E = 0).

For K > Kc the inverted Majorana mode at ky = 0 coexists with two
counterpropagating modes at

±kD = ±
√

1 + kF/K
√
K2 +KkF − (∆0/vF)2. (5.9)

Check that kD = 0 for K = Kc. At larger K the Dirac mode momentum
kD rises quickly to a value of order kF.

The Dirac fermions have charge expectation value ±⟨Q⟩ = ±e⟨τz⟩. Near

2Details of the calculation of the edge mode dispersion are given in App. 5.A.
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Figure 5.2: Dispersion relation of the edge modes in the non-inverted regime
(K < Kc) and in the inverted regime (K > Kc). The solid curves are calculated
numerically from Eq. (5.6) for channel width W = 100 vF/µ. The dashed lines are
the large-µ, large-W asymptotes (5.7). The colored dots in the inverted regime
indicate the charge-neutral Majorana mode (at ky = 0) and the electron-like
and hole-like Dirac modes (at ky = ±kD).

the transition we find3

⟨Q⟩ = e(∆0/µ)
√

(K −Kc)/kF, K ≳ Kc. (5.10)

As shown in Fig. 5.3, the square-root singularity at K = Kc crosses
over into an approximately linear increase for larger K, up to Qmax =
2
3e+ O(∆0/µ) at K = K∗.

We also show in Fig. 5.3 that the Dirac mode is approximately spin-
polarized, with expectation value ⟨σy⟩ = ±(1 − ∆0/6µ) for µ ≫ ∆0 and
K well above Kc. So the Dirac modes differ from the Majorana modes by
their nonzero charge and spin expectation value, and there is one more
difference: The decay length λ of the edge modes into the bulk is smaller
for the Dirac modes (λD ≃ vF/

√
µ∆0) than it is for the Majorana modes

(λM = vF/∆0, the superconducting coherence length).

3Details of the calculation of the charge and spin of the Dirac mode are given in App.
5.B.
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Figure 5.3: Top panel: Charge and spin expectation value of the Dirac fermions
at E = 0 in the inverted regime. The solid curves are calculated (App. 5.B) in
the limit W → ∞. The lower panel shows a close-up of the charge for K close
to Kc, the asymptote (5.10) is the dashed curve. The electron-like and hole-like
Dirac fermions (red and blue dots in Fig. 5.2) have opposite signs of ⟨Q⟩ and
⟨σy⟩.

5.3. No chirality inversion in a p-wave
superconductor

The Doppler effect of a supercurrent flowing along the boundary of
a spinless chiral p-wave superconductor has been studied previously [95,
96] — without producing the chirality inversion we find for the Fu-Kane
superconductor. To understand why, we have repeated our calculations
for the Hamiltonian

Hp-wave =
(

(k + K)2/2m− µ (∆0/kF)(kx + iky)
(∆0/kF)(kx − iky) µ− (k − K)2/2m

)
(5.11)

of a 2D superconductor with a spinless chiral p-wave pair potential. Gapless
edge modes coexist with a gapped bulk for µ = k2

F/2m > 0 and K < K∗ =
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Figure 5.4: Top view of the proximitized topological insulator (S) of Fig. 5.1,
with additional normal metal contacts (N1, N2) to measure the transport of
heat (left panel) and the transport of charge (right panel) through a constriction
of width W and length L, confined by magnetic insulators (M).

∆0/vF.
As before, we take a channel of width W along the y-axis, parallel to

the superflow momentum K = (0,K). For large W we find the edge mode
dispersion4

E = (vFky/kF)(K ± ∆0/vF), (5.12)

to first order in ky and K. We see that there is no velocity inversion
of the edge modes at any K < K∗ for which the bulk remains gapped.
Comparison with the dispersion (5.7) in the Fu-Kane superconductor
shows that it is the ∆0 versus ∆2

0 dependence that forms the obstruction
to Kc < K∗ in a chiral p-wave superconductor.

5.4. Transport signatures
The chirality inversion of the edge modes in the Fu-Kane superconductor

can be observed in both thermal and electrical conduction. The two
transport geometries are shown in Fig. 5.4.

The thermal conductance Gthermal at temperature T0 is given by the
transmission matrix t (from contact N1 to contact N2),

Gthermal = G0 Tr t†t, G0 = 1
6 (π2k2

B/h)T0. (5.13)
4That the shift of k by the superflow momentum K appears only in the diagonal

elements of the Hamiltonian (5.11) is required by gauge invariance, see App. 5.C,
which also contains a derivation of Eq. (5.12).
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The conductance quantum G0 has 1/2 the value for normal electrons
because of the Majorana nature of the carriers.

The electrical circuit is a three-terminal configuration, with a grounded
superconductor in addition to the metal contacts N1, N2. The conductance
Gelectric = I2/V1, in the zero-temperature, zero-voltage limit, is given by5

Gelectric = (e2/h) Tr (t†eetee − t†hethe) = e2

2h Tr τzt†τzt, (5.14)

where tee and the are submatrices of t for transmission of an electron as
an electron and as a hole, respectively.

For K > Kc there are two right-moving edge modes and two left-
moving edge modes at the Fermi energy, while for K < Kc there is only
a single left-mover and a single right-mover. The thermal conductance
is therefore doubled when K becomes larger than Kc. For K < Kc the
counterpropagating Majorana edge modes carry no electrical charge, while
for K > Kc the two co-propagating modes on the same edge form a Dirac
mode that can carry charge — but only in the direction opposite to the
superflow.

To test these expectations we have carried out a numerical simulation
of a tight-binding Hamiltonian.6 We compared two models for the normal
metal contact, with and without a large potential step at the normal-
superconductor (NS) interface. For both models we assumed that the
length L of the superconducting region is small compared to the mean free
path for disorder scattering, so that any backscattering happens at the
NS interfaces. Results are shown in Fig. 5.5.

The thermal conductance makes the transition from a completely flat
plateau at G0 for K < Kc to a modulated plateau at 2G0 for larger K.
Because of the appearance of counterpropagating modes on one of the
edges the conductance is sensitive to backscattering for K > Kc, as is
evident by the Fabry-Perot-type oscillations at the onset of the step (when
the longitudinal momentum is small). After the onset the plateau is quite
flat and close to the quantized value of 2G0.

The electrical conductance shows a striking asymmetry in K, it remains
close to zero for K > Kc and only switches on for K < −Kc. This
asymmetry under exchange of N1 and N2 is not a violation of reciprocity,

5The second equality in Eq. (5.14) follows from the first by rewriting

Gelectric/G0 = (1/2) Tr (1 + τz)t†τzt,

and then using particle-hole symmetry to identify Tr t†τzt = 0.
6Details of the tight-binding simulation are given in App. 5.D. We used the Kwant

package [97].
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Figure 5.5: Results for the thermal and electrical conductance, obtained by
the numerical simulation (App. 5.D) of a tight-binding model of the Fu-Kane
superconductor (µ = 12 ∆0, W = L = 1200 vF/µ). In panel (a) the chemical
potential µN in the normal-metal contacts is equal to the value µ in the super-
conducting region, while panel (b) is for the case µN ≫ µ. The transition starts
at a superflow momentum K that is larger than the value Kc = 0.08 vF/∆0 from
Eq. (5.8), because of the finite lattice spacing (kFa0 = 0.2). The data points in
panel (b) give the analytical result (5.15), with kD from the simulation.

since it appears in a three-terminal configuration. The conductance rises
to e2/h in a step-like manner or more slowly, depending on whether or not
there is a potential step at the interface.

The reason that the electrical conductance is sensitive to the details
of the NS interface, while the thermal conductance is not, is that the
heat current from contact N1 to contact N2 is conserved while the charge
current is not. (Charge can be drained into the grounded superconducting
terminal, but the gapped superconductor cannot absorb heat.)

In the absence of a potential step the simulation shows a conductance
plateau at Gelectric ≈ e2/h, indicating that a Dirac fermion at kD ≈ kF
approaching the NS interface transfers a charge e — notwithstanding its
charge expectation value ⟨Q⟩ < e. We explain this by noting that for
µN = µ the longitudinal momentum is approximately conserved across
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the interface, coupling to states at −kF is suppressed, and since the only
outgoing states near kF in the normal region are electrons, the bare charge
e is transferred.

In the presence of a large potential step the longitudinal momentum is
not conserved, it is boosted to +kF for the electron component and to −kF
for the hole component of the Dirac mode. A mode matching calculation
in the limit µN/µ → ∞ (see App. 5.E) gives

Gelectric = e2

h

k2
D

(K + µ/vF)2 = e2

h

(
1 − (∆0/vF)2

K(K + µ/vF)

)
, (5.15)

in excellent agreement with the simulation.
Eq. (5.15) can be interpreted in terms of an effective transferred charge,

Gelectric = (e∗)2/h with e∗ = ekD/(K + kF), but e∗ is very different from
⟨Q⟩: While the charge expectation value ⟨Q⟩ increases approximately
linearly from 0 to 2

3e as K increases from Kc to K∗ (see Fig. 5.3), the
effective transferred charge e∗ increases much more rapidly from 0 all the
way to e. We note that in a different charge transfer problem [98], in a
Weyl superconductor, the identification of e∗ and ⟨Q⟩ did hold.

5.5. Conclusion
In summary, we have reported on a manifestation of the Doppler effect

from a supercurrent in a spinful topological superconductor: A supercurrent
flowing along the magnetic boundary of a Fu-Kane superconductor can
reverse the chirality of the Majorana edge mode, without closing the bulk
gap. The chirality inversion is accompanied by the appearance of a Dirac
mode that propagates counter to the superflow, such that the net number
of right-movers minus left-movers is unchanged.

The effect is absent in a spinless chiral p-wave superconductor,7 which
is remarkable because the low-energy effective Hamiltonian in the bulk
of the Fu-Kane superconductor has px + ipy-wave pairing symmetry [27].
We have traced the origin of the difference to the linear versus quadratic
dependence of the Majorana edge mode velocity on the bulk gap. It is the
quadratic dependence that allows the superflow to restructure the edge
modes without affecting the bulk spectrum.

The chirality inversion produces a fully electrical signature of the edge
7An apparently unrelated difference in the edge mode spectrum between spinless and

spinful topological superconductors has been reported by A. Yamakage, Y. Tanaka,
and N. Nagaosa in [99].
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currents: charge can be transported upstream relative to the superflow, but
not downstream — because a Majorana mode transports no charge while
a Dirac mode does. Such a distinctive effect should help the conclusive
observation of chiral Majorana fermions in a topological superconductor.

5.A. Calculation of the dispersion relation
The determinantal equation (5.6), with the 4 × 4 matrix Ω given by

Eq. (5.5), is suitable for a numerical calculation of the dispersion relation
E(ky) for finite W . Analytical expressions can be obtained in the limit
W → ∞ of uncoupled edges. In this appendix and the next one we set vF
to unity, for ease of notation.

The elements of the transfer matrix eWΩ have an exponential dependence
∝ eWξ± and ∝ e−Wξ± on W , with

ξ± =
√

∆2
0 − E2 − µ2 + k2

y +K2 ± 2
√

∆2
0 (K2 − µ2) + (kyK − Eµ)2.

(5.16)
The sign ambiguity in the square roots is resolved by taking the square
root with a positive real part (branch cut along the negative real axis).
The edge modes in the limit W → ∞ are obtained by setting e−Wξ± → 0
in the transfer matrix. The determinantal equation (5.6) then reduces to

∆2
0(K2 − µ2)(E2 − k2

y −K2 + µ2)
+ (∆2

0 − ξ−ξ+)
(
∆2

0(K2 − µ2) + 2(kyK − Eµ)2) = 0.
(5.17)

We eliminate the square roots in the product ξ−ξ+ by rearranging the
equation as ξ−ξ+ = · · · and then squaring both sides, resulting in(

∆2
0 − (E −K)2 + (ky − µ)2)(∆2

0 − (E +K)2 + (ky + µ)2) =

= ∆4
0

(
1 +

(K2 − µ2)(E2 − k2
y −K2 + µ2)

∆2
0(K2 − µ2) + 2(kyK − Eµ)2

)2

. (5.18)

Eq. (5.18) has eight solutions for E, the two physical solutions are the
dispersions E±(ky) that cross zero at ky = 0. The full expressions are
a bit lengthy and not recorded here. The linear dispersion near ky = 0
does have a compact expression, given by Eq. (5.7) in the main text. Eq.
(5.8) for Kc is the value of K at which the slope of E−(ky) vanishes. To
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find the momenta ky = ±kD of the Dirac modes for K > Kc we solve Eq.
(5.18) for ky at E = 0, resulting in Eq. (5.9).

5.B. Calculation of the charge and spin of
the Dirac mode

The charge expectation value ⟨Q⟩ = e⟨τz⟩ can be obtained from the
dispersion relation via the derivative ⟨Q⟩ = −e∂E/∂µ. It vanishes for the
Majorana fermions at ky = 0, but it is nonzero for the Dirac fermions
at ky = ±kD, with E(kD) = 0. We can compute this directly from the
determinantal equation (5.18), by substituting E 7→ E(µ), differentiating
with respect to µ, solving for E′(µ), and finally setting E(µ) 7→ 0, ky 7→ kD.

We thus arrive at the Dirac fermion charge

⟨Q⟩ = e

√
K
√
K(K + µ) − ∆2

0
(
2K(K + µ) − ∆2

0
)

√
K + µ [∆2

0(µ−K) + 2K2(K + µ)]
. (5.19)

This is the black curve plotted in the top panel of Fig. 5.3. Expansion
near K = Kc gives for µ ≫ ∆0 the square-root result (5.10) in the main
text. The charge increases monotonically with increasing K, reaching its
maximal value

Qmax = e

√
µ

∆0 + µ

∆0 + 2µ
∆0 + 3µ (5.20)

at K = K∗ = ∆0.
In a similar way we can calculate the spin expectation value ⟨σy⟩ =

∂E/∂K of the Dirac fermions, with the result

⟨σy⟩ =
√
K(K + µ) − ∆2

0
(
2K2(K + µ) + ∆2

0µ
)√

K(K + µ) [∆2
0(µ−K) + 2K2(K + µ)]

, (5.21)

see the blue curve in Fig. 5.3. The behavior for K ≳ Kc is again a square
root increase, ⟨σy⟩ ≈ (√µ/∆0)

√
K −Kc, rising rapidly to a value

⟨σy⟩max =
√

µ

∆0 + µ

2∆0 + 3µ
∆0 + 3µ → 1 − ∆0

6µ for µ ≫ ∆0, (5.22)

close to unity.
The signs of spin and charge are such that ⟨Q⟩ < 0 and ⟨σy⟩ > 0 for the

Dirac mode at ky = kD. The mode at ky = −kD has the opposite signs.
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5.C. Doppler-boosted edge modes in a
chiral p-wave superconductor

The chiral p-wave Hamiltonian has the form

Hp-wave =
(
H0 ∆̂
∆̂† −H∗

0

)
, (5.23a)

H0 = 1
2m (k2

x + k2
y) − µ, (5.23b)

∆̂ = k−1
F {∆(r), kx + iky}, (5.23c)

with k = −i∂/∂r and {a, b} = 1
2 (ab+ ba) the symmetrization operator.

The superflow momentum K enters in the pair potential via ∆(r) =
∆0e

2iK·r. We remove it by a gauge transformation,

Hp-wave 7→ U†Hp-waveU, U =
(
eiK·r 0

0 e−iK·r

)
. (5.24)

In view of the identity

e−iK·r{eiK·r, ∂x + i∂y}e−iK·r = ∂x + i∂y, (5.25)

the transformed Hamiltonian (5.11) contains the Doppler shifted momen-
tum only in the diagonal elements, not in the off-diagonal elements.

In terms of the Pauli matrices τα acting on the electron-hole degree of
freedom, we have

Hp-wave = k2

2mτz − µτz + K

m
kyτ0 + ∆0

kF
(kxτx − kyτy), (5.26)

to first order in K = (0,K). We introduce a boundary at x = 0 and seek
the velocity of an edge mode in the y-direction. The velocity operator at
ky = 0 is

v̂edge = lim
ky→0

∂

∂ky
Hp-wave = K

m
τ0 − ∆0

kF
τy. (5.27)

The edge mode wave function at E = 0, ky = 0 solves

1
2mψ′′(x) + µψ(x) − ∆0

kF
τyψ

′(x) = 0, (5.28)

for x > 0, with boundary condition ψ(0) = 0. A normalizable solution
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exists for µ > 0, it is an eigenstate of τy with eigenvalue −1. The
expectation value vedge of the velocity follows directly,

vedge = ⟨ψ|v̂edge|ψ⟩ = K/m+ ∆0/kF. (5.29)

At the opposite edge the solution ψ is an eigenstate of τy with eigenvalue
+1, resulting in a velocity vedge = K/m− ∆0/kF. The corresponding edge
mode dispersion is given by Eq. (5.12).

5.D. Details of the tight-binding simulation
For the numerical calculations we model the Fu-Kane superconductor

by a tight-binding Hamiltonian on a 2D square lattice (lattice constant
a0),

H = vF

a0

∑
α=x,y

sin(a0kα + a0Kα)σατz

+Mσzτ0 − µσ0τz + ∆0σ0τx

+ M0vF

a0

∑
α=x,y

[1 − cos(a0kα + a0Kα)]σzτ0. (5.30)

In the limit a0 → 0 the continuum Hamiltonian (5.1) is recovered. The
term ∝ M0 is introduced to avoid spurious Dirac points at the edge of the
Brillouin zone (fermion doubling).

We consider a channel geometry of width W along the y-axis, with mass
M = 0 for |x| ≤ W/2 and infinite mass M → ∞ for |x| > W/2. It is
efficient if we can replace the infinite-mass term by a lattice termination
at |x| = W/2, so that we only have to consider the lattice points inside the
channel. This is allowed if the lattice termination enforces the boundary
condition (5.3). We can set M0 = −1 to achieve that goal.

To see this, consider the matrix elements for hopping in the ±x-direction,

Hnx±1,nx
= ± vF

2ia0
e±ia0Kxσxτz − M0vF

2a0
e±ia0Kxσzτ0. (5.31)

To represent the boundary condition (5.3) by a lattice termination at
the right edge, we need to ensure that Hnx−1,nx

ψ = 0 at x = W/2 + a0
when ψ = +σyτzψ. Similarly, for x = −W/2 we need Hnx+1,nxψ = 0
at x = −W/2 − a0 when ψ = −σyτzψ. One readily checks that both
conditions are realized if M0 = −1.
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5.D Details of the tight-binding simulation

Figure 5.6: Energy spectrum of the superconducting channel, calculated nu-
merically from the tight-binding Hamiltonian (5.30) (µ = 7.5 ∆0, W = 100 vF/µ,
K = 2

3 ∆0/vF, a0 = 0.02 vF/µ). The red dashed lines are the large-µ, large-W
asymptotes (5.7) of the Majorana edge mode dispersion. The red and blue dots
indicate the Dirac fermion mode at ky = ±kD, the green dot is the Majorana
fermion at ky = 0.

In Figs. 5.6 and 5.7 we show that we recover the analytical results for the
edge mode dispersion and for the expectation value of the charge and spin
of the Dirac fermions. To achieve this accurate agreement the tight-binding
model needs to be close to the continuum limit. For that purpose we took
a small lattice contant (kFa0 = 0.02), which is computationally feasible
in an effectively 1D simulation. The transport calculations are fully 2D
and we were forced to take a ten times larger lattice constant to keep the
problem tractable. This is why the numerical value of Kc in Fig. 5.5 differs
substantially from the analytical result in the continuum limit.

For the transport calculations we take a finite length L of the supercon-
ducting segment (S), and attach semi-infinite normal metal leads (N) at
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Figure 5.7: Expectation value of the charge and the spin of the Dirac fermions
in the inverted regime, as a function of the superflow momentum K. The data
points result from the tight-binding simulation (same parameters as in Fig. 5.6),
the solid curves are the analytical results (5.19) and (5.21) in the limit W → ∞.

the two ends (see Fig. 5.8). We set ∆0 = 0 in N, no coupling of electrons
and holes (the value of K then becomes irrelevant and may be set to zero),

Hlead = vF

a0

∑
α=x,y

σατz sin a0kα − µσ0τz

+ M0vF

a0

∑
α=x,y

(1 − cos a0kα)σzτ0. (5.32)

We again set M0 = −1 to implement the infinite-mass boundary condition
by a lattice termination at x = ±W/2.

Eq. (5.32) is the model without a potential step at the NS interface
(panel a in Fig. 5.5). If the chemical potential µN in the normal metal leads
is much larger than the value µ in the superconducting region, only modes
with a large longitudinal momentum ky are transmitted across the NS
interface. We cannot directly take the large-µN limit in the Hamiltonian
(5.32), because of the finite band width. Instead, we achieve the same goal
of suppressing transverse momenta by cutting the transverse hoppings at
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Figure 5.8: Two-dimensional square lattice on which the tight-binding model
is defined. The Hamiltonian (5.30) is applied to the superconducting segment of
length L (yellow). In the semi-infinite leads (grey) the Hamiltonian is given by
Eqs. (5.33) and (5.32), respectively, in the models with and without a potential
step at the NS interfaces.

µN = 0,

Hlead(large potential step) = vF

a0
σyτz sin a0ky

+ M0vF

a0
(1 − cos a0ky)σzτ0. (5.33)

This produces the data in panel b of Fig. 5.5.

5.E. Derivation of Eq. (5.15)

5.E.1. Calculation of the transferred charge

We seek to compute the charge e∗ transferred across the NS interface at
y = 0 by a Dirac fermion at ky = ±kD. We assume a large potential step
at the interface, such that the chemical potential µN in the normal region
y < 0 is much larger than the value µ = vFkF in the superconducting
region y > 0. The Hamiltonian in S is

H = vF(kxσx + kyσy)τz + vFKσyτ0 − µσ0τz

+Mσzτ0 + ∆0σ0τx

≡ H0 + vFkyσyτz. (5.34)
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For later use we have separated out the ky-independent part H0 =
limky→0 H.

The potential step boosts the momentum component ky perpendicular
to the interface, without affecting the parallel component kx, so in N
only modes are excited with |ky| ≫ |kx|. These are eigenstates of σyτz
with eigenvalue −1, moving away from the interface in the −y direction.
Continuity of the wave function Ψ at the interface then requires that
limy→0 Ψ ≡ Ψ0 satisfies

σyτzΨ0 = −Ψ0 ⇔ PΨ0 = Ψ0, (5.35)

with projection operator

P = 1
2 (1 − σyτz). (5.36)

The eigenvalue equation HΨ = 0 at E = 0 implies that

0 = lim
y↓0

PHΨ = PH0PΨ0 + lim
y↓0

PvFkyσyτzΨ

= (K + kF)P ĵPΨ0 − iP v̂Ψ′
0, (5.37)

with the definitions ĵ = vFσyτ0, v̂ = vFσyτz, and Ψ′
0 = limy↓0 ∂Ψ/∂y. The

derivative is not continuous at the NS interface, hence the specification
that the limit y ↓ 0 should be taken from above. Also note that PΨ0 = Ψ0
but PΨ′

0 ̸= Ψ′
0.

We define the y-dependent inner product of two arbitrary states,

⟨Ψ1|Ψ2⟩y =
∫
dxΨ∗

1(x, y)Ψ2(x, y). (5.38)

With respect to this inner product the operator H0 is self-conjugate,
⟨Ψ1|H0Ψ2⟩y = ⟨H0Ψ1|Ψ2⟩y, but the operator ky = −i∂/∂y is not (an
integration over y would be needed for that). Still, if Ψ is an eigenstate
of H at eigenvalue E, we have ky v̂Ψ = (E − H0)Ψ, so ky v̂ inherits the
self-conjugate property from H0, ⟨Ψ|ky v̂Ψ⟩y = ⟨ky v̂Ψ|Ψ⟩y.

We will use this identity in the two forms

⟨Ψ|v̂|Ψ′⟩y = −⟨Ψ′|v̂|Ψ⟩y, ⟨Ψ′|v̂|Ψ′⟩y = −⟨Ψ|v̂|Ψ′′⟩y, (5.39)

where Ψ′ = ∂Ψ/∂y and Ψ′′ = ∂2Ψ/∂y2. (The second equality holds
because H does not depend on y, so if HΨ = EΨ then also HΨ′ = EΨ′.)

One implication of Eq. (5.39) is that the particle current ⟨Ψ|v̂|Ψ⟩y is
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y-independent, as it should be,

d

dy
⟨Ψ|v̂|Ψ⟩y = ⟨Ψ′|v̂|Ψ⟩y + ⟨Ψ|v̂|Ψ′⟩y = 0. (5.40)

A more unexpected implication is that also the expectation value ⟨Ψ|v̂|Ψ′⟩y
is y-independent,

d

dy
⟨Ψ|v̂|Ψ′⟩y = ⟨Ψ′|v̂|Ψ′⟩y + ⟨Ψ|v̂|Ψ′′⟩y = 0. (5.41)

We will make essential use of these two properties in just a moment.
The charge current Icharge through the NS interface at y = 0,

Icharge = e⟨Ψ|ĵ|Ψ⟩0 = e⟨Ψ|P ĵP|Ψ⟩0, (5.42)

can be rewritten by substitution of Eq. (5.37),

Icharge = ie

K + kF
⟨Ψ|P v̂|Ψ′⟩0 = ie

K + kF
⟨Ψ|v̂|Ψ′⟩0. (5.43)

The renormalized charge e∗ transferred through the NS interface by a
Dirac fermion is the ratio of the charge current and the particle current
Iparticle = ⟨Ψ|v̂|Ψ⟩0,

e∗ = ie

K + kF

⟨Ψ|v̂|Ψ′⟩0

⟨Ψ|v̂|Ψ⟩0
= ie

K + kF

⟨Ψ|v̂|Ψ′⟩y
⟨Ψ|v̂|Ψ⟩y

. (5.44)

In the second equality we used Eqs. (5.40) and (5.41).
We can evaluate the ratio of y-dependent expectation values at large

y, far from the interface, where evanescent waves have decayed to zero
and Ψ contains only the propagating Dirac mode ΨD ∝ e±ikDy — under
the assumption that there is no backscattering of quasiparticles at the
interface. The ratio then reduces to ±ikD, resulting in a transferred charge

±e∗ = ± ekD

K + kF
. (5.45)

The sign of the transferred charge is set by the sign of the charge expectation
value ⟨Q⟩ of the Dirac mode, but the magnitude is different.

Eq. (5.45) gives the charge of an outgoing mode in N (moving away
from the NS interface), when it is matched to an incoming Dirac mode in
S (moving towards the NS interface). The entire calculation carries over
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if the direction of motion is inverted, so when an incoming mode in N is
matched to an outgoing Dirac mode in S, the incoming mode has the same
charge ±e∗.

5.E.2. Calculation of the electrical conductance

The transferred charge determines the conductance Gelectric = I2/V1
that gives the electrical current I2 into the normal contact N2 in response
to a voltage V1 applied to contact N1 (see Fig. 5.8). This is a three-terminal
circuit, the third terminal is the grounded superconductor S connecting N1
and N2, separated by a distance L. We assume that both contacts have a
chemical potential µN ≫ µ.

In the absence of backscattering the transmission matrix t from N1 to
N2 is a rank-two matrix of the form

t = eikDL|Ψ+
2 ⟩⟨Ψ+

1 | + e−ikDL|Ψ−
2 ⟩⟨Ψ−

1 |. (5.46)

The incoming mode |Ψ±
1 ⟩ in contact N1 is matched in S to a Dirac mode at

ky = ±kD. The Dirac mode propagates to contact N2, picking up a phase
e±ikDL, and is then matched to an outgoing mode |Ψ±

2 ⟩. The matching
condition gives a charge ±e∗ to Ψ±

n ,

⟨Ψ±
n |τz|Ψ±

n ⟩ = ±e∗. (5.47)

The modes |Ψ+
n ⟩ and |Ψ−

n ⟩ not only carry opposite charge, they are each
others particle-hole conjugate,

|Ψ+
n ⟩ = σyτy|Ψ−

n ⟩∗, (5.48)

as they are matched to Dirac modes that are related by particle-hole
conjugation. We will use an orthogonality consequence of this property:

⟨Ψ+
n |τz|Ψ−

n ⟩ = −⟨Ψ+
n |σyτyτzσyτy|Ψ−

n ⟩ = −⟨Ψ−
n |τz|Ψ+

n ⟩∗

= −⟨Ψ+
n |τz|Ψ−

n ⟩ ⇒ ⟨Ψ+
n |τz|Ψ−

n ⟩ = 0. (5.49)

So while current conservation by itself requires that |Ψ+
n ⟩ is orthogonal to

|Ψ−
n ⟩, the additional constraint of particle-hole symmetry also gives the

orthogonality of |Ψ+
n ⟩ and τz|Ψ−

n ⟩.
We now have all the pieces in place to calculate the conductance, given
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in terms of the transmission matrix by

Gelectric = e2

2h Tr τzt†τzt. (5.50)

Substitution of Eq. (5.46) and use of the orthogonality (5.49) gives

Gelectric = e2

2h
∑
s=±

⟨Ψs
2|τz|Ψs

2⟩⟨Ψs
1|τz|Ψs

1⟩ = (e∗)2

h
, (5.51)

where in the second equality we used Eq. (5.47). Subsitution of Eq. (5.45)
then produces Eq. (5.15) in the main text.
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CHAPTER 6

Dynamical simulation of the injection of vortices into a
Majorana edge mode

6.1. Introduction
A remarkable property of topological superconductors is that two vortices

winding around each other exchange a quasiparticle [36, 88, 100]. This
“braiding” operation is a manifestation of the non-Abelian statistics of
the Majorana zero-modes bound to the core of an Abrikosov vortex [101–
103]. Because Abrikosov vortices are immobile, typically pinned to defects,
winding them is a thought experiment that is not easily implemented
[104–106].

A proposal to mobilize vortices by injecting them into the edge modes
of a topological superconductor was suggested by Beenakker et al. [38].
The parity carried by such edge-vortices can be used to encode a qubit.
After the injection, the edge-vortices can be braided with bulk vortices due
to their chiral motion without requiring any external manipulation. This
results in a fermion parity switch (flip of the qubit) between the edges and
the bulk that can be detected electrically as an e/2 charge pulse when a
pair of edge vortices is fused in a normal metal contact [107, 108].

The key component of the braiding device of Ref. 38 is the edge-vortex
injector (see Fig. 6.1): it consists of a flux-biased Josephson junction,
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WΔ0 Δ0eiφ(t)

flux bias Φ(t)

Majorana edge mode Josephson junction

ΔΦ=h/2e
vtinj edge-vortex

π

Topological
superconductor π

Figure 6.1: Edge vortex injector [38], consisting of a Josephson junction in a
topological superconductor with co-propagating chiral edge modes. An h/2e
flux increment injects a pair of edge-vortices on opposite edges with a protected
fermion parity. The corresponding phase domain wall is represented with green
lines. The adiabatic description of the injection process assumes that the
injection time tinj = (2πξJ/W )(dφ/dt)−1 is long compared to the propagation
time W/v along the junction. In this work we relax that assumption, to simulate
a device (Fig. 6.2) where these dynamically injected edge-vortices are braided
with Abrikosov bulk vortices.

connecting co-propagating chiral edge modes. The application of a flux
bias of h/2e increments the superconducting phase φ by 2π. For the
fermionic edge mode wave functions this amounts to a π-phase domain
wall [37], which moves away from the junction with the Fermi velocity
v, carrying the edge-vortex excitations. The injection process takes a
finite time tinj, that translates into a finite width vtinj of the domain wall.
Given a rate of change dφ/dt, a junction width W , and a superconducting
coherence length ξJ one has

tinj = (2πξJ/W )(dφ/dt)−1. (6.1)

A major simplification of the theoretical description of the injection process
arises if tinj is large compared to the propagation time W/v, so for a
sufficiently slow rate of change dφ/dt ≪ 2πvξJ/W

2. This is the so-called
adiabatic regime, in which one may rely on the instantaneous scattering
approximation. Ref. 38 applies to that regime. The purpose of the present
work is to relax the adiabatic approximation, to see how large (v/W )tinj
should be for the braiding operation to succeed. This is studied via a fully
dynamical simulation of the proposed device during the injection, braiding
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and fusion.
Since an edge vortex is a collective degree of freedom, the dynamics

involves the full many-body state. We study it numerically, by means
of time-dependent Bogoliubov-de Gennes methods. Our main conclusion
is that a factor of two between tinj and W/v is sufficient to avoid the
excitations of internal degrees of freedom in the junction that would spoil
the fermion parity switch [109–112].

The outline of the chapter is as follows: the simulated device and the
time-dependent model are introduced in Sec. 6.2. In Sec. 6.3, we present
the results of the braiding protocol which recover the main predictions
from the adiabatic theory, namely the charge signature at the exit of the
device and the fermion parity exchange of the edges with the bulk. Sec. 6.4
describes the excitation dynamics of the junction in the alternative regime
W > vtinj where the braiding protocol cannot hold. The conclusion is
presented in Sec. 6.5.

6.2. Model and device

6.2.1. Setup
We consider the device shown in Fig. 6.2 (a). A quantum anomalous Hall

(QAH) insulator (N = 2) exhibits an electronic chiral mode (corresponding
to two Majorana fermions in the BdG formalism), on each of the two
edges [113–115]. When the edge of a QAH is proxitimitized by an s-
wave superconductor, the fermionic edge mode splits into two spatialy
separated co-propagating chiral Majorana fermions, localized at the edges
of the superconducting region [116, 117]. This proximitized system can
be described as a topological superconductor (N = 1). In our setup, such
a topological superconductor (TSC) with two co-propagating Majorana
edge modes (Fig. 6.2 (b)) is divided in three sections by two Josephson
junctions, each of length W and thickness w. The junctions are separated
by a distance L. Two vortices of flux Φ0 = h/2e are created in the bulk
by an external magnetic field, one of which is in the region between the
two junctions.

A time-dependent flux bias is applied such that the phase in the middle
superconductor is φ(t) relative to the others, as in Fig. 6.1. By increasing
the phase φ(t) from 0 to 2π, the effective gap inside the Josephson junctions
closes at φ = π (Fig. 6.2 (c)). In this process, a Josephson vortex [119]
passes through each junction, which must locally change the boundary
condition from periodic to anti-periodic along the two edges [37] inducing
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Figure 6.2: (a) Full braiding device: two injectors (as in Fig. 6.1) are used to
produce pairs of edge-vortices. The pair of edge-vortices at the back exchanges
parity with the bulk vortices upon overtaking a bulk vortex, which is detected
by an e/2 charge measurement at the exit. (b) Dispersion of Majorana edge
modes (magenta), calculated for an infinite strip of a topological superconductor
(N = 1). (c) Lowest energy levels in an infinite Josephson junction (described
in Sec. 6.2) as a function of the superconducting phase. At ϕ = π these modes
become degenerate and correspond to chiral Majorana edge states propagating
along the junction [118].
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Figure 6.3: Time snapshots of a dynamical simulation of the full device during
the injection and braiding protocol, (a) Bogoliubov quasiparticle density as
defined in equation (6.19) and (b) current density as defined in (6.11). In this
simulation vtinj = 1.5W ≪ L, so the edge-vortices injected at the back and front
junction are well separated creating two separate e/2 charge pulses upon fusion.
An animated version can be found at http://link.aps.org/supplemental/10.
1103/PhysRevB.108.235309.

a phase domain wall in the wave functions over some characteristic time
tinj. This local change of the boundary conditions can be described in
terms of an edge vortex field operator µ̂(x), a collective excitation with
non-Abelian statistics [37, 107]. The injected edge-vortices – one pair at
the back junction and another pair at the front junction – then propagate
along the edges with the Fermi velocity v. The injection time is given
by tinj = (2πξJ/W )(dφ(t)/dt)−1 where ξJ = ℏv/∆J [38] is the coherence
length of the junction. Here ∆J denotes the effective gap in the junction
[118] (calculated for an infinite junction as shown in Fig. 6.2 (c)). As long
as the characteristic injection time is slow compared to W/v, only the two
lowest energy states in the finite junction play a role in the dynamics (see
App. 6.C).

The edge-vortices of size vtinj then propagate along the edges. The pair
of edge-vortices injected at the back overtake a bulk vortex over a distance
L. This induces a relative sign flip between the edge vortices and effectively
results in a quasiparticle being transferred between the edge vortices and
the vortices in the bulk. This parity switch of the edge vortices and the
bulk vortices is denoted by Pedges → −Pedges and Pvortices → −Pvortices,
i.e. a flip of the qubit encoded in parity of the edge-vortices.
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The braiding event can be detected upon the fusion at the exit of the su-
perconductor via a charge measurement. The edge-vortices injected at the
front junction produce a charge e/2 independently, while the edge-vortices
injected at the back junction produce a charge ±e/2 depending on whether
they have braided with the bulk vortex. The resulting net charge at the
exit is e(Nvortex mod 2) with Nvortex the number of vortices in between
the two injectors. In Fig. 6.3, the local excitation density and local charge
during the braiding protocol are shown for an example simulation.

6.2.2. Hamiltonian

The device of Fig. 6.2 is simulated using a tight-binding model of a
QAH. In the central regions the QAH is proximitized with an s-wave
superconductor. The Hamiltonian is given by [116]:

Ĥ(t) = 1
2
∑

x

Ψ̂†(x)H(k,x, t)Ψ̂(x) (6.2)

where Ψ̂(x) = (ψ̂↑(x), ψ̂↓(x), ψ̂†
↓(x),−ψ̂†

↑(x))⊺ is the four component
Nambu spinor and H is the Bogoliubov-de-Gennes (BdG) Hamiltonian
matrix

H(k,x, t) =
(
He(k,x) − µ ∆0(x)eiϑ(x,t)

∆0(x)e−iϑ(x,t) µ− T He(k,x)T −1

)
(6.3)

with µ the chemical potential and T = iσyK the time-reversal operator
(σy is the second Pauli matrix in the spin degree of freedom and K denotes
complex conjugation). The electronic block is given by:

He(k,x) = ℏv
a

(σx sin(kxa) + σy sin(kya))

+ (m0(x) +M(k))σz
(6.4)

where M(k) = 2m1
a2 (2 − cos(kxa) − cos(kya)) and k = −i∇. The simu-

lated system is finite in the x-direction and anti-periodic in the y-direction
to ensure that there are no k = 0 modes in the edges initially [37, 118].

The different Chern numbers in the regions of Fig. 6.2 are achieved by
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different values of m0 and ∆0:

m0(x) = −0.5, ∆0(x) = 0 : x ∈ QAH
m0(x) = −0.5, ∆0(x) = 1 : x ∈ TSC
m0(x) = +∞, ∆0(x) = 0 : x ∈ Ins

(6.5)

in units of ℏv/a. The trivial insulating region (Ins) is realized by truncation
of the lattice. Furthermore we fix the width of the junction to w = 2a and
the length to W = 42a. This length ensures that the separation between
edges and vortices is much larger than their respective localization lengths.
The effective gap ∆J inside the junctions is estimated numerically from
the spectrum of an infinitely long junction (see Fig. 6.2), which yields
∆J ≈ 0.12∆0.

In the TSC, ϑ(x, t) = η(x) + φ(x, t) is the pair potential phase with η
describing the vortices by ∇ × ∇η =

∑
xvortex

2πδ(x − xvortex); ∇ · ∇η = 0,
and φ(x, t) describing the time-dependent bias, which is only nonzero in
the middle superconductor and given by:

φ(t) = 2π (θ(τ − t)t/τ + θ(t− τ)) , t ≥ 0 (6.6)

over a characteristic time τ . Here θ(t) denotes the Heaviside step function.
For this profile, the estimated injection time is simply tinj = τℏv/(∆JW ).

6.2.3. Computation of observables in the evolved
many-body state

Before the injection, the system is assumed to be in the stationary
ground state of Ĥ(0) denoted by |Ω⟩. Here, we consider the evaluation
of single-particle operators in the evolved many-body state Û(t) |Ω⟩ with
the time-evolution operator Û(t) = T exp

(
−(i/ℏ)

∫ t
0 Ĥ(t′)dt′

)
, T being

the time-ordering operator. Relative to the initial ground state, the net
change in the expectation value of a single-particle operator Â is denoted:

⟨Â(t)⟩ − ⟨Â(0)⟩ := ⟨Ω| Û†(t)ÂÛ(t) |Ω⟩ − ⟨Ω| Â |Ω⟩ . (6.7)

The effective description of the superconductor can be reduced to a non-
interacting model using the BdG formalism. In App. 6.A.1, we show how
we can transform this many-body problem into single-particle problems
which can be solved within the first quantization formalism. Eq. (6.7) can
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be written as:

⟨Â(t)⟩ − ⟨Â(0)⟩ = 1
2
∑
α∈S−

(
⟨α(t)|A |α(t)⟩ − ⟨α|A |α⟩

)
. (6.8)

Here A is the single-particle BdG operator associated with Â, |α⟩ := |α(0)⟩
denotes the α-th eigenstate of H(0) and |α(t)⟩ obeys

iℏ∂t |α(t)⟩ = H(t) |α(t)⟩ . (6.9)

The evolution of the state |α(t)⟩ is calculated numerically using the python
package Tkwant [97, 120–123]. This approach has numerical complications
as it requires to evolve all the N states in S− in order to achieve convergence
(see App. 6.A.2).

We resolve this issue by writing A in terms of the basis of eigenstates of
H(0):

⟨Â(t)⟩ − ⟨Â(0)⟩ = Re
∑
α∈S−

µ∈S+

∑
ν∈S

⟨α(t)|µ⟩ ⟨µ|A |ν⟩ ⟨ν|α(t)⟩ . (6.10)

Here the sets S+ and S− denote positive and negative energy state indices
respectively1 and S their union S+ ∪ S−. In contrast with Eq. (6.8) (see
App. 6.A.2), this form only gives non-zero contributions in a finite range
around E = 0. This allows us to approximate this expression by truncating
the sum and discarding all terms above some energy cut-off, i.e terms with
|Eα,µ,ν | > Emax.

6.3. Results
In this section we present the main results of our simulation. We show the

charge signature of the braiding protocol and calculate the corresponding
parity switch. We consider a system where W is smaller, but comparable
to the injection time vtinj ≈ 2W . While the theoretical description, relying

1Notice that particle-hole symmetry enforces that the eigenstates of the BdG Hamil-
tonian H come in pairs of opposite energies. The eigenspace of zero modes of H
must be even dimensional and there must exist a basis of particle-hole partners in it.
For each pair, we arbitrarily chose one state to be in S+ and put its partner in S−.
Thus, in general, S+ contains zero modes. Overall it contains half of the states (n
states) and if we act on them with the particle-hole symmetry operator, we obtain
S−.
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on the adiabatic limit, no longer holds for this system we show that the
main predictions remain unchanged.

6.3.1. Quantized charge measurement
We first consider the charge signature that can be measured at the exit

of the device, after the fusion of the edge vortices. For this we evaluate the
current density operator ȷ̂y(x) = (ev/a2)Ψ̂†(x)ν0σyΨ̂(x) in the y-direction
using Eq. (6.10). Here, ν0 is the identity acting on the particle-hole degree
of freedom. Defining the current as:

I(t) = a
∑

x|y=yexit

⟨ȷ̂y(x, t)⟩ − ⟨ȷ̂y(x, 0)⟩ (6.11)

the net charge creation is given by the time integral:

Q(t) =
∫ t

0
I(t′)dt′. (6.12)

With this, we can calculate the charge pumped during the braiding protocol
at the exit of the device (yexit). The spatial separation L between the two
Josephson junctions allows to distinguish between two characteristic charge
signatures. When L ≫ vtinj, the injection events at each junction are well
separated in space. In this case, the two pairs of edge-vortices produce
separate signals of ± e

2 charge at the exit. The charge contribution of the
second pair of edge vortices experiences a sign flip in the presence of bulk
vortices, as a consequence of braiding [107]. The theoretical predictions
from Refs. 38, 107 are compared with numerical results in the left panel
of Fig. 6.4. On the other hand when L ≲ vtinj, the injection events at
both junctions are close, so that the overlapping electrical signals add up,
producing a unit charge signature (Fig. 6.4 (b)).

The transferred charge is an indirect probe of the braiding event as it
is a result of the fusion between the edge vortices. It is therefore only
quantized if the path lengths of the two vortices between injection and
fusion are the same [107]. In contrast, the parity exchange is topologically
protected, it does not depend on microscopic details. We will check this
numerically.

6.3.2. Parity switch of edge-vortices
The phase rotation φ(t) : 0 → 2π in the superconductor changes the

parity locally carried by the two bulk vortices. Since parity must be
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Figure 6.4: (a) Simulated (pink) and theoretical (gray) current density at the
exit of the superconductor. A system without (with) vortices is represented
with dashed (solid) lines. The pulse width tinj ≈ τ/5.17 is indicated. (b)
Corresponding charge increase, for different values of the inter-junction separation
L, with values of L/vτ shown on top of the curves. All simulations have
τ = 500a/v and W = 42a.

globally conserved, then necessarily there must be an odd number of
excitations elsewhere in the system –namely carried by the edges [38].
This change of parity is a direct consequence of braiding between the bulk
and edge vortices. To characterize this process we first identify the parity
subsectors that correspond to the states in the bulk vortices and the edges.

The full parity operator can be written –up to the sign of the initial
ground state parity– in terms of the Bogoliubov operators as:

P̂ =
∏
α∈S+

(
1 − 2d†

αdα
)
. (6.13)

We provide a further explanation for this form in App. 6.B.1. In our device,
P̂ can be split in a product of two terms, the first one corresponding to the
bulk vortex excitation (i.e. the fermionic superposition of the two vortex
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Majorana zero-modes) and the second one containing all other excitations:

P̂ =
(
1 − 2d†

αv
dαv

)
·
∏
α∈S+

α̸=αv

(
1 − 2d†

αdα
)

:= P̂vortices · P̂ ′

(6.14)

where αv is the index of the fermionic state bound to the vortices. This
can be done if the vortex state is well isolated from the rest (i.e. there is
no hybridization between vortex and edge states). P̂ ′ can be evolved in
the Heisenberg picture and expressed in terms of the Bogoliubov operators
of the initial Hamiltonian {dβ}β∈S . As we show in App. 6.B.1, the time
evolution of each dα can be expanded as

Û†dαÛ =
∑
β∈S

χαβdβ with χ(t)αβ = ⟨α(0)|β(t)⟩ (6.15)

The time evolution of P̂ ′ can then be expressed as a sum of terms of
different orders in d operators

Û†P̂ ′Û =
(

1 − 2
∑
α∈S+

∑
µ,ν∈S

χ∗
αµχανd

†
µdν

+ 4
∑

α,β∈S+

Eβ>Eα

∑
µ,ν,σ,τ∈S

χ∗
αµχανχ

∗
βσχβτd

†
µdνd

†
σdτ + · · ·

)
.

(6.16)

Its expectation value in the ground state |Ω⟩ can then be calculated making
use of Wick’s theorem up to all orders. The final equation can be found in
App. 6.B.1 (Eq. (6.52)).

In our numerical calculation we neglect correlators of order higher than
four, and only include states within an energy window Emax. This energy
window is chosen to match the maximum excitation energy in order for
the parity calculation to converge (see App. 6.C).

Since edge and junction states are hybridized, P̂ ′ cannot be decomposed
similarly in edge and junction sectors. However, after the bias pump, the
expectation value ⟨P̂ ′⟩ can be identified with the parity carried by the
edges ⟨P̂edge⟩ as long as the filling of junction states – which only exist
for energies E ≥ ∆J – is negligible. The different intensities of red in
Fig. 6.5 show the value obtained for P̂ ′ as we increase Emax. We see that
convergence is achieved before we need to include any states with energies
around ∆J . This identification of ⟨P̂ ′⟩ ≈ ⟨P̂edge⟩ is further supported in
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Figure 6.5: Evolution of the parity operator expectation value in the initial
ground state without (a) and with vortices (b). In panel (b), the parity of the
vortices is separated from the edges, and a parity switch is observed. Convergence
of the curves as a function of Emax is shown in color.

Sec. 6.4 and App. 6.C.
Fig. 6.5, shows that the parity expectation of the edges is unchanged

when there are no vortices, but it switches in the presence of bulk vortices.
This demonstrates that, for this set of parametes, the braiding of edge-
vortices holds dynamically, and that the internal degrees of freedom in the
junction do not spoil the exchange of parity. This implies that neither the
adiabatic nor the point junction limits need to be satisfied for braiding to
be realised.

6.3.3. Topological protection of the edge vortices
The phase domain wall created during the quench corresponds to a

pair of edge vortices that propagate along the edges. As one of them
surrounds the bulk vortex it picks up a phase that realises the parity
switch [107]. Since a π domain wall cannot be unwound, this mechanism is
protected from all local sources of disorder. In this part, we verify that the
dynamically injected vortices are topologically protected by introducing
irregularities in the spatial profile of ∆0(x). We show how an additional
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Figure 6.6: (Top) Net charge increase at the exit of the superconductors without
(a) and with (b) vortices, with four geometrically induced path length differences
between the edges δx for τ = 500a/v. (Bottom) Parity of the edge sector for
the same data sets. The calculated parity is independent of δx. In this case the
data sets overlap making the different curves indistinguishable.

path-length δx in the upper edge (see the top panel of Fig. 6.6) influences
the charge signature, fully spoiling the quantization discussed in Sec. 6.3.1
in agreement with the predictions in Ref. 107. In contrast, our calculation
of parity (see the bottom panel of Fig. 6.6) remains unaffected by the
local changes in the system, demonstrating the topological protection of
the edge-vortex excitations. This confirms that even for a finite junction,
edge-vortices can be used to encode protected quantum information.

6.4. Long junction dynamics

Our results so far have considered the particular case vtinj ∼ 2W where
the injection process is not spoiled by the excitation of junction modes. In
this section, we consider the more general case where the ratio vtinj/W is
varied. In particular, we investigate how trapped excitations can influence
the creation of edge-vortices for sufficiently long-junctions.
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6.4.1. Quasi-particle excitation spectrum
To understand the behaviour in the junction we first study the quasi-

particle excitation spectrum E(φ). Within the superconducting gap, this
spectrum consists of states localized in the bulk vortices, junction and
edges. The injection process is characterized by the gap closing at φ = π
with the dispersion EJ = ±∆J cosφ/2 seen before in Fig. 6.2. In our case,
the junction states couple with the edge states, forming hybridized bands
seen in Fig. 6.7 (gray lines). We calculate the occupation number of these
energy levels:

N̂(φ) =
∑

Eµ(φ)∈S+

d†
µ(φ)dµ(φ) (6.17)

where each term d†
µ(φ)dµ(φ) counts the quasi-particle occupation within a

single energy level µ. The expectation value in the evolved state Û(t) |Ω⟩
is then given by:

⟨N̂(φ, t)⟩ = Re
∑
α∈S−

µ∈S+

∑
ν∈S

⟨α(t)|µφ⟩ ⟨µφ|N |νφ⟩ ⟨νφ|α(t)⟩ (6.18)

where |µφ⟩ denotes an eigenstate of H(φ) and N = 1.
The occupation of each level through-out the quench is shown by thick

lines in Fig. 6.7, where the color is used to distinguish between edge (red)
and junction (blue) states.2 The slow injection case (a) treated in Sec. 6.3
shows that the junction states are only occupied near values of φ = π and
fully emptied in the edges at the end of the injection. In panel (b), the
injection is short enough to create excitations in the levels E > ∆J. Note
that, in this case, the approximation ⟨P̂ ′⟩ made in Sec. 6.3.2 fails because
of nonzero occupation in the junction. This means that the parity switch
is no longer fully carried by the edge modes, which we attribute to trapped
excitations in the Josephson junction.

6.4.2. Trapped excitations
In the presence of a finite Josephson junction the coupling between the

two edges is mediated by their hybridization with the chiral states in the
Josephson junction. This hybridization is only supported for a duration
tinj around φ = π, when the junction is effectively gapless. We have shown
that when vtinj ∼ 2W the travel time W/v is short enough to allow the

2The color at a value φ and band µ is proportional to the value
∑

x∈junctions |⟨µφ|x⟩|2.
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Figure 6.7: Quasi-particle occupation of the energy levels (thick colored lines;
a thick line signifies a strong occupation) above the ground state level (E = 0),
superimposed on the time-independent energy spectrum of H(φ) (thin gray
lines). The color of the lines distinguishes between junction (blue) and edge
(red) states. At fast injection (b), the quasiparticle occupation in the junction
levels Eµ ≥ ∆J at final time is high. We have removed the vortex state from
this figure.

excitations to escape the junctions before the gap re-opens. Here we show
that in the alternative regime vtinj < W , the excitation is partially trapped
in the gapped bound state of the junction.

In order to describe the quasi-particles inside the junction, we define
an excitation density via a spatial projection of the quasi-particle number
N(x) = P(x)NP(x). This is done similarly to our description of charge
(i.e. ⟨x′|N(x) |x′′⟩ = σ0ν0δx′,x′′δx,x′) arriving to the expression:

⟨ρ̂φ(x, t)⟩ = Re
∑
µ∈S+

α∈S−

∑
ν∈S

⟨α(t)|µφ⟩ ⟨µφ|N(x) |νφ⟩ ⟨νφ|α(t)⟩ . (6.19)

Note that when integrated over the whole system, the Eq. (6.18) is recov-
ered. Integrating this density locally gives the number of quasi-particle
inside junctions ⟨N̂junc(t)⟩ and edges ⟨N̂edges(t)⟩.

In Fig. 6.8, we show how the quasi-particle changes with time for two
different systems. When the injection is slow (a) the quasi-particle number
in the junction is fully transferred to the edges as anticipated. In the
alternate case when the injection is very fast (b), the particle number slowly
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Figure 6.8: Bogoliubov quasi-particle number inside the junction (red) and
inside the edges (blue) as a function of time. Panel (a) shows that the junction
excitation fully escapes into the edges, while in (b), at short injection time,
the junction contains residual quasi-particles. The bottom panels show the
corresponding quasi-particle densities at two different times times. The inte-
gration window used to calculate the quasi-particle number inside the junction
is marked with a blue rectangle. An animated visualisation can be found in
http://link.aps.org/supplemental/10.1103/PhysRevB.108.235309.
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6.5 Conclusion

decays towards a constant residual value in the junctions corresponding to
quasi-particles occupying the lowest bound state in the Josephson junctions.
As this trapped excitation can carry a part of the parity exchange it can
spoil the injection protocol as well as the characteristic charge signature
(shown in App. 6.C). For this reason, it is important to find a bound for
tinj above which the trapped excitations in the junction can be neglected.

6.4.3. Particle number in the junction
In the adiabatic theory Ref. 38, the total particle number produced

in the edges at final time is equal to 1.037. The non-quantized number
is due to particle-hole pairs production during the injection process. At
slow injection, we find a comparable value ⟨N̂junc⟩ + ⟨N̂edge⟩ = 1.049 as
indicated in Fig. 6.8 (a), close to the adiabatic theory. For the fast injection
in Fig. 6.8, this is ⟨N̂junc⟩ + ⟨N̂edge⟩ = 2.033 instead.

We therefore turn to a quantitative description of the residual particle
number in the junction ⟨N̂junc⟩ for different values of vtinj/W . We achieve
this by simulating different values of τ in Fig. 6.9. In Fig. 6.9 (a), the
particle number is shown as a function of time for different values of
vtinj/W , where we distinguish between the two regimes vtinj > W and
vtinj < W by two colors. In panel (b), we show that the residual excitation
number in the junction decreases fast as the injection time becomes long.
We match this with an exponential shown in Fig. 6.9. After vtinj > 2W , this
value has nearly decayed to zero. In an experimental setting, this provides
us with an upper bound on the flux bias change rate |dΦ/dt| < Φ0v/2W 2∆J
when the parity exchange is fully carried by the edges corresponding,
ensuring a successful injection of edge vortices.

6.5. Conclusion
In this work we have shown how a braiding protocol introduced in Ref. 38

can be dynamically simulated as a tight-binding many-body system. With
this setup we were able to fully probe the braiding process away from
the limitations of the effective model. This allowed us to investigate the
relevant scales in the system as well as compare the current signature with
analytical predictions. We were able to study dynamically the local parity
switch present in the edge states and show the topological protection of this
exchange. We have shown that the injection and braiding of edge-vortices
is uncompromised by a finite junction when vtinj > 2W , so that all the
parity exchange is contained in the edge states. Additionally we studied

109



6 Dynamical simulation of the injection of vortices into a Majorana edge
mode

0.0 0.5 1.0

t [tf ]

0.0

0.5

1.0

〈N̂
ju

n
c(
t)
〉

vtinj = 1.6W

vtinj = 0.4W

0 1 2

vtinj/W

0.0

0.1

0.2

0.3

0.4

0.5

〈N̂
ju

n
c(
t f

)〉

vtinj = W

(a) (b)

Figure 6.9: (a) Quasi-particle number inside the junction as a function of time,
for two values of the injection time. (b) Residual quasi-particle number in the
junction at some final time tf = 500a/v as a function of the ratio vtinj/W .
An exponential fit yields ⟨N̂junc(tf)⟩ = N0 · exp(vtinj/Wβ) with β = 0.31 and
N0 = 0.5.

this system away from this limit and investigated the excitations in the
junction. Here, we showed that the lowest bound state of the junction
remains excited long after the quench for sufficiently fast injections. While
the parity switch ⟨P̂ ′⟩ is still protected in this limit, we can no longer
conclude that it is fully carried in the edge states, therefore providing
a limitation for the use of such device as a topological qubit. For this
reason we show the interplay of scales vtinj and W to find a parameter
regime, where the injection of edge vortices is well defined. We see that
the adiabatic condition vtinj ≫ W discussed in previous works can be
relaxed to vtinj ≳W , while keeping the braiding predictions intact. This
is helpful for future experimental work as it allows large deviations from
the point junction limit.
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6.A Time-evolution of single-body operators in BdG

6.A. Time-evolution of single-body
operators in BdG

6.A.1. From second to first quantization

In a tight-binding system, any single-body operator Â can be written as

Â =
n∑

α,β=1
Aeαβψ̂

†
αψ̂β , Aeαβ = ⟨0| ψ̂αÂψ̂†

β |0⟩ , (6.20)

where |0⟩ denotes the vacuum of electrons, which can be rewritten into
the BdG form as

Â = 1
2Ψ̂†AΨ̂ + 1

2 TrAe (6.21)

with

A =
(
Ae 0
0 −σyAe∗σy

)
Ψ̂ :=

(
ψ̂1↑ ψ̂1↓ · · · ψ̂N/2↑ ψ̂N/2↓

ψ̂†
1↓ −ψ̂†

1↑ · · · ψ̂†
N/2↓ −ψ̂†

N/2↑

)T (6.22)

We can evolve this operator in the Heisenberg picture to obtain

Û†ÂÛ = 1
2Ψ̂(t)†AΨ̂(t) + 1

2 TrAe (6.23)

where we defined ψ̂α(t) = Û†ψ̂αÛ . Since we intend to evaluate this
operator in the ground state |Ω⟩ of the initial Hamiltonian, we need to
write it in terms of the Bogoliubov operators {dβ}ν∈S of Ĥ(0). It is
possible to prove (see App. 6.A.3) that the {ψ̂α(t)}ν∈S operators can be
written as linear combinations of these Bogoliubov operators as

ψ̂α(t) =
∑
β∈S

Φαβ(t)dβ i.e. Ψ̂(t) = Φ(t)d (6.24)

where Φ(0) is the matrix that diagonalises the BdG Hamiltonian at t = 0,
(i.e. H(0) = Φ(0)EΦ†(0)) and Φ(t) is the solution of

iℏ∂tΦ(t) = H(t)Φ(t). (6.25)
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Notice that this means that the columns of Φ are none other than the
eigenstates of H(0) evolved according to the Schrödinger equation for H(t).
With this, we can express

Û†ÂÛ = 1
2d†Φ†AΦd + 1

2 TrAe (6.26)

Finally, using the fact that by definition ⟨Ω| d†
αdβ |Ω⟩ = δαβ if Eα < 0 and

⟨Ω| d†
αdβ |Ω⟩ = 0 otherwise, we obtain

⟨Â(t)⟩ − ⟨Â(0)⟩ = 1
2
∑
α∈S−

(
Φ†(t)AΦ(t) − Φ†(0)AΦ(0)

)
αα
, (6.27)

which in Dirac notation becomes

⟨Â(t)⟩ − ⟨Â(0)⟩ = 1
2
∑
α∈S−

(
⟨α(t)|A |α(t)⟩ − ⟨α(0)|A |α(0)⟩

)
. (6.28)

With this, we have mapped our original problem of evolving many-body
states in a Hilbert space of dimension 2n into n first quantization problems
in a Hilbert space of dimension 2n.

6.A.2. Convergence

The fact that Eq. (6.28) involves all n negative energy eigenstates of H
poses two problems. First, we only aim at describing the system accurately
at low energies. Any realistic system will not share the specific high-energy
behaviour of our tight-binding description far from the Fermi energy.
Secondly, we should be able to understand our system by considering only
states close to the Fermi energy, so evolving all of them is a waste of
computational resources. Unfortunately we have no reason to belive that
the contribution of both terms in Eq. (6.28) will cancel out as we go away
from the Fermi energy. This was actually studied numerically and it was
verified that the value of ⟨ȷ̂y(x, t)⟩ − ⟨ȷ̂y(x, 0)⟩ as given by Eq. (6.28) does
not converge –instead it oscillates– as we increase the amount of states
evolved (see Fig. 6.10). This section is devoted to rewrite this equation in
a form that solves this issue. To do so, let us explicitly make use of basis
of the eigenstates of H(0) and introduce the completeness relation around
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A in the first term of Eq. (6.28) to obtain

1
2
∑
α∈S−

⟨α(t)|A |α(t)⟩ =

1
2
∑
α∈S−

∑
µ,ν∈S

⟨α(t)|µ⟩ ⟨µ|A |ν⟩ ⟨ν|α(t)⟩ =

1
2
∑
α∈S−

∑
µ,ν∈S−

(
⟨α(t)|µ⟩ ⟨µ|A |ν⟩ ⟨ν|α(t)⟩

+ ⟨α(t)|Cµ⟩ ⟨Cµ|A |ν⟩ ⟨ν|α(t)⟩

+ ⟨α(t)|µ⟩ ⟨µ|A |Cν⟩ ⟨Cν|α(t)⟩

+ ⟨α(t)|Cµ⟩ ⟨Cµ|A |Cν⟩ ⟨Cν|α(t)⟩
)
.

(6.29)

where C = σyνyK is the BdG charge conjugation operator and Cµ denotes
the particle-hole partner of the state labeled µ. Since Â is a single-particle
operator, it satisfies CAC = −A. Given that {|α(t)⟩ : α ∈ (S− ∪ S+)} is a
complete basis of the BdG Hilbert space, we can write the first term of
Eq. (6.29) as

1
2
∑
α∈S−

∑
µ,ν∈S−

⟨α(t)|µ⟩ ⟨µ|A |ν⟩ ⟨ν|α(t)⟩ =

1
2
∑
µ∈S−

⟨µ|A |µ⟩

−1
2
∑
α∈S+

∑
µ,ν∈S−

⟨Cα(t)|µ⟩ ⟨µ|A |ν⟩ ⟨ν|Cα(t)⟩

(6.30)

If we plug this in Eq. (6.29) and then in Eq. (6.28), a few simplifications
happen. The first term of this equation will cancel with the second term of
Eq. (6.28), and the second term of Eq. (6.30) is real and equal to the last
term of Eq. (6.29) (this follows from the properties of C). In addition, the
second and third terms of Eq. (6.29) are each other’s complex conjugate.
Taking all of this into account we can write down Eq. (6.28) as

⟨Â(t)⟩ − ⟨Â(0)⟩ =

Re
∑
α∈S−

∑
µ,ν∈S+

(
⟨α(t)|µ⟩ ⟨µ|A |ν⟩ ⟨ν|α(t)⟩

+ ⟨α(t)|µ⟩ ⟨µ|A |Cν⟩ ⟨Cν|α(t)⟩
) (6.31)
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Figure 6.10: Convergence of the charge at the exit with two methods. Left:
with charge expressed in the local basis using Eq. (6.27) where Emax is the
maximum energy of the states in the sum over α. Right: With charge expressed
in the basis of eigenstates of H(0) using Eq. (6.32) where Emax is the maximum
energy of the states in the sums over α, µ and ν.

which we write more simply in the main text as

⟨Â(t)⟩ − ⟨Â(0)⟩ = Re
∑
α∈S−

µ∈S+

∑
ν∈S

⟨α(t)|µ⟩ ⟨µ|A |ν⟩ ⟨ν|α(t)⟩ (6.32)

This formula includes overlaps between positive energy and evolved neg-
ative energy states which ensures non-zero contributions to only exist
around E = 0. In Fig. 6.10 we show how the contribution of the terms in
the sum vanishes as we go further away from the Fermi energy, which lets
us avoid having to evolve all negative energy states.
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6.A.3. Proof of time evolution method
In this section we prove the following statement:

Proposition. Let Ψ̂ be the Nambu spinor of fermion creation and anni-
hilation operators as defined in Eq. (6.22) satisfying {ψ̂α, ψ̂†

β} = δα,β and
{ψ̂α, ψ̂β} = δα,Cβ where Cα is the index of (ψ̂α)† in Ψ̂ (i.e. ψ̂Cα = ψ̂†

α).
Let

Ĥ(t) = 1
2Ψ̂†H(t)Ψ̂

be the time-dependent BdG Hamiltonian describing a tight-binding super-
conducting system of fermions. Let Û(t) be its corresponding evolution
operator. Let C be the antiunitary charge conjugation operator satisfying
C2 = 1 and {C, H} = 0. Let V (t) be a matrix that diagonalises H(t) and
let d = (d1, d2, · · · , d2n) be the spinor of Bogoliubov operators diagonalising
Ĥ(0).

Then, the time evolution of Ψ̂ can we written as

Ψ̂(t) := Û(t)†Ψ̂Û(t) = Φ(t)d (6.33)

where Φ obeys

iℏ∂tΦ(t) = H(t)Φ(t), Φ(0) = V (0) (6.34)

Proof. According to Heisenberg’s picture evolution equation we have

i∂tψ̂α(t) =
[
ψ̂α(t), Û(t)†Ĥ(t)Û(t)

]
. (6.35)

Since Ĥ is quadratic in Ψ̂, we know that ψ̂α(t) can be expanded in terms
of the initial ψ̂’s as

ψ̂α(t) =
∑
β

ζαβ(t)ψ̂β , (6.36)

or in matrix notation
Ψ̂(t) = ζ(t)Ψ̂. (6.37)

Notice that the unitarity of Û imposes that the operators in Ψ̂(t) satisfy
the same commutation algebra as the initial ones. In turn, this imposes
unitarity on ζ. We can use Eq. (6.36) to write the commutator in Eq. (6.35)
as [

ψ̂κ(t), Û(t)†Ĥ(t)Û(t)
]

= 1
2
∑
αβµνλ

Hαβζ
∗
αµζβνζκλ[ψ̂λ, ψ̂†

µψ̂ν ] (6.38)
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It is easy to check that

[ψ̂λ, ψ̂†
µψ̂ν ] = ψ̂νδλ,µ − ψ̂†

µδλ,Cν , (6.39)

so we get [
ψ̂κ(t), Û(t)†Ĥ(t)Û(t)

]
= 1

2
∑
αβµν

Hαβζ
∗
αµζβνζκµψ̂ν

− 1
2
∑
αβµν

Hαβζ
∗
αµζβνζκCνψ̂

†
µ.

(6.40)

Using ψ̂†
µ = ψ̂Cµ and relabeling in the last term we can rewrite[
ψ̂κ(t), Û(t)†Ĥ(t)Û(t)

]
=

1
2
∑
αβµν

Hαβζ
∗
αµζβνζκµψ̂ν − 1

2
∑
αβµν

Hαβζ
∗
αµζβνζκ,Cνψ̂Cµ =

1
2
∑
αβµν

Hαβζ
∗
αµζβνζκµψ̂ν − 1

2
∑
αβµν

Hαβζ
∗
α,Cνζβ,Cµζκµψ̂ν .

(6.41)

Comparing with the left-hand side of Eq. (6.35) we can deduce that

i∂tζκν = 1
2
∑
αβµ

Hαβζ
∗
αµζβνζκµ − 1

2
∑
αβµ

Hαβζ
∗
α,Cνζβ,Cµζκµ (6.42)

From ψ̂†
α(t) = ψCα(t), we have ζαβ = ζ∗

Cα,Cβ so the previous equation
becomes

i∂tζκν = 1
2
∑
αβµ

Hαβζ
∗
αµζβνζκµ − 1

2
∑
αβµ

HαβζCα,νζ
∗
Cβ,µζκµ (6.43)

The particle-hole symmetry of H (CHC = −H) can be expressed element-
wise as HCα,Cβ = −Hβ,α. After some relabeling on the last term, this lets
us rewrite the previous equation as

i∂tζκν =
∑
αβµ

Hαβζ
∗
αµζβνζκµ (6.44)

The unitarity of ζ implies
∑
µ ζ

∗
αµζκµ = δακ so the previous expression
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becomes
i∂tζαβ =

∑
µ

Hαµζµβ (6.45)

or in matrix notation

i∂tζ = Hζ, ζ(0) = 1 (6.46)

Now notice that we can compose Eq. (6.36) with Ψ̂ = V (0)d and define
Φ(t) = ζ(t)V (0) that satisfies Eq. (6.33). Since V (0) is time-independent,
Eq. (6.34) follows immediately from Eq. (6.46).

6.B. Parity

6.B.1. Time evolution of the parity operator

The parity operator is defined as:

P̂ = (−1)
∑n

α=1
ψ̂†

αψ̂α =
n∏
α=1

(
1 − 2ψ̂†

αψ̂α

)
. (6.47)

Since it commutes with Ĥ, its ground state is an eigenstate of parity. This,
together with the fact that the BdG operators switch the parity of a state,
implies that we can also write down our parity operator in terms of them:

P̂ = pΩ

n∏
α∈S+

(
1 − 2d†

αdα
)

(6.48)

where pΩ = ±1 stands for the parity of the ground state. In general, we
can express the parity of a set of quasi-particle states S as

P̂S =
∏
α∈S

(
1 − 2d†

αdα
)

(6.49)

The time evolution of this operator is given by substituting each dα for
dα(t) = Û†dαÛ . From the results of App. 6.A.1, it is straightforward to
obtain the expression of dα(t) in terms of {dα}α∈S :

Û†dÛ = Û†V (0)†Ψ̂Û = V (0)†Ψ̂(t) = V (0)†Φ(t)d (6.50)
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Thus, if we define χ(t) = V (0)†Ψ̂(t) we have

Û†dαÛ =
∑
β∈S

χ(t)αβdβ χ(t)αβ = ⟨α|β(t)⟩ (6.51)

We can expand the product in Eq. (6.49) and use Wick’s theorem to
obtain an expression for the time evolution of ⟨P̂S⟩

⟨P̂S(t)⟩ =
nS∑
m=0

(−2)m
∑

0<α1
<...<αm

∑
c∈Cm

(−1)s(c)
m∏
k=1

ΘXk(c)Yk(c)
αik(c)αjk(c)

. (6.52)

This formula contains several elements. First, we have a sum over all
orders 0 < m < nS (the term corresponding to m = 0 is equal to 1). For
each order m we sum over all unordered choices of m states among nS .
For every such choice, we sum over all possible Wick contractions of that
order (Cm denotes the set of all Wick contractions of order m). For some
order m, each contraction (c denotes a specific contraction) in this sum
results in a specific product of m numbers of the form ΘXY

αβ defined as

Θ00
αβ =

∑
µ∈S−

χ∗
α,µχβ,µ

Θ01
αβ =

∑
µ∈S−

χ∗
α,µχ

∗
β,Cµ

Θ10
αβ =

∑
µ∈S−

χα,Cµχβ,µ = Θ01∗
βα

Θ11
αβ =

∑
µ∈S−

χα,Cµχ
∗
β,Cµ = δαβ − Θ00∗

αβ

(6.53)

Each contraction c of order m corresponds to a permutation of the numbers
{1, 2, · · · , 2m} under the following restriction: when the elements of the
permutation are split in pairs {(ak(c), bk(c))}mk=1 they must satisfy ak(c) <
bk(c) ∈ {1, . . . , 2m} and a1(c) < a2(c) < · · · < am(c). Each pair yields
ik(c) = ⌊(ak(c)+1)/2⌋, jk(c) = ⌊(bk(c)+1)/2⌋, Xk(c) = (ak(c)+1) mod 2
and Yk(c) = bk(c) mod 2. The overall sign s(c) is the sign of the permuta-
tion. It is possible to write a script that procedurally generates all valid
permutations and calculates the indices Xk(c), Yk(c), αik(c) and αjk(c)
corresponding to every contraction c.
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6.B.2. Convergence of parity
The amount of terms in equation Eq. (6.52) is

1 +
nS∑
m=1

(
nS
m

)
(2m− 1)!!. (6.54)

This number is out of reach in practice, so we are forced to truncate the
sums. It was checked that restricting ourselves to order mmax = 4 is
sufficient to get an accurate result. In addition, the operator ⟨P ′⟩ defined
in 6.14 in principle contains nS = n − 1 Bogoliubov operators, but in
practice we must truncate the product to a maximum number of states
nmax, or equivalently, a cut-off energy Emax. In Sec. 6.3.2, we have argued
that it is necessary to keep Emax < ∆J so that ⟨P̂ ′⟩ represents the parity
of the edges. This is true for the case where vtinj/W = 2.3 studied in
Sec. 6.3. We show this explicitly in Fig. 6.11, where convergence is reached
approximately at 0.85∆J, ensuring that no junction states participate in
the calculation of the parity. We also show a few other cases with smaller
values of vtinj/W . For these values, convergence of parity requires includ-
ing up to 35 states with energies above ∆J. In this case the calculation
includes the hybridized edge and bound states of the junction, which does
not allow us to isolate the edge parity sector from the junction.

6.C. Supplemental results
In this section, we present the results of our simulation for variable

quenching times, supplementing the results in the main text.

6.C.1. Local representation of observables
The calculations of current and quasi-particle number made in the main

text have been integrated over specific areas. Here we show a few snapshots
of the local current density and the local excitation density for two values
of vtinj/W (left and right panels of Fig. 6.12). We show three different
times in which the injection and fusion can be observed.

In the left panels, for long injections, the excitation entirely leaves
the junction. In the right panel (which corresponds with Fig. 6.8), the
excitation density slowly decays from the junction, at times even after
t > τ = 50a/v when the quench is over.
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Figure 6.11: Convergence of the parity sector P̂ ′ at final time tf as a function of
the index nmax which counts the number of eigenstates included in the calculation.
This is done for different values of vtinj/W which are displayed on the curves.
For energies above Emax = ∆J, the hybridized edge-junction states are necessary
in the convergence of the operator.

The current density is zero in the superconducting region as the Majorana
fermions are chargeless. Only upon fusion, the excitations produce charge.
Here, the charge production at short injection times is much smaller, which
is shown quantitatively in the next part. It is worth noting that while the
excitations can remain trapped in the junction, they do not carry charge.

6.C.2. Current density in the long junction regime
For completeness, we include the calculations of charge at the exit for the

different quenching times. In Fig. 6.13 we show the excitation spectrum,
quasi-particle number, current and charge for different values of vtinj/W
discussed in Sec. 6.4. We can see how the the occupancy of the junction
increases when the injection time becomes shorter.

As the contribution of the excitations in the junction became sufficient
the predictions for quantized charge are no longer valid. This can be seen
in the bottom part of Fig. 6.13 charge is no longer quantized. In the cases
vtinj/W = 0.1, 0.2, not only the lowest mode but also the next higher
mode of the junction is populated by excitations. Additionally as shown
in Fig. 6.12, a fast injection causes a large path-length difference as the
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〈ĵ
y
(x
,0

)〉

0 100 200 300 400 500

y [a]
0 100 200 300 400 500

y [a]

0

1

2

×
10
−

3

−2

0

2

[e
v
/a

2
]
×

10
−

3

Figure 6.12: Three snapshots of the braiding protocol for two values of vtinj/W
(left column and right column). the top panel shows the snapshots in terms of
the local excitation density, and the bottom panel shows them in terms of the
local current density.

junction traps the excitations and leaks them into the top and bottom
edges at different rates. This results in further interference effects upon
fusion.
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Samenvatting

Paul Dirac bedacht de vergelijking die de beweging van een relativis-
tisch deeltje in vacuüm beschrijft. Bij lage energieën vereenvoudigt de
Diracvergelijking tot de Schrödingervergelijking omdat de relativistische
effecten wegvallen. Aangezien de fysica van de gecondenseerde materie de
elektronen bestudeert bij zeer lage energieën, is de Schrödingervergelijking
meestal toereikend. Er is echter een geval waarin deze vereenvoudiging niet
opgaat. Als het deeltje massaloos is, verschilt de Diracvergelijking kwalita-
tief van de Schrödingervergelijking, hoe laag de energie ook is. Met andere
woorden, de massaloze Diracvergelijking is nog steeds zinvol, terwijl er
niet zoiets bestaat als de “massaloze Schrödingervergelijking”. In sommige
systemen, zoals het oppervlak van een drie-dimensionale topologische isola-
tor, zijn de elektronen effectief massaloos en moeten we noodzakelijkerwijs
de massaloze Diracvergelijking gebruiken om ze te beschrijven.

Een handige manier om deze vergelijkingen numeriek op te lossen is
door ze te discretiseren. Hiermee bedoelen we dat we een rooster over
de ruimte — en mogelijk ook de tijd — leggen en het deeltje alleen op
de punten van dit rooster laten bestaan. Als we dit doen, worden de
differentiaaloperatoren verschiloperatoren en dit stelt ons in staat om
onze differentiaalvergelijking om te zetten in een algebraïsche vergelijking
die gemakkelijk door een computer kan worden opgelost. Als men dit
zorgvuldig doet, benadert de oplossing van de discrete versie de continue
mits het rooster fijn genoeg is.

In tegenstelling tot de Schrödingervergelijking kan de Diracvergelij-
king niet eenvoudigweg gediscretiseerd worden. De stelling van Nielsen-
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Samenvatting

Ninomiya zegt dat er bij een naïeve discretizatie extra niet-fysische massa-
loze fermionen verschijnen, die aanleiding geven tot een aantal ongewenste
artefacten. Dit staat bekend als fermionverdubbeling, en het centrale doel
van dit proefschrift is om dit probleem aan te pakken via de discretisatie-
methode van tangens-fermionen.

De hoofdstukken 2, 3 en 4 zijn gewijd aan de ontwikkeling van verschil-
lende aspecten van deze methode. In hoofdstuk 2 introduceren we een
manier om de Diracvergelijking op te lossen voor massaloze fermionen
in een ruimte-tijd rooster. We laten zien dat deze methode bijzonder is
omdat het fermionverdubbeling vermijdt en de topologische bescherming
van de Dirac-kegel behoudt.

In hoofdstuk 3 wordt deze aanpak gebruikt om de dynamica te simuleren
van een massaloos elektron dat naar een potentiële barrière beweegt.
De theorie voorspelt dat massaloze deeltjes niet tegengehouden kunnen
worden door de barrière, dit fenomeen staat bekend als Klein-tunnelen. In
tegenstelling tot andere methodes kan onze methode het effect met grote
nauwkeurigheid reproduceren.

In hoofdstuk 4 breiden we de tangens-fermionen methode uit om rekening
te houden met het effect van magnetische velden op massaloze fermionen.
We laten zien hoe onze benadering de verbreding van het nulde Landau-
niveau in aanwezigheid van magnetische wanorde voorkomt, een artefact
dat anders ontstaat door fermionverdubbeling.

De hoofdstukken 5 en 6 zijn niet direct gerelateerd aan de methode van
tangens-fermionen, maar beschrijven wel processen die optreden in mate-
rialen met een Dirac-achtige dispersierelatie. In hoofdstuk 5 bestuderen
we het effect van een niet-nul netto superstroom parallel aan de randen
van een topologische supergeleider. We vinden dat de superstroom een
“chiraliteitsinversie” kan induceren van de Majorana-randmodes die in dit
systeem bestaan.

In het laatste hoofdstuk simuleren we numeriek de injectie van “rand-
wervelingen” in de randen van een topologische supergeleider. Dit zijn
een soort quasideeltjes die theoretisch gebruikt kunnen worden om een
fouttolerante quantumcomputer te realiseren.
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Summary

Paul Dirac came up with the equation that describes the motion of
a relativistic particle in vacuum. At low energies, the Dirac equation
simplifies to the Schrödinger equation because the relativistic effects fade
away. Since condensed matter physics studies electrons at very low energies,
the Schrödinger equation is adequate for it most of the time. However,
there is a case in which this simplification breaks down. If the particle is
massless, the Dirac equation is qualitatively different from the Schrödinger
equation no matter how low the energy is. In other words, the massless
Dirac equation is still meaningful, while there is no such thing as the
“massless Schrödinger equation”. In some condensed matter systems, such
as the surface of a 3D topological insulator, the electrons are effectively
massless and we must necessarily use the massless Dirac equation to
describe them.

A very convenient way to numerically solve these equations is to discretise
them. By this we mean to lay a lattice over space — and possibly also
time — and only allow the particle to exist on the points of this lattice.
When we do this, differential operators become finite difference ones and
this allows us to transform our differential equation into an algebraic one
that can be readily solved by a computer. If one does this carefully, the
solution of the discrete version approximates the continuous one if the
lattice is fine enough.

Unlike the Schrödinger equation, the Dirac equation cannot be trivially
discretised. The Nielsen-Ninomiya theorem proves that if we try to do it
naively, extra unphysical massless fermion species appear, giving rise to a
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number of undesired artefacts. This is known as fermion doubling, and
the main focus of this thesis is to tackle this problem via the discretisation
method of tangent fermions.

Chapters 2, 3 and 4 are devoted to developing various aspects of this
method. In chapter 2, we introduce a way to use it to solve the Dirac
equation for massless fermions in a space-time lattice. We show that this
method is unique in that it avoids fermion doubling and preserves the
topological protection of the Dirac cone.

In chapter 3, this approach is used to simulate the dynamics of a massless
electron that moves towards a potential barrier. Theory predicts that
massless particles cannot be stopped by the barrier, this phenomenon is
known as Klein tunneling. We contrast our method with others and show
that it reproduces the effect with excellent accuracy.

In chapter 4, we extend the tangent fermions method to account for the
effect of magnetic fields on massless fermions. We show how our approach
prevents the broadening of the zeroth Landau level in presence of magnetic
disorder, an artefact that otherwise arises due to fermion doubling.

Chapters 5 and 6 are not directly related to the method of tangent
fermions but still describe processes that arise in materials with a Dirac-
like dispersion relation. In chapter 5, we study the effect a non-zero net
supercurrent parallel to the edges of a topological superconductor. We find
that the supercurrent can induce a “chirality inversion” of the Majorana
edge modes that exist in this system.

In the last chapter, we numerically simulate the injection of “edge-
vortices” into the edges of a topological superconductor. These are a type
of quasiparticles that can theoretically be used to realise a fault tolerant
quantum computer.
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Paul Dirac ideó la ecuación que describe el movimiento de una partícula
relativista en el vacío. A bajas energías, la ecuación de Dirac se simplifica
en la ecuación de Schrödinger porque los efectos relativistas se desvanecen.
Dado que la física de la materia condensada estudia electrones a muy bajas
energías, la ecuación de Schrödinger es adecuada en la mayoría de las
ocasiones. Sin embargo, hay un caso en el que esta simplificación falla. Si la
partícula no tiene masa, la ecuación de Dirac es cualitativamente diferente
de la ecuación de Schrödinger independientemente de lo baja que sea la
energía. En otras palabras, la ecuación de Dirac sin masa sigue teniendo
sentido, pero no existe tal cosa como la “ecuación de Schrödinger sin masa”.
En algunos sistemas de materia condensada, los electrones carecen de masa
efectiva y debemos usar necesariamente la ecuación de Dirac sin masa para
describirlos.

Una manera muy conveniente de resolver estas ecuaciones es discre-
tizarlas. Con esto queremos decir colocar una red sobre el espacio — y
posiblemente el tiempo — y solamente permitir a la partícula existir en
los puntos de dicha red. Cuando hacemos esto, los operadores diferenciales
pasan a ser operadores de diferencias finitas y esto permite transformar
nuestra ecuación diferencial en una algebraica que puede ser prontamente
resuelta por un ordenador. Si esto se hace cuidadosamente, la solución de
la versión discreta aproxima la continua si la red es suficientemente fina.

A diferencia de la ecuación de Schrödinger, no es trivial discretizar la
ecuación de Dirac. El teorema de Nielsen-Ninomiya demuestra que si in-
tentamos hacerlo ingenuamente, especies de fermiones extra sin significado
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físico aparecen, dando lugar a varios efectos no deseados. Esto se conoce
como duplicación de fermiones, y el foco principal de esta tesis es abordar
este problema a través del método de fermiones tangentes.

Los capítulos 2, 3 y 4 están dedicados a desarrollar varios aspectos
de este método. En el capítulo 2, introducimos una manera de utilizarlo
para resolver la ecuación de Dirac para fermiones sin masa en una red
espacio-temporal. Demostramos que este método es único en cuanto a que
evita la duplicación de fermiones y preserva la protección topológica del
cono de Dirac.

En el capítulo 3, este enfoque es utilizado para simular la dinámica de un
electrón sin masa que se mueve hacia una barrera de potencial. La teoría
predice que las partículas sin masa no pueden ser detenidas por la barrera,
fenómeno que se como efecto túnel de Klein. Contrastamos nuestro método
con otros y mostramos que reproduce el efecto con excelente precisión.

En el capítulo 4, extendemos el método de fermiones tangentes para
dar cuenta del efecto de campos magnéticos en los fermiones sin masa.
Demostramos cómo nuestro enfoque impide el ensanchamiento del nivel
cero de Landau en presencia de desorden magnético, efecto no deseado
que de otra forma surge a causa de la duplicación de fermiones.

Los capítulos 5 y 6 no están directamente relacionados con el método de
fermiones tangentes pero sí que describen procesos que surgen en materiales
con una relación de dispersion de Dirac. En el capítulo 5, estudiamos el
efecto de una supercorriente neta distinta de cero paralela a los bordes de
un superconductor topológico. Encontramos que la supercorriente puede
inducir una “inversión de quiralidad” de los modos de borde de Majorana
que existen en este sistema.

En el último capítulo, simulamos numéricamente la inyección de “vórtices
de borde” en los bordes de un superconductor topológico. Estos son un tipo
de cuasipartículas que teóricamente pueden ser utilizadas para construir
un ordernador cuántico tolerante a fallos.
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Stellingen
behorende bij het proefschrift

Tangent fermions: massless fermions on a lattice

1. The topological protection of a single Dirac cone on a space-time lattice
requires not only chiral symmetry, but also the continuity of the evolution
operator in the reciprocal space. [Chapter 2]

2. It is impossible to have a gauge invariant lattice formulation of mass-
less fermions with a single topologically protected zeroth Landau level.
[Chapter 4]

3. In a topological superconductor, a supercurrent cannot produce an in-
version of velocity of the Majorana edge modes if the pairing is p-wave.
[Chapter 5]

4. The injection of edge-vortices in a topological superconductor can be
spoiled by the entrapment of excitations in the Josephson junction of
the injector. [Chapter 6]

5. A zigzag-edge boundary condition for Dirac fermions can be replaced by
a large vector potential parallel to the boundary.

6. The thermal-metal-insulator transition in a chiral p-wave superconductor
is a percolation transition for Majorana fermions.

7. The exceptional points of a non-Hermitian Hamiltonian do not produce
a singularity in the Josephson effect.

8. Although the Hamiltonian for tangent fermions is non-local, it can be
written as a matrix product operator of finite bond dimension.

9. Within a given research area, there is a negative correlation between the
length of the title of a scientific article and its quality.

Álvaro Dońıs Vela
Leiden, 3 juli 2024
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