1 Fundamental concepts

1.1 Bra-ket notation, delta function, position and momentum representation

Useful identities:

elpx/h,

V2onh
i=f dx|x><x|=f dp|p){pl,
f6x—x")=fxHo(x—x).

qlx) = x|x), (x|p) =

a) A two-level system has a complete orthonormal basis consisting of the states [1) and |2).
Consider the linear combinations |y,) = 2712(|1) +i]2)) and |y_) =272(]1) — i|2)).

» Show that these two new states still form an orthonormal basis.

 Construct the two operators A= [y ) (y_| and B= ly_){y+| and show that AB and BA
are distinct projection operators.

(Recall that P is a projection operator if P = PT = p?))

« What are A" and B' 2

e Calculate Tr A and Tr B; verify that Tr AB =TrBA.

« Calculate the eigenvalues and eigenfunctions of the Hamiltonian operator

A =1)(1] = [2) 2]+ i]1) (2] = i[2)(1].

How can you tell without calculation that the two eigenvalues are each others opposite?
o Show that (A+ B)? is the identity operator 1. Use this to obtain the eigenvalues of A+ B
without calculation.

b) Derive or evaluate the following integrals over delta functions:

o9 0 o
f_oodyf(y)aé(y—x) =—f(x), @
f dxé(ax)=---, (2)
f dx f(x)6(x* —a?) =--- (3)

¢) Explain or derive the following equations:

(xlx'y =6(x—x"), (4)

(x1glx"y = x6(x - x), (5)
0

(x|plx"y =—iha—5(x—x’) =(xX'|plx)*, (6)
X

(x|gp-paglxy=ihé(x—x"). )



1.2 Heisenberg equation of motion and Ehrenfest theorem

a) Solve the Heisenberg equation of motion for the position operator §(t) of a particle of
mass m moving along a line in the absence of any forces acting on the particle. Show that
4(t) and ¢(0) do not commute for ¢ #0.

b) Show that the expectation value (§(#)) of the position of the free particle satisfies the
classical equation of motion

(4(1)) = pot! m+ xo,

where xo = (§(0)) and pg = {p(0)). This is known as the Ehrenfest theorem.

1.3 Hellmann-Feynman theorem

If the Hamiltonian H (1) depends on some parameter A € R, then the eigenvalues E, (1) and
eigenfunctions v, (1) will also depend on A.

a) Prove the Hellmann-Feynman theorem

dE,(A) dH(A)
an < n )‘ ‘Wn(/l)>

This theorem can be applied to the dispersion relation in a wave guide, which is the de-
pendence E;(p) of the n-th mode in the wave guide on the momentum p along the wave
guide.

b) Explain why the expectation value v, of the velocity in the n-th mode is given by the
derivative dE, (p)/dp.

1.4 Uncertainty relation

Consider two Hermitian operators A and B with zero average. The variances in the state |y)
are given by

(AA)? = (w|A%|y), (AB)* = (w|B?|y).

The uncertainty relation provides a lower bound on the product of these two variances, in
terms of the expectation value (C) = (7|C|y) of the commutator

A

[A B =iC.



a) Prove that (|17 T|y) = 0, for any operator 7.

b) Take any real number w and substitute T = A+ iwB to arrive at the inequality

(AA)? — w(C) + w*(AB)? = 0.

¢) Optimize the inequality by varying w, to obtain the uncertainty relation

(AA)?*(AB)? = i<é>2.

d) The original form of the uncertainty relation, AxAp = ii/2, due to Heisenberg, corre-
sponds to A = % and B = pp. Show that the lower bound AxAp = 11/2 is reached for a Gaussian
wave packet,

W (x) = Cexp(—ax?).



