EXAM QUANTUM THEORY, 13 JANUARY 2025, 9-12 HOURS.

1. The edge state in the quantum spin Hall effect consists of a spin-up wave function $\psi_{\uparrow}(x)$ and a spin-down wave function $\psi_{\downarrow}(x)$, extended along the *x*-axis. At energy *E* these states satisfy the differential equations

$$V(x)\psi_{\uparrow}(x) - i\hbar \nu \frac{d}{dx}\psi_{\uparrow}(x) = E\psi_{\uparrow}(x),$$

$$V(x)\psi_{\downarrow}(x) + i\hbar \nu \frac{d}{dx}\psi_{\downarrow}(x) = E\psi_{\downarrow}(x).$$

where V(x) is the electrical potential on the edge and v is a constant velocity.

- *a*) Explain why these two equations satisfy the condition of time-reversal symmetry.
- *b*) Verify that the energy spectrum satisfies Kramers degeneracy.
- *c*) Show that the electron density $\rho(x) = |\psi_{\uparrow}(x)|^2 + |\psi_{\downarrow}(x)|^2$ along the edge is uniform, independent of *x*.
- 2. The coherent state of a harmonic oscillator is given by

$$|lpha
angle = e^{-rac{1}{2}|lpha|^2}\sum_{n=0}^{\infty}rac{lpha^n}{\sqrt{n!}}|n
angle,$$

for any complex number $\alpha \in \mathbb{C}$, where $|n\rangle$ is the state with occupation number *n*.

- *a*) The number state $|n\rangle$ evolves in time as $|n(t)\rangle = e^{-in\omega t}|n(0)\rangle$, with ω the oscillator frequency. Show that a coherent state at time t = 0 remains a coherent state at later times.
- *b*) Calculate the overlap ⟨α₁|α₂⟩ of two coherent states; are they orthogonal for α₁ ≠ α₂?
- *c*) Consider the operator $|\alpha\rangle\langle\alpha|$ and integrate α over the complex plane,

$$I=\frac{1}{\pi}\int_{\mathbb{C}}d\alpha\,|\alpha\rangle\langle\alpha|.$$

Prove that *I* is the identity operator.*

continued on second page

^{*}You may use the integral formula $\int_{\mathbb{C}} d\alpha e^{-|\alpha|^2} (\alpha^*)^n \alpha^m = \pi m! \delta_{nm}$.

- 3. We consider the vacuum electromagnetic energy *E* inside a single-mode wave guide, of length *L*, closed at the two ends by metal boundaries. The wave vector *k* has only components along the wave guide, equal to $k = \pi n/L$, with n = 1, 2, 3, ... The vacuum energy contribution from each wave vector (speed of light *c*) is $\frac{1}{2}\hbar cke^{-k/k_c}$. The exponential factor enters because waves of wave number $k \ge k_c$ are suppressed by the resistivity of the metal boundaries.
- *a*) Show that for large k_c the vacuum energy has the Taylor expansion[†]

$$E(L) = \frac{1}{2}\pi\hbar c \left(\frac{Lk_c^2}{\pi^2} - \frac{1}{12L} + \text{order}(1/k_c^2)\right).$$

- *b*) We insert a metal plate in the wave guide, as shown in the figure, at a distance *a* from one end and at a distance *b* from the other end. What is now the vacuum energy of the entire system for large *k*_{*c*}?
- *c*) Calculate the force on the metal plate when *b* ≫ *a*. In which direction does it point?
- 4. The Hamiltonian of electrons in graphene is a 2×2 matrix,

$$\hat{H} = \begin{pmatrix} 0 & \nu(\hat{p}_x - i\hat{p}_y) \\ \nu(\hat{p}_x + i\hat{p}_y) & 0 \end{pmatrix}$$
(1)

where ν is a constant velocity and \hat{p}_x , \hat{p}_y are the two components of the momentum operator in the *x*-*y* plane. (There is no motion in the *z*-direction.)

• *a*) Calculate the energy spectrum $E(p_x, p_y)$ of graphene. Is there a lowest energy? *Hint: First calculate* \hat{H}^2 .

In the presence of a uniform magnetic field *B* in the *z*-direction, the Hamiltonian of graphene is modified by the substitution $p_y \mapsto p_y - eBx$. The energy spectrum now consists of Landau levels.

b) Show that there exists a *B*-independent Landau level at energy *E* = 0.
 Hint: See if you can construct a zero-energy wave function of either the form

$$\psi_1(x,y) = \begin{pmatrix} 0 \\ e^{iky}f(x) \end{pmatrix}$$
 or of the form $\psi_2(x,y) = \begin{pmatrix} e^{iky}f(x) \\ 0 \end{pmatrix}$,

for some constant k and some function f(x).

• *c)* The classical motion of an electron in a magnetic field is a cyclotron orbit and the Landau level then follows from the quantization of this periodic motion. Explain the existence of an E = 0 Landau level in graphene from this semiclassical point of view.

[†]You may use that $\sum_{n=1}^{\infty} ne^{-\alpha n} = 1/\alpha^2 - 1/12 + \operatorname{order}(\alpha^2)$.