ANSWERS TO THE EXAM QUANTUM THEORY, 13 JANUARY 2025 each item gives 2 points for a fully correct answer, grade = $total \times 9/24 + 1$

1. *(a)* Time reversal symmetry means that if $(\psi_{\uparrow}, \psi_{\downarrow})$ is a solution, then also $(\psi_{\downarrow}^*, \psi_{\uparrow}^*)$. The equations satisfy that symmetry (take complex conjugation and switch spin-up and spin-down).

(*b*) For each energy *E* there are two independent solutions, one with spin-up and one with spin-down, so the spectrum has the two-fold Kramers degeneracy.

(c) The solution is
$$\psi_{\uparrow}(x) = \exp\left(\frac{i}{\hbar\nu}\int_{0}^{x} [E - V(x')] dx'\right)\psi_{\uparrow}(0),$$

 $\psi_{\downarrow}(x) = \exp\left(-\frac{i}{\hbar\nu}\int_{0}^{x} [E - V(x')] dx'\right)\psi_{\downarrow}(0), \text{ so } \rho(x) = \rho(0).$

2. (*a*) The state $|\alpha\rangle$ evolves in time as $e^{-\frac{1}{2}|\alpha|^2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} e^{-in\omega t} |n(0)\rangle$, which is a coherent state with a time dependent $\alpha(t) = e^{-i\omega t} \alpha(0)$. (*b*) Use $\langle n|m \rangle = \delta_{nm}$ to obtain $\langle \alpha_1 | \alpha_2 \rangle = e^{-|\alpha_1|^2/2} e^{-|\alpha_2|^2/2} \sum_{n=0}^{\infty} \frac{(\alpha_1^* \alpha_2)^n}{n!} =$

 $e^{\alpha_1^* \alpha_2} e^{-|\alpha_1|^2/2} e^{-|\alpha_2|^2/2}$; this is nonzero for $\alpha_1 \neq \alpha_2$, so coherent states are not orthogonal.

(c) Using the given integral formula, you find that $I = \sum_{n=0}^{\infty} |n\rangle \langle n|$ which is a resolution of the identity.

$$E(L) = \frac{\pi \hbar c}{2L} \sum_{n=1}^{\infty} n e^{-\alpha n}$$
, with $\alpha = \frac{\pi}{Lk_c}$,

and then substitute $\sum_{n=1}^{\infty} ne^{-\alpha n} = 1/\alpha^2 - 1/12 + \text{order}(\alpha^2)$. *b*) $E_{\text{tot}}(a, b) = E(a) + E(b) = \frac{1}{2}\pi\hbar c((a+b)k_c^2/\pi^2 - 1/12a - 1/12b)$ *c*) Vary *a* at fixed L = a + b, so b = L - a; $F = -dE_{\text{tot}}(a, L - a)/da = -\frac{1}{2}\pi\hbar c(1/12a^2 - 1/12(L - a)^2) \rightarrow -\pi\hbar c/24a^2$. The force points to the right in the figure.

4. (*a*) $H^2 = v^2(p_x^2 + p_y^2)$ times the unit matrix, so $E^2 = v^2(p_x^2 + p_y^2)$; there are positive and negative energies, without a lowest energy. (*b*) first choice:

$$H\psi_1 = i(eBx - \hbar k)f(x) - i\hbar f'(x) = 0 \Rightarrow f(x) = \exp(eBx^2/2\hbar - kx)f(0)$$

— fails because it is not normalizable; second choice

$$H\psi_2 = -i(eBx - \hbar k)f(x) - i\hbar f'(x) = 0 \Rightarrow f(x) = \exp(-eBx^2/2\hbar + kx)f(0)$$

is normalizable, so we have found our zero-energy eigenfunction.

(c) At zero energy the only phase shift accumulated along a periodic orbit is at the turning points, twice $-\pi/2$, plus the Berry phase of π from the circulating spin in graphene, so the net phase shift is zero, hence there is a bound state at zero energy.