Exam Quantum Information, 17 NOVEMBER 2023, 9-12 hours.

1. - a) Given the two-qubit state $|\psi\rangle=2^{-1 / 2}(|00\rangle+|11\rangle)$, compute the reduced density matrix ρ_{A} for the first qubit by tracing out the second qubit.

- b) Calculate the entanglement entropy $-\operatorname{Tr}\left(\rho_{A}{ }^{2} \log \rho_{A}\right)$.
- c) More generally, the pure state of two qubits A, B has the form

$$
|\Psi\rangle=c_{00}|00\rangle+c_{01}|01\rangle+c_{10}|10\rangle+c_{11}|11\rangle .
$$

By tracing out either the second or the first qubit we obtain the reduced density matrices ρ_{A} or ρ_{B}, respectively. Prove that

$$
\operatorname{Tr} \rho_{A}{ }^{2} \log \rho_{A}=\operatorname{Tr} \rho_{B}{ }^{2} \log \rho_{B}
$$

(You may use that the matrix products UV and VU have the same eigenvalues, for any pair of square matrices U, V.)
2. The purity P of a density matrix ρ is defined by $\operatorname{Tr} \rho^{2}$.

- a) Use the known properties of the eigenvalues of ρ to prove that $0<P \leq 1$.
-b) The system evolves in time under the action of a Hamiltonian H. Prove that the purity does not change in time.
- c) Decoherence of a qubit is the process that a qubit which is initially prepared in a pure state becomes after some time a mixed state with smaller purity. Explain, in words, how that can happen in view of the statement in question 2 b ?

3. Consider the two-qubit state

$$
|A\rangle|B\rangle=(\alpha|0\rangle+\beta|1\rangle)(\gamma|0\rangle+\delta|1\rangle) .
$$

You may assume that the coefficients $\alpha, \beta, \gamma, \delta$ are real, with $\alpha^{2}+\beta^{2}=$ $\gamma^{2}+\delta^{2}=1$.

- a) Perform a CNOT operation on this state, with qubit A as the control and qubit B as the target. What is the resulting state?
- b) The cnot operation has entangled qubits A and B. Quantify the degree of entanglement by calculating the concurrence.

Suppose that Alice holds qubit A, in the state $|A\rangle$ and Bob holds qubit B, in the state $|B\rangle$. Alice and Bob also share an entangled pair of qubits in the state

$$
|\Psi\rangle=2^{-1 / 2}(|0\rangle|0\rangle+|1\rangle|1\rangle) .
$$

Alice and Bob live far apart, they can only communicate classically. Teleportation can be used to implement the CNOT operation on the two distant qubits A and B. The circuit for this "gate teleportation" is shown below.

- c) Show, by calculating the final state, that this circuit indeed carries out the CNOT operation with qubit A as the control and qubit B as the target. To simplify this demonstration, you may assume that the first and second read-out both give 1 as outcome.

4. Consider the 3 -qubit error-correcting code where the state $|0\rangle$ is encoded as $|000\rangle$ and the state $|1\rangle$ is encoded as $|111\rangle$.

- a) Given an arbitrary state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$, write down its encoded state using the 3 -qubit code. How does this state change if a bit-flip error occurs on the second qubit?
- b) Outline the procedure for detecting and correcting the bit-flip error.
- c) Suppose you wish to perform the Hadamard operation on the encoded qubit, so you wish to transform $|000\rangle$ into $2^{-1 / 2}(|000\rangle+|111\rangle)$ and to transform $|111\rangle$ into $2^{-1 / 2}(|000\rangle-|111\rangle)$. Explain why this cannot be done using only single-qubit gates.

