Answers to the Exam Quantum Information, 17 November 2023 each item gives 2 points for a fully correct answer, grade = total $\times 9/24 + 1$

- a) ρ_A = (1/2)|0⟩⟨0| + (1/2)|1⟩⟨1| = (1/2)I.
 b) the two eigenvalues are both 1/2, so we have -(1/2)²log(1/2) (1/2)²log(1/2) = 1.
 c) The coefficient matrix of ρ_A is cc[†] and for ρ_B it is c[⊤]c^{*} = (c[†]c)[⊤] The eigenvalues of cc[†] and c[†]c are the same, and taking the transpose also does not change the eigenvalues, so ρ_A and ρ_B have the same eigenvalues λ_i and hence the same entanglement entropy Σ_i λ_i² log λ_i.
 a) the eigenvalues λ_i of ρ are positive and sum to unity, so 0 ≤ λ_i² ≤ λ_i ≤ 1; hence 0 ≤ B = Σ λ² ≤ Σ λ = 1
- hence $0 \le P = \sum_i \lambda_i^2 \le \sum_i \lambda_i = 1$. b) $d\rho/dt = i[\rho, H]$, $d\rho^2/dt = \rho(d\rho/dt) + (d\rho/dt)\rho = i\rho[\rho, H] + i[\rho, H]\rho = i\rho^2 H - iH\rho^2$, and the trace vanishes c) if the qubit interacts with the environment, it will become entangled with external degrees of freedom; the combined state of qubit plus environment is still pure, but if we trace out the degrees of the environment we arrive at a reduced density matrix which is mixed. There is no contradiction with dP/dt = 0 for evolution under the action of a Hamiltonian, because the reduction to a partial density matrix is not described by Hamiltonian evolution.
- 3. *a*) CNOT $|A\rangle|B\rangle = \alpha|0\rangle(\gamma|0\rangle + \delta|1\rangle) + \beta|1\rangle(\gamma|1\rangle + \delta|0\rangle$. *b*) the coefficient matrix is

$$c = \begin{pmatrix} \alpha \gamma & \alpha \delta \\ \beta \delta & \beta \gamma \end{pmatrix}.$$

The concurrence is $C = 2|\det c| = 2|\alpha\beta(\gamma^2 - \delta^2)|$. *c)* initial state after the first CNOT gate is (ignoring factors $1/\sqrt{2}$)

$$\alpha |0\rangle (|00\rangle + |11\rangle) (\gamma |0\rangle + \delta |1\rangle) + + \beta |1\rangle (|10\rangle + |01\rangle) (\gamma |0\rangle + \delta |1\rangle)$$
(1)

the read out of the second qubit is assumed to give 1, so we apply the Pauli X on the third qubit,

$$\alpha|0\rangle|1\rangle|0\rangle(\gamma|0\rangle+\delta|1\rangle)+\beta|1\rangle|1\rangle|1\rangle(\gamma|0\rangle+\delta|1\rangle)$$

then we perform a CNOT on the third and fourth qubit

$$\alpha|0\rangle|1\rangle|0\rangle(\gamma|0\rangle+\delta|1\rangle)+\beta|1\rangle|1\rangle|1\rangle(\gamma|1\rangle+\delta|0\rangle)$$

next a Hadamard on the third qubit,

$$\alpha|0\rangle|1\rangle(|0\rangle+|1\rangle)(\gamma|0\rangle+\delta|1\rangle)+\beta|1\rangle|1\rangle(|0\rangle-|1\rangle)(\gamma|1\rangle+\delta|0\rangle)$$

the read out of the third qubit is also assumed to give 1, so we apply the Pauli Z on the first qubit,

 $\alpha|0\rangle|1\rangle|1\rangle(\gamma|0\rangle+\delta|1\rangle)+\beta|1\rangle|1\rangle|1\rangle(\gamma|1\rangle+\delta|0\rangle)$

the second and third qubit are discarded, the remaining state of the first qubit (*A* with Alice) and the fourth qubit (*B* with Bob) is the desired outcome of the CNOT operation.

4. *a*) The encoded state is $\alpha |000\rangle + \beta |111\rangle$, after the bit flip error it is $\alpha |010\rangle + \beta |101\rangle$

b) carry out a parity-check measurement (by means of two CNOT gates on a target ancilla qubit) with the first two qubits as control and another parity-check measurement (using another ancilla as target) with the last two qubits as control; measurement of the two ancilla's reveals which qubit has been flipped; this can then be corrected with a σ_x operation, without knowledge of the value of the qubit

c) The Hadamard operation on the encoded state entangles the three qubits; no local operation can do that.