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Introduction1

Perspective1.1

High-energy physics is that branch of science that seeks to explain the interactions 
between the elementary constituents of matter. In order of rising strength, the four 
fundamental forces in nature are the gravitational, weak, electromagnetic and strong 
force. The particles that carry these forces are respectively the gravitons, the W 
and Z bosons, the photons and the gluons. All other matter consists of force-feeling 
particles. These can be divided in leptons and hadrons: the hadrons are by definition 
sensitive to the strong force, the leptons (e.g. electrons, neutrinos) are not. The 
leptons are believed to be elementary particles, whereas the hadrons are composed of 
quarks. Thus mesons (e.g. pions) consist of a quark-antiquark pair and the heavier 
baryons (e.g. protons, neutrons) consist of three quarks. There are six different 
quarks. These are the flavours up, down, strange, charm, top (or truth) and bottom 
(or beauty).

The biggest issue in the theory of strong interaction is the problem of confinement. 
This is the observation that the quarks, contrary to the leptons, do not exist as free 
particles, but are always locked up in hadrons. When constructing hadron states in 
the spectrum from quarks, a new quantum number is needed in order to obey the 
Pauli exclusion principle. This quantum number is colour which takes the ’values’ 
red, green and blue. The confinement property can now be rephrased by stating that 
only colourless states can occur as physical particles.

Quantum chromodynamics (QCD) is generally assumed to be the correct theory 
of the strong interactions. It is a generalization of quantum electrodynamics (QED) 
which describes electromagnetism. In both theories, the fundamental matter fields 
are fermion fields (electrons respectively quarks) that interact through a minimal 
coupling with the bosonic gauge fields (photons, gluons) that are associated with 
a local symmetry. In QED the local symmetry group is U(l) and corresponds to 
electric charge. In QCD the local symmetry group is SU(3) and corresponds to the 
three colours of the quarks.

One way of extracting predictions from QCD relies on perturbation theory. This is 
the method that was extremely successful in QED. One assumes the coupling between 
gluons and quarks to be small and performs perturbation theory around free quarks 
and gluons. Although quarks and gluons do not occur as free particles, it is still 
possible to obtain in this way accurate predictions for high-energetic collisions with 
hadrons. This is due to the property of non-abelian interactions called asymptotic 
freedom: at high energies the coupling goes to zero, i.e. the quarks become asymp­
totically free. However, the confinement problem or the calculation of the hadronic 
spectrum are issues that cannot be resolved within perturbative QCD.
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Gauge theory in a finite volume1.2

A truly non-perturbative way of attacking QCD is the lattice method. It consists 
of using a lattice regularization for space-time. This renders the euclidean path 
integral for the theory well-defined and one can study the properties of the spectrum 
using methods from statistical mechanics. In view of the confinement problem, the 
quark-antiquark potential for static sources can be found to rise linearly with distance, 
thus strongly hinting at confinement. The picture that emerges is of a : 1 ring of 
gluonic field between the two quarks, with an energy per length or string >n <r. 
When the distance becomes too large, the string breaks, but at the breakin? nt a 
new quark-antiquark pair is formed, thus ensuring that the final states wil; . be 
colourless.

In the last decade lattice QCD has had a lot of successes, but many ; ' dems 
still remain. For instance, to simulate the full theory (i.e. with dynamical fermions) 
is still extremely expensive in terms of computer time. When applying the lattice 
method to electroweak processes, one faces the problem that a satisfactory, simple 
description of chiral fermions has not yet been found.

The non-abelian nature of the gauge group in QCD leads to self-interactions of the 
gluons. This is in sharp contrast with the abelian theory of QED where the photons 
have no (direct) self-interaction. The interaction of gluons among themselves opens 
the possibility of a bound state of gluons, a so-called glueball. Another way of saying 
that gluons interact among themselves is by saying that they too carry colour charge. 
Hence, an appropriate combination of gluons can form a colourless object and be a 
physical particle or resonance. The existence of glueballs is thus also a manifestation 
of colour confinement. Although some resonances in the hadronic spectrum are good 
candidates for glueballs, one cannot claim yet that glueballs really exist in nature.

As indicated by for instance the linearly rising quark-antiquark potential, one 
assumes that confinement is caused by the pure gauge part of QCD. In order to 
understand this mechanism better one can start by removing the quark fields from the 
theory altogether: one retains only the purely gluonic part of QCD. This means that 
one studies the dynamics of just the non-abelian gauge field (or Yang-Mills field). This 
is the approach we shall adopt in this thesis, where we will investigate the dynamics 
of the pure SU(2) Yang-Mills field in a finite spatial volume. In particular, we will 
calculate the glueball masses within an effective model, where this effective model 
incorporates (for a certain range of coupling constants) the relevant non-perturbative 
phenomena of QCD in a new way. Changing the gauge group from SU(3) to SU(2) 
gives technical simplications. As compared to the more numerical lattice results, 
finite-volume studies can provide complementary insights. Restricting ourselves to 
a finite volume gives us analytic tools to investigate the onset of non-perturbative 
behaviour of the theory.

The mechanism of asymptotic freedom [1] renders the coupling constant small at high 
energies or, equivalently, at small distances. This gives us a handle on the coupling
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(1-2-1)H[qk,Pk] = 52 (pk + Wk) + interaction terms.

At small coupling, the modes will not interact and the potential will rise quadrat- 
ically in all directions. As a consequence, the wave functions will be the familiar 
harmonic oscillator wave functions. One subsequently uses perturbation theory to 
take the interactions between this infinity of modes into account. What we have 
just described is the ordinary perturbative approach to quantum field theory. The 
hamiltonian formulation for the perturbative regime is cumbersome, and the covari­
ant path integral approach of Feynman is to be preferred. However, the perturbation 
scheme breaks down when at larger coupling the behaviour of the wave function for 
some of the modes is dictated by the properties of the configuration space, as ex­
plained below. We then have to replace these wave functions by functions that have 
the behaviour required by the configuration space. In this regime the hamiltonian 
method is superior.

An essential feature of the non-perturbative behaviour is that the wave functional 
spreads out and becomes sensitive to the global features of the configuration space. 
This spreading out of the wave functional will occur first in those directions of the 
configuration space where the potential energy is lowest, i.e. in the direction of the

constant. Taking the finite volume to be small results in a small coupling constant: 
one can use perturbation theory. Gradually increasing the volume then allows one 
to study the onset of non-perturbative phenomena and to see, hopefully, the setting 
in of confinement. In this regime one can employ a hamiltonian formulation [2] 
of the problem. Our strategy in studying the dynamics of the Yang-Mills field is 
based on two observations. First, quantum field theory can in a sense be regarded as 
ordinary quantum mechanics, but with an infinite number of degrees of freedom. For 
the case of uon-abelian gauge field theory, the configuration space of this quantum 
mechanical problem is complicated, which gives rise to non-perturbative behaviour. 
Second, coming from the perturbative regime, these complications first show up in the 
low-energy modes of the gauge field: one can capture the influence of the topology 
of the configuration space by studying the effective theory of the finite number of 
affected modes.

Let us first reformulate quantum field theory as quantum mechanics. For this 
the restriction to a finite volume is not essential: this only renders the degrees of 
freedom discrete. In the hamiltonian picture we are dealing with wave functionals 
in the configuration space. Speaking generally, each point in the configuration space 
corresponds to a configuration of the fields <p(x) (one can think of ordinary theory 
as an example). This means we have fields conjugated momenta fl(x), a hamil­
tonian H[</>, FI] and wave functionals ^[99]. To write this in a more familiar form, 
we decompose the fields <^(x) in orthogonal modes, like ordinary Fourier modes in 
the case of flat space. We can reformulate the hamiltonian problem in terms of the 
generalized Fourier coefficients qk and their conjugate momenta pk- This leads to a 
hamiltonian H[qk,Pk] and wave functionals 'J'jgjt]. A typical hamiltonian would look 
like
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i

low-energy modes of the gauge field (small tu*). If the configuration space has non­
com ractable circles, the wave functionals are drastically affected by the topology when 
the support of the wave functional extends over the entire circle (i.e. bites in its own 
tail). This is what typically happens in non-abelian gauge theories. The Yang-Mills 
configuration space is the space of gauge orbits AfG {A is the collection of gauge 
fields or connections. Q the group of local gauge transformations). We know from 
Singer [3] that the topology of this configuration space is highly non-trivial when Q is 
non-abelian. The configuration space also has a Riemannian geometry i4; that can be 
made explicit, once explicit coordinates are chosen on A/Q. This geornct • .Iso leads 
to non-perturbative effects: if wave functionals are no longer localized ? regions 
much smaller than the inverse curvature of the field space, this curvar., : fluences 
the wave functionals.

One of the most prominent properties of a non-abelian gauge theory, as .mpared 
to an abelian gauge theory like QED, is the multiple vacuum structure. 1means 
that the gauge degrees of freedom cannot be completely removed [5] by imposing 
a simple condition like the Coulomb gauge. After gauge fixing there will remain 
Gribov copies, that is, gauge equivalent gauge field configurations that all satisfy the 
gauge fixing condition. Intimately related to this is the existence of instantons [6]. 
Instantons are gauge field configurations that are solutions of the euclidean equations 
of motion. They can be shown to describe tunnelling between gauge copies of the 
vacuum, that is, tunnelling from one Gribov copy to another. The configuration 
sitting at the top of the tunnelling path with lowest energy barrier is called the 
sphaleron [7]: it is a saddle-point of the potential with one unstable mode. Let us 
suppose that the potential energy in the direction of the sphaleron(s) grows slowly. 
This means that at increasing volume the wave functionals around the different gauge 
copies of the vacuum will start to flow out over the instanton barriers and will develop 
a substantial overlap with each other. We then have the situation described above 
of probing the non-contractable loops in configuration space. See fig. 3-3 on page 34 
to get an idea of how the potential landscape might look. This figure displays gauge 
copies, sphalerons and the potential in a two-dimensional subspace (consisting of 
low-energy modes) of the configuration space.

The use of the hamiltonian formulation is especially fruitful when the non-pertur­
bative effects manifest themselves appreciably only in a small number of the modes 
of the gauge field. For this limited number of modes one defines an effective hamil­
tonian that takes the perturbative effect of all the other modes into account [8]. By 
studying the resulting ordinary quantum mechanical problem, one can go beyond 
purely perturbative results [9].

Apart from offering the possibility to go beyond perturbation theory, the finite- 
volume approach sketched above, which is sometimes called ’analytical’, has the merit 
of being directly comparable to the numerical results of lattice calculations. For this 
the finite volume of the analytic approach must be chosen to be the finite volume of 
the lattice calculations. Putting a theory on a finite lattice necessarily means that it 
is put in a finite volume with certain boundary conditions. For the standard lattice
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geometry, this finite volume is cubic with periodic boundary conditions, i.e. a torus.
To make the reduction of an infinite to a finite number of degrees of freedom, 

we use the Born-Oppenheimer approximation, which has its origin in the quantum 
mechanical treatment of molecules. To be specific, one can consider the hydrogen 
molecule, which has two electrons and two protons. Since the electrons are much 
lighter than the protons, one can separate the time scales. One first solves the 
Schrodinger problem for the electrons in the potential caused by the static protons. 
The obtained energy levels depend parametrically on the coordinates of the protons. 
These energy levels contribute to the potential of the Schrodinger problem for the 
protons. One says that the fast modes (the positions of the electrons) have been 
integrated out, and that we are left with an effective problem in the slow modes (the 
positions of the protons). The phrase ’integrated out’ stems from the formulation of 
quantum mechanics using path integrals.

One can use the Born-Oppenheimer approximation in field theory to obtain an 
effective hamiltonian in a finite number of slow modes. Using these methods in the 
intermediate-volume regime for SU(2) gauge theory on the torus resulted in good 
agreement with the lattice results [9,10]. However one would like to extend these 
results to larger volumes in an attempt to get as close as possible to the confinement 
domain, and in this way get some intuition about how confinement sets in. The first 
thing to do, as argued above, is to include contributions coming from instantons: one 
wants to take into account the sphaleron directions in configuration space, because 
there the potential will show the strongest deviation from gaussian behaviour. This 
is not an easy task first of all because the instanton solutions on a torus are only 
known numerically [11].

To avoid this problem, we have shifted our attention to the case where the finite 
volume is S3, (the surface of) a three-sphere [12]. Here the instantons are known 
analytically, and the tunnelling paths that connect gauge copies of the vacuum lie 
within the space of low-energy modes. Another simplification is that the structure 
of the perturbative vacuum is much simpler than in the case of the torus: there 
is no vacuum valley, that is, there is no continuous set of minima of the classical 
potential. A drawback of the three-sphere is that we lose the possibility to check 
against lattice results. Also, the approach to infinite-volume results will go as powers 
of 1/7? as compared to the exponential behaviour in L for the torus [13]. Thus, due 
to the intrinsic curvature of S3, it will be even less easy to derive infinite-volume 
results from our calculations. Nevertheless, within this model one can study non- 
perturbative phenomena like the effects of large gauge transformations and especially 
of the 0 angle on the glueball spectrum. A gauge transformation is called ’large’ if it 
cannot be continuously deformed into the identity. Typically, two Gribov copies of 
the vacuum are related by a large gauge transformation. The 6 angle, which will be 
properly defined in chapter 2, is a free parameter of the theory that one has to allow 
when one implements gauge invariance under large gauge transformations. Previous 
research into gauge theory on S3 [14] did not include the study of the effects of large 
gauge transformations.
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Outline1.3
Here we will give a short description of the contents of this thesis. We study pure 
SU(2) gauge theory on the three-sphere. As in the torus case, the strategy is to 
reduce the full problem to an effective theory consisting of a hamiltonian and a set of 
boundary conditions in the (finite-dimensional) configuration space. These boundary 
conditions incorporate the non-perturbative effects of the non-contractable loops in 
the full configuration space.

In chapter 2 we develop the necessary machinery for the analysis on S3. We 
isolate the slow modes of the theory, investigate the homotopy properties of gauge 
transformations on S3, introduce the 6 angle, and we show how the instanton degrees 
of freedom are embedded in the space of slow modes. We derive the lowest order 
effective hamiltonian (or truncated hamiltonian) by simply truncating the full theory 
to the slow modes and we indicate how to obtain the one-loop effective hamiltonian, 
i.e. how to integrate out the fast modes.

In chapter 3 we will describe our investigations into the configuration space for 
SU(2) gauge theory on S3. We perform the gauge fixing by restricting the gauge fields 
to a so-called fundamental domain [15,16). This is a convex subset of the space of 
all gauge field configurations that is in one-to-one correspondence (modulo constant 
gauge transformations) with the space of gauge orbits AIQ. The latter is precisely 
the physical configuration space on which we want to study the dynamics. For some 
parts of the configuration space one can find the boundary of the fundamental domain 
exactly, whereas for other parts we were able to derive upper and lower bounds on 
its position. Restricting the dynamics to the fundamental domain raises the need 
for boundary conditions to be imposed on the wave functional. These boundary 
conditions will depend on the 0 angle.

In chapter 4 we explicitly integrate out the high-energy modes using a background 
field method. This not only gives us the renormalization of the coupling constant, 
but also the one-loop correction to the effective potential.

In chapter 5 we will use dynamical arguments to show that the boundary con­
ditions at the sphalerons (which are on the boundary of the fundamental domain) 
will be most important when the wave functional starts to spread out over the full 
configuration space. Using this we first impose the correct boundary conditions on 
the space of low-energy modes and then construct a basis of functions that respect 
these (0-dependent) boundary conditions. Using this basis we perform a Rayleigh- 
Ritz analysis to approximate the spectra of both the lowest order hamiltonian and of 
the one-loop corrected hamiltonian. From the eigenvalues one can obtain the masses 
of the different excitations (the glueballs) in this model.

Chapter 6 contains a summary and a discussion of the results. We argue that the 
effect of the instantons is large, but calculable. We determine the range of validity 
of the effective model and show that the results are in reasonable agreement with 
results on the torus.
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2.2

(2-2.1)

(2.2.3)= V^p,

In this chapter the necessary machinery needed for the analysis on S3 is developed. 
In particular, we will write down bases of functions for scalar and vector functions 
o.i ST These bases of functions will be used in chapter 4 for the evaluation of various 
functional determinants. These functions will also allow us to isolate the space of

' energy modes on which the effective theory will be defined. After this we will 
miE arize ourselves with some of the topological properties of SU(2) gauge theory 

on the three-sphere; we will also show the intimate relation between the space of 
lew.-energy modes and the instantons. Next we will describe the derivation of the 
effective Hamiltonian, and discuss the validity of the adiabatic approximation. In the 
appendix we relate our bases of functions to other descriptions of functions on S3 [14], 
and we give some group theoretical background to these bases.

Low-energy modes
Wc begin by introducing two framings on S3. These will lead to a basis of scalar 
functions. By taking tensor products of these scalar inodes with eigenfunctions of 
the spin operator, we will construct vector functions on S3. By a similar method 
we will also construct su(2)-valued functions, where su(2) denotes the Lie algebra 
corresponding to the Lie group SU(2). After this we will write down the space of 
low-energy modes for SU(2) gauge theory on S3.

2.2.1 Two framings on the three-sphere
Let ra be the Pauli matrices. We introduce the unit quaternions and their conju­
gates a„ = CT* by

<zM = (l,if), ct„ = (1,-if).

They satisfy the multiplication rules

ct(,ct„ = i7,%ctq, a„ap = fj°„ao, (2.2.2)

where we used the’t Hooft r) symbols [17], generalized slightly to include a component 
symmetric in p and p for a = 0. The rf and ij' form bases for respectively the self­
dual and anti-self-dual four by four matrices. The r/ symbols enjoy the following 
contraction identities
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Another useful relation is

(2.2.4)

(2.2.5)

(2.2.6)

(2.2.7)V : (7i0, n) (n0, -n),

(2.2.8)

Scalar and vector modes on S32.2.2

(2.2.9)

(2.2.10)

(2.2.11)

The orthogonal matrix V that relates these two frames is given by

Vi = = I tr((n ' • d)<7j).

Note that e and e have opposite orientations. The parity operation P defined by

interchanges the e and the e framing.
A vector field A„ can be written with respect to either framing (2.2.5). From now 

on we will, unless stated otherwise, use the framing e'^ and write

A/, — AjCp.

Since we want vector fields to be tangent to S3 we have that npA,, = 0 and the sum 
over i runs from 1 to 3. Latin indices refer to this framing, while Greek indices will 
refer to the embedding space 1H1.

Vff-, = iil/i-

We can use q and t) to define orthonormal framings of S3, which were motivated by 
the particularly simple form of the instanton vector potentials in these framings (see 
section 2.3). We embed S3 in 1R'1 by considering the unit sphere parametrized by a 
unit vector n;i. Using the scale-invariance of the classical hamiltonian, we can make 
the restriction to a sphere of radius R = 1. The R dependence can be reinstated 
on dimensional grounds. The framing for S3 is obtained from the framing of IR.’ by 
restricting in the following equation the four-index a to a three-index a (for o = 0 
one obtains the normal n,, on S3):

Each of the framings (2.2.5) defines a differential operator 

0 _ ■ 0

to which belong su(2) angular momentum operators, which for historical reasons will 
be denoted by Lt and L2:

They are easily seen to commute and to satisfy the condition 

L2 = L\ = L2.
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1

(2.2.16)

The manifold S3 is isomorphic to the Lie group SU(2). The spatial symmetries of 
S3 correspond to the left and right action of SU(2) on itself: so(4) = su(2) ©su(2). 
In the appendix we will show explicitly that Li and Lj correspond to the generators 
of the left and right symmetries on SU(2).

A basis of scalar functions on S3 is given by the set of eigenfunctions of the 
commuting operators {L2, Lt., Li.}:

\lmi.mn), Z = 0,|,l,..., mL,mR = -I,..., I. (2.2.12)

Since the laplacian on S3 is given by did, = —4L2, these modes are eigenfunctions of 
the spherical laplacian with eigenvalue —41(1 + 1) and degeneracy (2Z + I)2.

To classify vector fields A, on S3, we introduce a spin operator S by (SM), = 
— i uijAj. This is an su(2) angular momentum operator that commutes with L\ and

We also define K = L + S, which is shorthand for 7?y = L6t] + Sy. When 
there is no confusion possible, we will write L for L\. The fact that we single out 
L: is related to the fact that we chose e}, as the preferred framing for expressing 
vector fields. A basis of vector fields can be obtained by taking tensor products of 
the scalar functions (2.2.12) with the basis functions |lma) of the spin operator. In 
the standard way one obtains eigenfunctions of the set {/?,L2}:

\lmR-,kmk), Z = 0,|,l,..., k = |Z - 1|,... ,Z + 1. (2.2.13)

The three modes with (Z,fc) = (0,1) are the three vector fields e^. The three vector 
fields ej = V'/c], correspond to the modes with (Z,k) = (1,0), as can be seen from

To identify transversal and longitudinal modes, first note that 
d^A,, = d,A,. Next we introduce the operator Q via Qy = LiLj. Note that QA = 0 
for A in the Coulomb gauge. Using the identity

(L-S)2 = L2-L-S-Q, (2.2.14)

one concludes that the modes with k = I ± 1 are transverse, whereas the modes with 
k = I arc purely longitudinal.

To deal with su(2)-valued functions, we introduce the isospin operator T by Ta = 
ad(|ra), where ad(A')(y) = [X, F]. This operator is yet another su(2) angular 
momentum operator that commutes with all operators defined before. By takiirg 
tensor products of the functions obtained so far with the basis functions |1 mt) of T, 
we can construct scalar and vector modes that take their values in su(2). Introducing 
J = L + f we obtain for the su(2)-valucd scalar functions (e.g. infinitesimal gauge 
transformations on S3)

|Zmrt;jm3), Z = 0,|,l,..., j = |Z - 1|,..., I + 1. (2.2.15)

For the vector functions (e.g. gauge fields on S3) we define J = K + T and obtain

\lm.R\k\jm.j), Z = 0,|,l,..., k = |Z - 1|,... ,Z + 1, 
j = |fc — 11,..., k + 1.
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|t; (Zs)fc; jrrij),
(2.2.17)

1, the vector modes corre-

2.2.3

(2.2.18)A^e},

(2.2.19)

(2.2.20)

(2.2.21)

(2.2.22)V(A)

Js, + O (a3) . (2.2.23)

(2.2.24)

I

This gives

Adjj = 4- 27Vt2- — 4Qy.

The scalar modes are recovered by the choice s = 0, t 
spond to the choice s = 1, t = 1.

The functions defined so far will be used extensively in chapter 4 for the Hation 
of functional determinants and traces. In chapter 3 we will also make use of the 
operator J = L\ + £2 + f and of the corresponding eigenfunctions.

The quadratic fluctuation operator

An SU(2) gauge field on the three-sphere can be written as

The field strength F is given by

A»

Generalizing to the case where S and T correspond to respectively a spin-.s and a 
spin-t representation, we obtain (suppressing the mu dependence)

Z = 0,|,l,..., k = |Z — s|,..., I + s, 
j = |/c — t|,..., k + t.

(3A)i = g 'Aig + g 'dig = g 'D,(A)g,

where D(A) denotes the covariant derivative in the fundamental representation. As 
usual, the field strength F transform under the adjoint representation

(’F)y = g-'Fijg.

In order to isolate the lowest energy levels, we examine the potential energy

~2ir’Z>2tr^'
Note the factor 2tt2 that we absorbed in the potential. We define the quadratic 
fluctuation operator A4 by

Fij — diAj — djAi + [Aj, AJ — 2ey*At, 

where the last term is the so-called spin-connection: it is a consequence of the fact 
that we used a framing on the curved manifold S3. Reinstating the radius Ji would 
lead to a factor 1/7? for this last term, which shows that this term vanishes in the 
limit of no curvature, i.e. for R —♦ oo. A gauge transformation g : S3 x IR —» SU(2) 
acts as follows:
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(2.2.25)

A“ = c“ with c“ constant. For I = the modes with k

(2.2.26)

Winding numbers and instantons2.3

(2.3.1)

(2.3.2)"['ll =

(2.3.3)

(2.2.27)

(2.2.28)

Before writing clown the instantons, we first introduce the notions of winding number 
and topological charge. The reader is referred to [18] for more details.

In the ,40 = 0 gauge, the set of gauge transformations Q consists of mappings

<j : S3 — SU(2) S S3.

As a consequence, Q splits up in distinct classes that can be labelled by the winding 
number of the gauge transformations in that class:

24^ Js3 £ijk tr ^ldia^a~'diB^a~'dk9^ ■

Gauge transformations with zero winding number can be continuously deformed into 
the identity mapping, whereas mappings with non-zero winding number cannot. The 
latter mappings are sometimes referred to as ’large’ or ’homotopically non-trivial’ 
gauge transformations.

Related to this, we define the standard Chern-Simons functional that measures 
the topological charge of a gauge field configuration:

QM = fS3£ijk^r •
The sign of n[p] was chosen such that we have Q[M] = Q[A] +

Using S2 = 2 and eq. (2.2.14) one rewrites

Now focus on the inodes (2.2.16). For I = 0, we have k = 1 and M = 4. The 9 
eigenmodes are A“ = c“ with c“ constant. For I = the modes with k = 1 are pure 
gauge (A4 = 0 and Q O'), whereas the modes with k = | are physical with M = 9. 
For I > 1, the modes with k = I — 1 have M = (2l)2, the modes with k = I + 1 
have M = (2(1 + I))2 and the modes with k = I are again pure gauge. In particular 
the 9 modes with I = 1, k = 0 have A4 = 4 and are given by A° = d^V'™ with d“n 
constant. The lowest eigenspace of A4 is thus 18 dimensional and given by

A,.(c. d) = (c“ + d“V?) ej,y = (cf< + d“ej)

This is the space on which we will build the effective theory.
If we introduce the symmetric matrices X = ccT and Y = ddT, we obtain the 

following form for the potential energy V of eq. (2.2.22) in the (c, d) space:

V(c, d) = V(c) + V(d) + j(tr(X) tr(K) - tr(XK)), 
l/(c) = 2tr(X) + 6detc+ | (tr2(X) - tr(X2)) .
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(2.3.5)Ao = Aa =

where

(2.3.6)u = =

-Oa.

(2.3.9)

(2.3.10)

2(l + e-n)’

2sb(1
1 + b2 + s2 ’ s = Ae1.

2s2
1 + b2 + s2 ’

The instanton describes tunnelling from A = 0 (Q=0) at t = —oo to Aa = —<ra (Q=l) 
at t = oo, over a potential barrier that is lowest when bM = 0. This configuration 
(with = 0, u = 1) corresponds to a sphaleron [7], i.e. the vector potential A„ = 
is a saddle point of the energy functional with one unstable mode, corresponding to 
the direction (u) of tunnelling. At t = oo, Aa = -aa has zero energy and is a gauge 
copy of Aa = 0 by a gauge transformation g = n ■ a with winding number one, since

n • adan • a = — aa. (2.3.7)

We will be concentrating our attention to the c and d modes of eq. (2.2.26). 
These modes are degenerate in energy to lowest order with the modes that describe 
tunnelling through the sphaleron and ” anti-sphaleron”. The latter corresponds to the 
configuration with the minimal barrier height separating A = 0 from its gauge copy 
by a gauge transformation g = n • a with winding number —1. The anti-sphaleron 
is actually a copy of the sphaleron under this gauge transformation, as can be seen 
from eq. (2.3.5), since

n ■ ae“aan ■ a = -fya- (2.3.8)

The two-dimensional space containing the tunnelling paths through the sphalerons is 
consequently parametrized by u and v through

Xp(u, v) = (-ue“ - vej) y = A^u, v)^,

Ai(u,v) = (—u6“ — vV^-a) y = —Uy 4-vn • ayn • cr.

The gauge transformation with winding number -1 is easily seen to map (u,v) = 
(w, 0) into (u, v) = (0,2 — w). In particular, as discussed above, it maps the sphaleron 
(1,0) to the anti-sphaleron (0,1). Comparing with eq. (2.2.26) shows that we obtain 
the (u,u) space from the (c, d) space by the choice c“ = —m5“ and = — vS“.

In the hamiltonian picture, gauge invariance is implemented through Gauss’ law, 
which implies invariance of the wave functional under small gauge transformations. 
For large gauge transformations, we have to allow for a possible 0 angle:

V>|M] = (2-3.4)

The (anti-)instantons [6] in the framings (2.2.5), obtained from those on JR.'1 by 
interpreting the radius in JR.4 as the exponential of the time t in the geometry S3 x IR, 
become (e and A are defined with respect to the framing e“ for instantons and with 
respect to the framing e° for anti-instantons)

5 f\e — (u + e ■ n)a
2(1 + e ■ n)
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Reduction to a quantum mechanical problem2.4

(2-4.1)L = -

(2-4.2)L

(2.4.3)H +

(2-4.4)

(2.4.5)

(2.4.6)

2tt2 ’

are chosen to be eigenstates of H(x|:

wave function

A L FSiFSi - ^V(4), 
2g£ Js3 g£

+ jV(c,d), f =

Let us start with the naive derivation of the hamiltonian for the (c, d) modes. From 
the lagrangian

* f pa F'W' - 
4g2 Js3 ,ll/

we obtain for the (c, d) space

g^ + ^-^I/fcd).
y

This leads to the hamiltonian
f ( 02 d2
2 \dc"dcf + ddfdd.?

with the potential V(c, d) = Izc](c, d) given by eq. (2.2.27).
The correct way to obtain the effective hamiltonian for the (c, d) modes must 

start from the full theory. In the case where the finite volume is the three-torus 
all zero momentum states become degenerate with the ground state at g = 0. This 
infinite degeneracy allows one to derive an effective hamiltonian for these states using 
degenerate hamiltonian perturbation theory starting from the full hamiltonian H [8]. 
This full hamiltonian in the Coulomb gauge is given in [2], Proceeding to higher order 
in this way is complicated, mainly due to the non-abelian Coulomb Green function 
that occurs in the kinetic part of the hamiltonian, but it can be done [19].

For the case of the three-sphere however, the ground state at g = 0 is non­
degenerate. The (c, d) modes are in this respect not the analogue of the zero momen­
tum modes on the torus, but are singled out just because of the fact that they are 
the slow modes of the system. To calculate the effective hamiltonian for these modes, 
we compute the effective action for the (c, d) degrees of freedom using a background 
field method. This explicit calculation will be performed in chapter 4.

We will use the hamiltonian formulation of the full problem for the discussion 
of the validity of restricting ourselves to the (c, d) space. Let x denote the 18 (c, d) 
modes and g all the transverse modes orthogonal to the (c, d) space. We use px and 
pq to denote the conjugate momenta. The full hamiltonian in the Coulomb gauge [2] 
is a function of x, px, q and pq. We define

= ’H(x,px = 0,q,p,).

Consider the following decomposition of the full

* = £ ¥’(M)C'r)X|x))(?)> 
n=l

where the functions |n) = X^M 1

«HX$(<z) = VWW>')’
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The Schrodinger equation T-Ci’ = is equivalent to the following set of equations:

(2.4.7)

As an example we assume the following form for the full hamiltonian,

(2.4.8)

(2.4.9)

Here we introduced the covariant derivative V by

(2.4.10)

(2.4.11)(n|/(Px,<Z,P,)|m).

V’<1'(r:), the higher

Appendix A: Details on the basis

E VL'P(m)to + (7^1(1) + V(">(®))<P(n)(z) = Eip^(x) 'in. 
m J

___ / 00 \

(n\H(x,px,(ppq) E <P(m)(z)|m) I - Eip(n\x) in.
\m=l /

^nm — a &nm + ("I „ lm) — <S„m A'„, 
OXi OXi UXi

The adiabatic approximation consists of truncating this equation to that is, we 
assume the transverse wave function to be in its ground state and we assume this 
ground state to decouple dynamically' from the excited states. This approximation 
is valid if either the coefficients ,4]lm are small, or if we are in the region where the 
energy difference 021(.t) — V0)(x) is large compared to the excitation energies of the 
states we are interested in.

Returning to the general problem, the equations for the functions ^n\x) will not 
just contain the functions Anm defined above, but more general matrix elements of 
the form

Still, if the excitation energies are small compared to V^(x) 
ip’s will be small and we can restrict eq. (2.4.7) to p(1).

In this appendix we will exploit the relation between S3 and SU(2) to rederive the 
basis (2.2.12). After this we will make the link with the definition of functions on 
Sn in terms of homogeneous polynomials in the coordinates of the embedding space. 
This last method will also be used when we come to construct a variational basis 
in configuration space for the effective model. We will also describe an alternative 
to (2.2.13) which is due to Cutkosky [14].

— f d2 1
= ~ 2 gx2 + J^cK1) “*■ ^|»]((bP«)-

This would be the form of the full hamiltonian if we neglect the complications of the 
uon-abelian Coulomb Green function. The Schrodinger equation for this c-.w leads 
to
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(iXj-VJ (<?)

(A.2)

(A.6)

(A.7)

(A.8)dg =
da

1 6tt2

2 1
= Asin2(2)sin(e)d(f)dedV,

Z7T

A.l The SU(2) group structure of S3
There is a one-to-one correspondence between points of S3 and SU(2) given by g = 
n ■ a. For instance, the matrix Vj of eq. (2.2.6) can in this light be seen as the 
adjoint representation of SU(2). The group of spatial symmetries of S3 is SO(4). 
These symmetries correspond to the left and right symmetries on SU(2). Let bea 
function on SU(2) or equivalently on S3. SU(2) can now act on this function by left 
or right multiplication:

(®/'(ffi)V’) (</) = ’/’(Si-1'?), (^"(<72)^) (ff) = V’(PPz), 9,9i,92 € SU(2). (A.l)

h. >:"-dimensional representations of the group SU(2) induce representations 
■ Lb Igebra su(2). We will show that the generators £ of these representations 

correspond to Li and Lj:

= ^V’(exp(-it|r,)g)|(=0

= -a + 7jtd-,n ■ <z)|1=0

= (n).

According to the Peter-Weyl theorem [20], a basis of functions on SU(2) is provided 
by the collection of matrix elements of all the finite-dimensional unitary irreducible 
representations of SU(2). Let D1 denote the standard (2j + l)-dimensional represen­
tation of su(2):

Dmm\\T3) = (A.3)

+ 1) - m'(m' + l)<5mm' + l, (A.4)

+ 1) -7n(m + l)<5m,m+i, (A.5)

with j = 0, A, 1,... and m, m! = —j, ■.. ,j. We obtain an irreducible, unitary rep­
resentation by exponentiation. The matrix elements of these irreps satisfy the 
following completeness and orthogonality relations:

/s^^dg D^in(g) = —8jj'l>Tnm'6nn',

= S(g,g'),
jinn

with dj = 2j + 1 the dimension of the irrep and dg the normalized Haar measure on 
SU(2). Writing g = exp(i<5 ■ f/2), it is given by

sin(|)
a 
2

Appendix A: Details on the basis
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(A.15)

The result of this

(A.16){-1(1 + n -1)}i=o,i,2,...>

and the degeneracy of the level I is given by

(A.17)

(A.18)

(A.19)

(fll.7 mL mR) = (-l)mL \/2j + 1 D’_ 

This is the basis (2.2.12).

(fl), 

(fl).

I — 2 + Tl 
n

(A.9) 

(A.10) 

(A.ll) 
(A.12) 

(A.13) 

(A.14)

We will relate these eigenfunctions to polynomials in xlt. Let V1 be the set of polyno­
mials in that are homogeneous of degree I. This means that p € V1 can be written 
as

p(x) = ^'"'‘‘x^ ■ ■ xn,

where t is a completely symmetric tensor. To such a polynomial p corresponds a 
function Y on S" defined by

p(i0,...,x„) = rlY(x0,.

I 4- n 
n

'm— In(g')’

'm+l

- (fl).

A.2 The eigenfunctions of the laplacian on S'1
In this section we summarize some well-known facts about the spectrum of the lapla­
cian on a n-dimensional sphere. This allows us to identify the functions (2.2.12) with 
explicit functions on S3. Let x0,... ,x„ be coordinates in Rn+1. Using radial coor­
dinates r, fl],..., 0,, one can explicitly solve for the eigenfunctions of the spherical 
laplacian A„, using separation of variables and recursion in n. Tl.^ —L. 1'-.: 
calculation (cf. e.g. [20]) is that the spectrum is given by

where a = |<5I < 2tt. The last equation shows that this measure corresponds precisely 
to the standard measure on S3. Using the well-known properties of the representations 
D: of su(2), one can show

4£»L(fl) = ->■<(?).________
^i^i.n(fl) = -yjj(j + i)-m(m-

= - ,/j(j + 1) - m(m + 1) D’,K

^D’mn(g) = n^Js),
£jPj.„(fl) = ^jb + l)-n(n + i)iymn+1

£-^,„(fl) = + 1) - n(n - 1) D1mn_i

To obtain functions with standard normalization and behaviour under the angular 
momentum operators, we define
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0 = (A.20)

dim(V') = (A.21)

have

dim (Ker (A))

(A.22)

(/ + 1)2. (A.23)

(A.24)

(A.25)

I 4- n
n

I 4- n 
n

Z + 3
3

Z + l
3

•'-2Any.

Suppose that p is

rn dr dr r2
We have found that every harmonic polynomial of degree I corresponds to a function 
on the n-sphere that is an eigenfunction of the spherical laplacian with eigenvalue 
-Z(Z 4- n — 1). The number of monomials of degree I in the variables t0, ...,xn can 
easily be computed. It is

= dim(0) - dim (Im (A))
> diin(0) - diin(0"2)

I — 2 4- n 
n

Hence we

Since we know the degeneracy of the eigenvalue —1(1 4- n — 1), we have shown that 
all the eigenfunctions of the spherical laplacian correspond to harmonic polynomials. 
Moreover, the inequality in the last equation is actually an equality.

For the case of S2 the eigenfunctions are the well-known spherical harmonics Y^. 
For the case S3 the spectrum becomes {-1(1 4- 2)}<—with the degeneracy given 
by

When comparing this with the results (A. 15), we see that I = 2j. The four j< = | 
modes (x|| niL inn) are linear combinations of the four scalar functions (p = 
0,..., 3), whereas the nine j = 1 modes (.t|1 m/?) correspond to the nine compo­
nents of Vj.

We will now derive a useful triangular condition. Let Y{ (i = 1,2,3) be three 
spherical functions that correspond to harmonic polynomials of degree We will 
show that the integral

y2(x)Y3(x)

is zero if the Z, do not satisfy the triangular condition. This is most easily proved by 
writing 5 ' in the form of eq. (A.18). The condition that the polynomials are harmonic 
implies that the tensors Z, are traceless. We now have

/ dxYt(x)Y2(x)Y3(x) = 
Js-

jh -pi, J'h+i -Ph+h .Ph+rj+r 7«,+i2+i3 f J- _
'1 l3 Js„ <‘1 J'l'h+M+lj •

a harmonic polynomial, i.e. Ap = 0. We then have 
„ d 1 x 1(1 4- n — 1) rl 2
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(A.26)

(A.27)

0 and

(A.30)

(A.31)

(A.32)

(A.33)

(A.28) 

(A.29)

—
we obtain

curl^ = Mpa^ = (j3 - Jf)

and hence

curl V’mlmh = T(2j +

(curl A(n))M = e llL,panRdpAa.

With the help of the S0(4) generators

The integral over S" will be a sum of products of Kronecker 5-functions. If, say, 
fa > fl + k, not all of the indices on t3 can be contracted with indices on ti and tj. 
The necessary contraction of two indices on t3 will then make the result vanish.

A.3 Cutkosky’s method
The construction of the basis (2.2.13) relied on the use of an explicit framing on S3. 
Cutkosky has given another way [14] of obtaining a basis of vector functions. With a 
vector field Ap(n) on S3 corresponds the function r/>(n,n') = n'pApfn) on S3 >: S3. All 
vector fields on S3 (not necessarily satisfying nMAM(n) = 0) can hence be expressed 
with the help of the set

(n|j mL mR) ® (n'|| m'L m'R).

Using Clebscli-Gordan coefficients one can define functions

(n,n'\(.j^)JLML-,(j,^JRMR),

where = L\ + L\ and Jr = L2 + L'2- Imposing the conditions nMXM(n) 
dMrlM(n) = 0 leads to a basis for transverse vector fields on S3 given by

VMLMR = (n> n'ICi. |)> + 2> ~ML\ ~ I’ Mr')’

vmlmr = |)y - (J, + |,Mfi).

As an example, to the three vector fields e'p belong the functions # = ’’l'pun'Rn^- One 
easily shows that these modes have Jl = 1 and Ju = 0 and hence correspond to 
I'a/lO • Analogously, the three vector fields el can be expressed in V„m~.

The potential V(A) of eq. (2.2.22) is to lowest order in A proportional to the square 
of the curl of A integrated over space. This means that the quadratic fluctuation 
operator of eq. (2:2.24) equals the square of the curl. The curl operator on S3 is given 
by

Chapter 2: Preliminaries
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Introduction3.1

Gribov and fundamental regions3.2

||".4||2 = (3.2.1)

Gauge fixing and the fundamental 
domain

The configuration space of Yang-Mills gauge theory is the space of gauge orbits A/Q, 
wlieie A is I.he set of all configurations of the gauge field and Q is the group of local 
gauge transformations. The geometry of the finite volume on which the Yang-Mills 
theory is defined, is the one of the three-sphere. When studying the configuration 
spar e many of the arguments are independent of this geometry in which case we will 
denote (compactified) three-space by M. Nevertheless, the details of the way A/Q 
is parametrized will crucially depend on M. This is already evident from Singer’s 
argument [3] as the topology of A/Q does depend on M. We will come back to the 
consequences of this for the physics of the problem at the end of this chapter.

The physical interpretation of a hamiltonian [2] is clearest in the Coulomb gauge, 
d,Ai = 0. But it has been known since Gribov’s work [5] that this does not uniquely 
fix the gauge. Furthermore, there are coordinate ’’singularities” where the Faddeev- 
Popov determinant vanishes. Here the mapping between AIQ and the transverse 
vector potentials becomes degenerate.

In this chapter we will first develop the general theory of gauge fixing with the 
help of a fundamental domain, after which we analyse the Gribov horizon and the 
boundary of t he fundamental domain in the (c, d) space, that is, in the space of slow 
modes. We prove that parts of this boundary coincide with the Gribov horizon with 
the help of bounds on the fundamental modular domain.

We will now try to find suitable coordinates for the Yang-Mills configuration space. 
Like using stereographic coordinates for a sphere, which leads to a coordinate sin­
gularity at one of the poles, coordinate singularities can be removed at the price 
of having different coordinate patches with transition functions at the overlaps. In 
gauge theory, these different coordinate patches can simply be seen as different gauge 
choices [9,21]. But this is somewhat cumbersome to formulate and most, but (as we 
shall see) not all coordinate singularities can be avoided if one restricts the set of 
transverse vector potentials to a fundamental region which constitutes a one to one 
mapping with A/Q. One obtains a fundamental region by minimizing the L2 norm 
of the vector potential along the gauge orbit [15,22]

f d3x tr
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(3.2.2)

(3.2.3)

(3.2.4)

[A.X])

(3.2.5)

(3.2.6)A/G A/G-

||’/1||2

where the vector potential is taken anti-hermitian. For SU(2) one has:

Af(x) = A‘(z)^,

s(x) = exp(X(x)), X(x) = X°(x)y.

The connection with the Coulomb gauge condition and the Gribov horizon becomes 
clear from expanding eq. (3.2.1) around g = 11:

= ||A||2 + 2 [ tr(AftA) + / tr(A* FP(A) A)
J M J M

+l[ ti(X\[Ai,X],diX]) + ^ [ tr([AX,A'][ftA,A]) 
J M J M

+o (A'5) .

Here FP(A) is the Faddeev-Popov operator (ad (A)A' =

FP(A) = -d,Di(A) = -d* - ft ad (A).

At the absolute minimum of eq. (3.2.4) the vector potential is hence transverse, 
ftA = 0, and FP(A) is a positive operator. We denote the set of transverse vector­
potentials by T. The set of all transverse vector potentials with positive Faddeev- 
Popov operator is by definition the Gribov region fl. It is a convex subspace of T, 
with a boundary <9Q that is called the Gribov horizon (see fig. 3-1). At the Gribov 
horizon, the lowest eigenvalue of the Faddeev-Popov operator vanishes, and points 
on 312 are hence associated with coordinate singularities.

The Gribov region is the set of local minima of the norm functional (3.2.4) and 
needs to be further restricted to the absolute minima to form a fundamental domain, 
which will be denoted by A. The fundamental domain is clearly contained within the 
Gribov region and can easily be shown to also be convex [15,22]. Its interior is devoid 
of gauge copies, whereas its boundary 3A will in general contain gauge copies, which 
are associated to those vector potentials where the absolute minima of the norm 
functional are degenerate [23]. If this degeneracy is continuous one necessarily has at 
least one zero eigenvalue for FP(A) and the Gribov horizon will touch the boundary 
of the fundamental domain at these so-called singular boundary points. By singular 
we mean here a coordinate singularity. There are so-called reducible connections [24], 
and A = 0 is the most important example, which are left invariant by a subgroup of G- 
As here Q does not act transitively, A/G has curvature singularities at these reducible 
connections. They can be “blown-up” by not dividing by their stabilizer. For S3 one 
can proof A = 0 is the only such a reducible connection in A. (Note G is the set of 
all gauge transformations, including those that are homotopically non-trivial). The 
stabilizer of A = 0 is the group G(= S(7(2)) of constant gauge transformation. This 
gauge degree of freedom is not fixed by the Coulomb gauge condition and therefore 
one still needs to divide by G to get the proper identification
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Boundary identification

Singular boundary point r
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Figure 3-1 Different subsets of A. The set of transverse vector fields is denoted by T: diAi = 0. 
The Gribov region is Q: FP(X) = — diD\A^ > 0. The would-be fundamental domain is A: ||SX|| > 

IMII

8A
\

Here A is considered to be the set of absolute minima modulo the boundary iden­
tifications, where the absolute minimum might be degenerate. It is these boundary 
identifications that restore the non-trivial topology of AjQ. Furthermore, the exis­
tence of non-contractable spheres makes it plausible that singular boundary points 
cannot be avoided [23]. However, not all singular boundary points, even those as­
sociated with continuous degeneracies, need to be associated with non-contractable 
spheres. Note that absolute minima of the norm functional are degenerate along the 
constant gauge transformations, this is a trivial degeneracy, also giving rise to trivial 
zero-modes for the Faddeev-Popov operator, which we ignore. The action of G is 
essential to remove the curvature singularities mentioned above and also greatly fa­
cilitates the standard hamiltonian formulation of the theory [2]. There is no problem 
in dividing out G by demanding wave functionals to be gauge singlets (colourless 
states) with respect to G. In practice this means effectively that one minimizes the 
norm functional over G/G.



Chapter 3: Gauge fixing and the fundamental domain30

3.3

(3.3.1)

(3.3.2)

(3.3.3)

(3.3.5)

(3.3.6)

nW - mu2

Gribov and fundamental regions for A(u,v)
Let us analyse the condition for ||M||2 to be minimal a little closer. We can write

= / tr (A2) ~ / tr ((g”1A,g + g-13,g)2}

= ltT^FP^A)g) = {g,FP^A')g), 

where FPi/2(-4) is the Faddeev-Popov operator generalized to the fundamental rep­
resentation:

fp,(a) = -a? - l-A^dt.

Here T, are the hermitian gauge generators in the spin-t representation:

Tt = y, Tf = ad(y).
2 Z Z

They are angular momentum operators that satisfy T2 = t(t + 1)11. At the critical 
points A e T of the norm functional, (recall T = [A 6 -4|3,A, = 0}), FP((A) is an 
hermitian operator. Furthermore, FPi(A) in that case coincides with the Faddeev- 
Popov operator FP(A) in eq. (3.2.5).

As an aside, note that the convexity of both the Gribov region and the funda­
mental domain follow directly from the property

FP,(sA + (1 - s)B) = s FP((A) + (1 - s) FP,(B). (3.3.4)

In eq. (3.3.1) FP]/2(A) is defined as an hermitian operator acting on the vector space £ 
of functions g over S3 with values in the space of the quaternions IH = {<7,10'/l|<?/1 G IR.}. 
To be precise, we should require g g IV2(S3,IH), with WjfAf, V) the Sobolev space of 
functions on M with values in the vector space V, whose first derivative is continuous 
and square integrable. We use the standard isomorphism between the complex spinors 

(on which 7\/2 acts in the standard way) and the quaternions, by combining and 
ct2V''- To be specific, if i/>i = qo + iq2 and ip2 = iqx — q2, then g = =
q • a is a quaternion (on which ft/2 now acts by matrix multiplication). Charge 
conjugation symmetry, Cip = d2r/>*, implies that [FPi/2(A),C] = 0 and guarantees 
that the operator preserves this isomorphism. Also note that this symmetry implies 
that all eigenvalues are two-fold degenerate. The gauge group Q is contained in C by 
restricting to the unit quaternions: G = {g g C\g = g^a^g^ 6 = 0-

We can define A in terms of the absolute minima (apart from the boundary 
identifications) over g g G of {g, FPi/2(A) g}

A = {A g T| min (g, FPi(A) g) = 0}.

When minimizing the same functional over the larger space C one obviously should 
find a smaller result, i.e.

G c £ => min(g, FPi(A)g) > rain (g,FPi(A)g) .
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(3.3.7)

(3.3.8)

(3.3.9)

(2/ + l)(|u| + |v|) — u — v], (3.3.10)

(3.3.12)

Writing

A {/I e r| min (<;, FPi(A) = 0},

it follows directly from eq. (3.3.6) that A C A. Since A is related to the minimum of 
a functional on a linear space, it will be easier to analyse A than A. We were inspired 
by appendix A of ref. [16] for this consideration. Remarkably, we will be able to 
prove that the boundary dK will touch the Gribov horizon dQ.. This establishes the 
existence of singular points on the boundary of the fundamental domain due to the 
inclusion A C A C Q.

In the (u,r) plane one easily finds that

FPd.4(u, v)) = 4L2 + -uLx ■ ft + • ft-

For fixed angular momentum I / 0 (where Z( = L2 = 1(1 + 1)), the eigenvalues of 
■ f/2 (which is a kind of spin-orbit coupling) are - 1±1 and |. This is easily seen 

to imply that for g with L2g = 1(1 + l)ff (1 / 0) 

and hence

(g, FPi(A(u, v)) g} > ||p||2 [41(1 + 1) -

whereas of course for I = 0 we have (g, FPj^A) <;) = 0. Now let A/ be the region in 
the (u, v) plane where the right hand side of eq. (3.3.10) is positive:

A, = {(«, v)| [41(1 + 1) - (21 + l)(|u| + |v|) - u - v| > 0} , (3.3.11)

then one easily verifies that A( C Al+1/2 for I 0. For illustration we have drawn 
the boundaries of A1/2 and A; in fig. 3-2 (the two nested trapeziums). Consequently, 
restricted to the (u,v) plane Ai/2, the trapezium spanned by the four points (1,0), 
(0,1), (-3,0) and (0, -3), is contained in A. As one easily checks, the vector poten­
tials belonging to the sphalerons at (1,0) and (0,1) have the same norm. Since they 
are related by a gauge transformation (as was proved earlier) and lie on the boundary 
of Ai/2, these sphalerons have to be on the boundary of the fundamental domain 5A. 
Hence, A]/2 is seen to provide already quite a strong bound.

Before constructing A in the (u,v) plane, it is instructive to consider first the 
Gribov horizon, which is given by the zeros of the Faddeev-Popov determinant 
det(FP,(/l)). The operator FP((A(m,v)) as given by eq. (3.3.8) not only commutes 
with L2, but also with Jt, where

Ji = Li + T2 + 7).

Section 3.3: Gribov and fundamental regions for A(u,v)
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6

4 - -

-2

-6

/
-8

-6 6 8

(3.3.13)S = U + V, p = u-v,

(3.3.16)

Note that this Jt differs from the operators J defined in chapter 2. Using the quantum 
numbers one can easily diagonalize FP((A(u,u)) for low values of I. Note
that the eigenvalues are independent of j[. Defining the scalar and pseudoscalar 
helicity combinations

g 
-4 -2 0 2 4

p=u-v

Figure 3-2. Location, for the (u,v) plane of the classical vacua (large dots), sphalerons (smaller dots), 
bounds on the Faddeev-Popov operator for I = | and I = 1 (short-long dashed curves), zeros of the 
adjoint determinant (solid lines for I = |, dashed lines for I = 1) and the Gribov horizon (fat sections).

2

|o

the zeros of which are also exhibited in fig. 3-2 (solid lines for I = |, dashed lines for 
I = 1). The Gribov horizon in the (u,v) plane is indicated by the fat lines and is 
completely determined by the I = | sector, a fact that we will now prove. Note that 
the set of infinitesimal gauge transformations Ls = {X : S3 —• su(2)} is contained in 
C. Here su(2) is the Lie algebra for SU(2) (i.e. the traceless quaternions). It is easy 
to verify that for X e. Lg, we have for all vector potentials A

(X,FP1(A)X) = (X,FPr(A)X)

we take from ref. [25] the results

det(FP1(A(u,v))|1=|) = (3 - 2s) (9 - 3s - 2p2)3 (3 + s)5, (3.3.14)

det(FPI(A(u,v)))1=1) = 512 (8 — 2s) ((8 — 2s)2 — s2 + p2(2s — 7))3 x
(64 — s2 — 3p2)5 (8 + 2s)7, (3.3.15)
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(3.3.17)

(3.3.18)

(3.3.19)

with

(3.3.20)ai,o(v)

(3.3.21)<^2,0

(3.3.22)“2,1 (»>)

2
2 + v’
—2(v2 + 6u - 16)
(2 + u)3(10 + v) ’ 

4(6 + v)
(v + 2)2(v + 10) ’

= * £ £ aj<k(v)uJx2k, 
j=\k=o

This fact will enable us to use the same bounds for FPi and FPi/2 (cf. eq. (3.3.6)):

C £ => mm (X, FPi(A) X) > min (g, FP^A) g) .

Hence all zeros of the Faddeev-Popov determinant with I > 1 lie outside the trapezium 
Ai, spanned by the four points (2,0), (0,2), (—4,0), (0,-4).

This then proves that FPi(A) > 0 within the region bounded by the zeros of 
eq. (3.3.14). We see from fig. 3-2 that along the line s = u + v = —3, for |p| = 
|u — w| < 3, the Gribov horizon coincides with 3A and consequently these are singular 
boundary points. Note that therefore it is necessary that the term third order in X 
in eq. (3.2.4) has to vanish if FP(A) X = 0. As on the Gribov horizon any non­
trivial zero-mode has I = |, whereas A(u, v) has I = 0 or I = 1, this third order 
term vanishes along the whole Gribov horizon in the (u,v) plane (all its points are 
therefore bifurcation points [23]). It can, however, also be shown that these singular 
boundary points are not associated with non-contractable spheres (see app. A).

Next we will construct A in the (u, v) plane to get an even sharper bound on A. It 
is by now obvious that this will follow from finding det(FP!/2(A(u, v))) in the I = | 
sector. A straightforward computation yields:

det (FPi(u, = 9 (3 + s)4 (3 — 2s — p2)2,

where the multiplicity of 4 comes from the J = | state and the multiplicity 2 from the 
two j = 1 states in the decomposition | ® | ® | | ffi | ffi |. In fig. 3-3 the bordering
parabola going through the points (0, —3), (1,0), (|, |), (0,1) and (—3,0), cut off by 
the line s = —3, forms the boundary of A. As in the case of the Gribov horizon, A is 
completely determined by the I — j sector, since also the zeros of det(FPi/2(A(u,«))) 
with I > 1 lie outside the trapezium Aj. Notice that we have now also shown that 
(u, v) = (|, |) is a singular boundary point.

We recall that in [25], part of 3 A in the (u, v) plane was constructed by expanding 
around the sphalerons, which are known to be on 3 A. One solves for fixed (u, v) 
near (0,1) for the extremum of (g, FP1/2(A(m, v)) g) with respect to g = n-aexp(X), 
where it can be shown that X = —n af^no). This leads to a second order differential 
equation, solved by
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back in eq. (3.3.1) and demanding equality of norms yields

(3.4.1)

3.4 Gribov and fundamental regions for A(c,d)
We will now generalize our discussion to the 18-dimensional field space, parametrized 
by A(c,d) in eq. (2.2.26). For this case one has

2 2
FP,G4(c,d)) = 4L2 - -c^L\ - -d^L\.

Figure 3-3. Location of the classical vacua (large dots), sphalerons (smaller dots), bounds on the 
Faddeev-Popov operator for I = | (short-long dashed lines), the Gribov horizon (fat sections), zeros 
of the fundamental determinant in the sector I = | (dashed curves) and part of the boundary of the 
fundamental domain (full curves). Also indicated are the lines of equal potential in units of 2n times the 
sphaleron energy.

Substituting this now 
v(u):

«(u) =

+ (3.3.23)

giving the part of SA in the (u, v) plane going through the anti-sphaleron at u = 0. 
We have drawn the maximal extension to the Gribov horizon, but not all of it is 
expected to coincide with SA. Interchanging the two coordinates gives the part of SA 
going through the sphaleron. Both parts are indicated by the curves in fig. 3-3. They 
are consistent with the inclusion A C A. In this figure also lines of equal potential 
(eq. (2.2.27)) are drawn.

2



35

(3.4.2)

FP.(--l(c, d))

(3.4.3)

(3.4.4)

(3.4.5)

This still commutes with X2, but for arbitrary (c, d) there are in general no other 
commuting operators (except for the charge conjugation operator C for t = |).

We first calculate the analogues of the regions A/, as defined in eq. (3.3.11). We 
decompose

(ff, FPi(4(c,d))<?) >

IlffH2 4Z(Z + 1) - (2Z + 1) £(|Cj| + |d,|) + + </,-) .

c“ = E^(6J",

As in eq. (3.3.10), for g an 
find the bound

As before, we define A; as the polyhedra where the right hand side of eq. (3.4.5) is 
positive. They are nested polyhedra, i.e. A; C A(+i/2- Hence we have the inclusion 
Al/2 C A C A c Si. If we restrict ourselves to the two-dimensional subspace where all 
but one of the Cj (—u) and all but one of the dj (-v) are zero, we precisely recover the 
situation of the previous section. The bounds will, however, depend on the particular 
choice of the b, matrices. The sharpest bound is obtained by forming the union of 
all A( obtained by these various choices.

We now turn to the computation of the Faddeev-Popov determinants. In the sec­
tor Z = 1, which is 4(2 i + 1) dimensional, the problem of computing det(FP1(A(c, d))) 
is still manageable. A suitable basis is given by |si,s2,s3), with s, the eigenvalues 
of the third component of the three angular momentum operators Xi, L2 and Tt. 
For t = 1 it is actually more convenient to consider |si,S2)a, where a is the vector 
component. Using

Xf|.si,s2)o
X-|si,s2)„

eigenfunction of L2 with eigenvalue Z(Z + 1) (Z 0), we

= (5 T s,)| - si,s2)a , L2|si,s2)o = (| T s2)|si, —s2><» ,
— S'JSi,S2)n , X’||si,S2)a — , S3)c i (3.4.6)

with Cj and <Z2 coefficients and the set {&_,} a basis of IR.3'3, consisting of orthogonal 
matrices (b' = b~') with unit determinant. We then have:

2 2
= 4L2 - (&,)“ L\ - -djTt‘ (brf L\

= 4X2 — ~cjTt ■ Lij — ~djTt ■ L2j,

with the proper angular momentum operators

Section 3.4; Gribov and fundamental regions for A(c,d)

X^B^X', * = 1.2-
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(3.4.9)

(3.4.10)

(3.4.12)

(3.4.14)M(nia1,n2a2,n3a3) =
nicri
71-2 <72 
713(73

^3 
3

Xl

where as usual = L* ±iLj, one easily writes down the matrix for M = FPi (/l(c, d)) 
in this sector (c± = c? icj and id$):

M\s},s2)b = -i 52 {(5-as1)c“eQ(,c|-s1,s2)c + (i-as2)d“eadc|si,-S2)c} 
Or=±

+ (356c - 2ieabc(s1c3 + s2d3)') |s,, s2)c . (3.4.7)
In particular for the choice

c? = xtf , d“ = ytf , (3.4.8)
one can, with the help of MATHEMATICA [26], check that the following holds:

det (FP,(j4(c, d))|,_i) =

F(xt + y^,x2 + y2,x3 + y^F^x, - yi,x2 - y2,x3 + y3) x
F(xi - j/i,z2 + y2,z3 - y3)F(xt +yi,x2- y2,x3 - y3),

x2 >

3 /

with

F(z) = 2l[zt- 352z?+27.

To obtain the result for general (c, d) we first observe that we have invariance 
under rotations generated by and L2 and under constant gauge transformations 
generated by ft, implying that det(FPf(.A(c,d))|i=1/2) is invariant under

c“ -> (Scflj)“, d“ - (Sdfi2)“, (3.4.11)

with Ri, R2 and S orthogonal matrices with unit determinant (note that the 
introduced in eq. (3.4.3), are nothing but the Lk generators, rotated by Ri = R2 = I>2)- 
This also allows us to understand the large amount of symmetry in eq. (3.4.9), as 
a permutation of the x, (y,) and a simultaneous change of the sign of two of the Xi 
(t/i) is the remnant of this symmetry, when restricted to the diagonal configurations 
of eq. (3.4.8). The result for the generalization of eq. (3.4.9) to arbitrary (c, d) is 
presented in appendix B. Here we will treat the case d = 0. Using eq. (3.4.11) we 
first diagonalize c“ and then express F(x) in terms of the complete set of rotational 
and gauge invariant parameters of c“

detc = JJsi, tr(ccr) = 52 s?, tr(ccTccT) = 52x?,

which implies F’(x) = 2 det c — 3 tr(ccT) + 27 and

det(FPi(A(c,0))|l=i) = (2det c - 3 tr(ccT) + 27)"*. (3.4.13)

This can also be easily derived by constructing the three-dimensional invariant sub­
space for (c“ = x;<5“, d = 0), spanned by the 3 vectors riiO, (no sum over i), with 
respect to which the matrix for M takes the form

3
x3
12
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2

1

0

-2

0 1 2-3
u

Figure 3-4. Location, for the (u,j/) plane of the classical vacua (large dots), sphalerons (smaller dots), 
bounds on the Faddeev-Popov operator for I = 1 (short-long dashed curves), boundary of the fundamental 
domain (solid lines) and the Gribov horizon (fat curves), as well as the lines of equal potential.

(3.4.15)
(3.4.16)

find [27]

whose determinant coincides with F(if). It is not too difficult to construct the three 
other three-dimensional invariant subspaces with identical determinants.

Two special cases in this class were first considered by Cutkosky [27]:

I : c“ = diag(—u + y,-u + y, -u - 2y),
II : c“ = diag(—u + x, — u — x, — u).

For F, which determines the Faddeev-Popov determinant at I = |, we

Fj = (u + 2y + 3) [(u + 3)(3 - 2u) + 2(2u - 3)y - 2y2], (3.4.17)
Fn = (u + 3)2 (3 - 2u) + 2(u - 3)x2. (3.4.18)

The associated zeros are drawn respectively in figs. 3-4 and 3-5. Note that the 
(u,y) plane admits a global gauge symmetry (u,i/) —» j(4y — u,y + 2u) generated 
by S = diag( —1, —1,1), which maps the vacuum at (u,y) = (2,0) to a vacuum at 
(—5,5). To conclude that these zeros coincide with the Gribov horizon, we have 
to show that the Faddeev-Popov operator for all I > 1 is positive within the region 
bounded by these zeros. Using eq. (3.3.17), it is sufficient to show that these zeros lie 
within Ai, the region obtained from the bound on FPi/j(A) in eq. (3.4.5). Clearly we 
should try to construct this bound by taking for bj the diagonal orthogonal matrices 
diag(l, 1,1), diag(l, -1, -1), diag(-l, -1,1) and diag(-l, 1, -1). It turns out to be 
sufficient to consider the union of the bounds obtained by applying eq. (3.4.5) for the

-3
■4
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2

1

X o

-3 1 20

Figure 3-5. Location, for the (u,z) plane of the classical vacua (large dots), sphalerons (smaller dots), 
bounds on the Faddeev-Popov operator for I = 1 (short-long dashed curves), boundary of the fundamental 
domain (solid line), zeros of the fundamental determinant for I = | (dashed lines) and the Gribov horizon 
(fat curves), as well as the lines of equal potential.

four triplets of possible choice of diagonal bj. In terms of general this leads to the 
four bounds

41(1 4-1) — |(2Z 4- l)(|xi 4- x2| 4- |xi 4- i3| 4- |x2 4- x31) - — x2 — x3 > 0,

41(1 4- 1) - |(2Z 4-1)(|rri - i2| 4- |ii - i3| + 1^2 4-13|) - ii 4- x2 4- x3 > 0,

41(1 4- 1) — |(2Z 4- l)(|rci 4-12| 4- |ii — i3| 4- |x2 — x3|) 4- X\ 4- x2 — x3 > 0,

41(1 4- 1) - |(2l 4- l)(|ii - i2| 4- |ii 4-13| 4- |x2 - x3|) 4- ii - x2 4- x3 > 0.
(3.4.19)

-1
u

The union of these polyhedra respects the gauge and rotation symmetry and we take 
it as the definitions of A; for d = 0. They are again nested, such that it is sufficient 
to show that the convex regions bounded by the zeros of the Faddeev-Popov operator 
in the I = | sector are contained within A). From figs. 3-4 and 3-5 we see that this 
is indeed the case, allowing the identification of d£l (fat curves) and 3A (dashed or 
full lines) with the zeros of respectively det(FP) (A)|(=J/2) and det(FP1/2(/l)|i=i/2).

We now turn to the calculation of dct(FP1/2(A(c, d))|i=i/2) which will allow us 
to construct A and to find possible further singular points on the boundary of the 
fundamental domain. In this case the basis |«i, s2, S3), which was defined earlier, is
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2

c“ = (3.4.20)

(3.4.23)

(3.4.27)
(3.4.28)

21

3/2
23

x, 
0 
0

0
X?

0

0 
0 

*3

22 '

23

3/3 /

With L* as

Xt“ = (ccr);, J? = (ddT)£. (3.4.22)
Using MATIIEMATICA and expressing the result in terms of traces of products of X 
and Y, we obtain an expression which is manifestly invariant:

det (FP|(4(c, d))|(_i)
F = 81 - 18 tr(X 4- Y) 4- 24(det c 4- det d)

- tr2(X - y) 4- 2 tr((X - K)2). (3.4.24)

With this, one easily reproduces the result of eq. (3.3.18) (x, = —u, = — v, s = 
u 4- v, p = u - v). Note the overall square, which is a consequence of the two-fold 
degeneration of the eigenvalues due to the fact that FP1/2 commutes with the charge 
conjugation operator C. Such a non-trivial commuting operator does not exist for 
FP15 whose determinant does not factorize and was hence much more difficult to 
calculate (see app. B).

For d = 0 we find

det (FPiG4(c,0))|1=i) = F2, (3.4.25)

^ = 81- 18 trX + 24 det c — tr2(X) + 2 tr(X2). (3.4.26)

In figs. 3-4 and 3-5 we have drawn SA obtained from the zeros of eq. (3.4.25) for the 
two cases of eq. (3.4.15) and eq. (3.4.16):

T7! = 3(3 + u + 2t/)2(u — l)(4j/— 3 - u),
.T7!! = 3(u + 3)(u- l)[4x2 - (3 + u)2],

a convenient one for the I = j invariant subspace. Using the invariance as given by 
eq. (3.4.11), we can take c“ diagonal and d“ symmetric:

' yi

21

\ 22

before and Tjy2 = T^2 ± iT^2, we obtain the following expression:

FP,(.4(c,d)) = 3 + 2iz1 (t?L+

■ 2(z2 - iz3) - 2(z2 + iz3) (t3,L2 + TfL2)

L2 - (x, + x2) (tJLT + - (X! - x2) (t+ L+ + Tj-Lf)

-idzlU* - (j/i + 3/2) (t^LT + TTL^ - (3/1 - 3/2) (T1+L+ + Tfi^) .

(3.4.21)

In order to express the final result in invariants, we introduce the matrices X and Y 
via
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(3.4.29)M(x,, 0) = (2 4- Xi)n ■ • a,

for arbitrary diagonal configurations. Equality of norms implies the equation 52 xi + 
3 = 0. This means, since A C A, that in fig. 3-4 the edges of A passing through the 
sphalerons coincide with dA, a fact that can also be concluded from the convexity 
of A. Hence, in fig. 3-4 A coincides with A and the line u 4- 2y = —3 consists of 
singular boundary points. In fig. 3-5 it is not excluded that, at the dashed lines, 
dK does not coincide with dA, as was also the case for the (u, v) plane, see fig. 3-3. 
We can settle this issue by considering the embedding of the (u, x) plane within the 
three-dimensional space of the Xi.

All surfaces to be constructed have to respect the symmetries of the permuta­
tions and the double sign flips of the xt coordinates. We first consider A], see 
eq. (3.4.19), which can be seen as a tetrahedron spanned by the points (4,4,4), 
(—4, —4,4), (4, —4, —4) and (—4,4, —4), enlarged by adding to each face a symmetric 
pyramid, whose tips are given by the points (-2,-2,-2), (2,2,-2), (-2,2,2) and 
(2, —2,2) (corresponding to the copies of the classical vacuum at x = 0). For general 
I, A/ can be constructed from this twelve faced polygon by scaling the corners of the 
tetrahedron with I 4- 1 and the tips of the pyramids with I, from which their nested 
nature is obvious. A special case arises for I = |, where the pyramids are of zero 
height, such that Ai/2 is a tetrahedron. It is a remarkable fact that the fundamental 
Faddeev-Popov determinant in the sector I = | (eq. (3.4.25)) vanishes on dAi/2. As 
this is enclosed by Ai, where all eigenvalues of FPi/2(A) with I > 1 are strictly pos­
itive, we conclude that A = Ai/2 (the tetrahedron spanned by (3,3,3), (—3, —3,3), 
(3, —3, —3) and (—3,3, —3)). The convex region bounded by the zeros of the adjoint 
determinant (eq. (3.4.13)) can be shown to form a surface contained in Ai that can 
be visualized by stretching a rubber sheet around this tetrahedron, fixed at its edges 
and slightly inflated. This surface forms the Gribov horizon dQ, since also all eigen­
values of FPi(/l) with I > 1 are strictly positive inside Aj. Because of the inclusion 
A C A C Q, all points on the edges of the tetrahedron are singular boundary points. 
As all the faces of this tetrahedron contain a sphaleron, which we have proved earlier 
to be on the boundary of the fundamental domain (the edges of the tetrahedron are 
singular points on the same boundary), we conclude (using the convexity of A) that 
A = A. This is consistent with eq. (3.4.29), where equality of norms gives the equa­
tion that describes the face of the tetrahedron through the sphaleron at (—1,—1,—1)» 
Ex, 4- 3 = 0. The other three faces follow from flipping the sign of two of the Xi, 
which is a symmetry. In fig. 3-6 we have drawn the fundamental modular domahi 
for d = 0 in x space and in fig. 3-7 we give the Gribov horizon and the edges of dAi 
(dashed lines). This completes the construction of the fundamental domain for d = 0.

which indeed provides further singular boundary points (since dkndQ is not empty). 
Also the part of dN that contains the sphaleron is easily derived from the fact that 
the gauge transformation with winding number -1, g = n • a, leads to
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We have analysed in detail the boundary of the fundamental domain for SU(2) gauge 
theories on the three-sphere. We have constructed it completely for the gauge fields 
with Z2=0 and have provided partial results for the 18-dimensional space of modes 
that are degenerate with these in energy to second order in the fields. Especially, 
the interesting point of explicitly demonstrating the presence of singular boundary 
points, i.e. points where the boundary of the fundamental domain coincides with the 
Gribov horizon, was addressed. In ref. [23] existence of singular boundary points was 
conjectured on the basis of the presence of non-contractable spheres [3] in the physical 
configuration space A)Q. Not all singular boundary points are necessarily associated 
with such non-contractable spheres, which we demonstrated for the case at hand (see 
app. A). It is also important to note that it is necessary to divide A by the set of 
all gauge transformations, including those that are homotopically non-trivial, to get 
the physical configuration space. All the non-trivial topology is then retrieved by the

Figure 3-6 The fundamental modular domain for constant gauge fields on S3, with respect to the 
"instanton" framing e“, in the diagonal representation Aa — xnaa/2 (no sum over a). By the dots 
on the faces we indicate the sphalerons, whereas the dashed lines represent the symmetry axes of the 
tetrahedron.

-2 -4
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identifications of points on the boundary of the fundamental domain. Zwanziger [28] 
(app. E) has constructed, for the case of M = T3, a gauge function parametrized by 
a two-sphere for which the norm functional is degenerate, but its vector potential lies 
outside the fundamental domain when also the anti-periodic gauge transformations 
are considered as part of G [23].

As we already mentioned in the introduction, the knowledge of the boundary 
identifications is important in the case that the wave functionals spread out in con­
figuration space to such an extent that they become sensitive to these identifications. 
This happens at large volumes, whereas at very small volumes the wave functional is 
localized around A = 0 and one need not worry about these non-perturbative effects. 
That these effects can be dramatic, even at relatively small volumes (above a tenth of 
a fermi across), was demonstrated for the case of the torus [9,21], However, for that 
case the structure of the fundamental domain (restricted to the abelian zero-energy 
modes) is a hypercube [23] and deviates considerably from the fundamental domain

Figure 3-7. The Gribov horizon for constant gauge fields on S3. with respect to the "instanton" framing 
e“. in the diagonal representation Aa = xa<za/2 (no sum over a). The dashed lines represent the edges 
of Ai. which encloses the Gribov horizon, whereas the latter encloses the fundamental modular domain, 
coinciding with it at the singular boundary points along the edges of the tetrahedron of fig. 3-6.
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Singular boundary pointsAppendix A:

(Al)

(A.2)

(A.3)

In this appendix we shall demonstrate that the singular part of the boundary of the 
fundamental domain in the (u, v) plane does not contain points associated to non- 
contractable spheres. Such a non-contractable sphere implies at least a one parameter 
gauge function g(t) along which the norm functional is degenerate and minimal. We 
will first show that this implies that the fourth order term in eq. (3.2.4) needs to 
be negative. After that we show that this is not the case for the singular boundary 
points under consideration. We write

S = exp(X(t)), X(t) = tXx + t2X2 + t3X3 + t4X4 + O (f5) .

For all t one should have that 3i(s<'Mt) = 0. Using the fact that

one easily concludes that Xj is a zero-mode for the Faddeev-Popov operator at t = 0, 
whereas the first order term in t gives the equation

FP(A)X2 = Aa]).

of the three-sphere. One can hence conclude that something needs to happen to the 
structure of the theory, to avoid that the infinite-volume limit in the infrared depends 
on the way this limit is taken, e.g. by scaling different geometries, like T3 or S3. One 
way to avoid this undesirable effect is that the vacuum is unstable against domain 
formation [12,21,23].

To conclude, let us return to the issue of the singular boundary points. Many of 
the coordinate singularities due to the vanishing of the Faddeev-Popov determinant 
(which plays the role of the jacobian for the change of variables to the gauge fixed 
degrees of freedom [4] in the hamiltonian formulation) are screened by the boundary 
of the fundamental domain. Although the singular boundary points form a set of 
zero measure in the configuration space, they can nevertheless be important for the 
dynamics. Near these points we have to choose different coordinates and formulate 
the necessary transition functions to move from one to the other choice. It is clear 
that, this is difficult to formulate in all rigour in the infinite-dimensional field space. 
As the dot.lain formation is anticipated to be due to the fact that the energies of 
the low-lying states flow over the sphaleron energy, we can study the dynamics of 
the domain formation as long as the energies of all singular boundary points are well 
above the sphaleron energy. From figs. 3-3,3-4 and 3-5 we see that this is indeed the 
case in the 18-dimensional subspace we have considered. For the higher energy modes 
the tail of the wave functional will be so small at the singular boundary points, that 
we need not worry about their influence on the spectrum. In this way we have a well 
defined window in which the non-perturbative treatment of a finite number of modes 
will allow us to calculate the low-lying spectrum of the theory.
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Appendix B:

2tr(Q4)]. (A.6)

find for the right hand side 3, which is positive.

Gribov horizon for A(c,d)
In this appendix we will calculate det(FPi(A(c,d))|/=i/2) for general (c, d), thus ex­
tending the result in eq. (3.4.9). We will write the result in terms of the matrices X 
and Y defined in eq. (3.4.22). It is useful to introduce the following quantities:

£>i = (eabcc^cbjdct.y =
/ n th \

d3

tr Y ((tr X)2 - tr(X2)) + tr(X2V) - 2 tr X tr(Xy), 

= (eabcC^dtf = tr A' ((trV)2 - tr(K2)) + tr(XV2) - 2trK tr(XV), 

= (tr(X2) - (trX)2) (tr(y2) - (trV)2) + 2 tr ((AT)2] - 2 (tr(XF))2,

- ([D.Xr.XrMa.X,,*!])^2 = 2tr(Q4) - 2(tr(Q2))2
+ |(u + v) [(trQ)2 tr(Q2) + 2 trQ tr(Q3) - (tr(Q2))2

With Qab = 6ak and u + v = | we
For a traceless Q we find 4 tr(Q4) — (tr(Q2))2 at u + v = —3, which is likewise strictly 
positive. None of the singular boundary points can therefore be associated with a 
continuous degeneracy.

where the trace part of the symmetric (real) tensor corresponds to the j = 0 zero­
mode (at u + v = |) and the traceless part to the j = 2 zero-mode (at u + v = —3). It 
is now straightforward to substitute Xi (eq. (A.5)) in eq. (A.4). After some algebra 
we find

^([DaX1,X1],[3„X1,Xi])}

(A.4)

By considering the inner product of both sides of this equation with Xi, we conclude 
that it can only have a solution provided the third order term (for X = Xi) in 
eq. (3.2.4) vanishes, as should be obviously true since we are considering A € A, i.e. 
the norm functional is at its absolute minimum. We now have sufficient information 
to compute ||5^A|| to fourth order in t (the explicit forms of X3 and X4 drop out 
of the expression for this order when we use respectively that FP(A)X) = 0 and 
daAa = 0):

||s(1)a||2 = ||A||2 + t4{3(X2,FP(A)X2)- 

+0 (t5).

To obtain this result we used the Jacobi identity, partial integration, (A.3) and 
the assumption that Xi is an eigenfunction of L2. Since the first term :s positive 
definite, the norm functional can only be degenerate if the second term is negative.

We now specialize to the case A(u,v) and the singular boundary points that 
occur at (u,v) = (|, |) and u + v = -3 for |u - v| < 3. The zero-modes for the 
Faddeev-Popov operator at these configurations are easily seen to be given by

Xx=naQababi Qab = Qb\ (A.5)
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R.

(B.2)

.Fo = 27 + 2 det c + 2 det d - 3 tr X - 3 tr Y,
Fi = 36tr(Xy)+24(trX-detc)(try-detd) + 2Z>1 + 2D2,
F2 = 6D3 + 8 det cdet d (27 — det c — det d + 3 tr X + 3 tr Y)

+4 det c (9(tr(r2) - (tr K)2) - £>2)

+4detd(9(tr(X2) - (trX)2) - Di) ,

F3 = 48 (det cdet d) £>3 + 1296 tr ((XV)2)

+ 1728 (detcdetdtr(A'y) - detctr(Xy2) - detdtr(X2y)) 

+96(detc)2 (9tr(y2) — 6(trY)2 — 2detd(trA' + trK)) 

+96(detd)2 (9 tr(A'2) - 6(trX)2 - 2detc(trX + trK))

+4 (Di + 4detcdetd — 2(detd)2 — 12detctrY)

+4 (©2 + 4detcdetd — 2(detc)2 — 12detdtr A')

-16 (det c + det d)2 ((detc)2 — 6 det cdet d + (det d)2} ,

= 576(tr A" + trK) (tr(X2y2) - tr ((AT)2])

+576 (tr(x2yxy) - tr(x3y2) + tr(y2xyx) - tr(y3A'2)) .
In terms of this list of invariants we have

det(FPI(4(c,d))|,=x) =2(F04 + F3)-(F2 + Fi)2-8F0F2 + /?. (B.l)

The significance of this expansion becomes clear when we substitute the diagonal 
choices for c and d, eq. (3.4.8), for which

Fo = Eo, Fl = n El, F2 = £ E?, F3 = £

with

Eo = 27 + 2n^ + 2lI?/.-3I>?
Ei = 6xiyi - 2y1x2x3 - 2xi?/2?/3,
E2 = 6x2y2 — 2y2x3Xi — 2z2y3yi,
E3 = 6x3y3 - 2y3xix2 - 2x3yiy2.

Most important is that R vanishes identically for eq. (3.4.8). Hence the way we 
came to eq. (B.l) was to first extend E„ to invariant combinations, which is unique 
up to invariant polynomials that vanish identically for the diagonal configuration of 
eq. (3.4.8). The space of invariant polynomials with this property is 11 dimensional 
and by fitting the determinant with numerical values substituted for c and d, one 
can easily (with the help of MATHEMATICA) solve for the 11 coefficients. The final 
result of eq. (B.l) has then been checked for a large number of random choices of c 
and d.
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4 The one-loop effective lagrangian

Introduction4.1

Gauge fixing4.2
For the low-energy modes, we fixed the gauge by restricting ourselves to a funda­
mental domain. We expect perturbative gauge fixing to be sufficient for the rest of

In this chapter we will calculate the influence of the high-energy modes on the dy­
namics of the low energy modes. This is achieved by integrating out the high-energy 
modes in t , .th integral, which gives us the one-loop effective lagrangian for the 
low-energy .■■ odes. Denoting the low-energy modes by B(c,d), we will expand the 
one-loop 'agrangian first up to the same order as the classical potential,
i.e. up to i'. urtb order in B and to second order in B. This allows us to do the 
renormalization of the lagrangian properly.

Since we expect the physics to be sensitive to the details of the potential along the 
tunnelling path, we use an expansion of the effective potential around the sphaleron to 
construct a fit of the effective potential up to sixth order in the tunnelling parameter 
u. This allows us to write down the effective lagrangian including some fifth and 
sixth order terms in B as to reproduce the behaviour along the tunneling path.

It is our purpose to use the effective hamiltonian in a variational method to 
calculate the spectrum. Although it is possible to calculate the effective potential 
exactly along the tunnelling path, a polynomial approximation in B is much more 
useful, since this makes the analytic evaluation of the matrix elements feasible.

The one-loop effective lagrangian will be given in terms of a path integral over 
the high-energy modes and over ghost fields. Using Feynman diagrams to expand 
these path integrals is the standard method to proceed, but due to the fact that 
the theory is defined on S3, the summation over the space components of a loop 
momentum looks rather different from the more familiar summation over the time 
component. To isolate the intricacies of the three-sphere, we will first assume B to be 
time independent. This allows us to perform the integrations over time components 
of loop momenta. Within this so-called adiabatic approximation the calculation of 
the effective potential in an expansion in B is then a purely algebraic problem.

After this we return to the use of Feynman diagrams to evaluate the one-loop 
contribution to the kinetic term. We will neglect higher order time derivatives of B 
and also terms of the form BnB2. We choose a renormalization scheme that makes 
the renormalized kinetic part assume the form of the classical kinetic term, replacing 
the bare by the renormalized coupling constant. The result of this chapter is then a 
finite, renormalized effective potential.
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will

4.2.1

project out the background field B(c,d).

(4.2.2)Ps'l’ = Po'P =

(4.2.3)

(4.2.4)

define the background field

(4.2.7)

(4.2.8)

(4.2.9)X = 0<=>

(4.2.10)

(4.2.5)
(4.2.6)

the modes. We will impose the background field gauge condition on these quantum 
modes through the usual Faddeev-Popov trick in the path integral. After this we — 
express the partition function in terms of functional determinants.

Q„

Bo =0
D^Q,. =0

We now perform the standard manipulations with the partition function. With the 
help of the Faddeev-Popov determinant

A|A] = (/ Dj<5[x(’A)]) ' ,

4.2.2 Faddeev-Popov trick

The euclidean partition function is given by the path integral

2 = ^ &4Mexp(-SE[A]),

where S& is the euclidean action. We define the gauge fixing function X by 

X = (1 - Ps) D^PA^ + PSAO.

The condition x = 0 imposes the background gauge condition:

Split up of the gauge field
Consider a general gauge field on S3:

•4,< = Mo, A) > (4.2.1)

where Ao is the time component of the gauge field and A, are the space components 
with respect to the framing e^. We will now | 
Introduce a scalar projector Ps by

2^/s>

and introduce vector projectors Pc and Pd by

(PCA), = (^4=^4 A.
(pdA),. =

With Pv = Pc + Pd the projector on the (c, d) space, we 
B and the quantum field Q by respectively

= (PA)ll = {PsAoAPVA)i'},
= A„ - B„.
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the gauge group and

Z

(4.2.13)

(4.2.14)

ps) {d,,(B)(i - f)op(b)v>} + psaw>))]

(4.2.15)

we split off the infinite volume related to the integration over 
obtain

= j n4M6[x(A))A[4] exp(-SE[A]). (4.2.11)
The gauge condition = 0 is explicitly solved by restricting the integrations over A. 
The condition Dtl(B)Qtl = 0 is replaced with Dll(B)Qll = f after which we average 
over all non-constant scalar modes f with a gaussian:

f D'J DBk D'Q,. 6(Dlt(B)Q„ - f) A[A| exp [-SE[4] + f tr(/2)j

/ DBk D'Q,, A[A] exp [1 f tr (|f2„(B + Q) + |(L>„(B)Q,1)2)] ■

(4.2.12)

The primed integration means that we have excluded the Z = 0 modes from the 
integration over the scalar fields f and Qo and the Z = 0, k — 1 and Z = 1, k = 0 
modes (the (c, d) modes) from the integration over the vector field Qk.

We now focus on the Faddeev-Popov determinant (4.2.10). Under an infinitesimal 
gauge transformation A the change in is given by D,JA)A and the change in the 
gauge fixing function by

- SA
= (1 - Ps) {D,JPA)D,JA)A + [(PD(A)A)M,AM]} + PsD0(A)A
= (1 - Ps) {Dll(B)D„(A)A - [B,„ (PD(A)A)J

-[Q,„ (PD(A) A),,]} + PSDO(A)A
= (1 - Ps) {P,(S)(1 - P)D,XA)A + 3M(PD(A)A)M

-[Q,„ (PL>(A)A)M]} + PSA>(A)A
= (1 - Ps) {D^B)(\ - P)D^A)A - [Q„, (PP(A)A)J} 

+PSDO(A)A.

The Faddeev-Popov determinant is given by

A[A] = det .

Introducing ghost fields V and i/>, this determinant can be written as a fermionic path 
integral. We will evaluate this path integral in the quadratic approximation, that is, 
we throw away terms of order three and higher in the quantum fields ip and <?„. After 
this the integration over the Z = 0 modes of ip can be performed to give an irrelevant 
constant and we obtain

A[A] — JDi/> D<j> exp |y3 j tr (t/> ((1 —

oc JD'i/> Dty exp |/? J tr (t/iZ)M(S)(l — J-’)Z?M(S)V-’)j
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Z

(4.2.16)

The effective action4.2.3

will e ;>and in the

(4.2.17)

with

The last equation should be read as

(4.2.20)

(4.2.21)

Note that

(4.2.22)

M^B) = W^(B) +
W^B) = -2ad(FM„(B))-(D2(B))^ + 25<3>.

(4.2.18)
(4.2.19)

(Di(B)C)j = diCj + [B(,Cj] — CijtCk
= {-2iLi + iB“T“ - iSi)jk Ck.

9oSE = So Jo dr(JC + V)

= -/tr^B + Q))

= i(FJU,(B),F^(B))-2((D(1F(il/)(B),Q1/) + (QM,A4P„(B)Q„)

-2(£>„(B)[Qm, Q„], Q„) + |([Qm, Q„], [Qm> Q.]),

We now turn to the euclidean action Sb = Se[B + Q] which we 
field Qm. After some manipulation one obtains

Woo =-D2p(B)
Wo, = -IVj0 = -2ad(B,)
]Vtj = -2 ad (Fy(B)) - (£>2(B))y + 2<5y

M,-(0) = -B? + 25y-(D3(0)),3 + B)i(0)Oj(0) 
= — + 2L2<5y + 2/<2 — 4Qy,

thus regaining the quadratic fluctuation operator (2.2.24). Substituting the quadratic 
expansion for the action in the path integral and choosing the Feynman gauge £ = 1

Substituting this in the partition function with fl = -1/So we obtain

= I DBk D'QP Dj D'J exp I tr (j {-PM(B)(1 - P')DII(B')} J 

+1F^(B + Q) + 1 (^(5)0^1.

Remember that the covariant derivative D;(B) acting on vectors (or tensors) gives 
extra connection terms (due to S3 being a curved manifold) e.g.
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gives

Z

(4.2.23) f

The effective potential4.3

(4.3.3)

4.3.1 The operators
We start by expressing the various operators in terms of c and d. For the scalar 
operator — D2(B) we find

-£>„(B)£>„(B) = -a02 - r>,(B)A(B). (4-3.2)
As it acts on scalar functions, we have D,(B) = — 2iL( + iBfTa and we obtain 

= 4L2 - 4B"LtTa + B‘BbTaTb 
= 4L2 - 4c?LliT° - 4d?L2iTa

+ (c?c? + d“db + c1dbmVr + TaTb.

= / DBkexp(-Sf[B])
= f DB.D'Q^D'^D'^exp [1 f tr (<? {-£>„(B)(1 - P)D„(B)}il>

+ |f2,(B) - 2(P„F„„)(B)Q„ + QltW^(B)Q^ ] .

The action contains a term J^Qv with = (D^F^^B). Since B need not satisfy the 
equations of motion, this term does not vanish. Upon expanding the path integral 
in Feynman diagrams, this term will give rise to extra diagrams, where J acts as 
a source. When we will treat this diagrammatic expansion, we will show that the 
presence of J will only contribute to terms in the effective lagrangian that we will 
consider to give only small corrections: they are at least of order c2d4 or c4d2.

Dropping for the time being the term linear in we are left with a gaussian 
integration over the fields ip and Qfl from which we extract the effective action

Sgff[B] = S^[B] - lndet(-P„(B)(l - P)P„(B)) + |lndet(W^). (4.2.24)

Although we will not use the primed notation to denote it, the determinant does 
exclude the same modes that were not integrated over in the path integral.

For computing the effective potential, B is considered to be independent of time. The 
assumption B = 0 directly implies Woi = 0- This results in a factorization of the 
integral over Qfl, and we obtain the one-loop contribution to the effective action

S^[B,B = 0] = -lndet(-P„(B)(l-P)Pp(B))
+| In det (-DM(B)B(J(B)) + | In det (Wy). (4.3.1)

The operators in this equation commute with do. It is this property that makes a 
reduction to an algebraic problem possible.
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(4.3.9)

(4.3.10)

(4.3.11)

(4.3.7)

(4.3.8) 

complicated due to the extra connection terms. We

The other scalar operator can also be written as

-Dm(B)(1 - P)L>„(B) = -S2 - A(B)(1 - Pv)A(B), (4-3.4)

where use was made of the fact that the operator does not act on constant functions. 
Let the new term Di(B)PvDi(B) act on a scalar mode A = |(Zi0)Zi), where |(Zs)fc) for 
s = 0,1 denotes respectively scalar and vector modes. We suppress here the quantum 
numbers mk and mk.

The resulting intermediate vector mode is given by

Pj(B)A = 3iA + [ci,A] + [d-Vi)A]. (4.3.5)

The first term is longitudinal and has therefore k = I = li~ it gets projected to zero 
by Pv. The second term will have I = h and the third term will have k = ’ The last 
claim can either be checked explicitly or be derived from the fact that the product 
V) A is essentially |(ll)0) |(ZiO)Z]) and hence must have k = (j.

The reasoning so far shows that only scalar modes with Z, = 1 can result in vector 
modes that will not get necessarily projected to zero by Pv. By similar arguments 
one shows that matrix elements of D,(B')PyD,(B) between scalar states with L2 
eigenvalues and l2 can only be non-zero if L = Z2 = 1. Explicitly, we find

Z?,(B)PvP,(B) = P{'Di(B)(Pv)ijDj(B')P{'
= -P,L (c“(Pd)oc$ + CV,m(Pe)4V") T‘TbP!-

= "5 { (c?c‘ - <$Mh) + ^db - <Z“d$£2>L2i) } TaTbPlL.
(4.3.6)

Since the intermediate vector mode can have only k,l = 0,1,2, we have used here 
the following expressions for the projectors:

= p0L = (l-IA2)(l-i£2),

The vector operator Wij is more 
write

= -a02<5o. + 
with

Wij = —2&d(Fij) + 26ij — (—2iLk + iBkTa — iSk)^j
= 2L26ij + 2Z?2. - 2iF°Ta + BtBbkTaTb6ij

-4BiLkT‘6ij - 2BJ(S*)0-T“.

Using Fij - i(Sk)ijBk with

Pk = ^ekimFim
= + 2d • Vfc + -f- €fc/m[C/, d • Kn],
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(4.3.13)

(4.3.16)

(4.3.17)

(4.3.18)

4.3.2

(4.3.19)

(4.3.20)= -7 - ln(z) - 12
(-l)nx” 

nn!

—^ijk£abc<^C,,jSkTc.

Restricting to the tunnelling path c“ = —u<5“ these operators reduce to

— D,(u)Di(u) = 4L2 + 4uL ■ T + 2u2,
-O,(u)(l - Pv)D,(u) = 4L2 + 4uL-f + 2u2

-|u2 (2-(LT)2-L- f) Pf-,

IV(u) = 2L2 + 2K2 +4uL-f
+(6u - 2u2)S ■ f + 2u2.

we can suppress the spin-indices i,j and rewrite as

IV(B) = 2L2 + 2K2 - 4ckLlkTa - 4dakL2kTa + (-6c? + 2damVk"") SkTa
+ ( — Sijk^abcCjC1’ — 2eijkeabcC°dbmV’n + SkTC

+ (c£c> + d“kdb + cid^vr + CVt”c‘) T“Tb. (4.3.12)

Note that putting S = 0 transforms W into the scalar operator. Restricting to d = 0 
gives the following operators:

-Di(c)£),(c) = 4L2 - 4c°L,Ta + c“c‘T“Tl>,
-D.(c)(l--Pv)£>,(c) = 4L2-4ca,LiTa + caicbTaTb

(c“c‘ - c’cjL.Z,,) T“TbP,L, (4.3.14)

I4z(c) = 2L2 + 2K2 - 4ckLkTa - 6cakSkTa + cakcbkTaTb
(4.3.15)

Reduction to spatial parts

As we have seen, the operators we are interested in are of the form

A(B) = -d2 - d2 + A(B), 

where we introduced a laplacian term for an e-dimensional torus of size L that we 
attached to our space S3 [29J. This allows us to neatly perform the dimensional 
regularization. The scale L should of course be chosen proportional to the radius 
R of the three-sphere. A precise choice of L would fix our regularization procedure 
completely, and different choices will be related through finite renormalizations fixing 
the relations between the associated A-parameters. We will comment on this in 
chapter 6.

Suppose that the spectrum of A is {A,}. The spectrum of — d2 is {/c2} with 
fc£ = 2irn/L. If we also take the time periodic with period T, the spectrum of — d° 
is {fco} with fco = 2rnjT. Since [<9o, >4(23)] — [3t,A(B)] = 0, the spectrum {A;} of 
A(B) follows trivially.

Consider the exponential integral
r°° d<tE,(x) = / —e 

Jx 8
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■As (4.3.21)= - ln(A) - ln(5) - 7 + O (Ad).

.(*3+k?+>.)

(4.3.22)

Exact determinants4.3.3

use the

(4.3.23)

, SR(s)>i. (4.3.24)

(4.3.25)

tr({4L2)-) = 3 f

00

= 3E
Jc=2

1,-1,...

The easiest case is of course given by the vacuum B = 0. For the scalar operator 
-£>M(B)£>,,(B) we have A = -Di(B')Di(B') = 4L2. To evaluate the trace, we 
basis |lTnz.mn) ® |lmt) and obtain

(2Z+ I)2
(4/(1 + 1))'

k2
(fc2 - 1)>

= 3C(s-l,-l) + 3C(s,-l).

Here we introduced the function £(s,a), which is defined by

C(s,a) = §(i^y
After analytic continuation we have

<(»,«) = E (-“)”■ ««<2s + 2m) - !)>
m-

This implies
r“ ds

Jt s
Taking the limit 6 | 0 in this integral, we can write, up to an irrelevant constant, 

lndet(/l) = trln(4) = ^2hr(A,)

= -EESfye
*0 ke i J° S

(^)£ r t / dk° e~s^+ki) e-sXi

fe)£n-|-f)EA=+’
(277) r(-l-f)tr(^+i)-

For general B it will not be possible to find the spectrum {A<} of A, so that we will 
have to use some expansion in B. We will shortly perform this expansion, which 
is essentially based on Bloch perturbation theory. First however, we focus on two 
configurations of the background field B where we can calculate the determinants 
exactly.
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(4.3.26)(«)m =

(C/t(l - e) - 1)<(n - (-a)a)

(4.3.27)n= 1,0,-1,...

1 1)} ,(4.3.28)e
2 2’

and

(4.3.30)

(4.3.31)

TIndet(Wy) =

(4.3.33)

(4.3.34)(2Z + l)(2j + 1) 
(2Z(Z + 1) + 2j(j + 1) — 2)*’

tr ((2L2 + 2/?2)“s) =3 £
l,k

The summation over (Z, k) is as follows:
oo
E («<m &km + 5lm+l5k m + 5/m $k m + 1) •

-f){3C(-|-S

where G? denotes the Riemann ^-function and (s)m is Pochhammer’s symbol: 

r(s 4- m) 
r(s) '

Separating the divergent term in the expansion of eq. (4.3.25) we obtain

(n - j - f)l-n
(1 -n)!

+ Cr(n ~ 2’ “)’

For the scalar itors the results are

lndet(-A,(B)Z>M(B)) = 
'■■■’ / i Yr, 1 

n_2

E = 
l,k

The summations can be expressed in terms of ^-functions and of ^-functions. The 
result is

tr ((2L2 + 2/2 - 2)~s) = E
U

2,-l) + 3C(

- f){3M- f.-1)+3<(-i -1--1)
+6 «r(-3 - e) - 9) - 6 (G(-l - e) - 3)} . (4.3.32)

From eq. (4.3.1) we obtain the Casimir energy

V(1)(B = o) = -18 + 3C«(-3) - 3Cr(-1),

where we took the limit e —♦ 0.
Another configuration for B where we can calculate the determinants exactly 

is the sphaleron. Here we have —D,(B)D,(Z?) = 2L2 + 2.J2 — 2. Using the basis 
|Zm«;ymj) we obtain

lndet(-D<1(B)(l - P)PM(B)) = lndet(-PM(B)DM(B)). (4.3.29)

For the vector operator we have A = 2L2 + 2K2. With the help of the basis of vector 
modes |Znin; kmk) ® |lmt) we obtain

(2Z + l)(2fc + l)
(2/(Z + l) + 2fc(A: + l))s'
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with

(4.3.35)) + Wjo-

T

Indet(W^) =

(4.3.39)

V(1)(Sph) =

1
2

m+l^j ni + 6lm&j m+1

oo

E — E + <5|
IJ

Thus we find

1

E =

-5 - f) {-4 + 372 - 9%/6 + 5710

+3C(-j-f,-3) + 9<(-l-f,-3)

+4 (C(-| - f, -2) - 272) + 4 «(-| - -2) - 72) 

+2 «(-| - f, 1) - 575 - lOTlO) 

-io(c(-i-f,i)-T5-T16)}.
Adding things up, we arrive at

-5 - 5) {4 + 672 + 2473 - 976 + 5710

+ <51m+2'5j m + 61m m+2)

lndet(-B/1(B)BM(B)) =
fe)£ r(-| - f) {<(-! - 5> -3) + 3C(-1 - f, -3)

+2 (C(~l - 5, -2) - 272) + 2 (C(-i - f, -2) - 72) + 372} .
(4.3.36)

To evaluate the other scalar operator, note that at the sphaleron, eq. (4.3.17) implies 
that only the I = j = 1 eigenvalue changes from 6 to y. Hence we have

lndet(-P„(B)(l - P)D„(B)) =
lndet(-r>„(B)Z)„(B)) +7(1273 - 976). (4.3.37)

The vector operator at the sphaleron also assumes the form W = 2L2 + 2.72 — 2, 
but it must be remembered that J in this case also contains a spin contribution. We 
use the basis |(H)fc,j) (where we suppress mK and mj) to evaluate the trace. The 
summation is given by

OO

E Mm + <5|n>+l<5jm + <5hn<5;m+l

4-5/i<So^*i + — bifyi&ko- (4.3.38)

The last term corresponds to the exclusion of the d modes. For a state (Z,j) the 
degeneracy is [21 4- l)(2j 4- 1) multiplied by the number of possible k values. The 
latter is given by (3 — |j — Z|), with the exception of I = j = where k can only 
assume the values | and |. The result for the vector operator at the sphaleron is

(27f)t(
3 e
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+

Veff(Sph) = (4.3.41)

(4.3.42)

4.3.4

(4.3.43)hidet(A) = —

(4.3.44) 

and to expand the second exponential in u. After performing the summation over j 
and the integration over s the Z-summations can again be expressed in terms of Q- 
functions. Most of the algebra was done using FORM [30]. The other scalar operator

Along the tunnelling path
Consider a configuration along the tunnelling path: c“ = — ui°. The spectra of 
the operators can still be calculated exactly, but the summations become tedious. 
Therefore we will expand the determinants around the two configurations studied 
above, that is, around u = 0 and u = 1. Using these expansions we construct a 
polynomial of sixth order in u that is a good fit to the effective potential along the 
tunnelling path.

We rewrite eq. (4.3.22) as follows

From eq. (4.3.16) it directly follows that the eigenfunctions of the scalar operator 
<4 = -D,(B)Dj(B) are the |Z mu', J rrij) with the eigenvalues 41(1 + 1) + 1u(j(j + 1) — 
Z(Z + 1) — 2) + 2u2. This allows us to write

00 z+l „
tr (e-"4) = 52 (2Z + l)e_’4,(,+1) 52 (2J + l)e_>(2uOO+1)-i(i+i)-2)+2<* ’,

-2£(-j - f,-3) - 2<(-| - f,-2) - 2<(-| - 1)
— 6<(~2_ S’ -3) - 2C(~2 - 2* -2) + 10C(~2 ~ 2> !)}

— 1 — 3 v^ — 12\/3 + |\/6 — | s/10 + 7 4" "T 1°&(2)

T log (277) + -3) + -2) + Cf(-|, 1)

+3Cf(-j, -3) + CF(-|, -2) - 5<f(-|, 1). (4.3.40)

The pole term — has to be absorbed through a renormalization of the coupling 
constant. Adding the classical potential at the sphaleron we get 

2w23 11 „ .-4------- F finite terms.
'Jo 2 4e

So the infinite part of the renormalization is
1 _ J_ 11 

tin ai + i27r2e’

This is the standard result for SU(2) gauge theory in 1 + 3 dimensions as of course it 
should be: the renormalization is an ultra-violet effect and does not depend on the 
global properties of the space on which the theory is defined.
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|(ts)9,Z,j).(4.3.46)|t, (sZ)fc, j) = £ (-l)1+'+,+>[(29 + l)(2fc + l)]i 
9

This gives

(t, (sZ)fc', j| S • f |t, (sl)k, j) = -|(s(s + 1) + t(t + 1))<5*,*

+| £ 9(9 + 1)(29 + 1)1(2* + l)(2fc' + 1)]*
9

t s q
I j k'

t s q 
l j k

be written down from eq. (4.3.17) as 
= 1.

complicated since the eigenvalues

t s 9 I
I j k J

(4.3.47)

As in the case of the scalar operators, we expand the exponential in u and perform 
the s-integration. The summations over I can be expressed in ^-functions. During 
the various stages of these calculations care has to be taken for low values of Z, k 
and j: for certain values the Bloch result for the general eigenvalue A(j, k, Z) will not 
be valid, since the subspace in which to perform the diagonalization may have less 
dimensions than the bulk value 3 — |Z — j|: some of the k values would be negative. 
Moreover, in the I = 1, j = 1 sector, which is a priori three dimensional, the k = 0 
modes have to be thrown out explicitly, since they are the d modes. Exclusion of the 
c modes is simply achieved by starting the summation over I with Z = 5. The result 
for the effective potential up to fourth order in u is

V(1)(u) = —18 + 3Ch(—3) — 3fn(—1)

can be treated similarly. The eigenvalues can 
well: they differ from the ones above only for I

For the vector operator the situation is more 
are not readily available. We write

W(u) = 2L2 + 2K2 + W(u), (4.3.45)

where the precise form of IV(u) can be read off from eq. (4.3.18). Since W(0) = 0 we 
can treat Hz(u) as a perturbation on the operator 2L2 + 2K2. As W commutes with 
the {A2, L?z, f2, J2}, the basis to use is |(Zl)fc, j). The dimension for the subspace 
in which we have to find the eigenvalues of IV is given by the number of possible k 
values. Since this dimension is maximally three, it is of course possible ‘ . obtain the 
eigenvalues of IV(u) exactly, but as explained earlier, it is more convenient : > expand 
in u. The unperturbed eigenvalues within each sector are 21(1 + 1) + 2k(l: + 1), so 
we need non-degeuerate perturbation theory to obtain the expansion in u for the 
eigenvalues X(j, k, I). A. method that implements this particularly nice is due to 
Bloch [31]

Using MATHEMATICA we computed the expansions for the eigenvalues. For this 
we needed the matrix elements of one of the operators L ■ f and ST; the matrix 
elements of the other then follow trivially. To calculate these matrix elements, we 
need the 6-j symbols [32]. For three angular momenta t,s and I we have
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vcl (4.3.49)

so

(4.3.51)

(4.3.52)

I(4.3.53)

(4.3.54)

Vcl(u) = 3„2(2 - u)2. (4.3.50)

One checks that the pole term is absorbed by the coupling constant renormalization 
of eq. (4.3.42).

Results up to tenth order in u were calculated. As can be seen from fig. 4-1, 
the expansions do not converge to the exact result at u = 1. This should come as 
no big surprise, since we have no reason to expect the radius of convergence of the 
expansion to be as large as one. Judging from the picture, one would estimate a 
radius of convergence of roughly 0.6.

To find the effective potential for larger u, we make a similar expansion of the 
effective potential around the sphaleron. Writing u = 1 4- a, we have 

-D,(a)D,(a) = 2L2 + 2 J2 - 2 + 4a(L • f+ 1) + 2a2, 
-£>,(a)(l - Pv)Pi(a) = 2£2 + 2J2 — 2 + 4a(£ • T + 1) + 2a2 

-|(1 + a)2 (2 - (L • f)2 - L • f) P,L, 

vV(a) = 2L2 + 2J2 - 2 + a(4 + 4L-T + 2S f) 
+a2(2 - 2S-T).

The expansions of the determinants of the scalar operators can be obtained exactly 
as described above. The final /-summations can be expressed in terms of <(s,5) with 
b = -3,-2,1. For the vector operator, we could in principle again use the Bloch 
perturbation method to obtain the eigenvalues \{j, k, l'j(a), although the a = 0 level 
is now degenerate. There is however an easier way. Suppose we have A = F + A with 
F = .4(0) such that |F, zi] = 0. This allows us to substitute in eq. (4.3.43)

tr (,■ '•'■) = tr tr_. .
f n=0 n •

+vcl(“) (“nt! + 67 - Ht- 1o®(2) + ¥ IoS (2^7)

-f <(!’ -1) - 6 <(!> -1) + T «?• -1) + 14«1- -1) 
+ y <b(3) - y G(5) - | <n(7)}

+“2 (li + ft v^-b 13C(|,-1) - 9<(|,-1) - 106C(|,-l) 

-84<(|, -1) + 2<„(-l) - 23<«(3) + 19<«(5) 4- 2Crt(7))

(H + ¥ <(!■ -d+¥ <(!. -1)+¥ <(!■ -1)
+47<(|, -1) - 66<(^, -1) + G(3) - 79<r(5)

+2FCr(7) + 5<b(9)). (4.3.48)

Here we eliminated the u3 term in favour of the classical potential Vc] defined by

2 A, 
r/3 d’
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/

-18

u
0.2 0.4 0.6 0.8

TIndet(H') -

tr0- (ivn) • (4.3.55)(-*)" 
n!

/ 
/ 

I 
I 

I

The sum over i is a sum over the eigenspaces of F, F$ is the corresponding eigenvalue 
and tr: () denotes a trace within the eigenspace. For the operator W we indeed have 
that F = TV(0) = 2L2 + 2 f2 — 2 commutes with W and we obtain

(27?YE(2i + l)(2j + l) x 
x 7 IJ

J°° ds 5-5-ie-,W+0+2j0+i)-2) ^2

The sum over I and j is essentially given by eq. (4.3.38). Note that the sum over 
different k values is now absorbed in the trace in the (l,y) space. When taking this 
trace one has to deal with the same subtleties connected with low values of I and 
j as described above. The resulting effective potential is plotted in fig. 4-2. The 
expansion seems to have a radius of convergence of roughly 0.4. Using the fourth 
order expansion in u and the first order expansion in a (i.e. the value and the slope 
of the potential at the sphaleron), we can construct a polynomial in u of degree six 
that is a good approximation to the effective potential.

Regarding the issue of the radius of convergence, one might think that also inte­
grating out the (c, d) modes that are orthogonal to the u mode might result in better 
convergence. Also one expects the u —» 2 - u symmetry to be restored in this case.

Figure 4-1. Expansion of in the tunnelling parameter u. We dropped the e and log(L) dependent 
parts. We have drawn the expansion up to order u4. u6, u8 and u10. Longer dashes correspond to higher 
order expansions. The horizontal line at u = 1 denotes the exact potential at the sphaleron. the drawn 
curve is the sixth order fit to be explained in the text.
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.s

u-19 1.20.6 0.80.2 0.4

4.3.5 The c space

F = 4L2,
A(c) = -4c“L,T“ + c“chITaTb.

(4.3.56)
(4.3.57)

I

If we take a configuration Z?(c, d) with d = 0, the operators no longer commute 
with J. The eigenspace in which we have to diagonalize the operators will have a 
dimension that depends on I and we can no longer use Bloch perturbation to obtain 
the expansions of the eigenvalues for general I. The method of eq. (4.3.54) and a 
generalization thereof can however still be used. We will calculate the determinants 
up to fourth order in the field c. Starting with the scalar operator, we can write 
-Di(c)Di(c) = F 4- >l(c), with (cf. eq. (4.3.13))

With the techniques described above, performing this calculation is straightforward, 
provided one remembers to properly adjust the gauge fixing procedure. The new ex­
pansions in u and a have roughly the same convergence behaviour as before, so there 
is no improvement on this point. The symmetry is however manifestly restored: the 
expansion in a contains only even powers of a.

Figure 4-2 Expansion of = 1 +a) around the sphaleron. We dropped the e and log(L) dependent 
parts. We have drawn the expansion up to order a4. aG, a8 and a10. Longer dashes correspond to higher 
order expansions. The horizontal line at u = 0 denotes the exact potential at the vacuum, the drawn 
curve is the sixth order fit.

// 
// 

! I
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.abc

(4.3.60)
(4.3.61)
(4.3.62)

(4.3.63)
^>2*3)

(4.3.64)

c“ -» 0, (4.3.66)
c?c$ - itr^)^^-, (4.3.67)

cjcjcjj -» g det(c) eijk eabc. (4.3.68)

The fourth order term gets replaced by a combination of the nine possible tensor 
structures, where the coefficients are linear combinations of the two invariants tr2(A') 
and tr(A'2). After this projection, all the indices occurring under the traces are 
contracted. Using the su(2) commutation relations, the traces can now be evaluated 
easily. The remaining integration over s and the summation over I proceed as before.

21 + 1,
0,
|1(Z + 1) (21 + 1) <5ni2>

|/(Z + 1) (21 + l)e;li2i3,
^1(1 + 1) (21(1 + 1) + 1) (21 + 1) (<5i,,2<5i3,4

+ gji(l + 1) (21(1 + 1) - 4) (21 + 1)

For our purposes, the L2 eigenspaces are (21 + I)2 dimensional due to the extra 
quantum number mR, so we have to multiply the results above by another factor 
21 + 1.

There is another way of computing the traces. The L and T operators generate 
rotations and constant gauge transformations respectively. After contraction, the 
c dependence of the expression will only be through certain combinations that are 
invariant under these transformations. Explicitly, we will have invariance under

c?-(ScR1)“, (4.3.65)

with S and R\ orthogonal three by three matrices. Another way of dealing with 
tr((.4n(c)) is hence by replacing in each term the product of c matrices with the 
corresponding invariant times a projection operator. If we define X = cc', this 
means

Since [L2, A(c)] = 0, we can use eq. (4.3.54). The problem of calculating tri(.4"(c)) 
then reduces to calculating traces of the form

tr1(L„...£,,„T»'...T“"). (4.3.58)

A trace of a string of angular momentum operators in the (21 + l)-dimensional rep­
resentation can be expressed in terms of <5 and e tensors. The trace over the three- 
dimensional isospin space can for instance be calculated using the representation

(rx = -ieabc. (4.3.59)

For a general (21 + l)-dimensional representation, the traces can in principle all be 
constructed using contractions. We find for instance

tr(l) =
trfLiJ =

tr(Lfl Lia) =
Li2L/i3) =

tr(Z/ij Z/i2Zzi3Z/i4) =
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(4.3.69)

(4.3.72)

(4.3.73)

(4.3.74)

(4.3.75)sp4

(4.3.76)

(4.3.70)

(4.3.71)

E 
*1*2

SP2 = E«’sF'EM^tr.(A(F-F,)n'2^ 
i n=2 n‘

= E^E^tn(^)A^ 
ij n=2 7t‘

= E + E ~ 1 + ’**)

- Sne-^ + gr.,e-^.

sp3 = E^-1F'E E
ijk n=3 ' mi=0

oo (_ _\n n—4 n—4—mi

= E^-^E^t-E E a^-a^a,"-
ijkl n=4 mi=0 mj=0

We can rewrite sp3 and sp4 similarly to sp2, but the resulting expressions are more 
difficult.

For the case of A = W, the eigenspaces im correspond to pairs {lm,km). Starting 
with a pair (Zj, fci), we can only reach states with I = !i (L2 commutes with W) and 
with k = |1] — 1|,.. .li + 1. Extracting the overall summation over I turns the other 
summations into finite sums. For sp2 for instance we have 

<i+i h+i

EE E ■ 
li =|1>-1| *a=|li ~1|

For the vector operator we encounter a new problem. Writing W(c) = F + W(c) 
with F = 2L2 + 2/<2, we have that |F, W(c)| = 2[/<2, W(c)J 0. Returning to 
eq. (4.3.54), we can however still write the full trace as a sum of traces in the different 
eigenspaces of F:

tr(e^) = £tr.(e-’<^))

- E«”FiE^tri({(F-Fi) + A}n)
i n=0 7i-

= Esp. 
nt

Here spm is the ontribution of order m in A. For our purposes we need to calculate 
up to sp4. Let r._ denote the projector on the eigenspace of F., and let T be given by

Ti - tr, (.4) = tr(PiJ4),

TtJ = tx^PiAPjA), etc.

Writing A2, = F, — Fi we find

SP1 = Ec‘sF'(-s)^.
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Using FORM we perform these finite sums. The result is an (-dependent expression 
in which the T functions have the form

Tklk,... = tr, {P^WP^W ■ • •) . (4.3.77)

We will now describe the algorithm used to calculate the T-functions. These 
functions are traces of products of L,, Ta and projection operators P/' First we 
perform the trace in isospin space. After this we expand the projectors P/'. Since 
the intermediate modes can only have k = I — 1,..., I 4-1, we can write

P? = a0(fc) 4- ai(fc)^2 4- a2(*)(K2)2, (4-3-78)
for certain values of the coefficients. Simply expanding all the projectors in terms of 
K2 = L2 4- 2 + 2L • S is a very inefficient method. We therefore start with expanding 
only the rightmost projector in terms of K2 and commute the_/<2 operators to the 
left, until they reach another projector. When this happens, K2 is replaced by the 
proper value k(k 4-1) determined by the projector. In this way we get rid of all 
projectors, save the leftmost one. This last projector is then fully expanded and the 
remaining trace factorizes in a trace of Li and one of St operators, both of which have 
been tabulated.

The last step is again to do the s-integration and the summation over I. This 
summation starts at Z = |, which eliminates the possibility of intermediate states in 
the c space. Having the intermediate state in the d space corresponds to having one 
of the arguments ki of T equal to zero, so these terms should be discarded, together 
with the terms where ki < 0. The result for the effective potential is

v“’(c) = vcl(c) H 7 - + T *°g(2) + T

+y Cr(3) - y Cr(5) - 5 Cr(7))

+tr(X) (|?x/2+^ + tC(1,-1)-30,-1)
-28<(|, -1) + | Cr(-1) - y Cr(3) + y Cr(5) + | <n(7))

+tr2 w ® - g C(l, -1) + > C(g -D

+ a(3) - Cn(5) + ft C«(7) + 55 Cx(9))

+tr<A'2) +
-n + «¥• -1)

- W <«(3) + w c«(5) - W - W ^9>) ■ (4-3-79)
It is easily checked that this reproduces eq. (4.3.48) when we substitute c = —ul. 

Note that we have subtracted the B = 0 contribution.
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4.3.6

(4.3.80)

The (c,d) space
In this section we treat the hardest part of the calculation: the (c, d) cross terms. For 
the scalar operators we calculate the determinants for a general B(c, d) up to fourth 
order in the fields. For the vector operator, we will use the c <-> d symmetry to obtain 
the pure d-dependent term in the determinant. That leaves only the c2d2 terms to 
be evaluated.

Starting with the scalar operator, we can again write —Dj(B)Di(B) = F+A(c, d), 
with F = ‘IL2. As can be seen from eq. (4.3.3), we now have [L2,A(c, d)] yt 0, due to 
the occurrence of I in .4. This means that we must use the method of eq. (4.3.69) 
where the intermediate levels in the 7”-functions now are labelled with Z; to denote 
different eigenspaces of L2. Since V itself is an Z = 1 mode, and a change in Zj can 
only be achieved through the multiplication with V, acting with the operator A can 
change Z, by maximally one unit.

We need the three functions Tn- with I' = I — 1,..., I + 1, but from the functions 
with three and four indices, we need only Tm and Tim. This is a consequence of 
the fact that for instance Tu+u requires two of the three factors A to contribute 
the V term. The third factor A then makes the contribution to be a least of fifth 
order in the fields c and d. Conversely, up to the order we are interested in, we can 
replace these two T'-functions by respectively tri(A3) and tri(A4). This leaves only 
the projector Pjf in 7"h> to be dealt with.

The evaluation of the T-function now proceeds as follows. After taking the trace 
in isospin space, we replace all occurrences of c and d by the appropriate invariants 
and projectors. In particular, we make the substitution

c^d;' - 576(4tr(X)tr(y)-2tr(A'T))J,J5*(15'li’5<;d
-j|o(tr(X) tr(T) - 3 tr(XT)) 6kl (<5“c 6bd + <5“rf <5^),

with Y = ddT. Next we commute the operators L\ and L2 to the right, expand the 
projector P[,J in a polynomial of degree two in L2 and pull the operators V through 
this expansion. After this we eliminate V by either contracting them if there are two 
factors of V or by replacing the contraction by

The remaining trace consists only of the operators and Together with 
the rest of the manipulations, it can be dealt with as before. For the other scalar 
operator, A has some extra terms that are proportional to Pf. The evaluation of 
these extra terms poses no new problems.

For the vector operator, both the I and k value can get changed by the action 
of the operator IV. The summation over intermediate values in eq. (4.3.75) becomes 
hence more complicated, but can still be performed. The relevant traces are now

• One can show that not only /, but also ki changes by maximally one 
unit. Together with the condition fcj = Zt- — 1,... ,Z, + 1, this reduces the number of 
T-functions that have to be calculated.

The algorithm to evaluate these traces consists of first keeping only the c2d? terms, 
projecting these on the invariants and taking the isospin trace. The operators Ph and
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The ghost sector4.4.1

The fermionic path integral is given by

Z

(4.4.1)

The free propagator S = —(—d„ — d2 + 4L2) 1 is given by

(4.4.2)

In this section we will no longer assume B = 0. The method of the previous section 
is replaced by the diagrammatic expansion of the path integral. The goal is to obtain 
the one-loop contribution to the operator B2. It is hence sufficient to restrict ourselves 
to the case B — B(c).

= j Dty Dty exp 

= y d^d'4> exp

x, [dka d‘kc S{x'y} = / 27(2^

1 / tr (v; {-Pp(B)(l - P)Dp(B)} V>)| 

“2 /tr {-9° ~ + 4L2} t/> +

PL are treated as described for the pure c case. Starting from the right, we expand 
them in respectively K2 and L2 and commute these operators to the left until they 
meet another projector. Since the range of intermediate k values is now bigger, the 
expansion of PK is a fourth order polynomial in K2. In contrast with the previous 
case, the left most projectors are not expanded.

The next step is to eliminate L2, which is particularly easy since it commutes 
with all other operators and occurs at most quadratically. After this we sweep all 
the S operators to the right, commute the V’s to the left and get rid of these V’s by 
contraction. We are left with a trace in a (k, I) subspace of only and L>, operators. 
These strings of contracted operators can be expressed in terms of L2 and K2, after 
which the evaluation of the trace becomes trivial.

The remaining steps proceed as before. In the summation the intermediate states 
with I < 0 or k < 0 should again be dropped. Since the precise form of the coefficients 
is not very illuminating, we postpone writing down the effective potential until we 
have performed the renormalization.

Chapter 4: The one-loop effective lagrangian

oo I I 1E E E E e-iko(xo-yo') e-ike(xt

Z=|,l,... mb=-l mR=-l rnt=-l

(z|Zmb mR\ mt) -j^+
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(4.4.3)

(4.4.4)

And we introduced

<Z»(e) = f dcxc y (4.4.5)

(4.4.6)

(4-4.7)dek£
(2^F’

o
A

1
2

©
A

This term corresponds to the term linear in s in eq. (4.3.54).
The diagram with two insertions of A gives new results. We will suppress the 

manipulations with the integrations over ke and xe. The dimensional regularization 
can be obtained by adding to the denominators of all propagators and performing 
the integration

Expanding the ifrAil) term gives In Z as a sum of connected one-loop diagrams with 
insertions of A: For the diagram with one insertion we find

- f) 
(4/(Z+ 1))5"5'

•oo 
dx

L‘f

E E E /dtd'x‘x 
ir=—l = mt = — 1

X

(1 + z2)n
1 2tt5 r

(27r)‘,C"-l r(|) •">

- 1 Bl- n —“ (2^C”-^r(|) (2' 2>

1 r(n-f)
C"~i 2d iri r(n)

r ddk 1
J (2?r)d (C + F)n

r 00/ flt E tr< (^W)
'=1

The integral over dexe can be directly replaced by Le. We used the following integral

dckc 1 = / L y r(n - f)
(2?r)E (1 + k2)" r(n)

The result for this diagram is just the old effective potential result: taking A inde- 
pendent of t and inserting pi(e), we get

(/ rnL mR; mJ A(t) |Z mL mR- mt} fc; + + +

g|(£)
(4Z(Z + l))i-4 ’

Section 4.4: The effective kinetic term

r dk0 d‘kc y, , 
/ 2tt (2w)y=^



68 Chapter 4: The one-loop effective lagrangian

(4.4.8)

p + q we write

(4.4.9)

(4.4.10)

(4.4.11)

(4.4.12)

and the t' inte-

(4.4.13)

,-l) + C(|-f,-l))c“c“. (4.4.14)

dp dq 
2tt 2tt

4

4

4/

n insertions gets a symmetry factor i. Suppressing mi,

A 
9.

®
A

(~l)n (g2)"
4" (4Z(Z + l))n

Note that a diagram with
ttir and mt, we find for the diagram with two insertions 

A o.
4 > =

■® ■

A

/ didt'e-^hr^A^A^ x

r dp 1 1 1
J 2tt p2 + C (p + qY + C ~ VC(4C + q2)'

After performing the p integration and expanding in g2 we obtain 
A

■ ®.

4 y =
■®

A

1_____________ 1_______
P2 + 4Z(Z + 1) (p + q)2 + 4Z(Z + 1) ’ 

Using contour integration, one proves

y I dtdt'e-^'hn (A(Z)A(t')) x

Noting that [L2, ^(i)] = 0 and substituting k0 = p, k'o =

1 00
4(4Z(Z + l))t £

Next we substitute

<12 d2 '
dt dt‘ ’

and move these time derivatives to A by partial integration. The q 
gration thus become trivial, and we obtain

The arrow indicates that we have performed the e-dimensional integrations that were 
suppressed in the notation. The n = 0 contribution can be related to the s2 term 
in eq. (4.3.54), whereas the n = 1 contribution gives us the B2 term that we were 
looking for:

/ ^gs(e) (<(| - 5
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4.4.2

/ D'Q,lz

(4.4.15)

(4.4.17)

W
(4.4.18)

The field sector

The bosonic path integral is given by

(4.4.16)

The loop diagrams with only Qo

A

k 

£

■

h

4 / tl,k (2((Z + 1) + 2k(k + l))i-S ■

exp £ J tr (-2(L>„F„„)(B)Ql, + Qp^(B)Qjj 

= / D'QU D'Qi exp [1 f tr (Qo {-d20 - ^ + 4L2} Qo

~Q, {-d2 - ^ + 2L2 + 2K2}.. Q, + Qo-4<?o + Qi^Q,

ad (Bj)Qj — 2JoQo — UiQi) | •

one IV

with J„ = (£>,,F,,..),<)). The propagator of the real Qo field is given by |S(z,j/), 
where 5 is given bv -q. (4.4.2). The propagator of the vector field Qi is |Sy(z, y), 
where S,, is given by

~ / 2tt° / dt tr“ k% + 21(1 + 1) + 2k(k + 1)

A A
have the same structure as those of the ghost field. Apart from extra terms coming 
from the projector 1 — P in the ghost case, the contribution is precisely — | times the 
fermionic contribution. For the diagram with n insertions, we have n propagators 
and hence a relative factor of There is however an extra combinatorial factor of 
2n-1 coming from the n vertices. The relative minus sign for the closed fermion loop 
is obvious.

We now turn to the loop diagrams with only Qi. The diagram with 
insertion is given by

5v(.x-,y)=/'^^E £ £ £ .) x
j l k mR=_irtlk=_kmi=-i

,{£\l mL-k mk- mt) k2 + kt + + 2k(k +
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x

IV
x

(4.4.19)

with

(4.4.22)

(-l)"T&(t) (4.4.23)

(4.4.24)

k=l-l k'-l—l

Tkk'(t> t'),

(4.4.20)
(4.4.21)

1 (\/C - x/5)2n+1
2 VCD{y/C + s/P)2"*1 “ 2 x/CD (C - £>)2n+1’

_ i
________ _________ 2________________
k20 + 21(1 + 1) + 2k(k + 1)

This again corresponds to the effective potential term spj. For the diagram with 
n = 2 insertions the combinatorial i drops out against the factor 2"-1 and we find:

W

C = 21(1 + 1) + 2k(k + 1), 
D = 21(1 + 1) + 2k'(k' + 1).

W
where is just the old T-function with W replaced by the n-th order time deriva­
tive of W. In order to perform the kc integration, we want just a single denominator 
in the expression. If k' = k, we have that C = D and this condition is met. If k' k, 
we write

With the help of the following generalization of eq. (4.4.10)

r dp 1________ 1 _ ________ x/C +^D_______
J 2ir p2 + C (p + q)2 + D ~ 2 JCD ((s/C + x/P)2 + r/2) ’ 

and following the same steps as in the scalar case, we obtain:

W

(l',k'\W(t) \l,k) e-'W-O

= 4 I x
______________(l,k\W(t')P^W(t)\l,k)____________
(k20 + 21(1 + 1) + 2k(k + 1)) (k'2 + 21(1 + 1) + 2k'(k' + 1))

= V££e E E Idtdt'e-^.
1 1

p2+C (j> + q)2 + D

= /^^EE/*^'J 2?r 2*

if x x-1- \°~<1 dt^ n?02^(VC + ^)2->’

Chapter 4: The one-loop effective lagrangian

1+1 1+1
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X

A
(!'|A(t) |l,k)

(4.4.25)

with

4.4.3

i

 1 
__________________ 2________________  
k% + 21(1 + 1) + 2k(k + 1)

C = 41(/ + 1),
D = 21(1 + 1) + 2k(k + 1).

The rest of the calculation is again straightforward. The n =

(I, •'. ! - A(t') |Z')

r dk0 dk'o
J 2tt 2tt

_ i
___________ 2________

k'2 + 4l'(l' + 1)

£ [ dtdt'e-^-1'^-^1'-^ x
l.k J

_________ (l,k\- A(t')A(t)\l,k)_________
(k2a + 21(1 4- 1) + 2k(k + 1)) (k'2o + 41(1 + 1))
1 f , (-l)"trit (-4t")(t)A<")(t))

= h 2VCD(VC + VD^ ’

The linear term in the path integral

In this section we will show that the term Jt,Qv in eq. (4.4.15) does not make a 
contribution to the effective action up to the order we are interested in: the lowest 
order contribution from J to the effective potential will be of the form c4d2 and c2d4. 
We will study the precise form of J to show this.

2-

(4.4.26)
(4.4.27)

0 contribution gives us 
the B2 term. Adding up the different contributions, we obtain the one-loop contri­
bution to the kinetic term in the lagrangian:

/C<>’(c,d) = (c“c“ + d‘d°) +

+n 1°g(2^) + ic(l.-i) + 11c(i-1) + f cd--1)
-f Cn(3) ~ n Q*(5) ~ 3 fr(|> -1)) • (4.4.28)

The divergency will be absorbed by the same coupling constant renormalization of 
eq. (4.3.42) that also made the potential part finite.

The rest of the calculation poses no new problems. The n = 0 term corresponds to 
the sp2 contribution to the effective potential. The B2 part comes from the n = 1 
contribution.

The -4QO(7?,, Qi]---- f4Q,(B,, Qo] term in the path integral gives rise to a loop
diagram with one Qo and one Qi propagator and two insertions of essentially B. 
There is no extra combinatorial factor 2 in this diagram, and writing A(t) for the 
operator —4 ad (B(t)), we have

-A
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(4.4.31)

(4.4.34)

J<3> do not contribute since they too are modes with (Z,fc) = (0,1)

(4.4.35)

(4.4.38)

(4.4.32)

(4.4.33)

Bj + DiFtj. In our approximation we are only interested in the term 
+ jj3\ where is of order n in the field B. From

DiFij — diFij — eijtFik + [Aj,

we obtain

Jj1’
JP
j'3>

The crucial remark is that in the path integral the constant modes are excluded 
from the integration over Qo, and the (c, d) modes are excluded from the integration 
over Qi. This means that one must remember to put projectors (1 — P) around 
operators like W/a,, and replace source currents like Jtl with ((1 — We will
show that after this projection J contains only terms that are cubic in B.

We have

Foi = — Fio = Bi, (4.4.29)
Fa = -2eijk(ck -d-Vk) + [B„ Bj], (4.4.30)

with B, = c, + d • This implies Jo = DltFfto = — [B, , B,] and = F^F^j = 
DiF,, = Jj” +

= -4Cj,

£i>fc[ci» Cfc] — 3smpn[dm, d„]vy,

= [Bi.IBi.BJ]

+[ci,[cj,d-V;]] + [dVj,[dI<,dI/]]
+|d - V„ [ci, c,]J + [cj, [d • l<, Cj]]
+[d-Vj,[Ci,dl/]] + [c,,[d-V1,dl/]]

This directly implies that (1 - PV)J1-''1 = (1 - Pv)Jm = 0. The first four terms of 
do not contribute since they too are modes with (1, fc) = (0,1) or (Z, k) = (1,0). 

The last four terms of jW have components outside the (c, d) space. The fifth and 
sixth term are Z = 1 terms, the last two terms have k = 1. To obtain the precise 
spectral decomposition of these terms we write them as follows:

Ari,V? + B'nnV”'VJn,

with the su(2)-valued constants

Apij = IdpfKcjJl + fci.fdp.cJ], (4.4.36)
= ldm,[ci,dn]] + [ci,[dm,dn]]. (4.4.37)

The matrices Ap and B, can be decomposed in a trace part, an antisymmetric part 
and a symmetric traceless part. For the Ap terms, this is the decomposition into (Z, A.) 
is (1,0), (1,1) and (1,2) respectively. For the Bt terms, it gives the split in the three 
possible I values. Projecting out the (c, d) modes from .7,, we obtain

((1 - PvP). = A^vr + Brv^v/,
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Figure 4-3. Feynman diagrams with one interaction with J.

/ •KOOOOOOOOQ>» J

J-\QSL* kqslA.J

Figure 4-4. Feynman diagrams with two J's.

4.5 Renormalized results

(4.5.1)

where A and B are obtained from the A and B of eq. (4.4.37) by projecting out the 
trace part.

Expanding the path integral of eq. (4.4.15) gives diagrams with interactions of 
the Q field with the external current J(B). If we also take along the Q3, BQ3 and Q* 
terms in the action, diagrams with only one occurrence of J (fig. 4-3) can in principle 
give a contribution of the order c2d2. However, in order to obtain a c2d2 invariant, 
we must take the trace part of A and B. Since these trace parts are zero, we see that 
even a single occurence of J can only give rise to higher order contributions.

The simplest diagram with two J’s is the upper left one in fig. 4-4. Although it is of 
the order c'd2 and c2d* we mention it for another reason: since it contains two vertices 
and only one propagator, it is of order 1/ffo- This behaviour may seem dangerous, 
until one realizes that the Q3 and Q'1 interactions, as well as the interactions of the 
ghosts with Q, will dress up the propagator. With the standard renormalization, we 
will be left with a finite contribution.

^eff=§J(^ + «)-

In this section we will combine the results from the previous sections and write 
down the effective lagrangian that we will use as a starting point for the variational 
calculation. We will use a renormalization scheme such that the renormalized kinetic 
part looks just like the classical term:
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(4.5.2)

(4.5.3)

(4.5.4)

Kl

(4.5.5)

k2

(4.5.6)

«3

(4.5.7)

(4.5.8)

11
12

1

Using eq. (4.4.28) this gives the following renormalization:

± + ±/'124Z + -5-^+ll._ll„+ni f21 + 
gj 7T2 \1152 16 v + 12e 24 7 + 12 +

+ |C(2>-1) + 11
-|Cb(3) - ^>Cr(5) - |Cf(|,-1)) ■

With this renormalization we can write down the finite, renormalized effective poten­
tial, which we will use in the variational determination of the spectrum m chapter 5. 
Note that the u5 term in the effective potential along the tunnelling iuniquely 
determines the coefficient of the tr(A') det(c) term. The u6 term can be c: ned from 
combinations of the three independent invariants tr3(A), tr(A') tr(A"2) tr(A'3)'.
We choose to replace the u6 term by the simplest of these, which is tr3(.' ’ We write

^=^VC\^d) + V^c,d), 

with

V^(c,d) = Ve^(C) + V^(d) + K:7tr(X)tr(y) + K8tr(Xy), 

Vpff(c) = tr(X) + k2det(c) + K3 tr2(X) + k4 tr(X2)
+k5 det(c) tr(A') + k6 tr3(A),

The coeffients k, are given by

+| Cr(-1) + y Cr(3) + | Cr(5) + y Cf(j> -1), 

= -TiT - - 25<(i -1) - 133C(I- -1) + 8<(i> -1)
+84C(|,-l)+48CR(3)-14C„(5)-2G(7) + 32CF(i,-l), 
_43877 _ _965 /q _ ,/3 _i \ , 31,/S _i a i 887 ,/7

46080 12288 vz 4^2’ 1-, + 30(i'‘2’ i-'^20(i'-2’
497,/9 n 2794,/Il 572 ,/13 i \ . 743 ,“75 ” TF <<T» “ T <(T» + 120

C«(5) + W + 35 Cn(9) + 3 -1)’
 73831 , 1477 /X , 13 ,,3 n 383 ,/5 , S333.-/7 n- 46080 + 12288 V2 + “ W- ^2> “ "eo”^2’-1)

+ifF I. -i) + T c( V. -i) + ™ <(t. -1) - 
Cr(5) - y Cr(7) - Cr(9) - | Cf(|, -1),

-3<(|, -1) - C(|, -1) - | C( j, -1) - C(|, -1) - 44 C(^, -1)

1The invariant det2(c) can be expressed in these invariants.
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Table 4-1. The coefficients for the effective potential.

■

(4.5.9)

*6

15*7

(4.5.11)

15*8

(4.5.12)

-0.2453459985179565
3.66869179814223
0.500703203096610

-0.839359633413003
- 0.849965412245339
- 0.06550330854836428
-0.3617122159967145
- 2.295356861354712

! !

=
«2 =

«3 =

K4 =

«5 =

«6 =

k7 =
=

291601
3375000

115169
3375000

y C«(3) - Cr(5) + y C/1(7) + y Cr(9)
,-2)-2<f(-|,1)-6Cf(-|,-3)

+6<r( -3) - y Cr(-I) - ■
-2<F(-|,-3)-2CF(-|, 

-2CF(-i,-2) + 10CF(-i,l), I

= -^ + Ii^+t|^-i76+^yio
- lc(I.-i) - Hc(f.-i) - - W.-i)

+|<r(-3) - jCr(-I) - yg</((3) - ||<r(5) + f^GC?) + Cr(9)

~57 _3) - 57 Cr(-y -2) - ^<F(-|, 1) - | <r(-|, -3)

Cf(“5>-2) + 57 <>(-5,1), (4.5.10)
 44725  9439  376 y , 1071707 /z ,

497664 221184 vz 6561 v 0 + 16796160 v °
+y C(|, -1) + f C(|, -1) - yFaj, -1) 
-^2C(|,-l)-3|6<(n -D-^^i.-d 
-^Cr(3) + |<n(5) + ^y G((7) - y Cr(9), 

 319531 , 89317 y , 40 /z  950999 
~ 497664 + 221184 vz + 729 vo 5598720 v °
+^C(l,-i)-^C(f,-i)-^C(|,-i) 
+lc(l>-1) + - ^Cf(|>-1)
~y Cn(3) - y Cn(5) + 11C«(7) - y G(9).

The numerical values for these coefficients can be found in table 4-1. Note that not 
all of these coefficients are small, which means that the one-loop correction to the 
spectrum, to be calculated in chapter 5, may be substantial.
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5 Calculating the spectrum

5.1 Introduction

5.1.1

In this chapter we will approximate the spectrum of the effective hamiltonian by 
applying the Rayleigh-Ritz method [33]. This is a variational method that consists 
of truncating some suitably chosen basis of functions and calculating the matrix of 
the hamiltonian 71 v.Th respect to this basis. A numerical diagonalization of this 
matrix will give upper bounds for the true eigenvalues. In order to get lower bounds, 
we use Temple’s ineq-.u.ii[33,34] which as input requires the expectation values of 
H1 for the variational eigenvectors. The obtained excitation energies correspond to 
the masses of the glueballs.

The hamiltonian itself need to be supplemented with suitable boundary conditions 
in field space to obt ain a well-posed quantum mechanical problem. These conditions 
emerge when imposing gauge invariance through restricting our problem to the funda­
mental domain. We will use dynamical considerations to argue that we have enough 
freedom to choose tractable boundary conditions. After having defined the boundary 
conditions we will write down a basis of functions that respect these conditions. We 
arrive at these functions by studying the analytic solutions of the eigenvalue problem 
for the kinetic part of the hamiltonian, which is equivalent to studying the strong 
coupling limit.

Another interesting limit to study is the small coupling limit. Using ordinary 
quantum mechanical perturbation theory, we can compute expansions in the coupling 
constant for the energy levels. These results can be used as an extra check on the 
variational results.

The variational basis we defined is split up in a number of sectors corresponding 
to the symmetries of the hamiltonian. This will allow for an optimal block diago­
nalization of the hamiltonian. Moreover, it allows us to identify scalar and tensor 
glueballs. Using these symmetries, we can perform the computation of the matrix of 
H and 7Y2 by calculating a limited set of reduced matrix elements.

The results of the numerical diagonalization are the energy levels in various sec­
tors. Using these, we find the masses of the low-lying glueball states. We also estimate 
the window of validity of our effective model.

Temple’s inequality

Consider a hamiltonian H whose spectrum is The Rayleigh-Ritz
method gives upper bounds > /in. We will use the generalized Temple inequal­
ity [33,34] to arrive at lower bounds for the levels. Let ip be a normalized trial wave
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2 2
(5.1.3)

(5.1.5)

b, vre

(5.1.6)

(5.1.7)

level fj.„ of H, we have that 7 — jin- We

(5.1.8)

b =

(5.1.11)Mn- < Mn < M„-

2w =

function and define
7 = WHW, (5.1.1)
7, = M(H-y)2W = WH2W--y2. (5.1.2)

Note that 77 > 0 and that 77 = 0 implies that is a true eigenfunction of H. With the 
help of the values of 77 we can derive lower bounds, but already the condition that 
77 > 0 for all trial wave functions gives us a strong check on the calculations so far. 
Using this condition, we not only traced down a number of errors in the FORTRAN 
implementation of the Rayleigh-Ritz method, but we also discovered a subtle bug in 
the orthogonalization of the basis functions.

Suppose that Cl (a, b) = 0. Using the eigenfunction decomposition ip = 
En CnV’n, we have

Expressing the left-hand side in terms of 7 and 7) leads to 77 > (7 — a)(b — 7). We 
conclude

77 < (7 - a)(b - 7) => a(H) n (a, 6) 0. (5.1.4)
Now assume that 77 < (7 — a)(b — 7) and that the cross section of a(H) and (a, b) 
consists of a single point A. Since 77 > 0, we know a < 7 < b. The inequality for r/ 
can be rewritten in two ways

b > 7 -I--- -— = b' a < 7 — —-— = a',
7- a b - 7

and we obtain a < a' < 7 < b' < b. If we take a < a" < a', we have r; < (7 — a")(b—7) 
and thus we get ct(H) n (a", b) 0. By repeating this argument for b' < b" 
conclude

o(H)n(a',b')/0, 
and consequently.

77 . V7 - ------ < A < 7 -1--------- •.
b — 7 7 — a

Applying this general method to the n1'1
assume our variational basis to be so accurate that

_ Mn+l + Mn
Mn+* > --------j------- ■

Under this assumption we can take
a = pn.j, (5.1.9)

I2n+l + jln (5.1.10)

For the ground state, n = 1, we can take a = —co. If the condition 77 < (7 — a)(b - 7) 
is satisfied, we conclude

27)

Ari+l Mn
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5.2

(5.2.1)+ V(c,d),« =

fixed. Since the gauge

(5.2.4)*(.4(Sph, 0)) = e'°4'(/l(0, Sph)),

= inv3(c)inv4(c) 
= invj(c)

= 3det(c)
= 1 (tr2(X) - tr(A'2))

Boundary conditions
In this section we 
the lowest order and the one-loop 

d2

A, = 2 + k,

A2 = 2 + 1k2

A3 = ^3 + ^4
A4 = y — 8k4
^5 =

Aq = Kq

A? = K7 4- /CS

Ag = y " 6o •

Table 5-1. Th«. '.efficients for the hamiltonian and the definition of several invariants.

inv3(c)
inv4(c)
inv2(c, d) = ± (tr(X) tr(K) - tr(XV))
inv6(c) = invj(c)
inv7(c)
invg(c)

will derive the boundary conditions for our model. We can treat 
> case on 

a2 \ 
dd^dd* J2 {def def

V(c, d) = V(c) 4- V(d) 4- A7r2rJ 4- A8 inv2(c, d), (5.2.2)
V(c) = Ajr2 4- A2 inv3(c) 4- A3r* 4- A4 inv4(c) 4- A5r2 inv3(c) 4- A6r®. (5.2.3) 

The coefficients A,, as well as the definitions of the used invariants can be found in 
table 5-1. We have also given the definitions of the invariants that occur in V2. For 
the lowest order effective hamiltonian, we just set = 0, whereas for the one-loop 
effective hamiltonian we need to use the values for of table 4-1.

We have to provide boundary conditions at the boundary of the fundamental 
domain to obtain a well-defined quantum mechanical problem. Consider fig. 3-3. At 
weak coupling, the potential energy at the boundary of the fundamental domain is 
higher than the energy E of the wave function: the wave function is localized around 
the perturbative vacuum c = d = 0 and the boundary conditions are not felt.

Increasing the coupling results in the spreading of the wave function over the 
configuration space. We are interested in the regime where E is of the order of 
the sphaleron energy: we will have a substantial flow of the wave function over the 
instanton barrier, but at the rest of the boundary the potential is still much higher 
than E. This means that at most parts of the boundary, the wave function will have 
decayed exponentially before reaching it. As a consequence, the boundary conditions 
imposed there will not have a large effect on the spectrum. By the same token, the 
precise location of the boundary in these regions is not important either. This gives 
us the freedom to choose tractable boundary conditions.

At the sphalerons however, the boundary conditions are 
transformation connecting the two sphalerons has winding number one, we have to 
set

the same footing by writing

1 2tt2
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(5.2.6)

(5.2.7)+ V(c, d),

(5.2.9)

1

thus introducing the 6 angle.
The variational basis we need must incorporate the boundary conditions. We 

define radial coordinates rc and rd by

rc = [c”c“]5 , rd = . (5.2.5)

The sphaleron has radial coordinates (x/3,0) and angular coordinates c“ = —6“ (with 
c? = c?/rc)- It will be connected with the anti-sphaleron at (0, \/3). We will restrict 
the (rc,rd) plane by rc < \/3, rd < \/3 and impose boundary conditions at the 
edges. This means that we will be working towards basis functions of the form 
^(’•c,r(l)y'(c, d).

As argued above, for values of the coupling constant at which our approximation 
will be valid, only the effect of the boundary conditions at the sphaleron will be 
felt. By imposing boundary conditions in the (rc, rd) plane we pair up two submani­
folds, of which only the sphaleron/anti-sphaleron need belong to the boundary of the 
fundamental domain.

Consider the following decomposition of the full wave function

* = ^f:/(n,(c,d)xa(7),
where q denotes all the modes orthogonal to the c and d modes. This is just eq. (2.4.5) 
with an extra factor r*rd extracted for technical reasons (i.e. » ip^rc^rd *)•
Under the adiabatic approximation, explained in chapter 2, we obtain a hainiltonian 
for ip = ip^ given by

d2 d2 /I 1\

with Ac the laplacian in the angular coordinates. The extra term \/U)(c, d) that one 
might expect is contained within V(c, d).

The boundary condition on ip follows directly from eq. (5.2.4), but care must 
be taken when imposing the condition on the normal derivative of ip. Matching 
along the sphaleron path across the boundary of the fundamental domain, we need 
to compensate for the curvature with the appropriate jacobian factor. We will make 
this more precise.

Let us focus on the tunnelling path c“ = —u6f. Note that this path is equiva­
lent to all paths cf = -u$(d)“, with S an orthogonal matrix, due to the residual 
gauge symmetry. We will first remove this gauge symmetry to obtain a genuine 
one-dimensional tunnelling parameter. Introduce the following decomposition for c:

c = S(ap)H(M, S € SO(3), Hr = H. (5.2.8)

If we write

i=0
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(5.2.10)

(5.2.11)

(5.2.12)

(5.2.13)=

(5.2.14)

6 
a

The matrix U is given by

S-'S = S~'d,,Sap = Upqe"ap,

bT

can be obtained from

c modes. If we write up = (7io. • • • > ^*s> °i> a2, <*3)

He 6C/r
UbT UaUT

He 0
0 U

Is 0 
0 UT

with tr(//,/7j) = <5,j and with Ha oc 1, then ho will play the role of the gauge invariant 
tunnelling parameter. The sphaleron is located at ho = \/3, hi = 0, (i = 1,..., 5).

The isolation of the 18 (c, d) modes is appropriate close to the perturbative vac­
uum, because, as we have seen, they are the slow modes of the theory. Close to the 
sphaleron however, the only slow mode is the tunnelling mode w = ho/\/3. To derive 
the correct boundary conditions, we should reduce the dynamics around the sphaleron 
to a one-dimensional tunnelling problem, by integrating out all other modes. To this 
end, we consider the following decomposition of

* = Ev’(")(w)X(w]('/), 
71

where q not only denotes the non-(c, d) modes, but also the d modes and the ht modes 
with i = 1,..., 5. Note that does not depend on the gauge degrees of freedom ap. 
When imposing the boundary conditions, we want to relate the wave function at the 
sphaleron to the one at the anti-sphaleron. Consider the tranverse modes q within the 
(c, d) space at the sphaleron. The gauge transformation that maps the sphaleron to 
the anti-sphaleron will not map these modes on modes within the (c, d) space at the 
anti-sphaleron: transverse modes inside and outside the (c, d) space get mixed under 
the gauge transformation. The transverse wave function at the sphaleron restricted 
to the (c, d) modes does therefore not fit naturally to this transverse wave function 
at the anti-sphaleron. The full transverse wave functions do however map to each 
other. Another manifestation of this symmetry is the fact that the effective potential 
is symmetric around the sphaleron only when all transverse modes are integrated out.

Before going to the effective hamiltonian for we must remove the residual
gauge freedom. The gauge invariant wave function 'P is independent of the coor­
dinates ap. We will show that only after a suitable rescaling of the wave function, 
the laplacian takes its cartesian form with respect to the tunnelling parameter w. 
The boundary conditions at the sphaleron must be imposed on this rescaled wave 
function.

Consider the laplacian for the 
the laplacian takes the form

A* = jdp (Jg^d^ .

Here J = det‘^2(<;) and g is the metric which

da2 = tr(cc) = gp„upuu.

This leads to

Section 5.2: Boundary conditions
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(5.2.17)

(5.2.18)

(5.2.19)

with

(5.2.23)

(5.2.24)

(5.2.25)

(5.2.26)

(5.2.15)
(5.2.16)

(5.2.20)
(5.2.21)
(5.2.22)

det(ff) = ||L7|2 |tr(H)l- H\2.

The inverse of g is given by

f
e

d
,fT 
fU~'

Is 0 
0 U~'

a* = ia, (h3d,v).

16 0
0 (l^)

d
(UT)-'fT (UTj-'eU-

e = (a — bTb) 1, 
f - -be, 
d = 1 + bebT.

9,“'

with (e«)„ = e,rs. The matrices a and b are given by

aP, = - tr(te’’e"H2), 
bip =

We have det(g) = 117|2 |a — 6Th|. Using

(a - | tr(£»e’W) tr(eVH) = | (tr(7/)l - H)2pr,

we arrive at

For 'I' independent of <5, eq. (5.2.11) reduces to

a* = rk. + j/- (J« J otii \ ohj ) J oap v z ohj

The second term on the right-hand side is proportional to

so we obtain

A'I' = jdi (jdijd/X) , 

with j = | tr(H)l — Hj. Writing H = h0Ha + H, we can show that <1 = 1 + 0 
and that J = |x/3/ijj 4- O (#2)- Evaluating the laplacian at the sphaleron path gives 
us
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(5.2.27)

(5.2.28)

(5.2.29)

(5.2.30)(O.Sph).(Sph.O)

5.3

(5.3.1)

(5.3.2)

i c —> ScRi, d —> SdR? 
d. The generators of left- 

are su(2) angular momentum

V(w)J <p(w) = E(p(w).
similar equation for a function <p' °f the parameter w' corresponding

5.3.1 Symmetries

The hamiltonian W(c, d) is invariant under the transformation 
with S, Ri,R2 6 SO(3) and under the interchange c «-> <’ 
and right multiplication are Lf, Lf, L” and Lj. These 
operators and we have for instance

(Lf). = — .
The operators Lf and Lj can be related to the symmetries of S3. We rely on the 
material in appendix A of chapter 2 for the following considerations. The spatial 
symmetry of S3 that corresponds to left multiplication on St7(2) = S3 is generated 
by Li. If we use Cutkosky’s representation for the gauge field (here ip is not a wave 
function)

ip(n,n') = AM(c,d)n^ = + djtf^n^n'^

The variational basis
We decided to use functions of the form 0(rc, rj)y(c, d) and to incorporate the bound­
ary conditions in the (rc, rd) plane. Apart from the boundary conditions, we must 
also respect the symmetries of the hamiltonian as much as possible to obtain an op­
timal block diagonalization. Most of these symmetries, including the residual gauge 
symmetry, will be incorporated in the functions Y(c, d). After this, we will use the 
exact solution of the strong coupling limit of our hamiltonian problem as a guide to 
obtain a useful set of radial functions.

Section 5.3: The variational basis

To obtain an ordinary one-dimensional tunnelling problem, we must rescale the wave 
function by w3/2 oc hj}/2:

<p(w) =

The tunnelling problem then looks as

(-L°L+
\ 2 dw2

We can derive as., 
to tunnelling through the anti-sphaleron. When matching these tunnelling paths 
through the relation w' — 2 - w, boundary conditions must be imposed on ip and on 
its normal derivative at the sphalcron w = 1. Combining the factors w3^2 and r 
leads to the following boundary conditions on ip’.

^(Sph,0) = c‘°'0(O,Sph),

^p)(Spb,0) =
orc ord
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(5.3.3)

(5.3.4)

(5.3.5)

n ■ a

(5.3.7)

nM(n' • a)<7M(n' • a) = noao - n.V^n')^. (5.3.6)

The symmetry on S3 is thus seen to leave no invariant and to perform an SO(3) 
rotation on n. It is hence a rotation for points around the north and south pole 
of S3. The operators L\ and L2 do not leave any point invariant and cannot be 
interpreted as rotation operators. Only their sum has this property and the different 
sectors (J = 0,1,...) under the symmetry JR correspond to scalar glueballs, vector 
glueballs, etc.

To prepare the ground for the block diagonalization of the hamiltonian, we divide 
the function space in sectors characterized by the quantum numbers j, m, Zj (Zj + 
1) 4- I2H2 + 1) and p corresponding to the operators of eq. (5.3.5). Note that for 
low values of Zj and I2 there is a one-to-one correspondence between unordered pairs 
Gi>^) and the numbers Zi(Zi +1)+ ^2(^2 +1). Since the spectrum of 7Y is independent 
of the azimuthal quantum number m, we use the notation l^j-even and lifaj-odd 
to denote the various sectors. We will interpret the lowest energy level in the scalar 
(j = 0) sector to be the vacuum. Energy differences with respect to this level will 
be the glueball masses. The lowest ground state in the various j' = 2 sectors will for 
instance give rise to the mass of the tensor glueball.

a a

5.3.2 The angular sector
We begin with constructing functions of c that are eigenfunctions of the following set 
of commuting operators

{A4i

the generator for the symmetry is Lt + L\. We obtain

= (Li + => 6,ck = ieljkc}.

The generator acting on functionals of the gauge field is thus

The following set of operators commutes:

•P is defined by P/(c,d) = f(d,c). On S3 it corresponds to the parity (no,n) ♦"* 
(no, —n) (cf. eq. (2.2.7)). The operator Js = LR + L% implements constant gauge 
transformations: we have to demand (J5)2 = 0 for physical ”■ / functions. The 
operator JR = LR+LR is the rotation operator. The spatial symmetry group is SO(4) 
and these symmetries cannot be simply divided in independent sets of translations 
and rotations. The operator on S3 that corresponds to JR is Li + L2, and the 
corresponding symmetry on SU(2) is g —♦ g^} ggi- Writing g = n • cr and g\ = n • o 
we have
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(£f)2

Table 5-2. Behaviour of the functions (c|L;/a,Zr,r;7ns,mr).

Table 5-3. Definition of the complex c variables.

(5.3.8)

(5.3.9)L± = Li ± iLj-

Note that the space of the c makes up an S8. From the appendix of chapter 2 we 
know that the eigenfunctions of the spherical laplacian Ae will be the homogeneous 
harmonic polynomials in c. If the degree of these polynomials is L, the eigenvalue of 
Aj is —L(L + 7) and the degeneracy of this level is given by

= v/2rie’“‘
= — \/2r3e‘“3

= v/2r3e-<o’
= V2Tie-ia'

L + 8
8

L -f- 6
8

4 
<=?

Operator
Eigenvalue ls(ls 4- 1)

(ff)2 
lr(lr + 1) -L(L + 7)

(^)s 
mr

(lf)3
ms

= \/2{c3 - ici) =
;'|c.t = -{c‘+ci-i(cj -c?)} =-y/2r2e-^ 

j c" - 5/2(0? - to?}
I c~ = c] — c? - i(c3 + c?)

c+ = cj - c3 + r(c3 + c?)
c° = -5/2(0? + to?}
c~ = — {c} + c? + i(cj - c?)} =-i/2r2e,“’

= -\/2{cJ + ic?} = -V2r4eia'
= 2cj
=■-■ x/2{cj “ ici)

Introducing the operators L± and Lj leads us to the complex combinations of table 5- 
3 and hence we arrive at the nine functions (c|l; 1,1, ms,Tnr). For L = 2 we start 
with the function cjcj, which is, up to normalization, the function (c|2; 2,2,1; 2, 2). 
By applying the lowering operators we obtain the 25 functions (c|2;2,2, l;?n,,7nr).

We use orthogonalization to obtain the other functions. Observe that the func­
tion (c|2; 2,2,1; 2,0) is proportional to c+ct 4- cfcj. From these two monomials, we

An orthonormal basis of functions of c is given by the set {(c|L; ls, lrt r\mSi mr)}. 
Each of these functions is a homogeneous harmonic polynomial of degree L in c. Its 
eigenvalues under the various symmetries are collected in table 5-2. We used the 
operators Lp and Lf to further classify these functions, but for higher values of L 
we need the extra label t for the remaining degeneracy. Explicitly, we have that 
(c|0;0,0,1; 0,0) is just the constant function. For L = 1 we have the nine functions 
c“. We define the raising- and lowering operators in the standard way:
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(5.3.10)

(5.3.11)

6

(5.3.12)

Table 5-4. Degeneracy of representations (L, (,,(.) for L = 2. The index between parentheses gives the 
total degeneracy.

1

1(9) 

0

0 
l(s) 
0 
0

2

0 
l<s)

2 
1
0

■2k 
dat ■

T(ni 4-1) • • • F(nd -I- 4)F(ng + ^).

(r?)"’---(r2)"«(c2)2"\

with n, integers. This means that a factor (cj)ni in the monomial has to be balanced 
by a factor (cl)"1. Performing the a, integrations and introducing q, = r* and 
q$ = (c|)2 leaves us with the expression

(2?r)4 r” „4 „5_1
—g— Jo dqi -dqsq^' ■qi'q5

(2t)< 1
8 r(E?=1n. + f)

r2n
• • / da^ x 

Jo

can construct one other combination that is orthogonal to this function. This is the 
combination cjct — |cqCq which corresponds to the function (c|2;2,C. 1.2,0). Ap­
plying the relevant lowering operator gives us the five functions (c|2;2.O, l;ms,0). 
In the same way, we can also construct the five functions (c|2; 0, 2,1; 0, mr), the nine 
functions (c|2; 0,1,1; m5, mJ and the singlet (c|2; 0,0,1; 0,0). The last function how­
ever, is just proportional to c?c“, i.e. to the constant function on S8. Table 5-4 shows 
which representations (2,ls,lr) occur. Note that we have obtained 44 functions, in 
agreement with the degeneration formula.

We will shortly give an algorithm which enables us to apply the method sketched 
above to the case of general L, but we first must comment on the way the inner 
product of functions of c is defined. We will integrate a monomial in the variables c“ 
over S8. The purpose of this calculation is to arrive at a quick algorithm for evaluating 
such integrals.

With the definitions of the variables r, and a, of table 5-3 we find for the measure

/s>d£ =

= T [°°dr4Tt rJ—co JO Jo Jo
d([rJ + ...+r2 + {c3)2p_i).

The result of the integrations over a, and cj is that only terms will survive which are 
of the form
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(5.3.13)

The algorithm described above

2
0

1(25)

1(15)

0

0 
0 
0 
0 

1(1)

3
0 

1<49) 

1(35) 

1(21)

0

0 
Tot

0
1(5)

0
1(1)

1
0 

1(21) 

1(15) 

1(9)

0

lr\‘S
3
2
1
0

1 
1(21) 

1(15) 

1(9) 

0

lr\l,
4
3
2
1
0

3 
](49)

0 
1(21)

0

4 
1(81) 

0 
1(45) 

0 
1(9)

2 
1(45) 

1(35) 

2(50) 

1(15) 

1(5)

The algorithm described above was implemented in MATHEMATICA. When the 
need for higher L functions developed, a few improvements were made. The construe-

Table 5-5. Degeneracy of representations (.(.. I.. lr) for L = 3 and L = 4. The index in parentheses gives 
the total degeneracy.

The algorithm that ema,.> . Mom this calculation was implemented first in MATH­
EMATICA and later in <• ''EM. Both these implementations give exact values for the 
integrals, and the implementation in FORM was fast enough for the calculations of 
the inner products needed for the orthogonalization for L < 10. However, when 
we needed to calculate matrix elements of operators between these functions, as de­
scribed in the next section, the overall degree of the monomials can become as high 
as 28, and even FORM was not fast enough for our purposes. For the calculation 
of these integrals, we constructed a high-precision numerical implementation of the 
algorithm in C.

We return to the issue of constructing all representations (L, Z3, Zr, r) for given 
(L, Z,,Zr). We start with the function

(c+)M(c|L;L,L,1;L,£).

Note that for given L, we have that ls, lr < L. By applying the lowering operators, we 
can obtain the function (c|L;L, L, l;Z3,Zr) which is a sum of monomials. The set of 
these monomials span the space Altar which is the eigenspace of the operators Lf and 
Lj for the eigenvalue pair (Zs,Zr). Within this space of functions, but now regarded 
as functions of c in stead of c, we construct the intersection of the kernels of the 
operators and (c“c“A). The first two operators leave us with only those
combinations of the monomials that have the prescribed (Ls)2 and (£R)2 eigenvalues; 
the laplacian imposes the constraint that the polynomials must be harmonic: A = 0.

If this intersection consists of more than one function, we use explicit Gram- 
Schmidt orthogonalization to arrive at the functions (c|L; Zs, Zr, r; Zs, Zr). With the low­
ering operators, we trivially construct the rest of the functions (c|L; Z5, Zr, r; ms, mr). 
Table 5-5 gives the results for L = 3 and L = 4. Note that for (L, ls, lr) = (4,2, 2) we 
need the index t for the remaining degeneracy. The functions with la = lr = 0 are in­
variant under the symmetry c —► ScR. Note that det(c) oc (c|3; 0,0,1; 0,0) and that 
the harmonic combination of tr(X2) and tr2(X) is proportional to r^(c|4; 0,0,1; 0,0).
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W)2Operator

Table 5-6. Behaviour of the functions (cd|j,7n,/a;LiJi,Ti;L2,^2>T2)-

(5.3.14)

x

(5.3.15)

(5.3.16)■py «i»2  (_^h+*2+jy»2ti

TH.2

j 
—m

p.s.= n
J=b + 1

(JRY
Eigenvalue 1,(1] + 1) l2(l2 + 1) j(j + 1)

(—I)1*-”1* 
v/2iT+T

us)2 
0 0

J3R 
m

Ac 
-£.(Li+7)

—£2(7.2 + 7)

Its eigenvalues under the various symmetries are collected in table 5-6. Note the 
behaviour under parity:

tion of the space Alt' was improved, but the most important change was to use C to 
perform the construction of the intersection of the kernels of and This
avoided the use of slow MATHEMATICA routines like ’NullSpace’ by using explicit 
projectors on the required kernels. We used

y = (cd\j,m,I,;Litli,^,12,12^2)

= Z Z Z (-l)‘‘-1’+m>/2j + 1 f li 
ma=—l» m2——12 \ ^4

(c]Li; l„ li, Tf, m„ mi)(d|L2; l„ -m,,m2).

and the analogous expression for PR. Since all calculations had to be done exactly, 
we used arithmetic w'ith (large) integers. In this way we explicitly constructed the 
representations (L,Zs,Zr,r) for L < 10 and Zr < 2. As will be apparent from the 
sequel, we did not need higher values for lr.

We construct functions of both c and d by using the familiar rules of adding an­
gular momenta. Let i denote a representation (£; l,,lr,r) and consider the functions 
{c\ii ',m3,mr) and (d|i2; m'„ m'r). Using Clebsch-Gordan coefficients, we can define 
a function y""’(c,d) which is an eigenfunction of JR and of Js. We will limit the 
construction to functions with Js = 0, as required by residual gauge symmetry. This 
implies that the functions of c and d need to have the same l„ which restricts the 
possible combinations of ii and i2. The resulting function Y"'2(c, d) is given by

Operator (Zf)2
Eigenvalue 1,(1, + 1) 1,(1, + 1)

1 j(j + i)-ML + i)L-L^’
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(5.3.17)9?(r) 0,

(5.3.18)

(5.3.19)(c.d),

(5.3.20)E

(5.3.21)

(5.3.22)

(5.3.23)

(5.3.24)

(12 + L(L + 7)) 
r2

5.3.3 The radial sector

The strong coupling limit of our hamiltonian problem consists of the eigenvalue prob­
lem for the kinetic part of the hamiltonian of eq. (5.2.7). If we assume a solution 
¥’(re)y’(’'rf)T "1!(c, d), the reduced one-diinensional eigenvalue problem becomes

/a2

whose regular solution is

^L)(r) = yrj3+L(yr),

with jp(z) the spherical Bessel function of order p and A = q2. The eigenfunctions of 
the kinetic part of the hamiltonian are thus given by

V^\rc)V^\rd)Y‘^

with the energies given by

5(-T? + 722).

During the variational stage of the calculation, however, the use of spherical Bessel 
functions of different order will lead to a large number of integrals. Therefore we take 
the radial functions to be independent of Zq and L2 and define

d) = Vti (rcM-d)Y^(c, d),

with ^7(r) = yrj^yr). These functions are not eigenfunctions of the kinetic part of 
the hamiltonian and they will have discontinuities of the following kind. For r | 0, 
we have that <p7(r) ~ r4. The wave function VI/ behaves as

j7^7(r)(c|L; ls, lr, t\ms, mr),

and this function will be discontinuous at r = 0. The variational functions thus have 
discontinuities at rc = 0 and rd = 0. These form a set of measure zero, and a varia­
tional calculation will not feel them. Since the functions y?7(r) are the eigenfunctions 
of the reduced one-dimensional problem with L = 0, they still constitute a complete 
set of functions.

The behaviour under parity can be obtained from eq. (5.3.16) and is given by

Taking even and odd combinations gives

^(c,d) = ti,\%(c,d) +P
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Table 5-7. Strong coupling limit: lowest energy levels in some sectors

(5.3.25)

(5.3.26)p - 1

(5.3.27)

We implement the boundary conditions eq. (5.2.29) and (5.2.30) for 0 = 0 by mposing 
the following conditions on 7) and 72:

sector 
000-even 
000-even 
000-odd
112-even 
112-odd 
022-even 
022-odd

71
1.9786
4.1215
4.0345
2.7406
4.7242
1.9786
4.0345

7a
1.9786
1.9786
6.0143
2.7406
5.4016
3.4456
5.4016

For p —» 00 we approach the situation that the phase factor over the entire edge is 
constant and equal to e'°. But already for the choice p = 2, the boundary conditions 
at the sphalerons are taken into account properly.

|j,wi,f,;Z,i,l1,ri;L2,f2,T2) 
|0,0,0; 0,0,1; 0,0,1) 
|0,0,0; 0,0,1; 3,0,1) 
|0,0,0; 0,0,1; 0,0,1) 
|2,m,l; 1,1,1; 1,1,1) 
|2,m,l;l,l,l;2,l,l) 
|2, m, 0; 0,0,1; 2,2,1) 
|2,m, 0;0,0,1; 2,2,1)

E 
3.9149/ 
10.4508/ 
26.2246/ I
7.5108/ I
25.7476/ j

7.8936/ |
22.7272/ I

These conditions are expected to be accurate as long as the wave function transverse 
to the sphaleron path (near the sphalerons) is predominantly in its ground state. 
The case B = ir can be treated along the same lines as 0 = 0 by interchanging the 
boundary conditions for the cases p = 1 and p = — 1.

The exact strong coupling results for the lowest levels in some sectors for 0 = 0 are 
collected in table 5-7. These values are obtained by imposing the boundary conditions 
above on the true eigenfunctions of eq. (5.3.19): the values of 7! and 72 are hence 
dependent on Li and L2 respectively.

For general 6 we multiply $J[!£(c, d) with a phase factor exp(i0a(rc, rd)). The 
function a is a kind of Cherns-Simons functional that gives the correct behaviour 
to the wave function under large gauge transformations. The resulting functions no 
longer have well-defined parity, but they do obey the general boundary conditions for 
suitable a. Also the hermiticity of the hamiltonian for these functions can be checked 
explicitly. Sufficient conditions on a are: a(rc,r^) = — a(rd,rc) and a(y/3,0) = 5. 
We choose

p=-l : <p71(\/3) = v>73('/3) = 0,

: £(^(73) = ^±^2(^3) = 0. 
or or
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5.3.4

(5.3.28)

(5.3.29)

We take a from eq. (5.3.27) with /? = 2:

(5.3.30)

• 7i

• 7i

5.4
In this section

= 72 and q > i2: this would result in double counting.

— 72, i| = h and p ?£ (—l),|+,J+>; the function would be null.

+ p(-1)',+'’+jV^,7,(c,<*)) exp(fPa(rc,rd)),

a normalized function |n), we must 
must multiply the function above

a(rc,rd) = 1 (r* - rty

We can now add |n) to the basis unless:

• the parity p of the pair (71,72) does not correspond to the prescribed parity 
Psec (this cannot happen for 0 0 0).

with given by eq. (5.3.21). To obtain
replace <p7 by the normalized function <^7 and we 
with

Matrix elements
- we will describe the calculation of the matrix elements of 7Y and of 7Y2.

The hamiltonian H = K.+ V is given by eq. (5.2.7). Consider first the matrix element

Truncation of the basis
To construct a truncated basis, we use the following algorithm. We start by specifying 
a sector and, for 0 = 0, a parity psec- Of course, Zi, I2 and j must obey the 
triangular condition. Furthermore, we give the desired number of radial functions, 
^rad1 as we^ as au upper bound Lsum 011 hie sum L\ 4- L>2- The method to restrict 
the number of angular functions is based on the fact the energy of the weak coupling 
functions grows as L\ 4- L2, as will be derived in the section on the weak coupling 
limit.

We construct all allowed angular functions T’”2: the two representations h and 
12 must have the same /.s, their lr values must match the prescribed unordered pair 
(Z1J2) and Lj 4- L2 < Lsuin- The number of functions thus obtained is called TVang- 
Next we consider the first Afra(j radial functions <p71 (rc)<p72(rd) ordered according to 
the energy 7J4-72. To avoid double counting, we impose 71 < 72- These pairs (71,72) 
correspond to both p = 1 and p = — 1.

The set (71,72, Zj, z2) corresponds to the function

/ 1 \ 1+<S«li2^172
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(5.4.1)

I sing the

well as under J's, all the

x

x

= Z (-l),'>-'i+m'x/2j' + 1 
rn j ,m.

3 
—m

1

3'
—in'

(-l)1'-’”'

V2j +1 ( Z1

(-iy

drd

/
2

4
4

(n'|W]n). For the potential energy V the phase factor exp(ifla(rc, rd)) cancels against 
its complex conjugate. For the kinetic operator we obtain

exp(—t9a(re, rd)) >C d) exp(i0a(rc, rd))) =

(7?+7j+Li<Li+7) +
\ rc rd /

I ~ 'p'"^rd
‘ 2 (02^rc + rd)V7.(rc)V-n(rrf))y,,'2(e>d')-

To apply Temple’s inequality, we need the matrix elements of 7Y' 
hermiticity of Td we write

(n'|«2|n) = ((/C + V)n'|(ZC + V)n)
= |(£n'|Kn) + (n'|V/C|n) + |(n'|V2|n)

+ hermitian conjugate. (5.4.2)

From these expressions we can read off which matrix elements we have to calculate.

5.4.1 Angular matrix elements
Since the potential V(c, <Z) is invariant under L? and Ld as 
terms in V and V2 are of the form

A = <cd|0,0, ls- Ln 0,fi; L210, f2). (5-4.3)

We will perform the reduction of the matrix elements of this operator to reduced 
matrix elements.

(j'.tn'.t'ptjlAlj, m,ii,i2)

{|0,0, Zs; Li, 0, n; Lj, 0, f2)|j, m, fs; L,, Z,, Ti; L2 J2, r2)} 

z; Z'2 
nij m'2 

h 
m2 

J,-rnt

mi ,ma 

xm' ,ma ,m, y/2l'. + 1 y/2l, + 1 v 2(’ + 1

(L'1;Z;,Z'1,T1';m'„mi|{|L1;Z'J,0,f1;m,,0)|L1;Zs,Z1,r1;ma,m1)} x 
(L'2;Z;,Z2,Tj; -m's,m'2|{|L2;i’a,0,f2; -m„ 0)|L2; Z„ Z2,r2; -m„m2)}.

(5.4.4)

Chapter 5: Calculating the spectrum
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We introduce reduced matrix elements through

FWJi.ir). (5.4.5)

Using

(5.4.6)

the summations

(_!)'.+'2

x

(5.4.7)

I'l 
—m\

(5.4.9)
(5.4.10)
(5.4.11)
(5.4.12)

m\ = mi = , 
m, = I s, 
m', = I'., 
fh, = I',-l„

3i
7711

3\

3
— 711

i.
-Th,

I', 
m',

,J2, Ji),

(5.4.8)
E 

mi rnj

h 
mi

i.
fh,

I.
-m,

1 
x/2Zj + 1

1 
2j3 + 1

mi >
1'1 o (.

—m'j 0 m i y1

over m, and m^ become trivial and we obtain

where <5(71,72,73) = 1 if ji, 72 and 7'3 satisfy the triangular condition, and is zero 
otherwise. We absorbed the factors (—l),|(2Zj +1)-1/2 for i = 1,2 in the F functions. 
We can evaluate the F functions by setting in eq. (5.4.5)

(■£'i;^J'i,T'i';m',m'1|{|Zi;Z5,0, r,; fh,, 0)|Li; l„ lt 

I', h Is 

—7n's ms Tn s

^2

771-2

Is
Tn,

F(i'i,ii,ii)F{i'2,T2,T2)

[(2Z( + 1)(2Z; + 1)(2Z, + 1)]3

'j = (-!)'■-">•

^rni,m2

[ Hl',771, ,771, \ S

= <5|'1l,<5(^,<5j'j<5m'm6(Zi, h,jW„ lg, Is)

1________ 1
\/2Z] 4- 1 \/2/2 4” 1

Zi I2 / \ 

mi m2 — 771' J

{]', m', ti.tjIXIJ, m, ii, i2) 

= <5i;i,^(-l)’n+mV2j- + ly/2j + 1

,Ti;m,,mi)} =

0 Z>
0 mi

Here we used twice the completeness relation

J2 J3 
m2 7n'3

32 33
711.2 7,l3

1
-------------------------------T7- x[(2Z; + 1)(2Z, + 1)(2Z, + 1)]1

F(t'1,£1,i1)F(l!!,t-2,i2) x
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Thus we find

X

(5.4.15)

(5.4.17)

(5.4.18)

(5.4.19)

F22(i',i) = (-l)'i X

(5.4.20)

(5.4.21)j&m'm

I', 1 I.
~V. I.

(L'-, l'„ l'r, t'- l'„ Z'| {|2; 2,0,1; I1, - l„ 0) |L; Z„ Zr, r; Z„ Zr)} , 

and we obtain

O'. m', i], i2| inv2(c, d)|J, m, f2, i2) =

^,it)6(i'2,i2) - ■
JJ[(2Z; + l)(2Z, + l)p J

I. I,
-I'. I'.-I. I,

(L'-, Z', Z', t'; l'„l'r\{|L; l„ 0, f; Z' - Z„ 0)|L; Z„ Zr, t; Z„ Zr)} . (5.4.13)

Note that the only dependence of the matrix elements on j is through the triangular 
condition on Zj, l2 and j. Also note that the explicit 6 functions

W'^*(Z^X) (5.4.14)

are superfluous: they are also contained within the F functions. The <5(Z],Z2>J) 
function can be deleted too: the corresponding triangular condition is satisfied from 
the beginning.

Specializing to the case where A only depends on c, we have ls = 0 and we can 
also absorb the factors ( —1)/’(2ZS + l)-1/2 in F. We have for instance

(7, m', i\, i'2| mv3(c)|j, m, it,i2) = 5rj6m’mF3(i\, ii)<5(i2, i2), 

with

F3(t', t) = (L-; Z;, l'r, r'; l'„ l'r| inv3(c)|L; Z„ Zr, r; Z„ Zr). (5.4.16)

We similarly treat inv4(c), inv6(c), inv7(c) and inv8(c) which give rise to the reduced 
matrix elements Ft, F6, F7 and Fe respectively. Operators that depend only on d and 
operators that are products of a function of c and of a function of d pose no problems 
either. We have for instance

O'.m'.i'i. *21 i“v3(d)|j, m, ii, i2) = 5//m<m<5(ii, ii)F3(i'2,i2), 

and

O'.”i'.i'i.i'2| mv3(c) inv3(d)|j,m,,i2) = ii)F3(i'2,i2).

The operator inv2(c, d) is treated with the general formulae eq. (5.4.7) and (5.4.13). 
One can show

inv2(c, d) = | ix/5(cd|0,0,2; 2,0,1; 2,0,1).

Using eq. (5.4.13) we define
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(5.4.22)

with

(5.4.25)

+ B .

(5.4.26)

with

A =

(5.4.27)

(5.4.28)

inv4(c)

The result is
_______ A_______
[(2Z; + 1)(2/J + 1)]’

' I', 2 1,
(-I', I', -1, I,

-1

X

22 +

^52(t',t) = (-1)''

(£'; Z',Z^, r'; Z',Z^| {invj(c)|2;2,0,1;Z'— Z,,0)|L; Z„Zr,T;Z4,Zr)}. (5.4.23)

Similarly the operator inv.,(c) inv2(c, d) leads to the reduced matrix element F62.
Tlie only operator in V2 that we have yet to deal with is inv^c, d). For this 

operator we need to construct the spectral decomposition. We write

inv|(c,d) = a |0,0,4; 4,0,1; 4,0,l) + 6|0,0,2; 4,0,1; 4,0,1)
+c |0,0,0; 4,0,1; 4,0,1) 4- d |0,0,2; 2,0,1; 2,0,1) 
+e (|0,0,2; 4,0,1; 2,0,1) 4- |0,0, 2; 2,0,1; 4,0,1)) 
+f (|0,0,0; 4,0,1; 0,0,1) 4- |0,0,0; 0,0,1; 4,0,1)) 
4-fl|0,0,0; 0,0,1; 0,0,1). (5.4.24)

Using the explicit formulae for the corresponding polynomials, we solve for the coef­
ficients a,..., g. The new reduced matrix elements we need are F44, F,2 and F40 for 
the operators with (L,Z‘,Z’r) respectively (4,4,0), (4,2,0) and (4,0,0). The function 
F10 can be obtained from F) using the relation

11583 ^44(h > *1)^44 (*2> *2)

+ 50193 ^42(2i> ll)^42(’2> *2) — i859^22(h,’1)^22(221’2)

+ ^(i'r.ii^^.ij)),

■*'T35^(21 > *1)^(’2> *2)-

For products like inv3(c) inv2(c, d) we obtain

inv3(c) inv2(c, d)\j, m, iit i2) =
||F3(r'. r,m,Z2) - ’
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Radial matrix elements5.4.2

(5.4.29)

(5.4.30)

(5.4.31)

(5.4.34)

(5.4.35)cosfm, a)

(5.4.36)

cos(m,a) =

sin(m, a) =

(5.4.32)

(5.4.33)

m > 0
m = —1 (5.4.37)
m < —1

m > 0
m = -l (5.4.38)
m. < — 1

1 (— cos(a) + 5rao + mcos(m — 1, a))
Si(a)

(sin(a) — e"1+1 sin(ea) — acos(m + l,a))

After eliminating the functions cos(m, a) and sin(m, a) and taking the limit e 1 0, the 
result is an expression in the functions sin, cos, Si, Ci and In of the variables s and

The radial integrals we need to compute are
r v^3

= / drr"^y(r)<p7(r),
Jo

J|(n.7',7) = Jo drrn£y(r) (r|^p7(r)) ,

^«(n>7'.7) = lo drr" (r|^y(r)) (r^<p7(r)) ,

where is normalized to one, and

<p7(r) = 7rj3(7r) = /frr),
/(z) = (i - cos(z) + (-| + sin(z).

Consider the integral for non-normalized <p functions and let a — x/37 and a' = x/St*.
For an explicit value of n, but unspecified values of 7' and 7, we write

rv/3
J(n) = / drrn^(r)^(r)

Jo
= (x/3)n+1 [ dx xn f (a'x)f (az).

Jo

We express products of sines and cosines of ax and a'x in sines and cosines of sx and 
vx with s = a' + a and v = a' - or. The integrand as it stands is regular at x = 0, 
but individual terms need not be. We therefore introduce a cut-off e, after which the 
integral is a sum of functions

= y dxxmcos(ax),

sin(m, a) = dxxmsin(ax).

Partial integration gives us the following recursion relations

1 (sin(a) — msin(m — l,a)) 
Ci (a) - ln(a) - 7e - ln(e)

(cos(a) — em+1 cos(ea) + asin(m + 1, a))
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(5.4.39)

(5.4.40)J»(n) =

5.5 Weak coupling expansion

Wi(c) =

(5.5.3)+

{a, - 1) x2 +
/ ,\ 2

0 _ 
ds dv

s2 — v2
4

1 1 
x’ + x2d'Ho

A5Zcinv3(c) +

and performing the normalization we construct 
we have to take the

+ Ze + xd<
(5.5.1)

(5.5.2)

52 92 i< '
ds2 dv2 ) ' (n)’

v. By substituting values for s and v
tables for J(n, 7^7). Note that we have to be careful for a1 = a: 
limit v —♦ 0 before substituting actual values.

The other integrals can be obtained as follows:

W,(c,</) = Hi(c) + «,(</) + A7 (£) x2x2d + Xs x2x2dinv2(c,d), 

‘ X2x3c inv3(c) + A3z^

+ (2) A4zjinv4(c)

+ ^ +

In this section we will perform the perturbative calculation of the energy levels of 
the hamiltonian. The results will serve as a check on the variational calculation in 
the regime of small coupling constant. Starting from the strong coupling basis, we 
could also develop a perturbation theory in 4, but there are two reasons why this is 
less interesting. First, we are interested in the region where we just start to see the 
deviations from perturbative behaviour in f. Second, since our variational basis is 
in essence a strong coupling basis, the reproduction of the strong coupling limit does 
not give a strong check on the variational calculation.

For the weak coupling limit, we rescale xc = \fjrc and %d = \Jyrd and we split 

the hamiltonian of eq. (5.2.7) in TC = Hq + with

dx2c dx2d

,9p’(n)-
In a similar way we arrive at

~ ( d \■A(n) = drr’,<p1.(r) lr—<py(r')\

= (v/3)n+' [' dx x" f (a'x) (x^-/(az)
Jo \ ox

d
da 

s — v 
~2~



98 Chapter 5: Calculating the spectrum

5.5.1

- x2 ] <p(x) = 0. (5.5.4)

¥’(i) = e (5.5.5)

(5.5.7)

(5.5.8)

5.5.2

(5.5.9)

12 + L(L + 7)
X2

Weak coupling perturbation theory
Bloch perturbation theory [31] was used already in chapter 4 without much explana­
tion. Since we need some details on the method here, we give a short sketch of the 
method. Suppose we have a hamiltonian H = Ho + Ht, where we will treat Hi as 
a perturbation. Let Eo be some eigenvalue of Ho and let Po be the projector on the 
corresponding eigenspace fl0- We define the operator U by

U = Z/C0) + +1/(2) + ...

The unperturbed problem
The eigenvalue problem for Hq leads to the following one-dimensional eigenvalue 
problem:

( d2 ,
I T-2 + —\ax2

= d?+i)(x2)L^+^(x5)x<L'+4>x^+4)e-^%-d), 

and the energies are given by

E = 18 4- 2(Zq 4- L2) 4- 4(ni 4- 712).

The regular solution of this equation is [35]

A — 2L — 9 9 2\---- 4---- .L+l^2),
with 1F1 the confluent hypergeometric function. As in the strong cou; case, we 
can use the boundary conditions at x = to discretize the possible . res for A 
and hence the energy. This will give us an alternative to the strong c c piing basis 
constructed above. Disadvantages of this basis are that the functions themselves 
depend on the coupling constant f. Also the matrix elements of operators between 
two confluent hypergeometric functions are hard to calculate. For the variational 
method, we will therefore use the strong coupling basis.

We can however use the weak coupling basis for perturbation purposes. For f 1 0 
the location where the boundary conditions have to be imposed moves away to infinity, 
which is equivalent to saying that the wave function, in the original coordinates, is 
strongly localized around c = d = 0. We can replace the boundary conditions at 
x = Jj by demanding normalizability of the functions <p(x). This means that the 
1-Fi function must reduce to a polynomial, which is the case if its first argument is 
—n with n = 0,1,.... The \F\ function then reduces to a Laguerre polynomial

1F1(-n,L+ |,x2) oc L‘.L+i)(x2), (5.5.6)

and we obtain the discretization A = 9 + 2L + 4n. The weak coupling eigenfunctions 
are thus
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(5.5.10)

Z/"> = (5.5.11)

(5.5.12)1

I

(5.5.11)
(5.5.15)
(5.5.16)

Po, 
Qo 
a

where is of order

U<°> =
n in and is defined recursively by

=> M
=> M

Here we set Qo = fl — p0. and a = Ho — Eq. Consider the operator PqH\U. This 
operator is defined on Qo and its eigenvalues are the corrections to the unperturbed 
eigenvalue Eq.

We now turn to the weak coupling expansion of our hamiltonian. For this we need 
the matrix elements of Hj w.r.t. the basis of eq. (5.5.7). The angular integrations 
have already been treated. The radial integrals take the form

^”dxx"e-l2xL'+4xL+4Lg + ?)(T2)zS1I'+?)(x2).

We calculate these integrals by substituting the explicit form of the Laguerre poly­
nomials.

We will argue that the number of intermediate levels (the levels on which Qq 
projects) that we have to take into account is finite; moreover, for perturbation up 
to O (/3), all the levels needed are contained in the truncated bases that we used. 
A similar restriction cannot be given when using the strong coupling basis: Bloch 
perturbation theory for this case would hence be more complicated.

First note that although we are constructing a perturbative expansion in \ff, the 
result of the Bloch perturbation theory will be an expansion in /, as can be seen by 
parity arguments. Each factor of Hi contributes at least a factor >/f, so for O (/3) 
precision, we need therefore not go beyond Z7^3\ which corresponds to four factors of 
Hi. Also note that the final contribution from the terms in Hi corresponding to A5 
and A6 will be of O (/3) and we can remove them from the effective perturbation.

Consider the matrix element

M = (ni,7i/2,2/1,2/2|Hi|n1,n2,Zi,i2), (5.5.13)

with the functions |ni, n2, ii, i2) given by eq. (5.5.7), and their energies E and E' 
given by eq. (5.5.8). We will prove:

|L/1-L1|>4 => M = 0,
|L2 - L2| > 4 => M. = 0,
|E' - E\ > 8 => M = 0.

The angular functions in Hi have L < 4, so the first two claims an' a direct conse­
quence of the triangular condition. Consider a term in Hi with a behaviour A 
possible dependence on c of this term will be through a function with l,\ > and 
with cii — L] even.

Let us assume that n\ > n\. The integration over c will imply that I \ I / i 1 I \ 
is even and the triangular condition will imply \L\ — LJ < Li S n'i« Combining this
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(5.5.17)

have

(5.5.18)

(5.5.19)

= 18 + 6 + 6 = 30, 
= 0 + 3 + 3 = 6.

(5.5.24)
(5.5.25)

The reason to restrict us to these levels, is that they will turn out to correspond to the 
lowest glueball masses. For each of these levels we construct the finite matrix of Wi 
with respect to the functions that satisfy the limits on E and L. We then calculate

|AEi | > 2a} or |ZX£72| > 2q2>

and the matrix element vanishes.
The E = 18 eigenspace consists of only one function, which has L\ = L2 — 0. 

The only contribution, up to O (/3), from W<3) will be through terms in Wi that are 
proportional to y/~J. These interaction terms have a, + a2 < 3 and the maximum 
possible change per step for E and L becomes respectively six and three. After taking 
four steps, i.e. after visiting three intermediate levels, we must return to the original 
level. The highest intermediate E and L values that can be reached are thus

£max
7-max

(5.5.20)
(5.5.21)

One checks that the contributions from z/1* and l/(2) cannot go beyond these limits. 
For the two-dimensional E = 22 eigenspace in the same sector (i.e. 000), we have

7’-max — 22 + 6 + 6 = 34, (5.5.22)
imax = 0 + 3 + 3 = 6. (5.5.23)

Note that we could use the parity symmetry to split this problem in two one­
dimensional problems. The E = 22 level in the sector 112-even is one dimensional 
and consists of a function with Lt = L2 = 1. Hence we have

^max — 22 + 6 + 6 = 34,
7-max — 1+3 + 3 = 7.

leads to 0 — (L\ — L( + ai)/2 > 0 and 0 integer. The radial integral over xc will be 
proportional to

/°° dy e-«yi+L' Li*L' (y).

The product of the last two factors is a polynomial in y with the highest power of 
y being given by 4- n\. From the orthogonality of the Laguerre polynomials, we 
conclude that the integral is zero if ni > n\ + /3, which is equivalent to 2(ni - n\) 4- 

~ L\ > a]. If we had assumed n\ > the condition for the vanMiing of the 
integral would have been 2{n\ -nJ + L' -L, > ai. Combining these iw cases leads 
to the condition |AEi| > 2aj.

For each term in the effective (i.e. without the A5 and A6 ten ■ ), we| 
ori 4- a2 < 4. The condition |AE| > 8 then allows us to write

|A£q| 4- |A2?2| > |A.E| > 8 > 2(ai 4- a2)>

hence we have
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(5.5.26)

&2 
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(5.5.29)

^000-even

E000-even

«2

(5.5.27)

(5.5.28)

the Bloch matrix P9HiU to obtain the perturbative expansion for the eigenvalue. We 
obtain the following results:

= 18 + /(> +

+y ,c3+
= 22 + / (-|

.165
+ 8

= 22 + / (^ +

r(°)
OOO-odd

F(o) 
^112-even

5.6.1 Lowest-order hamiltonian

We start by considering the lowest order results. An overview of the lowest energy 
levels for 6 = 0 in the various sectors is given in fig. 5-1. For clarity, we did not 
plot the lower bounds on the levels. From the spectrum, we see that the lowest 
glueball masses are to be found in the sectors 000-even, OOO-odd and 112-even for 
respectively the scalar and the tensor glueballs. We reinstated the R dependence

«3+^\

O+/2 (B- 
; k4 + |g k7 + yg

With the results of the previous section, we are in a position to actually perform 
the variational calculation. We constructed a FORTRAN programme which as input 
requires the sector the parity psec = ±1 for the case 0 = 0, and the limits 
^rad and ^suin- Using the last two numbers, the truncated basis is constructed. 
The reduced angular matrix elements F and the radial integrals J are read from 
files. Also the values for f and 0 are read from input files and the hamiltonian is 
constructed. Note that the angular matrix elements are independent of the value of 
j. The construction of the basis only depends on j through the number (—l)<1+,2+j. 
As a result, we have that for instance the scalar and tensor sectors 110 and 112 are 
completely degenerate.

For the case 0 = 0 the hamiltonian is real, and we performed the diagonalization 
using routines from the Nag-library. For 0 / 0 we used diagonalization routines from 
the Eispack library. The output consisted of the upper bounds i±n for the lowest 
energy eigenvalues and of the corresponding values for p. These will be presented 
shortly.

We also produced graphical representations of the wave function. These can be 
used in verifying a posteriori whether the assumption is true that the boundary 
conditions are only felt at the sphalerons.

- raK*’~ i*2 
kt + fg k8) + O (/3) , 
/2 + 3^ -fgK,2-

.+t|k8)+O(/3),

io Ki + ii K») + ° (/3) ■

- H«i2- 
K8) + o (/3) .
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Table 5-8. Raw data for the lowest levels in the sectors 000-even, 000-odd and 112-even.

21.8859 
24.0612 
21.8572 
24.0176 
21.7998 
24.0009 
21.7528 
23.9805 
21.7377 
24.0032 
21.7351 
24.0669 
21.7521 
24.1689 
21.7948 
24.2978 
21.8669 
24.4418 
21.9704 
21.5970 
22.2709 
24.9399 
22.6891 
25.3409 
23.2123 
25.8136

22.0620 
24.0740 
22.0990 
24.1204 
22.1406

22.1845 
24.2235 
22.1959 
24.0590 
22.1217 
23.8186 
21.8983 
23.5788 
21.5210 
23.2763 
21.0556 
22.8994 
20.5711 
22.4949 
20.1129 
22.0971 
19.7017 
21.7446 
19.3443 
21.4502 
19.0407 
21.2167 
18.7884 
21.0412 
18.4232 
20-8443 
18.2184 
20.8190 
18.1831 
21.1591 
18.5134 
21.8762 
19.0985 
22.8567 
19.8661 
24.0288 
20.7681 
25.3401

9 
0.00106 
0.034 
0.0465 
4.67e-05 
0.00222 
0.0191 
4.76e-05 
0.00483 
0.0411 
8.96e-05 
0.00978 
0.0857 
0.000159 
0.0185 
0.195 
0.000269 
0.0364 
0.548 
0.000448 
0.076 
1.21 
0.000521 
0.125 
1.26 
0.00129 
0.238 
0.618 
0.00274 
0.173 
0.281 
0.0048 
0.0954 
0.176 
0.00746 
0.0559 
0.157 
0.0107 
0.0398 
0.0901 
0.0175 
0.0281 
0.0381 
0.0224 
0.0223 
0.0399 
0.0245 
0.0188 
0.0346

______000-even 
7

18.0908 
21.9218 
24.0215 
18.1137 
21.9047 
24.0205 
18.1425 
21.8860 
24.0160 
18.1715 
21.8694 
24.0057 
18.2006 
21.8546 
23.9840 
18.2299 
21.8396 
23.9172 
18.2592 
21.8165 
23.7221 
18.2884 
21.7642 
23.4259 
18.3438 
21.4943 
23.1291 
18.3819 
21.1036 
23.2513 
18.3715 
20.7847 
23.3721 
18.2713 
20.5807 
22.9356 
18.0569 
20.4505 
22.5930 
17.3489 
20.2528 
22.6566 
16.5009 
20.2249 
22.2227 
15.7101 
20.4066 
21.9580

000-odd 
n 

0.0411 
0.352 
0.00139 
0.0153 
0.0067 
0.074 
0.0173 
0.164 
0.0214 
0.168 
0.021 
0.137 
0.0183 
0.103 
0.0148 
0.0866 
0.00958 
0.0506 
0.00711 
0.0331 
0.00504 
0.0166 
0.00461 
0.00983 
0.00477 
0.00701

112-even_____
n 

0.0232 
0.0972 
0.0287 
0.198 
0.0572 
0.344 

; 0.108 
; 0.6 
I 0.103 
■ 0.456 

0.095 
0.497 
0.115 
0.433 
0.126 
0.385 
0.113 
0.291 
0.0928 
0.23 
0.0748 
0.148 
0.0642 
0.115 
0.0582 
0.0928 
0.0546 
0.0778 
0.0519 
0.0698 
0.047 
0.0636 
0.042 
0.0588 
0.0323 
0.0671 
0.0239 
0.0764 
0.0174 
0.0431 
0.0125 
0.0715 
0.00903 
0.0312
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Figure 5-1. Lowest energy levels in various sectors. Going up at f = 0.6 we have: 
Drawn curves: 000-even, 000-even, OOO-odd.
Dashed curves: 112-even, 022-even, 022-odd, 112-odd.
Long-short dashed curves: Ill-even, Ill-odd, 011-even, Oil-odd.
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using dimensional arguments. Note that the crossing of levels only happens for levels 
that are in different sectors. States within the same sector would exhibit avoided 
level crossing due to level repulsion.

The raw data for these sectors is given in table 5-8. The corresponding levels, 
including the lower bounds and the perturbative expansions, are plotted in fig- 5-2. 
For small coupling, the deviations of the wave function from the perturbative one 
will be small. To reproduce the energy eigenvalues correctly, we can suffice with 
a relatively low number of angular functions, but to be able to accommodate the 
strong localization around c = d = 0, we need a large number of radial functions. 
For larger values of / we can reduce the number of radial functions, but we must 
increase the number of angular functions. The data in table 5-8 was obtained by 
combining different runs with various choices for the truncated basis as controlled by 
the parameters Nraj and LSum-

In the 000-even sector we maximally used 7Vraj = 150 and Lsum = 10 for small 
/, and Nrad = 50 and Lsum = 14 for larger values of f. These values correspond to 
bases consisting of over 3000 vectors. Increasing the number of basis vectors becomes 
quickly limited by the amount of free memory available in the computer. A 3000 
by 3000 matrix of double precision reals takes up roughly 72 Mbytes. For the case 
0 7^ 0, the hamiltonian is complex and we need a factor of two more memory. In the

000-odd
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112-even sector, the same number for Lsum resulted in higher numbers of angular 
functions. Here we went up to 7Vrac] = 150 and isum = 8 for small /, and 7Vracj = 30 
and Lsuin — 12 for larger values of f.

We did most of the calculations on Sun workstations. For some values of f we 
wanted more accurate results and used computer time on a Cray YMP. We also 
developed a pruning technique: after diagonalization, we examine the variational 
wave function obtained for, say, the ground state. We replace those basis vectors 
(roughly ten to twenty percent) that have a small coefficient in this wave function by 
new basis vectors and repeat the diagonalization. Repeating this procedure allows us 
to sample a larger variational basis, but we do not have the guarantee that the results 
will improve in this way: it is possible that the true wave function has substantial 
overlap with very many vectors in our basis.

Returning to our calculation, the lowest-lying scalar (j = 0) and tensor (j = 2) 
levels are found in respectively the sectors 000 and 112. For 6 = 0, the vacuum 
corresponds to the ground state of the 000-even sector. The scalar glueball 0+ can 
be identified with the first excited state in the 000-even sector, the tensor glueball 
2+ with the ground state in the 112-even sector. Note that at f = 0.6 these levels 
cross, thus making the scalar glueball heavier than the tensor. We do however not 
expect our model to be valid anymore for these values of the coupling constant.

Figure 5-2. Lowest energy levels for 0 = 0. Drawn curves correspond to levels in the (0,0,0) sector. 
The dashed curve denotes the ground level in the (1, l,2)-even sector. The short-dashed curves are the 
perturbative expansions, and the individual dots are lower bounds on the levels as obtained by Temple's 
inequality.
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Figure 5-3. Glueball masses for 0 = 0 as a function of the coupling constant. The lower and upper drawn 
curves are the masses of resp. the first scalar (0+) and tensor (2+) glueball. The dashed lines denote 
the lower bounds, the dotted lines the perturbative results.
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Taking differences of the energy levels with respect to the ground state in the 000- 
even sector gives us the masses of the low-lying glueball states (fig. 5-3). To check 
on the strong coupling results, we also performed variational calculations for large 
values of f. The comparison with the results of table 5-7 can be seen in fig. 5-4.

For small f, there is virtually no dependence of the masses on 0, whereas for 
larger f the 0 dependence becomes bigger. This is shown in fig. 5-5. For 0 = tt we 
can impose the boundary conditions exactly, that is, without using the trick with the 
Cherns-Simons like operator, but with the same method that we imposed the 0 = 0 
conditions. The variational results obtained in this way are also plotted in fig. 5-5. 
Remember that a 0 dependence is a sign that the boundary in the (rc, rd) plane is felt. 
Our model is valid for values of the coupling constant at which only the boundary 
conditions at and near the sphalerons are felt. Checking this a posteriori with the 
help of plots of the wave function (fig. 5-6) indicates that f should not be larger than 
roughly 0.5. These plots were obtained as follows. Consider the function

IV'(’V>’’rf)|2 = J de dd |V>(c,d)|2,

which is a measure of the probability distribution in the (rc, rrf) plane (see fig. 5-7). 
Dividing this |V>(rc, rd)| by r^rj, we obtain a function with the expected behaviour 
of the true wave function: it is localized at the sphalerons and decays exponentially 
in the transverse directions (see fig. 5-6). Note that the characteristic width grows
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Figure 5-4. Strong coupling limit, 0 = 0: the drawn and dashed lines are the variational results for the 
lowest levels in the sectors 000-even and 112-even respectively. The dotted lines represent the analytic 
strong coupling limit.

with increasing f. Although the lowest barrier is the sphaleron, the measure factor 
causes the configurations that are close to the sphaleron but have a somewhat 

higher energy to make the dominant contribution to the tunnelling. The relevant 
parameter here is the characteristic decay length of the wave function, which in turn 
is determined by the rise of the potential in the transverse directions.

Although we are primarily interested in the case 6 = 0, an appreciable dependence 
on 6 for a certain value of f shows that the non-perturbative influence of the boundary 
has become important. To explain the fact that the spectrum is not exactly periodic 
in B, note that our implementation of the B dependence (eq. (5.3.27)) only has this 
periodicity in the limit 0 —» oo. The volume effect described above implies that 
the relevant distribution |V'(rc, 7"a)| samples a piece of the boundary over which the 
phase difference already starts to depart from e'°. This also implies that the results 
using the exact implementation of the boundary conditions for the case 6 = tt can be 
expected to differ from those using the method of eq. (5.3.27). Increasing 0 would 
improve the periodicity properties, but would not result in a better effective model: 
although it would be less apparent, the wave function would still be spread out over 
the boundary.
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Figure 5-6. The wave function 'P oc 
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Figure 5-5. Scalar glueball mass at f = 0.25, f = 0.3, f = 0.4 and f = 0.5 as a function of 0. The 
dashes at 0 = ±tt denote the variational result with exact implementation of the boundary conditions. 
Note that the vertical range in these four plots is the same.
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Figure 5-8. One-loop results. Lowest energy levels in various sectors. Going up at f = 0.6 we have: 
Drawn curves: 000-even, 000-even, OOO-odd.
Dashed curves: 112-even, 022-even, 022-odd. 112-odd.
Long-short dashed curves: Ill-even, 011-even, Ill-odd, Oil-odd.
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One-loop hamiltonian
We present basically the same plots for the one-loop hamiltonian as for the lowest 
order hamiltonian. Thus fig. 5-8 gives an overview of the lowest energy levels. As 
before, the lowest glueball masses are to be found in the sectors 000-even, OOO-odd 
and 112-even.

The raw data is given in table 5-9 and the corresponding levels, including the lower 
bounds and the perturbative expansions, are plotted in fig. 5-9. Note the avoidance 
of level crossing between the ground state and the first excited stated in the 000-even 
sector, which give rise (cf. eq. (5.1.11)) to relative large errors for even the ground 
state. If a point is plotted without the corresponding lower bound, this means that 
the condition just above eq. (5.1.11) was not satisfied.

Especially in the 112-even sector, the values obtained for 77 are rather large. We 
like to stress here that the lower bounds as obtained by Temple’s inequality are rather 
conservative and that the actual error is often much smaller. This insight is gained in 
studying toy models, but the effect can also be observed in the case at hand. Going 
from Lsum = 12 to Lsum = 14 in the 112-even sector, the upper bounds shifted very 
little, whereas a reduction of the 77 value by a factor of two was achieved.

It is to be expected that for the one-loop hamiltonian a larger number of basis 
vectors is required, since the potential has a more complicated structure in this case
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17.9777 
21.8578 
23.9076 
17.9527 
21.7006 
23.7995 
17.9247 
21.5903 
23.7017 
17.8232 
21.2421 
23.3190 
17.6702 
20.7239 
22.1441 
17.4464 
19.5425 
21.0058 
17.2818 
18.6999 
19.6693 
16.9944 
17.6871 
18.7510 
16.2095 
17.0077 
18.2462 
15.1460 
16.5987 
17.3844 
14.1275 
16.1017 
16.2342 
13.1731 
15.0631 
15.8264 
12.2963 
14.1701 
15.4917 
11.4773 
13.4143 
15.1224 
10.0548 
12.2216 
14.5172 
8.9018
11.4215 
14.0219 
7.9189 
10.7487 
13.5224

21.7950 
23.9236 
21.6814 
23.8519 
21.5751 
23.7888 
21.4573 
23.7120 
21.3272 
23.6182 
21.2361 
23.3619 
21.1486 
23.2368 
20.9686 
22.9994 
20.7745 
22.7928 
20.5721 
22.6409 
20.3742 
22.5473 
20.2808 
22.5101 
20.1936 
22.4813 
20.0406 
22.4344 
19.9197 
22.3841 
19.7661 
22.2169 
19.8148 
22.1005 
20.0405 
22.1388 
20.4158 
22.3490 
20.9163 
22.7130 
21.5211 
23.2062 
22.2131 
23.8057 
22.9783 
24.4925 
23.8052 
25.2516

21.8509 
23.8422 
21.7836 
23.7701 
21.5601 
23.5225 
21.2267 
23.0488 
20.6308 
21.6456
18 ■' 
19.7854 
16.0137 
17.2299 
14.0899 
15.0787 
12.4516 
13.5260 
11.0848 
12.3763 
10.0241
11.5789 
9.1387 
10.9561

Table 5-9. One-loop results. Raw data for the lowest levels in the sectors 000-even, OOO-odd and 
112-even.

112-even
9 

0.0619 
0 111 
0.0272 
0.136 
0.0641 
0.378 
0.102 
0.61

| 0.693
| 4.09
I 3.83
I 2.74 
: 2.29 
j 3.12 
I 1.38 
! 2.73 

1.08 
2.25 
0.893 
1.42
1.41 
1.13 
1.04

000-even
n 

0 153 
1.95 
0.926 
0.000894 
0.0272 
0.0481 
6.57e-05 
0.00417 
0.035 
0.00029 
0.0313 
0.33 
0.00255 
0.296 
3.41 
0.0107 
1.15 
1.6 
0.0323 
1.21 
2.36 
0.208 
1.23 
1.2 
0.824 
0.452 
0.65 
0.77 
0.292 
1.99 
0.743 
1.23 
0.717 
0.589 
1.25 
0.391 
0.613 
1.04 
0.862 
0.419 
0.874 
0.364 
0.306 
0.641 
0.39 
0.771 
1.97 
1.2 
0.555 
1.51 
1.24

OOO-odd
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0.667 
0.889 
0.052 
0.436 
0.0888 
0.661 
0.155 
0.98 
0.249 
1.4 
0.259 
1 
0.127 
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0.0331 
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0.0238 
0.0056 
0.0183 
0.0055 
0.0153 
0.00561 
0.0135
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Figure 5-9. One-loop results. Lowest energy levels for 9 = 0. Drawn curves correspond to levels in the 
(0,0,0) sector. The dashed curve denotes the ground level in the (l,l,2)-even sector, the short-dashed 
curves are the perturbative expansions. The four small plots also show the lower bounds (individual dots)
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Figure 5-10. One-loop results. Glueball masses for 6 = 0 as a function of the coupling constant. In the 
upper plot, the lower and upper drawn curves are the masses of resp. the first scalar (0+) and tensor 
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5.6.3 Discussion

Using the Rayleigh-Ritz method we can determine the spectrum of the effective hamil- 
tonians. The use of Temple’s inequality gives us confidence that our results are accu­
rate, especially since experience tells us that the actual error is usually much smaller 
than the conservative estimates based on the values of 77. The results are also consis­
tent with the strong coupling limit and with a weak coupling perturbative expansion 
that was done up to O (/3).

m(0*) R
3.6

2.8
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2.4

-3 -2 -1 I' 2 "j ~ 9
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Figure 5-11. One-loop results. Scalar glueball mass at f = 0.15, f = 0.2, f = 0.25 and f = 0.3 as 
a function of 0. The dashes at 0 = ±7r denote the variational result with exact implementation of the 
boundary conditions. The vertical range of the plots is the same as in fig. 5-5.

Also the values of the coefficients in the potential may cause the large values of 77. 
When investigating the influence of A, on the variational results, we find that the 
large value of A8 seems to cause the problems. This coefficient corresponds to the 
operator inv2(c, d), which is the only operator in the potential that can change the 
l3 value of a basis function. Apparently, our basis could not be chosen so large as to 
yield high-precision results when the coefficient of this operator becomes large.

Taking differences of the energy levels with respect to the ground state in the 
000-even sector again gives us the masses of the low-lying glueball states: see fig. 5- 
10. Fig. 5-11 shows the 0 dependence of the scalar glueball. In view of the remarks 
above, we left out the lower bounds in these cases. We can again study the localization 
properties around the sphaleron: see fig. 5-12.
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Let us focus first on small values of f. Here the boundary conditions ; t felt 
yet, and the variational results are in accordance with the results from per . ration 
theory. Note that in this regime the lowest level in the OOO-odd sector 0“ hrr tually 
a lower energy than the scalar glueball, an effect that also can be seen from the 
perturbative evaluation of the energy levels. This we expect to be a consequence of 
the strong finite size effects that are visible at small values of f.

When f grows, we see the effect of the boundary conditions in field space set in. 
For even larger /, the wave function has spread out over the entire (rc, rrf) plane, and 
the model has lost its validity. It is however possible that this already happens before 
this point because of a break down of the adiabatic approximation. In order for the 
adiabatic approximation to be valid, the wave function for the transverse modes must 
still be in its ground state. To check this for the modes outside the (c, d) space is hard, 
but transverse to the tunneling path we can examine the transverse modes within 
the (c, d) space. Fig. 5-6 and 5-12 do not only show the localization of the transverse 
wave function at the sphaleron, but also indicate that this transverse wave function 
is in its ground state. We therefore assume that the adiabatic approximation is valid, 
and that values of the coupling constants for which our effective model is useful are 
determined by the spreading out over the (rc, rd) plane.

From these considerations, we derive the following windows in the coupling con­
stant. For the lowest order hamiltonian, the interesting window is between f = 0.3 
and f = 0.5. For the one-loop case, it is between / = 0.2 and f = 0.3.

One of the issues raised above was the level of localization of the wave function 
around the sphaleron. This is related to the question whether the assumption is true 
that only the boundary conditions at and near the sphalerons are felt. We argued 
that this was determined by the rise of the potential in the transverse directions. The 
one-loop correction to the tr(F) term in the potential at the c sphaleron, which can 
be expressed in k7 and ks, is such that it results in a lesser degree of localization. 
In both the lowest order and the one-loop case, a strong localization of the wave 
function around the sphaleron is not realized and the boundary conditions are not 
felt exclusively at the sphalerons. This should not come as a big surprise since it is 
unnatural for an eigenvalue problem that the spectrum is determined by boundary

Figure 5-12. One-loop results. The wave function 'P oc |V’(rc,’‘d)|/(r^r^) plotted at r<j v'3 for the 
ground state in the sector 000-even.
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conditions at a finite number of points. Typically the conditions at a boundary with 
codimension one determine the spectrum. This is illustrated by our problem: we 
feel the conditions at a finite part of the boundary, determined by the localization 
potential in the transverse directions. As long as the coupling is low enough, our 
assumption that the boundary conditions are only felt close to the sphalerons is true 
and the results are valid.

For a fuller discussion of the results and a comparison with the results on the 
torus, the reader is referred to chapter 6.
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6 Conclusions

6.1 Summary

was to calculate the glueball spectrum on S3. In particular, 
set oib '<ly the effects of the topology of the configuration space on the 

se effects can be seen as the results of the presence of instantons.
\ eloped the effective theory of the low-energy modes in chapter 2. 

Using a ■ ' ,. cnheimer approximation, we integrate out the fast modes of the full
theory , with an effective quantum mechanical problem for the slow modes.
We used the ' ciiltonian method to argue the validity of this approach, although a 
lagrangian ;die d was used to calculate the influence of the high-energy modes.

Chapter 3 focused on the intersection of the fundamental domain with the space 
of low-energy modes. We can impose gauge invariance on the theory by restricting 
the dynamics to this fundamental domain. When choosing explicit coordinates in the 
configuration space of a gauge theory, one encounters various coordinate singularities. 
The Gribov horizon is the locus in configuration space where these coordinate singu­
larities first, in the sense of perturbation theory, show up. The fundamental domain 
screens most parts of the Gribov horizon from the dynamics, so that we need not 
resolve the singularities that occur there by choosing other coordinates. There are 
however so-called singular boundary points: here the boundary of the fundamental 
domain and the Gribov horizon touch. Using bounds on the fundamental domain, 
we explicitly constructed singular boundary points. We argued that in the dynamical 
region we are interested in, these points will not influence the dynamics.

The influence of large gauge transformations, Gribov copies and the 0 parameter 
is taken into account by imposing boundary conditions at the boundary of the funda­
mental domain. Dynamical arguments showed that we had some freedom in choosing 
the boundary conditions.

In chapter 4 we performed the calculation of the one-loop effective lagrangian. 
After renormalization, one can extract the correction to the lowest order effective 
hamiltonian. Our renormalization scheme, defined by eq. (4.5.1), can be related to 
other schemes like the MS or MS scheme.

In chapter 5 we calculated the spectra of both the lowest order (or truncated) 
hamiltonian and of the one-loop corrected hamiltonian. The method consisted of 
defining proper boundary conditions and constructing a basis of functions that respect 
these conditions. The matrix of the hamiltonian with respect to a truncation of this 
basis was subsequently diagonalized numerically. Using the Rayleigh-Ritz method 
we determined the spectra of the effective hamiltonians.

Summarizing the results, we can conclude that we managed to calculate the low- 
lying glueball states on the three-sphere in the effective model accurately.

The goal of this thesis 
we 
spectrosc . 
To this ei ■ •
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6.2 Discussion

(6.2.1)

It is important to emphasize one should not expect our results for the spectrum to be 
accurate for large volumes. For large volumes the effects of the non-trivial topology 
and geometry (curvature of the configuration space, not to be confused with the 
curvature of S3) become too strong to be described by the effective theory. Within the 
effective theory we clearly observe that at large coupling the wave functional will start 
to feel more of the boundary of the fundamental domain than just the neighbourhood 
of the sphaleron. However, it has been the main aim of this study to des mstrate 
that instanton effects on the low-lying spectrum are large, but calcula!; - long 
as energies remain close to the sphaleron energy, where nevertheless sen.’ ssical 
techniques will completely fail.

The fact that m0+R is decreasing, down from m0+R = 4, is what ■ .id be 
expected for the following reason. A rough estimate for where one shou xpect 
instantons to become relevant, based on what one finds on T3, would be m0 1-4. 
Here we equate the largest geodesic distance on a torus of size L, y/3L/2, to i.s value 
on S3, irR, or

r 2?r „
L = —r=R,

and we use that on T3 instantons are relevant for z = m0+L > 5 [36,37]. Furthermore, 
we assume that the scalar glueball masses are roughly equal in both geometries at 
these volumes. These low values of m0+fi are not reached in the tree level approach, 
but we do reach them in the one-loop case which shows that it was necessary to include 
the one-loop corrections. This regime of masses occurs for values of the coupling 
where we expect our model to still be valid. Specifically, m0+R = 1.4 corresponds 
to f = 0.28. At larger couplings, we clearly see that the wave functional feels too 
much of the boundary of the fundamental domain. For f = 0.4 this is dramatically 
clear from fig. 5-12, where the wave function is seen to probe unacceptable regions 
of the boundary of the fundamental domain to remain a good approximation to the 
full wave function. From fig. 5-9 we see that the scalar and tensor mass even cross 
around f = 0.33, which is certainly unacceptable for the full theory. Clearly we have 
pushed the model passed its region of validity for f > 0.3.

Of course, at some point m0+ R has to start to rise again, and when m0+ reaches its 
asymptotic infinite-volume value, m0+R grows linearly with R. Both the truncated 
and the one-loop results show that m^+R exhibits a minimum, after which it starts 
to rise again. It rises linearly in f for f —> oo, as follows from the strong coupling 
results in fig. 5-4, which are also valid for the one-loop case. This however does not 
mean that we are approaching the infinite-volume limit, because our effective model 
is certainly not fit to describe this regime. Moreover, it is clear that no statements 
can be made on the R dependence of f for these large couplings and volumes.

Other indications that our results are in the domain of expected validity are that 
at f = 0.25 the tensor to scalar mass ratio is given by 1.5, rising from 1 at zero 
coupling to 1.8 at f = 0.28, see fig. 5-10. For a torus geometry one finds a similar
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Figure 6-1. Comparison of the tensor to scalar mass ratio Tn2+/7n0+ as obtained on the three-sphere 
to the relevant ratios on the torus. The dotted line denotes the perturbative expansion, the bar on the 
right indicates the range of lattice Monte Carlo values at L = 1 to L = 1.5 fm.

range. Below z = m0+L = 5 the tensor is split into a doublet at ~ 0.9mo+ and a 
triplet at ~ 1.7?n0+ [36,38] (due to breaking of rotational to cubic invariance), whereas 
these states seem to merge at z > 7 into a degenerate quintet with m2+ = 1.5m0+.

We assume that in intermediate volumes the two-loop /? function can be used to 
convert the dependence on the relevant coupling constants to the dependence on the 
radius R or the size L. Thus, for R we have (/ = <72/(2tt2))

and the same formula holds for At,L in terms of the minimal subtraction coupling 
9ms- If we, as usual, set the scale by a string tension of a = (425MeV)2 and use that 
'/a/m0+ Kt 0.3 for T3, we have that in physical units z = rn0+L = 5 corresponds to 
L = 0.7 fm and hence, using eq. (6.2.1), to R = 0.19 fm. As derived earlier, this 
corresponds to f = 0.28 on the three-sphere, and eq. (6.2.2) gives A« = 1.3 fm-1. 
On the torus, z = 5 corresponds to <7ms = 2.42 [9]. Relating this to L = 0.7 fm gives 
A 4 = 0.39 fm-1. In this way we can compare our result for m2+/mo+ as a function of 
the volume to the doublet E+ and the triplet Tf on the torus, as is shown in fig. 6-1. 
The vertical bar on the right indicates the range of lattice Monte Carlo values [38] 
for the E+ and T? masses (equal within errors) at L = 1 to 1.5 fm.

Another way to relate the length scales above to a value of the coupling constant 
uses the definition of the running coupling constant in [39] and the relation between
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this coupling constant and the one in the MS scheme. Proceeding in this way relates 
R = 0.19 fm to a value for / of 0.26, which is yet another indication that this regime 
for the coupling constant corresponds to volumes where the instanton effects are 
important. To obtain this number we correct for the finite renormalizations appearing 
in eq. (4.5.2) and we assumed that setting the linear size L of the e-dimensional torus 
to R gives the MS scheme. This ambiguity could be fixed by computing the effective 
hamiltonian using e g. Pauli-Villars regularization and the known relation to the 
minimal subtraction scheme. In our calculations f is however just a pa -meter that 
allows us to probe different volumes and its precise relation to the phys;-al scale is 
not so relevant.

Returning to fig. 6-1, we can distinguish three regimes in R. For small R, we 
expect the finite-size effects, like the effect of the curvature of S3, to be large. The 
masses in the effective model, although perturbatively calculable, will therefore not 
correspond to the masses on the torus. Around R — 0.1 fm, corresponding to L = 
0.36 fm, we see (in the sphere geometry) the masses deviate from the perturbative 
expansion, signalling the onset of the instantons. They drive the tensor to scalar ratio 
in the right direction, that is, towards the large-volume value of 1.5. For R > 0.2 fm, 
our effective model is no longer valid, as discussed before.

Finally, an important goal of this project was to get results for glueball masses 
as a function of 8. The truncated results showed a pronounced dependence on 8 
in the regime where boundary effects are appreciable (see fig. 5-5). Quite remark­
ably, and unexpectedly, this strong dependence disappears when adding the one-loop 
corrections. In particular, at 8 = 0 and 8 = rr, where boundary conditions can be 
implemented most accurately, the masses do not differ significantly (see fig. 5-11). 
Caution needs to be applied in concluding that the same will hold at large volumes, 
but in any case it would be interesting if glueball masses could be measured at 8 = rr 
on the lattice as comparison.

In conclusion, we should expect our one-loop corrected result to be a relatively 
accurate representation of the true masses on S3 up to / = 0.28 corresponding to a 
circumference of approximately 1.3 fm, up to where also the variational basis does 
not exhibit too much of the problems with the Temple bound (cf. fig. 5-9). The 
approach to infinite-volume values (see also section 3.5 of chapter 3) of results on the 
three-sphere, as compared to torus results, is slow. We typically have a dependence 
on powers of 1/R as compared to an exponential behaviour in L [13]. As our results 
should not be expected to be already in the asymptotic domain, the rough agreement 
we find with results on the torus is gratifying.

When comparing the truncated and one-loop corrected results, the results for the 
8 dependence show that strong non-linear and non-perturbative effects influence the 
spectrum. We have shown there is a small, but finite window from R = 0.1 fm to 
R = 0.2 fm (at smaller volumes everything can be described perturbatively) where 
these effects can be included reliably, showing convincingly how important the global 
properties of the field space are for the non-perturbative dynamics of non-abelian 
gauge theories.
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Niet-perturbatieve verschijnselen voor ijktheorieen 
op de drie-bol
Hoge-energiefysica is die tak van wetenschap die poogt de interacties tussen de ele- 
mentaire bouwstenen der materie te verklaren. Er zijn vier fundamentele krachten in 
de natuur. In volgorde van oplopende sterkte zijn dit de zwaartekracht, de zwakke 
kracht, de elektromagnetische kracht en de sterke kracht. Van deze zijn de elektro­
magnetische kracht en de zwaartekracht het best bekend. De sterke kracht houdt 
atoomkernen bij elkaar, de zwakke kracht treedt op bij bepaalde soorten radioac- 
tief verval. Bij de vier krachten horen deeltjes die deze krachten overbrengen, de 
zogeheten krachtvoerende deeltjes. Dit zijn respectievelijk de gravitonen, de W- en 
Z-bosonen, de fotonen en de gluonen. Alle overige materie bestaat uit krachtvoelende 
deeltjes. Deze knnnen onderverdeeld worden in leptonen en hadronen: de hadronen 
zijn per definitie gevoelig voor de sterke kracht, de leptonen (bijv. elektronen, neu­
trino’s) niet.

Van de leptonen neemt men aan dat het elementaire deeltjes zijn, terwijl men 
hadronen beschrijft als samengestelde deeltjes, opgebouwd uit quarks. Zo bestaan 
mesonen (bijv. pionen) uit een quark-antiquark paar, terwijl de zwaardere baryonen 
(bijv. protonen, neutronen) uit drie quarks bestaan. De sterke kracht houdt de quarks 
bijeen in de hadronen: een relatief zwakke restkracht is verantwoordelijk voor de 
samenklontering van protonen en neutronen tot atoomkernen. Dit is analoog aan de 
Van der Waals kracht tussen moleculen, die een overblijfsel is van de elektromagne­
tische kracht die de atomen binnen het molecule bindt.

Het grootste probleem binnen de theorie van de sterke wisselwerking is het op- 
sluitingsprobleem. Dit is de observatie dat de quarks, in tegenstelling tot de leptonen, 
niet als vrije deeltjes in de natuur voorkomen, maar altijd opgesloten zitten binnen 
hadronen. Als men de hadronische toestanden in het deeltjesspectrum opbouwt uit 
quarks, is het noodzakelijk een nieuw quantumgetal in te voeren om aan het uitslui- 
tingsprincipe van Pauli te voldoen. Dit quantumgetal noemt men kleur: het neemt 
de waarden rood, groen en blauw aan. De opsluitings- of confinement-eigenschap 
kan nu geherformuleerd worden door te stellen dat slechts kleurloze toestanden op 
kunnen trcden als fysische deeltjes.

Algeineen wordt aangenomen dat quantumchromodynamica (QCD) de correcte 
theorie is voor de sterke wisselwerking. Deze theorie is een generalisatie van de theorie 
die op zeer nauwkeurige wijze elektromagnetisme beschrijft: de quantumelektrody- 
namica (QED). In beide theorieen zijn de fundamentele materievelden fermionvelden 
(elektronen resp. quarks) die wisselwerken met de bosonische ijkvelden (fotonen resp. 
gluonen). De ijkvelden zijn geassocieerd met een lokale symmetrie. In QED is de
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lokale symmetriegroep U(l), corresponderend met elektrische lading. In QCD is 
SU(3) de lokale symmetriegroep, die met de kleurlading van de quarks correspon- 
deert.

Een manier om voorspellingen te doen met QCD berust op storingsrekening. Dit 
is de methode die in het geval van QED zeer succesvol was. Men neemt aan dat 
de koppeling tussen gluonen en quarks zwak is, en voert vervolgens storingsrekening 
uit rond vrije quarks en gluonen. Hoewel quarks en gluonen niet in vrije toestand 
voorkomen, kan men zo toch op bevredigende wijze voorspellingen doen voor 100g- 
energetische botsingsprocessen met hadronen. De reden hiervoor is het ve. hijnsel 
van asymptotische vrijheid: bij hoge energie is de aanname van zwakke . ling 
juist. Het opsluitingsprobleem en het berekenen van het hadronspectrum < liter 
zaken die niet binnen perturbatieve QCD aangepakt kunnen worden.

Een niet-perturbatieve aanpak van QCD is de roostermethode, waarbij c :ite- 
tijd gediscretiseerd wordt. Dit maakt de euclidische padintegraal voor de the. 1 goed 
gedefinieerd en men kan vervolgens de eigenschappen van het spectrum be r.idcren 
door middel van methoden uit de statistische fysica. Met betrekking tot het op­
sluitingsprobleem heeft men de quark-antiquark potentiaal voor statische bronnen 
uitgerekend. Deze blijkt lineair te groeien met de afstand tussen de twee quarks, wat 
sterk wijst op opsluiting. Het beeld dat ontstaat is dat van een koord van gluonen 
tussen de twee quarks met een energie per lengte, of string tension, a. Als de afstand 
tussen de twee quarks te groot wordt, breekt het koord. Hierbij wordt echter op het 
breekpunt een nieuw quark-antiquark paar gevormd, zodat de eindtoestanden weer 
kleurloos zijn.

Rooster-QCD heeft de laatste tien jaar veel successen gekend, maar veel problemen 
zijn nog niet opgelost. Zo vereist het simuleren van de volledige theorie (d.w.z. 
met dynamische quarks) nog steeds extreem veel computertijd. Bij het toepassen 
van roostermethoden op elektrozwakke processen stuit men op het probleem dat een 
eenvoudige beschrijving van chirale fermionen op het rooster nog niet gevonden is.

Het niet-abelse (niet-commutatieve) karakter van de ijkgroep SU(3) in QCD leidt 
tot zelf-interacties van de gluonen. Dit staat in schril contrast met de abelse theorie 
QED waar de fotonen geen (directe) zelf-wisselwerking hebben. Het gegeven dat 
gluonen onderling wisselwerken opent de mogelijkheid van een gebonden toestand 
van gluonen, een zogeheten glueball. Een andere manier om te zeggen dat gluonen 
behalve krachtvoerend ook krachtvoelend zijn, is om te zeggen dat ook zij kleurlading 
dragen. Een geschikte combinatie van gluonen kan een kleurloos object en dus een 
fysisch deeltje of resonatie vormen. Het bestaan van glueballs is derhalve ook een 
manifestatie van kleur-opsluiting. Hoewel er resonanties in het hadronische spectrum 
zijn die goede kandidaten zijn voor glueballs, kan men nog niet beweren dat glueballs 
in de natuur werkelijk bestaan.

In dit proefschrift wordt een systeem van wisselwerkende gluonen in een eindig 
volume bestudeerd. Aannemende dat confinement veroorzaakt wordt door het ijkge- 
deelte van QCD, kan men beginnen met de quarkvelden uit de theorie weg te laten. 
Dit betekent dat men de dynamica van het pure niet-abelse ijkveld (of Yang-Mills
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veld) bestudeert. Het zich beperken tot een eindig volume geeft analytische moge- 
lijkheden om niet-perturbatieve verschijnselen te bestuderen. Het mechanisme van 
asymptotische vrijheid inaakt dat de koppeling klein is voor hoge energieen oftewel 
voor kleine afstanden. Door ijktheorie in een klein volume te bestuderen, blijft de 
koppeling klein en kunnen we storingsrekening toepassen. Door het vergroten van 
het volume kunnen we niet-perturbatieve effecten waaronder, hopelijk, confinement 
zien inzetten.

De dyiiamica van het ijkveld kan gezien worden als quantummechanica voor 
oneindig veel vrijheidsgraden. We reduceren de volledige theorie tot een effectieve 
theorie me- siediis eindig veel vrijheidsgraden. Het idee achter deze effectieve the­
orie is de B” • Oppenheimer benadering uit de molecule-fysica. Men denke hier 
bijv. aan het v.; ■ pistofmolecule H2. Omdat de massa van de elektronen veel kleiner 
is dan die van de protonen, kunnen we de tijdschalen scheiden. Men lost eerst 
het Schrodingerprobleem op voor de twee elektronen in de potentiaal van de sta- 
tische protonen. De verkregen energieniveau’s hangen parametrisch af van de posi- 
ties van de protonen. Deze energieniveau’s dragen bij aan de potentiaal voor het 
Schrodingerprobleem van de protonen. Men zegt dat we de snelle modes (de elek­
tronen) hebben uitgeintegreerd en een effectief probleem in de langzame modes (de 
protonen) hebben overgehouden. De term ’uitintegreren’ vindt zijn oorsprong in de 
formulering van de quantummechanica in termen van padintegralen.

De Born-Oppenheimer benadering kan in de veldentheorie gebruikt worden om 
een effectieve theorie te verkrijgen in een eindig aantal langzame modes. Hiertoe 
moet een oneindig aantal snelle modes uitgeintegreerd worden. De effectieve theorie 
neemt de vorm aan van een Schrodingerprobleem, hetgeen betekent dat we van een 
quantummechanische hamiltoniaan op een zekere configuratieruimte het spectrum 
dienen uit te rekenen. Voor een niet-abelse theorie heeft de configuratieruimte een 
gecompliceerde topologische structuur: er kunnen niet-samentrekbare gesloten cirkels 
optreden.

Ter vergelijking met roosterresultaten is het verstandig voor het eindig volume dat 
van een torus te kiezen, d.w.z. een kubus met periodieke randvoorwaarden. Voor deze 
geometric heeft men in het verleden de roosterresultaten kunnen reproduceren, waar- 
bij de effectieve theorie een aantal niet-perturbatieve effecten meenam. De volgende 
stap zou zijn om de invloed van instantonen mee te nemen. Dit zijn configuraties van 
het ijkveld die samenhangen met tunnelingsprocessen tussen ijkkopieen van het vac­
uum. Alternatief kan men zeggen dat we de topologische structuur, in het bijzonder 
gesloten cirkels, van de configuratieruimte in rekening wil brengen.

In de torusgeometrie zijn deze effecten zeer moeilijk mee te nemen, reden waarom 
in dit proefschrift de geometric van de drie-bol bestudeerd wordt. Dit betekent dat we 
voor het eindig volume het drie-dimensionale oppervlak van een bol in vier dimensies 
nemen. Ondanks het feit dat dit verder afstaat van roostersimulaties, kunnen we in 
deze geometric wel de invloed van de instantonen, en in het bijzonder van de 0-hoek, 
bestuderen. Deze 0-hoek hangt samen met de niet-samentrekbare cirkels gesloten 
cirkels in de configuratieruimte. De 0-hoek is een vrije parameter van de theorie, en
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we bestuderen met deze methode voor het eerst zijn invloed op de massa’s van de 
glueballs. Voor de oneindig-volume limiet mag de keuze van het eindig volume, torus 
of drie-bol, met uitmaken. Hierbij moet gezegd worden dat we binnen het huidige 
model deze limiet nog zeker niet kunnen nemen.

Hoofdstuk 1 bevat een introductie en een uitgebreidere omschrijving van de in- 
houd van dit proefschrift. In hoofdstuk 2 ontwikkelen we de nodige machinerie voor 
de analyse van ijktheorie op de drie-bol en we construeren daar in laagste orde de 
effectieve theorie voor de dynamica. In hoofdstuk 3 onderzoeken we de com plicaties 
van het feit dat de ijkgroep niet-abels is. We leggen de ijkvrijheid vast via het gebruik 
van een fundamenteel domein. Voor de effectieve theorie betekent dit dat er zekere 
randvoorwaarden in de configuratieruimte worden opgelegd: deze randvoorwaarden 
bevatten de 0-afhankelijkheid.

In hoofdstuk 4 wordt de een-lus correctie op de laagste orde effectieve h; uiltoni- 
aan uitgerekend. Het bovengenoemde uitintegreren van de snelle modes wordt in dit 
hoofdstuk expliciet uitgevoerd. In hoofdstuk 5 worden met behulp van variationele 
methoden de spectra van zowel de laagste-orde als van de een-lus gecorrigcerde ef­
fectieve hamiltoniaan bepaald. De resultaten zijn de massa’s van de diverse typen 
glueballs. Hoofdstuk 6 bevat een samenvatting en een bespreking van de resultaten. 
We beargumenteren dat de invloed van de instantonen groot, maar berekenbaar is. 
We bakenen het regime van geldigheid van de effectieve theorie af en laten zien dat 
de resultaten redelijk overeenstemmen met de resultaten die op de torus verkregen 
zijn.
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Stellingen

2. Beschouw de harmonische oscillator met quasi-periodieke randvoorwaarden op [—a, a]:

met a

waarbij i/d

*2),

4. Definieer de volgende integraal

Dan heeft F^ de volgende asymptotische expansie voor d —» oo

Fd 1 +
1

2d

De energieniveau’s worden gegeven door E = (z/+ met v de oplossingen van de 
vergelijking

Hiermee kunnen zonder keuze van lokale coordinate!! uitdrukkingen voor de laplaciaan 
afgeleid worden.

R. Gilmore, Lie groups, Lie Algebras, and some of their applications, 1974.
Hoofdstuk 2 van dit proefschrift.

_1_ 
2d

•” ddl 1
2^,(1-cosO

A = = ^xj,.

V/(1'',(“)V’21')(«) +sin2(|) = 0, 

en 7/»2 zijn gegeven door

3. Het gebruik van trial functies met bepcrkte drager bij een Rayleigh-Ritz berekening 
zoals voorgesteld door Burden en Faires, is af te raden.

R.L. Burden and J.D. Faires, Numerical Analysis, 1985.

3 
+ 4d> +

'i/>(-a), = e1)~ I2i = — + -mwV, = e

3 15
2d3 + id' + ’ ’

met jFi de confluente hypergeometrische functie. Voor 0 = 0,7r zijn -0i(a?) en ^2(2-') 
(met x = ^/mw/h j;) de eigenfuncties, voor de overige waarden van 0 wordt de eigen- 
functie gegeven door

1. Zij G een Lie groep met g de bijbehorende Lie algebra. Zij k een Ad-invariante me- 
triek op de algebra met geinduceerde metriek g op de groep. Als {A";} een basis is 
van g, vormen de bijbehorende linksinvariante vectorvelden Xi op G een oneindig- 
dimensionale representatie van g. Nu geldt dat de Laplace-operator A op G gelijk is 
aan de tweede Casimir-operator van doze representatie:

V-
2m



z

met. Z(,-/r[A]

11. Het muziekgenre ’progressive rock’ is bijzonder behoudend.

12. Het stolen van fietsen zou verboden moeten worden.

Voor G = SU(2) kan gezien worden als de partitiefunctie van eon niet-linear 
(7-model.

D. Zwanziger, Nucl. Phys. B345 (1990) 461.
C. Parrinello and G. Jona-Lasinio, Phys. Lett. B251 (1990) 175.

Bas van den Heuvel
11 September 1996

e-^MI=IDA

6. Zij i/> een variationeel gcvonden benadering van een eigentoestand van eon hamilto- 
niaan II. Laat 7 = de bijbehorende bovengrens zijn voor de eigenwaarde E
en 7/ = — 7)2|V’) een schatting voor de nauwkcurigheid. Hoewel bij een eindige
uitbreiding van het aantal variationele basisfuncties 7 gegarandeerd kleiner wordt of 
gelijk blijft, is het niet uitgesloten dat 7/ groeit.

M. Reed and B. Simon, Methods of modern mathematical physics, vol. 4, 1978.

10. Het huidige topvolleybal laat zien dat lichaamslengte 00k voor spelverdelers van door- 
slaggevend belang is geworden.

9. Fiet hebben 
ancering.

= J Dg exp {1 ) d'x tr [<7*9,.d^g + }

van uitgesproken meningen duidt op een geringe belangstelling voor nu-
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5. Beschouw Yang-Mills ijktheoric met ijkgroep G en ijkinvariante actie S[/l]. Na afsplit- 
sing van het volume van de groep van ijktransformaties geldt voor de partitiefunctie

8. Een onderzoeker dient zich met betrekking tot zijn inspanningen bewust to zijn van 
de wet van de afnemende mceropbrengsten.

7. Bij het berekenen van de energie-impulstensor voor een ijktheoric met Diracvelden 
moot niet de metriek, maar de onderliggende spinstructuur gevarieerd worden. Dit 
kan op bevredigende wijze in het bundelformalisme beschreven worden.

S. Weinberg, Gravitation and Cosmology, 1972.
B.M. van den Heuvel, J. Math. Phys. 35 (1994) 1668.
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