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1. Introduction

I

In a system below its critical temperature Tc a bulk liquid phase can coexist 
with a bulk vapour phase. The subjects studied in this thesis all concern the inter­
face region, which is the relatively narrow region over which the properties of the 
system change gradually from those characteristic for the bulk liquid to those 
characteristic for the bulk vapour. At the critical point not only the difference 
between the densities of the bulk liquid and the bulk vapour vanishes, but also the 
interface width diverges, which means that the gradient in the density becomes 
very small near criticality1.

A gradient in the density profile can also be induced by an external f ’. 
The most commonly known external field, which is always present unde: .. i- 
tions on earth, is the gravitational field. It couples to the chemical potei, p., 
which is the ordering field of the liquid-vapour phase transition. As a consec . ce, 
in a gravitational field, the density varies in the direction of the gravitation;;■ ce 
at all temperatures, even at and above the critical temperature. The relatively 
sharp transition from a vapour-like phase to a liquid-like phase is a consequence of 
the high compressibility of the near critical state. Although this induced density 
gradient does not form a real interface between two coexisting phases at tempera­
tures above criticality, we will refer to the region of rapidly varying density as an 
"interface". Due to an external field the width of the interfacial region remains fin­
ite at all temperatures, and the density profiles above and below Tc are smoothly 
connected.

The interfacial width can be seen as caused by two types of fluctuations: those 
which are local rearrangements of the particles near the interface and those which 
can be seen as a wave-like excitation of an otherwise sharp interface. The latter, 
called capillary waves, are thermally excited against gravity and surface tension4. 
Their effect on the system strongly depends on the dimensionality d of the system. 
In systems in d>3 the capillary waves are relatively harmless. In lower dimen­
sional systems the capillary waves cause the interface width to diverge in the limit 
of zero gravitational field (in the thermodynamic limit).

Close to the critical point the effect of capillary waves will be dominated by 
the effects of the large compressibility of the phases. It is clear that we can only 
speak of wave-like fluctuations of an interface for lengths larger than the width of 
the interface. This width increases on approach of the critical point and the con­
cept of capillary waves is then restricted to very large wavelengths.

In the next section we shall shortly review the van der Waals theory5 of the 
interface, and mention some more recent theories which we use in this thesis. The 
last section of this chapter gives an outline of the thesis.
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2. Squared gradient theory

2

¥(z) (2.1)

(2.3)A

(2.4)

dp(z)
dz

The first term W(p(z)) is defined as the distance of S'(p) above its double tangent

W(p) = ^(P) + P - tip , (2.2)

where p is the equilibrium pressure of the bulk phases and p. = p.(pv) = p.(p;) is the 
chemical potential of the uniform fluid phases at coexistence. The function W(p) 
has a double-well form with two equal minima at p=pv and p=p;, where W = 0.

The second term in (2.1) is the term which gives this theory its name. The 
squared gradient is an expression for the surface free energy due the inhomo­
geneity of the density profile, which we assume to be flat and dependent on z 
only. It can be considered as the first term of a series expansion in the density gra­
dient. The coefficient A in the squared-gradient theory can be identified, as we 
will see below, with

= g(p(r))2
x(p(2))

where J is the correlation length and x~(dp/SpOj- is the (symmetrized) compressi­
bility of a uniform system with density p.

The surface tension associated with a profile p(z) is found by integrating (2.1) 
over z

•x.

or = f 'Jr(z) dz .

A classical theory from which the density profile of the interface connecting 
liquid and vapour bulk phases is calculated originates from van der Waals5. This 
theory has been reformulated and extended by Cahn and Hilliard6. The theory has 
a mean-field character, and makes use of the van der Waals equation of state and 
therefore of the classical critical exponents. We will refer to this theory as the 
squared-gradient theory, because of the occurrence of a squared density-gradient 
term in the free energy functional, as we will see below. A fundamental postulate 
of the van der Waals theory is the existence of a free-energy density functional 
3-(p) at a fined temperature T. S'(p) is the free-energy density of a uniform system 
with density p, which below the critical temperature, admits a double-tangent con- 

The existence of S'(p) is thus assumed even for densities in the coex- 
isteace r.tioft (pv<p<p;) where no uniform phase can exist1.

•,Ve r now define an excess free-energy density 'P(z) as a sum of two terms, 
namely

a
W'(p(z)) + y
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2

(2.6)

P-(p(z))- P- . (2.7)

(2.8)

(2.9)

P(z) (P/ + Pv) - (2.10)

i

2

-^(p;) dz ,

calculated from (2.4) with the excess Helmholtz free energy
X 

-^(pv) dz + J ^(p) + 
o .

2

= W(P) •

We can identify cr
o

<T = J s;(p) +

X

CT = J" A

- y(P/ + Pv) _ y(p/~Pv) tanh(z/25cxc) , 

where is the correlation length in the homogeneous bulk phases, which 
diverges near criticality as |TC— T |-v (v=l/2). Apart from a non-universal 
amplitude and scale the classical van der Waals profile has a universal, system 
independent, form. The width of the profile diverges near criticality as

(2.5) 

provided we take the dividing surface (z = 0) as the location of the Gibbs dividing 
surface, given through

0 ®

J [p(z)-pv] dz + J[p(z)-p/] dz = 0 .
-x o

Considering ct as a functional of p(z) we get an equation for the profile p(z) icii 
minimizes <r under the constraint (2.6):

d*  dW(p)  
dz2”" dp "

with the thermodynamic potential p.(p) = di?/dp
Eq. (2.7) has a first integral (since p(z) = p; or pv at z = ±»)

f (£]
With (2.8) we get that the surface tension of the equilibrium profile is

dz = f 2 W(p) dz = J dp (14 W(p)]I/2 . 
p.

We note that in this theory the surface tension a is the result of two equal contri­
butions: the direct free energy associated with the gradient and the free energy 
which is a consequence of the fact that in the interface region W(p) is not at its 
minimum as it is in the bulk phases. The last expression on the right-hand side of 
(2.11) is especially useful because it does not require the knowledge of p(z) expli­
citly. When we use the van der Waals equation of state for the chemical potential 
close to the critical point (2.7) can be solved, yielding the classical van der Waals 
profile1
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AVG(r, R) G(r, R) = G(r, R) . (2.14)

(2.15)

(2.16)6*oz(r ^)a

diverges, and the surface tension calculated from (2.8) vanishes as o”~|Tc — Tl*, 
where p. = 3/2.

The van der Waals theory is closely related to the Ornstein-Zernike theory for 
the correlation functions7. Let p(r, R) be the density of pairs of molecules at 
r=(x, y, z) and R = (X, Y, Z). We define a pair-correlation function G(r, R) as8

G(r,R) = [p(r, R)-p(z)p(Z)]/m2 (2.11)

For distances |r—R| large compared to the intermolecular distance, p(r, R) will 
vary only slowly with r. Considering G(r, R) as the local density at r which is 
perturbed by the existence of a particle at R, one obtains in analogy with (2.7)

AV2p(r, /?) = p.(p(r, f?))-|x . (2.12)

Subtraction of (2.12) and (2.7) yields an equation for the pair-correlation function 
G(r, R)

m~AN-G(r, R) = |x(p(r, R))-p.(p(z)) . (2.13)

Since G(r, 7?) is small in the region where (2.12) holds we expand the right-hand 
side of (2.13) in a Taylor series around p(z) and linearize, so as to obtain

= MP(Z» G(r, R) = ---- 1----
dp(z) X(p(z))

Substituting (2.3) into (2.13) we get for the correlation function in an interface 

[v2-r2(p(z))] G(r, 7?) = 0 .
In a uniform system of density p, ( is a constant and (2.15) reduces to the 
Ornstein-Zernike equation. The resulting correlation function

e-k-m
|r-R|

has the well-known Ornstein-Zernike form. This justifies the identification (2.3).
The van der Waals theory of interfacial phenomena has a number of 

shortcomings. In the first place the van der Waals theory is a mean-field theory 
(showing itself by the classical critical exponents), and as such it is not able to take 
into account correctly the role of the fluctuations in the neighbourhood of the criti­
cal point. In relation to this we stress the fact that the van der Waals theory is 
independent of the dimensionality of the system. In the second place the van der 
Waals theory completely neglects the capillary fluctuations of the interface and as 
a consequence it will never show a diverging interface width in zero external field.

A recent development in the van der Waals theories tries to remedy the 
strictly classical behaviour. Fisk and Widom7 incorporated the correct scaling 
forms for the chemical potential p.(p), the compressibility x(p). a°6 correlation
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(2.17)= P-(P(z))-R- + gz •

In the equation (2.15) for the correlation function G(r, R) the gravity is present 
only implicitly through the dependence of p(z) on the gravitational field. The grav­
ity not only affects the interface, but also the bulk phases itself, because of the fact 
that the compressibility is large in the neighbourhood of the critical point. For den­
sities outside the coexistence region van Leeuwen and Sengers use an explicit 
phenomenological scaling form of the equation of state, whereas inside this region 
the Fisk-Widom theory is used to construct the function W(p). As a result of grav­
ity even at and above the critical point the interface width stays finite. Although 
this theory also lacks the possibility to include capillary wave effects adequately, 
the idea to consider an interface in an external field is attractive, because the capil­
lary wave divergence can be controlled by means of an external field.

A theory which treats the influence of fluctuations around a mean-field theory 
in a systematic and consistent way is the renormalization-group approach11. This 
theory starts from the Landau-Ginzburg-Wilson Hamiltonian density and calculates 
the effect of the fluctuations on the partition function and correlation functions. In 
the Hamiltonian density a function W(p) occurs which is equivalent to the function 
W(p) in eq. (2.2). As we are interested in (or confined to) the critical region the

length £(p), into the theory, and allow for the use of the correct non-classical criti­
cal exponents. Furthermore, they provide a method to construct an analytical 
expression for W(p) for densities inside the coexistence region. Their approach, 
however, is only a phenomenological improvement over the classical theory, and it 
does not provide a systematic way to deal with the critical phenomena. In the van 
der Waals theory A is strictly independent of p (and derivatives of p). In reality 
this certainly is not true, as we see from the behaviour of (2.3) near the critical 
point9. There A diverges as [(Tc —7')/7'c]_''T’ as function of temperature, and it will 
be a non-analytic function of the density as well. The exponent iq measures the 
deviation of the correlation function from Ornstein-Zernike behaviour. It has in 
reality a value very close to zero, so digressions from the Ornstein-Zernike. ih-ory 
are small and the errors made by taking A constant are thought to be small. the 
Fisk-Widom form of the van der Waals theory the coefficient A is still take, as 
constant. The Fisk-Widom theory also leads to universal density profiles, but it 
does not include the effects of capillary waves either.

Van Leeuwen and Sengers2-3’8'10 have calculated the effects of an external 
field on the interfacial profile, in the spirit of the theory of Fisk and Widom. They 
consider gravitational potentials of the form gz. This gravity field turns up in the 
equation for the density profile as a simple shift of the chemical potential p. which 
is the ordering field of the liquid-vapour phase transition, thus giving instead of 
(2.7)
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(2.19)

3. Outline

choice for W(p) is very simple, namely

W(p) = ap2 + bp4 + • • ■ , (2.18)

which is equivalent to the so called <f>4-theory. The mean-field approximation can 
be found in this theory by approximating the integrations in the partition function 
by the term which maximizes the integrand.

Ohta and Kawasaki12 have carried out a renormalization calculation for the 
interface near four dimensions in the form of a systematic series expansion, known 
as the e-expansion, where e=4—d. Although the convergence of the expansion is 
problematic one obtains results for d = 3 by taking e=l. The calculation of Ohta 
and Kawasaki gives the influence of fluctuations around the optimal profile in the 
zero field case, as it is determined by an equation of the type (2.7), and they also 
:-btzin results for the surface tension12’13, via a formula like (2.5). The first-order 
. opt oximation for the critical exponent p. is 

3 1
2 4C

which is surprisingly good in all dimensions (exact in d = 2 and d=4, nearly exact 
in d = 3, where p.= 1.26). The divergences due to the capillary waves are in princi­
ple present in the renormalization theory. When considering a theory in the e- 
expansion the effect of capillary waves is not important because of the expansion 
near d=4. When putting e=l the capillary-wave divergences are not recovered in 
any order in e. Jasnow and Rudnick14 have tried to connect the renormalization 
theory of the interface and the capillary wave theory. They however did not 
include compressibility effects and as a result they find a non-universal density 
profile which diverges at the critical point.

The subjects treated in this thesis belong to various aspects of interfacial 
phenomena. They all have one feature in common: The liquid-vapour interface in 
the problem is influenced by an external field. In our case this external field is 
either the gravitational field or a field caused by the presence of a substrate. The 
thesis can be roughly divided into two parts. In the first part (chapter II-IV) a 
theoretical analysis is given of the interface near criticality. In the second part we 
study the interface by means of molecular-dynamics simulation far from the criti­
cal point, to avoid distortion effects, due to the large compressibility, and to see 
most purely the effect of capillary fluctuations.

In chapter II we study the interface in the presence of an external gravity-like 
potential in an e-expansion, which is based on the theory of Ohta and Kawasaki12. 
This theory gives the smooth cross-over from the density profiles below the critical
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i

temperature to the density profiles above Tc. The profiles are universal in the 
sense that microscopic details of the interaction do not matter, but they have in 
comparison with the zero field case one additional parameter, which describes the 
cross-over. In the zero-gravity limit the results of Ohta and Kawasaki are 
recovered.

In chapter III we use the e-expansion to calculate to first order in e the sur­
face tension associated with the density profiles calculated in chapter II. When cal­
culating the surface in an external field we do not want to attribute the effects of 
the distortion of the bulk phases to the surface tension. Moreover, the integrals in 
(2.5) do not even converge when a gravitational potential is present. The idea 
however to evaluate a as the integral over the difference of the actual free energy 
of the interface and the free energy of a hypothetical system, which is formed by 
to bulk phases divided by a sharp surface like in (2.5), remains possible, . hat 
reference profile we should take to get a consistent definition of the surface r.rision 
is not directly clear. The e-expansion is able to discriminate between possible can­
didates for the reference profile, because some choices give non-convergent 
theories. A good reference profile leads to a e-expansion which in principle can be 
extended to arbitrary order in e. In chapter III we define a reference profile as the 
profile formed by the densities we get when we consider for a certain z-position a 
uniform system in a constant external field of strength gz. Below Tc the reference 
profile has a jump in z=0. This jump decreases on approach of criticality and is 
zero at and above the critical point. The reference profile approaches the real pro­
file only sufficiently far above Tc. Asa result of this definition the surface tension 
does not vanish at the critical temperature but at a temperature slightly above Tc 
when its gradients in the density profile are negligible.

In chapter IV we calculate in a Fisk-Widom like approach the correlations 
along and perpendicular to the interface in the presence of an external field. These 
calculations form an extension of the theory of van Leeuwen and Sengers8 who 
have calculated the density profiles in a scaled squared-gradient theory above as 
well as below Tc. The theory is restricted to a region very close to the critical 
point. This region is so small that experiments are on the edge of feasibility. 
Nevertheless the distortion effect due to the large compressibility of the nearly crit­
ical phases is a real effect, which in practice prevents that the interface diverges at 
criticality. Below the critical temperature the transverse correlations are found to 
approach the capillary length for temperatures relatively far from criticality (but 
still in the critical region). This capillary length diverges in the limit of zero grav­
ity, denoting the development of long-ranged correlations in absence of a gravita­
tional field. The correlation length perpendicular to the interface has two maxima 
in the wings of the density profile and a local minimum in the center. The calcula­
tions are complemented with approximate expressions for the limiting behaviour of 
the correlation profiles.
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CHAPTER II

ABSTRACT

AN e- EXPANSION FOR THE INTERFACIAL PROFILE 
IN AN EXTERNAL FIELD

The interfacial profile for the order parameter is calculated for a sys­
tem with a LGW-Hamiltonian extended with an external field cou­
pling to the order parameter. The calculation is restricted to the vi­
cinity of the critical point and is carried out to first order in the e- 
expansion. The profile is found to be a universal function of the 
scaled distance and temperature, such that the potential parameter is 
absorbed in the scaling. The field localizes and distorts the profile 
and both effects are incorporated correctly to order e.
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1. Introduction

The formation of an interface between two coexisting phases is an outstanding 
problem of statistical physics. In particular the onset of the interface near criticality 
has been subject of many theoretical investigations1. Some time ago Ohta and 
Kawasaki2 constructed a theory for the interface on the basis of an e-expansion for 
critical phenomena. Although such a theory does not lead to realistic interfacial 
profiles it is the first case, where a discussion could be based on a theory which 
acknowledges all the subtleties of the critical phenomena. In the same spirit they 
calculated the surface tension associated with the profile up to first order in 
e=4—d. This calculation has later been simplified by Brezin and Feng3.

A fundamental shortcoming of the e-expansion for an interface is th./ can­
not be applied to three-dimensional systems (e=l). For d^3 a new div. ncy 
occurs due to the capillary waves, which cause the interfacial width t< : crge 
(although very weakly) in an infinite system4. This divergency is not a typical criti­
cal phenomenon, but appears all along the coexistence line between the two 
phases. In practice either finite size or an external field cuts off the capillary waves 
and keeps the interfacial width finite. Jasnow and Rudnick5 have discussed the 
role of a stabilizing field in the context of the renormalization theory for a d = 3 
system. They find that the interfacial profile is the result of a convolution of an 
intrinsic profile (as exists for d>3) and a Gaussian broadening, of which the width 
is controlled by the strength of the stabilizing field. The explicit dependence of the 
interface on the external field is seen by these authors as a lack of universality.

The external field, however not only localizes the interface, but also distorts 
it. Such effects are left out of the calculation of Jasnow and Rudnick. The distor­
tion will become increasingly important when one approaches criticality (from 
below Tc) as the phases become more and more susceptible to a field. In fact even 
above Tc an "interface" will survive, which is completely induced by the field and 
is not a result of spontaneous symmetry breaking any more.

In this chapter we direct our attention to these distortion effects, by studying 
the e-expansion of the profile in a weak external field. Van Leeuwen and 
Sengers6,7 have shown that these distortion effects are to be expected in a very 
narrow regime around criticality. In this regime the interface is already so broad 
that capillary waves have a minor influence. Further below Tc the bounding of the 
capillary waves amplitudes by the field becomes more important and in this sense 
our work is complementary to that of Jasnow and Rudnick.

In the theory no sharp distinction between distortion and localizing effects can 
be made. Approaching the problem from a higher dimension (d=4) all excitations 
with respect to the mean field profile are treated systematically including those, 
which are blamed for the divergence of the interfacial width in absence of the
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2. The equation for the order-parameter profile

(2.1)

3f(S) = f d'r Uz(u)(VS(r))2 + |(rZ2(u) + 8z)5(r)2

+ ^-Z4(u)S(r)4-A/(r)S(r)j,

The calculation of the equation for the magnetization density profile of an 
interface in an external filed H(r) is a problem similar to the calculation of the 
equation of state in a homogeneous system. Following Ohta and Kawasaki2 we 
derive this equation in the two-phase region from the Landau-Ginzburg-Wilson 
(LGW) Hamiltonian for the renormalized local order parameter S(r),

field. In the strict e-expansion the problem with localization of the interface as it 
exists for ds3 does not appear. It is only visible when one would consider ds3 in 
intermediate stages of the calculation.

We construct the e-expansion of the interface in a field following closely the 
method outlined by Ohta and Kawasaki2. The main difference is that integrals 
which can be done analytically in the field free case, now have to be done numeri­
cally. This requires also that we have to reformulate the subtraction techniques 
needed in the renormalization process.

Although our purpose is to study the interface in a fluid we will use in this 
chapter the language for magnetic systems. The advantage is the explicit up-down 
symmetry and the closer connection with the usual renormalization theories8,9,10.

The organization of the remainder of the chapter is as follows. In section 2 we 
derive differential equation for the order-parameter profile, and discuss the 
divergences occurring in the theory. These divergences are removed by a proper 
choice of the renormalization constants of the homogeneous theory. Then the 
theory is free of divergences for d<4. When e=4-rf approaches zero relatively 
harmless divergences in e appear which can be shown to cancel on the basis of the 
large transverse momentum behaviour of the Green’s function.

In order to facilitate the numerical integration of the Green’s functions we 
develop in section 4 a perturbation expansion valid for small gradients, through 
which we can evaluate the asymptotic contributions to the integrals analytically. In 
section 4 we introduce scaled parameters such that the equation for the order­
parameter profile is brought into its universal form. In section 5 we calculate the 
mean field profile in a gravitational field. In section 6 we outline the method for 
solving the Green’s function and present the results of the calculations. The results 
for the renormalized order-parameter profile are given in section 7 and the paper 
closes with a discussion of the results.
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(2.2)

(2.4)

(2.5)

where

*(n)(n........ rn) = !{$}-{«} • (2.6)

(2.7)

(2.8)

83f(5)
8S(r1)...8S(r„)

where the renormalization constants Z(u), Z2(u), Z4(u) and St can be calculated 
by renormalizing the theory at zero momentum, r is a measure of the reduced tem­
perature difference (T—Te)/Tc and u is the dimensionless renormalized coupling 
constant (the subscript c denotes the value at criticality).

In the field free system (Af(r) = 0) the expectation value of the local order 
parameter S(r) vanishes at the critical temperature (t = 0). When an external field 
is included, however, this field will induce a non-zero magnetization even above 
Te. In this chapter we will take the external field H(f) to be similar to the gravita­
tional potential for fluids

H(z) - gz , 

where the field is directed along the z-axis of the system. The mean magr ration 
density Af(z),

M(z) = <S(z)> , (2.3)

will be a function of z, corresponding to a magnetization along the dir ; a ion in 
which the magnetic field H(z) varies. For T<TC the profile M(z) surv- even 
when g-0 and we will then speak about Af(z) as an interface.

In principle we can evaluate the right-hand side of (2.3) by a Feynman graph 
expansion. It is however much more convenient to introduce first a field i|i(r) 
which has zero expectation value by construction10-12,

>l»(r) = S(r)-M(r) .

Expanding the Hamiltonian (2.1) in the new variables Qi(r) we get

*«>) = S J dr, ■ • • dr„ r„)>|<(r1)..4(r„) ,
n=0

+ y-AKr)4 - gzAf(r) , 
4! I

^'’’(r,) = -Z(.u')V2M{r1') + (tZ2(.u') + bt')M(rl-) + ^Z4(U')M(r1)3-gz , 
o

Explicitly we have

3e<°> = J dr^Z(u)(VM(r))2+y(rZ2(U) + 8r)M(r)2
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(2.9)

(2.11)

(2.12a)

(2.12b)

(2.12c)

8t = — (2.12d)

Fig. 1. The one-loop contribution.

etc.
By expanding the left-hand side of

<tp(r)> = 0 (2.10)

in Feynman graphs, we obtain an expansion of the equation of state, which is 
equivalent to ihc equation from which one calculates Af(z).

Tc first order in the loop-expansion only the graph in fig. 1 contributes, there­
fore

3e(2>(r„r2) = -ZMVf+rZ/ul + Sr+^-Z^ulA/f/-!)2 8^-^,

-•(M)--Af(z) + (/Z2(u) + 8z)M(z)-gz + -^Z4(u)M(z)3 
dzz o

+ |^-Tr{[3e<2>]-‘ 8(z-z')}r_I> , 

where Vd-i — Jd^-'r, and r, are the directions perpendicular to the external 
field.

The renormalization constants are identical to those in the zero field case, 
which have been evaluated up to the one loop order as9’13

Z(u) = l + 0(u2) ,

Zz(“) = l + |uJ + 0(«2) ,

Z4(u) = l + yiz7 + O(u2) ,
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where

(2.13)J = 2

with

(2.14)Sa =

*10is chosen to be the fixed point value ;;

uS, (2.15)

22

(2.16)AG(?„z) M(z) .

(2.17)

(2.18)z') = 8(z—z')
2

(2.19)

1
2tr

1 
(?2+l)2

= t-e + 0(e2) .

= ^-[1-| + C(e2)j ,

f Sa-if^.^-2
L 0

d

f d?

d2
I dz2

and M0(z) is the lowest order solution of (2.16), i.e. the solution of the classical 
Van der Waals equation in the presence of an external field, 

r+|M0(z)2jw0(z)-gz .

r + '+-7A/0(z)2+?,2 G(q,, z,

r+^M(z)2 M(z)-gz + ^J r + -^-M(z)2 M(z)
6 I 2 12 I

dz

The subtraction in (2.17) coming from 8r is sufficient to remove in four 
dimensions the quadratic divergence of the wavevector integration in (2.16). The 
expression involving AG(q,, z) in (2.16) is now a convergent integral for all d<4. 
For e=4—d-0 it starts to diverge logarithmically, leading to a 1/e contribution, 
which is compensated by another 1/e term in (2.16).

The function AG(q,, z) is a combination of the Green’s function G(q,, z, z') in 
z=z' and the subtraction term (2.12d):

AG(q„z) - G(9„z,z')|z=z, ,

where the Green’s function G(q,,z,z') is the solution of the Schrodinger-like 
equation

u
6

2irda 1
T(d/2) (2-it)‘'

The value of the coupling constant u
2
3

Substitution of eqs. (2.12) into (2.11) gives as result the following ;ion, 
correct up to order u2, from which the profile Af(z) can be calculated,

d2Af(z) =
dz2
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+ C(?,-5) , (2.20)AG(«„ z) = -

with v(z) given by

(2.21)

(2.22)dq, +AG(<?,, z) +

v(z)M(z)

(2.23)x

where we have used for d near 4

(2.24)
2

+ C(e2) , (2.25)

in which (2(z) is defined as

v(z) 
4(d-4)

v(z) 
4?,3

v(z) 
4?,3

= 4 [1 + f(1-2 ln 2)j + 0<e2) •
One now sees that the 1/e exactly compensates the 1/e contribution of the term 
containing J in (2.16) when the expression (2.13) for J is inserted.

Combining expressions (2.22), (2.23) and (2.13) and using the special value 
u" for u we obtain for (2.16)

yy = ^ + -^M(z)2jw(z)-gz + -|-e(2(z)-v(z) + 2v(z) \nq^M(z)

4o d

v(z) = r + -jAf0(z)2.

Thus we write the qt integral in (2.16) as
x q0

I qJ-'a.G(q„ z)dq, = f qf~2AG(q,, z)dq, 
0

M(z)=-^S4I5-
7 + y(l-2 In 2)-v(z) In 9o ,

To see the cancellation of the 1/e contribution we use the asymptotic 
behaviour of AG(<?,, z) for large q,, which is derived in the next section (sec 
(3.13)),

f 2
10

where q0 can be chosen later. Both integrals are now convergent for e~0. Together 
with the volume factor Sj-i the last term of (2.22) contributes to the last term in 
(2.16) for small e,

v(z)
‘4(-e)9o-‘
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So X

(2.26)-(1-2 In 2)v(z) .

combinationtheHowever,

3. Perturbation expansion for G(q,, z, z") for small gradients

(3.1)

(3.2)

(3.3)

and

(3.4)*„(*') =

‘fO x , .

2(z) = 8 Jq,2 AG(q,,z)d9, + 8 f ,2 AG(9„z) + -^4 d9, 
o ?0 I 4<?> )

z = (v(z') + q,2)1/2(z-z')

tfr>(z')
(v(z') + q,2)("+2>'2’

v<"’(z') denotes the n-th derivative of v(z) with respect to z, taken in z = z'.

Obviously 2(z) is not independent of q0.
Q(z~) + 2v(z) in q0 does not depend on q0.

The two expressions (2.25) and (2.26), together with (2.17)-(2.19), ne the 
problem in a form free of divergences.

So far the case with an external field (g^O) runs parallel to the field e case 
(g = 0)2. For g=0 eq. (2.19) can be solved exactly as well as the assoc equa­
tion (2.18). For g^O we must rely on numerical methods together witb .symp- 
totic analysis.

We want to solve (2.18) with the boundary condition

lim G(q,, z, z') = 0

as a function of the wavevector q, for all z and z' and for many values of the tem­
perature parameter t. For small q, and z, respectively z', this can be done most 
easily by solving (2.18) numerically. For large q, and z values, it is advantageous 
to solve (2.18) analytically, so that we can carry out the q, integration analytically 
in a large domain. Therefore we consider the case that v(z), defined in (2.21), is 
a slowly varying function of z. This happens for large z, where M0(z) varies 
slowly and for large q, where M0(z) is immaterial. In these regions we make, at a 
fixed temperature t, an expansion of v(z) + q,2 around z',14

v(z) + q,2 = (v(z') + q,2){l+X1(z')s+X2(z')s2+ ■ ■ ■ } ,

where



19

(3.5)

(3.6)

(3.7)

(s) = g<0)(s) ,

~~.;g(1'iXs)=g(1’1\s')+sgm(s') , (3.8)

G(r) = K(qt, z')e

(J>O) , (3.9a)--j^-X2(3s + 3$2+2s3) + • • •

l-^X^s+j2)

+ ^■X12(15s + 15s2+ 10j3+3s4)

+ -^-X12(-15j + 15j2-10j3+3s4)

G(s) = X(q,, z')e+^l + -|-X1(-i + i2)

Substitution of (3.2) into (2.18) yields

-■^■ + (1 + Xjs + X2s2 + X3j3+ • • • ) G(s) = 8(j) ,
I ds )

where G(j) has been defined as

G(s) = (v(j) + 9,2)1/2G(?,, z, z') .

An expansion for G(r) can easily be obtained by substituting the series 

G(s) = g<0>(s)+X1g<1'1>(r)+X12g'1.2>(j)+X2g<2’1>(j)+ • • • 

into eq. (3.5)
W. now the following set of equations for g(n,/w)(s):

-.;g;1'n(j) = g(1'J,(i) + i5(0>(i) . 
ds-

■^-7g(1,2)(j)=g(1.2)(i)+jg(1,1>(j) , 

ds£

-^g(2,1)(s) = g(2-1)(s) + j2g(0>(j) • 
ds

These equations can be solved subject to the boundary conditions following from 
G(0) = X(?,, z’) and g(±«>) = 0. The multiplicative factor \(q,, z') will be chosen 
later to meet the requirement that the derivative of G(s) with respect to r has a 
jump 1 in r = 0. The result is
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(3.9b)U <0) ,

(3.10)

(3.11)

AG(?,, z) =

(3.12)

(3.13)(q, large)

4. Scaling of the equation for M(z)

(4.1)

where the 
be found by

-~X2(-3s + 3s2-2s3') + • • ■

—-Y,8 6

29,

Before we enter into the numerical_calculation of Af0(z) and AG(?,, z) it is 
convenient to introduce scaled variables Af(z), z and F, such that

M = \x.,M , z = J,z , t = 0,F,

2_lv + ZL 2_45
1 4V 32 X1

We will use the result (3.12) in the regions of large q,, and of large . 
small gradient expansion is valid, to supplement the values, which can 
direct numerical integration of (2.18). The integration over q, occurring in (2.26) 
can be carried out analytically from ?y(z) to infinity. fy(z) is the value above 
which the small gradient expansion is valid. The results of the integrations are 
given in Appendix A.

Note that from (3.12) we have

AG(9r,z) = -^4 + C(«,-5)
49,

as we have used in the previous section (see (2.20)). The result (3.12) is generally 
applicable e.g. in higher order calculations, since the dependence of AG(?,, z) on 
v(z) occurs only through the X„(z').

X(?,, z') follows from the condition that

G(0-) —G(0+) = 1 

and can therefore be evaluated to be

X(9,. *') = t<1-7x2+ 1̂2->4+^-x22-^-x6+ • • • } . 
Z. *T JL JL O

The value of interest for us is G(0), because we need G(q,, z, z') in z--:' as one 
sees from (2.17). This value is equal to K(q,, z'), given in (3.11). It ca calcu­
lated once the zeroth order profile A/0(z) has been determined (numer ) from 
(2.19) and the values of X„(z') have been found according to (3.4). ibining 
(3.6), (3.11) and (2.17) we find 

1 
2(9,2+v(z))1Q

21
32
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with

(4.2a)M-r

(4.2b)

e. (4.2c)

(4.3)

(4.4)

4?,

-(1-2 In 2)v(z) , (4.5)

(4.6)

(4.7)

(4.8)AG(?,, z) = G(q,, z, z’)|~, - --L .
2?,

Note that we have chosen for q0 which appears in (2.23), the value

<?o = iS • (4-9)
The whole problem of finding A/(z) is now completely defined by (4.3)-(4.8).

where the scaled functions v(z) and C(z) are defined by

7(F) = F+3A/0(F)2 , 
1 X z   x

2(F) = 8 J q2 bG(q,, F) dq, + 8 f q,2 AG(q„ F)+-^|dq, 
0 >1 4q, I

where M0(z), t^G(q,, z) and G(q,, z, z') are given by the scaled equivalences of 
(2.19), (2.17) and (2.18), respectively,

4tMo(F) = (F+Af0(F)2)M0(F)-F ,
dz

I-Ar+7(F)+q,2 |g(?,, F, F') = b(F-F') ,
I dz )

( 3/8—3c/64
= l—l  1/4—3e/321<U S

r \-l/8-€/64
= „ —1/4—e/32N g

( \ 1/4—1/96

= If] s1'2-748 •
This choice of the scaled variables scales out all u dependence of (2.25) up to 
order ; :.: /lakes it possible to study the behaviour of the profile Af(F) as a func- 
ti< . ii ■’no.perature-like parameter F. In terms of the variables defined by (4.1) 
eq. (2.25) reads

■ ) = (F+Af(F)2)A/(F)—F+-i-e(Q(F)-v(z))M(F) + O(e2) ,
d. • 6
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(4.10)

with

(4.11a)

(4.11b)

(4.11c)

+ O(e2) (4.12)(r<0),

(4.13)

d?,

(4.14)-(1-2 In 2)v(z)

(4.15)

(4.16)

(4.17)1
2?,

|2+e/48

V(z') 

4?,3

AG(?„z) = G(9„z,z')|.,=f

These equations do not depend on u and g, and give rise to universal magnetiza­
tion profiles M(z) only depending on z and F.

We can also reduce the number of parameters in eq. (2.29) by scaling out the 
temperature-like variable I. This scaling is especially suited to study the behaviour 
of the order-parameter profile in the regime of very small fields.
For this purpose we introduce the scaled variables M, z and g such that

Af = \LgM , z = £gz- , g = ygg

and A?0(z), AG(q,, z) and G(qlt z, z') follow from 

^M0(z-) = (-l+M0(z)2)M0(z)-gz , 

--^ + v(z') + q,2 G(q„ z, i") = 8(z'-z") , 
dz )

--w
Substitution of (4.10) into (2.25) yields the scaled equation for the profile M(z) 
which is independent of t and u,

■^yM(z-) = (—l + M(z)2)A/(z)—gz +-^-e(Q(z) —v(z))M(z) 
dz o

where

v(z-) = -l + 3M0(z-)2 , 
1 +* z

2(z) = 8 f q,2 AG(q,, z-) dq-, + 8 f q,2 AG(q„ z') +
o 1 I

— 1/2
|; 11/2—c/6
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(4.19a)

(4.19b)

(4.19c)

compare our results to the analytical results of Ohta andcan

5 The classical order-parameter profile

4

9

3

, (z large) .+ 0(z (5.1)

(5.2)

For g=0 we 
Kawasaki2.

Using the scaled variables defined in (4.1) the mean field magnetization pro­
file is given as a solution of differential equation (4.6). For large F this solution 
behaves as

F| _Z
3

+1
3

2
+1

9

Here we have taken for q0 the value

<7o = <7* (4.18)

The results of the scaling using F can easily be converted into the results for the 
scaling with g as parameter by the formulae

— 13/3)

M = t ~'I2M 1+7- InF + 0(e2) , 
16 1

Mo(F) = F1/3

1+^ ln' + °(e2) ’

z--ll/3

Inr + 0(e2) .

--’/3

g = 7~2

For large T however the series (5.1) is slowly converging and we can use this 
asymptotic formula only for very large F. For smaller F the magnetization profile 
A70(F) can best be calculated numerically from (4.6) for a fixed temperature t. The 
solution is found by a trial and error method. For a guessed initial slope (4.6) is 
integrated forward, and the guess is adjusted, until the profile and its first deriva­
tive are well behaved for all F values that we can reach (limited by numerical pre­
cision). When the proper limiting profile (5.1) was not reached, we have extended 
the solution by calculating Af0(F) as a small distortion of the locally homogeneous 
profile M0°(F), which is a solution of

0 = (F+A/q (F)2)Af°(F) —F .

L I7 ~9/3_ £
9

z = Tv2z‘
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t=.2

t=0

t=-2

M0(z) = Mg(z) 1- (5.3)

(5.4)

0
2

0 
2

2
Mo(2) 

0

Fig. 2. The classical order-parameter profiles Mq(z) for temperatures above 
(f = +5, +2) and below (r= —1, —2, —5) the critical temperature (r = 0)

2 
Mo(z) 

0

2
Mo(z)

0

We then find Af0(z) as

—4—+-.
(r+3M0°(D2)4

As one sees from (4.4), the profiles are antisymmetric around z=0, so we only 
have to determine them for positive z values.

In fig. 2 we have plotted the zeroth order density profiles for a few selected F 
values, both below and above the critical temperature. When the temperature is 
lowered, the interface width decreases as could be expected. At F=0 the zeroth 
order profile does not vanish, as is the case without an external field present, but 
this profile is completely induced by the field. For the same reason a profile per­
sists above Tc.

Using the scaling defined by (4.10) we have also calculated the zeroth order 
profiles for a few values of g below the critical temperature (fig. 3). For g = 0 the 
differential equation (4.15) can be solved analytically yielding the classical van der 
Waals hyperbolic tangent profile

W0(z) = tanh(z/V2) , g=0 .
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g=o g=0.3

g=!.Og=0.7

4 4

6. Numerical solution for the Green’s function

(6.1)

(6.2)

with boundary conditions

lim g (q,, z) = 0 ,

o 0

2
Mo(z) 

0

2
Mo(7) 

0

g(q,, 0) = 1 . (6.3)

The boundary conditions and the absence of a jump in the derivative are the only 
differences from g(qt, z) with respect to G(q,, z, z"). The solution of (6.1) will 
diverge exponentially for The procedure to find g(qn z) numerically is as
follows. First guess a trial slope g(.qt, 0) and integrate (6.1) numerically from z = 0 
towards both smaller and larger z. In general the solution will not satisfy the con­
dition (6.2), but diverges exponentially. When g^q,, z) however is a solution of 
(6.1) then gi(q,,~z) satisfies (6.1) also. We obtain a solution satisfying the boun­
dary condition (6.2) as the linear combination of g/?,, z) and gi(q,,~z) which 
cancels out the exponential divergences for F-“. Once we have determined

Fg. 3. The classical order-parameter profiles Mq(z) for some values of g 
(g=0, 0.3, 0.7 and 1).

Now that the_zeroth order profile Af0(z) has been calculated we can solve the 
Green’s function G(<?,, z, z') and AG(q,, z) from eqs. (4.7)-(4.8), with the aid of 
an auxiliary function g(q,, z). Following Van Leeuwen and Sengers14 we consider

^-■^• + v(z)+?,2jg(?,, z) = 0 ,



26

(6.4a)z

zSz' , (6.4b)

-1

(6.5)X(9,, z') = -

From (4.8) one sees that

AG(9pz) (6.6)

t=*5

0

t=O

0

t=-5t=-2

0
4

Fig. 4. The function Q(z) for the temperatures r = + 5, +2, 0, —1, —2 and —5.

o

40 
Q(z)

20

40 
O(z) 

20

0 
1

40 
0(z)

20

g(<?,»z') 

g(?r. z')
! £(<?,.~z') 

f(?,. -z')

X(?,, Z)--TT
2?,

For large z, or large the calculation of X(qr, z") becomes numerically inaccu­
rate. Fortunately in these regions the small gradient expansion developed in section 
3 is valid. To be specific we calculate AG(q,, z) for a selected temperature and z

g(q,, z) we construct G(?,, z, z') as

G(?,, z, z ) = X(<?,, z ,
g(9,. z')

G(?,, z, z') = X(?,, z')-f-f': -j) ,
«(<?,. -z )

where K(qt, z') has to be chosen such that the jump in the derivative of 
G(?,, z, z") in z=z' is equal to one, i.e.
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o

0

Fig. 5. The function Q(i) for g=0, 0.3, 0.7 and 1.

(7-D

20 
O(z)

10

20 
6d)

10

7. The order-parameter profile to first order in e

up to the wavenumber qf(z) numerically, whereas for larger z, qy(z) is smaller, 
until at a certain value of z, AG(qr,z) can be calculated using the asymptotic 
expansion only. Next we do the integrations over q, occurring in (4.5). For any z 
the integration has to be carried out numerically for q, smaller than qy(z) and 
analytically for larger values of q,. The resulting functions 2(z) are shown in fig. 
4 for the same selected temperatures as for which the zeroth order profiles A/0(z) 
are shown in fig. 2.

The functions 2(f) in the scaling with parameter g can be calculated similar 
to the calculation of Qtz). The results for various g are shown in fig. 5. In the 
limit of no external field we reproduce the result of Ohta and Kawasaki.

We can find the_magnetization profile up to order e from (4.3), using the 
zeroth order profile M0(z) and the function Q(z), calculated in the previous sec­
tion. Because eq. (4.3) is only correct up to first order in e, it is consistent to 
present the magnetization profile M(z) as a series in e.

M(F) = Mo(z)-^M^ + O(e2) .
o

By substitution of (7.1) in (4.3) we obtain the equation for the first order profile 
Mjd),
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t=>2

M,(z)

0

Fig. 6. The first-order profiles for t = + 5, 4-2, 0, — 2 and —5.

(7.2)

2(z) = v(z) In v(z) (z large) . (7.3)

As d2M1/dz2-0 for large z, Af(z) will behave as

M,(z) = M0(z)(ln v(z)-l) (z large) . (7.4)

I

4
M,(z)

0

Mj(z) 

0

= v(z)(Af1(z)+M0(z))-e(z)Af0(z) .

Eq. (7.2) is solved in the same way as we have determined M0(z). In fig. 6 the 
resulting first-order profiles M j(z) are shown for the same F values used previ­
ously.

The asymptotic behaviour of Mx(z) can be found easily from the asymptotic 
behaviour of Q(z). For large z the value ty(z) = 0 (for g,><?y(z) the small gra­
dient expansion is valid). Thus we can do the integration over q, analytically yield­
ing

o 4 
I
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(z large) , (7.5)z

where 8 is the critical exponent relating field and magnetization,

8 = 3+e + C(e2) . (7.6)

Using the scaling defined by (4.1) with parameter g we define

(7.7)

f ' v ) is now a solution of

(7.8)

9=0.35=0

M,(z)

zz

Fig. 7. The first-order profiles .W,(z) for g=0, 0.3, 0.7 and 1.

In fig. 7 the profiles Af(z) are shown, calculated from (7.8). For g=0 we get 
a result that is equivalent up to order e to the result of Ohta and Kawasaki.

4
M,d) 

0

The logarithm in (7.4) is a reflection of the fact that M(z) does not follow the 
behaviour (5.1) but rather

M(z) - 71/8

= v(z-)(M1(z') + M0(z)) - Q^M0{z) . 
dz

M(z) = M0(z-)-j-Mt(z-) . □
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8. Discussion

Appendix A

In this appendix we give the results of the analytical integration over q, of the

In this chapter we have given a calculation of the order-parameter profile in 
an external field, following the calculation of Ohta and Kawasaki in the field free 
system. For d<4 the theory is finite as a result of the same subtractions we need 
in the homogeneous renormalized system. The divergences arising when we let 
e=4—d-0 are canceled exactly by a subtraction term with the same divergences.

When we formally set e=l to get the three dimensional case, everything stays 
finite even in the zero field case. The divergence of the interfacial width due to the 
capillary waves is lost in an intermediate stage of the calculation, namely when 
integrating over q, in 4—e dimensions we suppress the capillary waves. Clearly the 
integration over q, in three dimensions would lead to a In g capillary divergence of 
the profile width below the critical temperature.

For any finite value of g the capillary waves are suppressed by the Celd, and 
no divergence of the interface width occurs7 in any dimension.

The transition from the interface below Tc to the field induced magnetization 
profile above Tc is smooth. The smoothness results from the high susceptibility of 
the systems with respect to the field, which distorts the interface and keeps it finite 
even at criticality.

The region where these distortion effects occur is a rather narrow temperature 
regime around Tc and a rather narrow band around the critical layer z = 0 (where 
M(0) = 0). Outside this regime one can use the local theory (without the squared- 
gradient term) above Tc and the approach of Rudnick and Jasnow below Tc, where 
distortion effects are omitted. There is a relatively large domain below Tc where 
distortion effects are negligible and the system still behaves as a critical system.

The description of an interface in a field requires an additional parameter, 
namely the field strength g (or equivalent a scaled temperature F) but is otherwise 
a universal function in the sense that details of the microscopic interaction do not 
matter. The scaled profile we have calculated is in fact a cross-over function 
involving an additional scaling field describing the external field influence.

In the next chapter an e-expansion is constructed for the surface tension of an 
order-parameter profile in an external field.
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= yv(l-2 In 2)+vIn(l+A)+(l-A)?/. (A.l)

(A.2)

(A.3)

(A.4)

= (l + v(z)/9/(z))1/2 , (A.5)

and

vM = (l/n!)d',v(z)/dz'' . (A.6)

1
'' [(<?r2 + v)1/2

terms appearing in the small gradient expansion of section 3:
X

2 J ?,2 dq,
1/

(?,2+v)1/2

(?,2+v)1/2

X

2 f Qt2 d<?r

X

2 f Qt2 d9r

x 

~2 f Q2

where

A

(?,2+v)1/2

2(||v(2>2-^-v(<i))(j(l-A

?r 2<?,3

4-v(2)(1-A~3) 
o______________

V

2(^-v(I)2- |v<4>)( |( 1 —A "3) -1(1 -A -5)) 

V2

'3)-f(l-A-5) + |(l-A-7)) 

7
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CHAPTER III

ABSTRACT

AN e-EXPANSION OF THE SURFACE TENSION 
IN AN EXTERNAL FIELD

A system near criticality is considered in a linearly varying potential. 
With the order-parameter profile, whether induced by the field 
(T>TC) or spontaneously formed (7’<TC), a surface tension can be 
associated as the difference of the actual free energy and a reference 
free energy. The reference free energy is taken as that of a locally 
homogeneous system with varying field strength, which leads to a 
convergent e-expansion for the surface tension. This surface tension 
is a universal function of temperature and field strength and is 
evaluated to first order in e.
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1. Introduction

(1.1)

The calculation of the surface tension ct is a problem closely related to the cal­
culation of the interfacial profile between two coexisting phases. Whereas the 
actual profile only can be measured indirectly, the surface tension cr of an interface 
is a quantity directly accessible for experiments. Therefore much effort, both 
experimentally and theoretically, has been given to obtain <r. From experiments it 
is known that the surface tension in the vicinity of the critical point decreases as a 
function of temperature, with a universal exponent defined as

<r(t) = Jol'l11 (r = (T-Tc)/Tc) (r<0),

where p.~1.26.
A calculation of cr(r) in the e-expansion has been given by Ohta and 

Kawasaki1, and also by Brezin and Feng2. In the spirit of their evaluation, we dis­
cuss the effects of an external field on the surface tension of interfaces in that 
field. In our calculation we use the results of the preceding chapter3 on the effects 
of an external field with respect to the interfacial profile.

The notion of the surface tension on an interface is not unique when an exter­
nal field is present. In the field-free case the surface tension is defined in terms of 
the difference in free energy between the actual system and two bulk phases 
separated by the Gibbs dividing surface4. An external field deforms the interfacial 
profile, but also influences the bulk phases far away from the interface5. What one 
would attribute to the surface tension is to a certain extent a matter of taste and 
effectiveness in describing the experiments. The issue comes up clearly when one 
considers an interface in an external field and increases the temperature T, 
through the critical point Tc to a T > Tc. Then the distinction between the coexist­
ing phases forming the interface has disappeared, but a profile induced by the field 
remains. Should one speak about the surface tension of such an induced "interface" 
or opt for a definition of surface tension which disappears when the distinction 
between the interfaces disappears.

Van Leeuwen and Sengers6 have proposed a definition on the basis of the 
squared-gradient theory for the interface. They defined the surface tension as the 
free-energy difference between the actual system and a hypothetical system in 
which two bulk phases are joined by a dividing surface with a jump in the order­
parameter. This jump is twice the spontaneous order-parameter in a field-free sys­
tem. Such a definition has the advantage that the actual system may be replaced 
by the hypothetical system augmented by the surface tension. The effect of the 
field on the interface is then thought of as a surface tension associated with a 
sharp dividing surface. The distortion of the bulk phases, being also present in the 
hypothetical system, is not included in the surface tension and above Tc this
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In a fluid the gravitational field only changes the chemical potential p. into an 
effective potential ptyy(r).

A result of the e-expansion is the possibility to evaluate the free-energy den­
sity of a bulk system in a homogeneous external field. Also the equation of state 
can be evaluated easily in a systematic way and thereby the bulk magnetization of 
a system in a homogeneous field9,10. We use these known facts to construct a 
reference system for the actual magnetization profile. For each z, which is the 
direction along which the external field varies, we compare the free-energy density 
of the actual system, to that of a bulk system in a homogeneous external field. The 
value of this homogeneous external field at z is taken to be equal to the value the 
real external field has locally at z. The magnetization densities associated with this 
homogeneous field can then be obtained for each z from the equation of state. The 
reference profile thus formed is called the locally homogeneous profile. For large z 
or for temperatures above the critical point the gradients in the actual profile are 
very small, and the locally homogeneous profile is a good approximation for the 
real profile. Consequently in these regions the free-energy densities do not differ 
very much, and deviations are restricted to the interfacial region. We define the

surface tension vanishes, because of the spontaneous jump in the order-parameter 
vanishes above Tc. This proposal may have advantages in discussing experiments, 
such as capillary rise, but the main drawback is that the definition is restricted to 
an approximate theory. In the squared-gradient theory the condition of a jump can 
easily be implemented as a boundary condition in the differential equation from 
which the profile is calculated.

In general, there is no local equation of state from which the interface can be 
calculated as in the squared-gradient theory. We have attempted to follow the 
definition of the surface tension, sketched above, in the context of the e-expansion, 
but were led to divergent expressions not compensated by subtractions, due to the 
non-locality of the equation of state.

Therefore we adopt in this chapter a different reference system for the surface 
tens' ?n which is discussed below.

In this chapter, as in chapter II, we adopt the magnetic language, which is 
mc.s: commonly used in the renormalization theory7,8 of critical phenomena, 
although our main interest is to study the interfacial properties of a liquid-vapour 
coexisting system in a gravitation field. The connection of the magnetic system (via 
the lattice gas) with a fluid system is simple:

local magnetization density Af(r) - local number density p(r); 
local free-energy density 9"(r) - local pressurep(r);
external field H(r~) - chemical potential jx(r).
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(1.2)

2. The surface tension

3= (z) =

[3e<2>] (2.1)

and

&B(z)

surface tension as the integral over 
actual and the reference system:

= Jdz[^(z)-^«(z)] ,

•^-Z4Mfl(z)4-gzWfl(z)

z of the free-energy density difference of the

CT

kBT

where S'(z) is the free-energy density of the actual profile at z, and 9;S(z) is the 
free-energy density of the reference system at z (the superscript B denotes that 3s 
is the free energy of a bulk system). With this definition of the surface tension, we 
easily see that for zero external field it reduces to the usual definition4. One also 
sees that the surface tension does not vanish above the critical point, but remains 
finite, but very small, at any temperature, because of the existence of small gra­
dients in the actual interface.

The e-expansion provides a way to calculate both S'(z) and .:) systemati­
cally, leading to a systematic and universal expansion of the surface : on.

The remainder of this chapter is organized as follows: In sec. 2 we give 
explicit formulae from which we can calculate ct up to first order in ■ : section 3
we scale all non-essential quantities out of these formulae and show that there 
remains a universal o-(r). In section 4 the results of the numerical calculation of ct 
are presented. The chapter closes with a discussion of the results.

In this section we show that the choice of the locally homogeneous profile as a 
reference profile leads to a consistent definition of the surface tension ct. We will 
demonstrate that all divergences occurring in the e-expansion of ct can be compen­
sated and that the resulting ct is finite. The surface tension has been defined in 
(1.1) as the integral over z of the difference of the actual free-energy density and 
the free energy of the reference profile. The free-energy densities associated with 
the profiles are calculated from the Ginzburg-Landau-Wilson Hamiltonian defined 
in chapter n. In the one-loop approximation (which gives results correct up to first 
order in e=4-d in the e-expansion) we get

(f [^d^] + 2(,Z2+ 8,)M<z)2+ ^-Z4«(z)4-«zM(z)j

|Tr
+^rrln
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(2.2)

(2.3)

and

^B(2)(r,r') = (2.4)

(2.5)

(2.6)

Z4 (2.7)

2 g <? 2
8r (2.8)

with

J = (2.9)

and

(2.10)Sd =

(2.11)

(2.12)

Sa-
€

+ -2— In , 
yd-l L J

where M(z) is the actual magnetization profile and A/a(z) is the magnetization 
which (as a function of z) forms the reference profile. V‘,_1 is the area of the 
plane transverse to the field direction. 3€^2)(r,r') and 'XB<-2\r,r") are given by

(2)(r,r') = |-ZV2+8r + zZ2+yZ4Af(z)2|s(r-r’)

-ZV2+8z + rZ2+yZ4Affl(z')2|8(r-r') .

• s. •: chapter II the parameters Z, Z2, Z4 and 8r are renormalization constants 
whici. .-.ave been evaluated as11

Z = 1 + 0(h2) ,

Z2 = l + yJ + 0(u2) ,

1 + -|mJ' + 0(u2) ,

l-| + 0(e2)

r A q' ! d’' +17 ■

2irrf/2 1 
r(d/2) (2qr)d '

For the coupling constant u we take the fixed point value u*8, 

«*S4-. = |e + 0(e2) .

In I we have calculated the profiles M(z~) in an e-expansion as 

W(z) = M0(z)+^M1(.z) + C(e2') .
o

M0(z) fulfills the mean-field equation in a field gz.
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(2.13)

(2.14)

(2.17)

and a] is obtained as

In [X(2)]-ln

(2.18)

(2.19)

(2.20)

(ct0/*bT) = J dz
— 30

X 

[7-7] f dz(v(z)2-vfl(z)2) ••

+ ^-(M0(z)4-M§(z)4)-gz(M0(z)-Afg(z))

I + y»(M0(z)2-Mg(z)2)

(a1! lkBT) = lim 
«->0 €

The functions v(z) and vB(z) are defined as 

v(z) = t + yAf0(z)2

A) = » + yWg(z)2 .

4S4

X +x

J dz J Aq, q‘
-X 0

(v(z)-vJ(z)) ] 1
2?,

■~rM0(z) = (t+ Mo(z))Mo(z)—gz .
dz*

Similarly the reference profile can be expanded in e,

Mb(z) = Wg(z)+^Mf(z) + 0(e2) ,
o

where MB(z) obeys the locally homogeneous mean-field equation of state,

0 = (r+Mg(z)2)Mg(z)-gz , (2.15)

i.e. Afg(z) is calculated as if the field gz is not dependent on z and thus the second 
derivative on the left-hand side in (2.13) is set equal to zero. The profile­
corrections M](z) and MB(z) are not necessary for the computation 0 or to first 
order in e due to the stationarity of the free energy functionals.

The e-expansion for ct,

alkBT = <r0/AjT + eo-] lkBT + • • • , (2.16)

is then obtained by substituting the renormalization constants (2.5)-(2.9) into (2.1) 
and (2.2) together with the lowest order profiles M0(z) and M®(z). Then o-0 
becomes

1
2
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(2.21)

AG'(9„ z)

(2.22)

AG'(?„ z) . (2.23)

G(?,, z,

(2.24)

z') = S(z-z') . (2.25)

Ga(<7,,z,z') = (2.26)

To see the cancellation of the 1/e-term in (2.22) we use the large q, expansion of 
G(q,, z, z') developed in chapter n, together with the large q, expansion of (2.26) 
for z = z'. Then AG'(?,, z) becomes

y] f (v(z)2-vfl(z)2)dz .

(o-j lkBT) = —lim — 253_t J" dz 
c-0 € 0

J d?r 
0

1
(3-e)

The integration over qt in (2.18) also converges for any e>0. For e-0 how­
ever the integral starts to diverge, leading to an 1/e-contribution. This 1/e- 
contribution is compensated exactly by the other 1/e-term in (2.18). Before show­
ing this, we first integrate (2.18) by parts, what results into

2 €

v(z)-va(z)

4?,3

z') and Ga(q,, z, z') are the Green’s functions given implicitly as solu­
tions of the equations

f h2 1
-------- + <?,2+v(z) G(?,, z, z') = S(z-z')

I dz )
(--^~r + ?,2+va(z') Ig^?,, z, 

I dz )
Eq. (2.25) for the locally homogeneous Green’s function Ga(?(, z, z') can be 
solved analytically giving

e-V9,2+Az')|z-z'| 

2(«2+va(z'))1/2

The integration over z in (2.17) is convergent although not very rapidly, due 
to the behaviour of M0(z) for large z

Af0(z) - z1'3 (z large).

• (2.22) we have used the antisymmetry of Af0(z) and Afa(z) which is 
ar-:■.•tent from (2.13) and (2.15). AG'(<?,, z) is defined as

= [g(9„ z, z')-Ga(9„ z, z')]z = z,+

1
f-0 €
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AG'(9r, z) = + ©(?, 7) (?, large).16

-25 AG'(<?,. z)

— 25 AG'(9„ z) .

(2.28)

(2.29)S3 = 45.

S3-

is

1 v(2)(z) 
9r5

3 [ v(z)2—va(z)2 1
9,5

3
16

SC 

f d<?, ?/ 
«0

(2.27)

where v^n\z) denotes the n-th derivative of v(z) with respect to z. We now rewrite
(2.22) as

f dz 
0

f dz 
0

f dz (v(z)2-vfl(z)2) 
0

9o‘ 
e(3-e)

1 
(3-e)

1 
(3-e)

v(z)2-vB(z)2
9,5

-|s4.

and the expansion

3 9o*
8 e(3-e)

+ |s4

16 +X ” 16 +”
(“CT1 lkBT) = f dz f dq, q* b.G\q,, z)- — f dz f dq, q*

*00 0 90

(Oj lkBT) = lira — 
«-0 e

Y + y + (y-ln2)-ln?°+0(e) ,

[— -y] f dz (v(z)2-vfl(z)2) .
(£ 2 ) 0

(2.30) 

we see the 1/e-part of the last term on the right hand side of (2.28) exactly cancels 
the 1/e-term of (2.30). The remaining integrals over q, are finite as well as the 
integration over z.

With the fixed point value of u given in (2.11) the resulting expression for crj

The cutoff parameter q0 will be chosen later. Using that 

(l + e(y-ln 2) + 0(e2))

v(2)(z)
16 9.5

«o
J d9, 9,‘ 
0
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AG’(q,, z) +x

3. Sealing of the surface tension

M — , z = [,z , t = 6,t , (3-D

with

(3.2)

(3.3)

(3.4)

= (r+A/0(z)2)M0(z)-z (3.5)

and

(3.6)

(3.7)

where

1
16

(2.31)

The integrations in (2.31) can be carried out numerically using the same tech­
niques as have been used in chapter II.

ln?o f dz(v(z)2-vs(z)2) .
) o

v(2)(z) 3 fv(z)2—vfl(z)2
?,5 16

In eqs. (2.13) and (2.15) for the actual, respectively the reference profile all u 
dependence scales out up to order e, yielding

d2A?0(z~)

dz2

we first introduce scaled variables A/(z), z,

(v^) =

0 = (r + Afo(z)2)Mo(z)-z .

The scaled expression for a is easily found to be 
( \—5/8—(5/64) c

g3/4-(5/32)« J ,

* - w 
/ \-l/8-(l/64)€

= 1—1 £-l/4-(l/32)<

’■ - w
1/4-(l/96)«

gl/2—(l/48)e

- 3/8-(3/64)1
1/4—(3/32)«

Before we calculate <r0 and Ct]
. ' ., by which all parameters, which are not essential to the problem, are scaled
Out.

—(—
3 2

-ln2)-|
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(3.8)a = cr0 + ecrj

and

CTo 2

(3.9)

and

(3.10)

(3.14)

and

(3.15)

Gs(«„ z, F') = (3.16)

together with

1
54

(3.12)

(3.13)

f dz&z)2-fB(z)2) . 
0

+x

= 2 J dz 
0

+ |(A/0(z)4-wg(F)4)-F(A70(z)-wg(F))

(3.11)

'(z), AG'(9r, z), G(q,, z, z') and GB(q,, z, z') are given respec-

(f +y(w0(z)2-w?(z)2)
k2 k dz ) 2

e-V?/+v»(r)ir-FI

2(q,2+F8(7'))1'2

d2 1_
-----Z^ + «,2+v(z) G(g,, z, z') = 8(z —z') ,

. dz )

<1,S

We have chosen q0 in (2.31) equal to 

«o = C1 ■ 

7(F), 78(F), V(n)i 
tively by

7(F) = F+3M0(F)2 ,

vB{z) =F+3Mg(F)2,

v(B)(F) =
dz

R +x 1
<*1 = “T7 f dz f dqt q* ^G\qtt z) 

0 0
+ X X /

-•A- J dz f dq, q* AG'(q,, z)
0 1 I

1 vt2)(z) _ 3 (F(F)2-Ffl(F)2
16 qi 16 [

— + 3 — — In 2 
2

1
2
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(3.17)+

CT < Tc) . (3.18)<x =

(T > Tc) . (3.19)a =

4. Numerical evaluation of a

(q, large or z large), (4.1)

in appendix B we have made a similar asymptotic analysis for large t and T>TC 
which leads to the expression (see (B.4) and (B. 10))

AG’(9,,z-) = |[(?,2+?(F))-1/2-

^G\q,,z)= [c(qt, z, z')-GB(q,

(v(F)-vfl(F)) 
4?,3

Eqs. (3.5)-(3.16) define the problem of calculating the scaled surface tension as a 
function of the temperature-like parameter F. Similar to the order-parameter pro­
file M(z~), the surface tension <j in an external field is a universal quantity.

From (3.4) we see that the limit of a small external field (g-0) is equivalent 
to the region of very large T. For T large the surface tension that we have calcu­
lated using (3.9) and (3.10), approaches asymptotically to the result evaluated by 
Ohta and Kawasaki1 (and also by Brezin and Feng2), which is in our scaled units

+ ^X
32

■4-

(V(z~)-?fl(z-)) 
4?,3

Once the profiles Af0(z) and MB(z~) are known, we can compute cr using 
(3.8)-(3.16). In chapter II we have given the results for M0(z) for several selected 
temperatures F, so now we confine ourselves showing the profiles in fig. 1. The 
locally homogeneous or reference profile A/a(z) is solved easily from (3.6) and is 
shown also in fig. 1. For F < 0 the reference profile has a jump in z = 0 equal to 
twice the spontaneous magnetization. For t a 0 MB(z) is continuous everywhere.

The Green’s function G(q,, z, z') has also been calculated in chapter II. The 
computation of this function for small values of q, and z' has been supplemented 
by an analytical expansion valid for small gradients, which is correct for large q, 
and also for large z'. In this region we have (see chapter II)

(?,2+7B(F))-1,2) +

V5 ln(2|r |)-24- -— it

—In 2 
3

_TLV3F-1/2
6

|V2|F|3/2
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t = *2

4

xn = (4.2)

o o

2 
Mjz).M^(z) 

0

2
M„(z).vC<z) 

0

2
mjz).m;(z) 

0

Fig. 1. The actual magnetization profile Af0(z) and 'he reference profile AfJ(z) for 
a few selected temperatures around Tc. (F= + 5, +2, 0, - 1, — 2, -5).

where the X„ are defined as

1 v(n)(7)
"! (?,2+F(F))(n+2>/2 '

As in chapter II, for each z, we carry out the integration over in (3.10) 
numerically up to the value <?y(z), above which the small gradient expansion of 
(4.1) is valid. For larger q, we perform the integration over q, by integrating 
analytically over the terms of the expansion (4.1) (see appendix A). Finally we 
have to do the integration over z in (3.9) and (3.10). For all (small) values of z 
for which we know Af0(z) with sufficient accuracy we carry out this integration 
numerically. For large z the first term on the right-hand side of (3.9) still gives a 
significant contribution to cr0. Also some terms of (4.1) give a large z contribution 
to o-]. We can do an exact calculation of these contribution, by considering M0(z) 
as a small deviation of Mg(z). For details see appendix B, where also the asymp­
totic behaviour of a above Tc is calculated.

The resulting functions cr0(F) and CTj(F), together with their asymptotic 
behaviour, are shown in figs. 2 and 3 respectively.
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Fig. 3. The first-order contribution to the surface tension as a function of tempera­
ture. The dashed lines indicate the asymptotic behaviour of 04.

Fig. 2. The zeroth-order contribution to the surface tension as a function of tempera­
ture, together with the asymptotic behaviour both above and below Tc.

100

10

I I

_____ 1_______ 1______ j_______ 1_______ 1_______ L
10 5 0 -5 -10 -15



46

5. Discussion

Appendix A

3
16

v2-vB2v-vB 
4?,3

------------------------- I-
2(9,2+va)1/2

We have calculated the free energy of a system near criticality which is influ­
enced by a linearly varying potential gz coupling to the order-parameter. The 
order-parameter has a profile in the field, which smoothly develops into an inter­
face when the temperature is lowered to values well below the critical temperature. 
The free energy is split into a reference free energy and a surface tension. The 
reference free energy is taken as the z-integral over the local free-energy density of 
a homogeneous system in the field gz. The remainder is called the surface tension.

The so defined surface tension cr is a universal function of the temperature 
and the field parameter g (gravity constant for the fluid), cr is calculated to first 
order in e. The advantage of this definition lies in the fact that it requires to solve 
two well-defined problems. The reference free energy is found from ■. bulk free 
energy in a homogeneous system in a homogeneous field. The tr-. ee energy 
must be calculated from the full Hamiltonian. Although both free <;> • are pro­
portional to the volume of the system the difference is proportional . e area in 
the transverse plane.

The consequence of this definition is that we have a non-vanishing surface 
tension below and above the critical point Tc. Well below Tc the usual surface ten­
sion is recovered varying as |7’|(X (see 3.18)) where F measures the temperature 
difference. Above Tc the surface tension decays as |F|^_2u (see (3.19))12.

One may ask whether this definition of cr leads to a useful quantity in 
explaining experiments. This problem has to do with such questions as the 
existence of capillary waves in the density profile which is induced by the field just 
above Tc. In any case the answer will be contained in the full free energy of the 
system in a field, which we have split in a relatively easy volume-dependent part 
and a remaining area-dependent part cr.

Our ct draws its contributions from a rather thick layer around the central 
plane of the interface. This is already clear in the mean-field picture where the 
main contribution to the integrand of (1.1) decays as z-5/3. In general this power 
will be 2-2+1/6 which is only marginally faster in dimensions lower than d = 4.

R +*

9/

1 
2(?,2+v)1/2

In this appendix we calculate the q,-integral of the terms of (4.1) in the 
regions where we can use the small gradient expansion. We only give the integrals 
for <?/>!. The extension to <?y<l is obvious. The integral over the first term of 
(4.1) gives
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(A.l)2

1 + 4 - In 2 - A-1 -

(A.2)

(1 - A

(A.3)

and

x

(A.4)

A = 1 + v(z) 
?/2

1
27

4
27

_1_
3

2(?,2+v)>'2

+ Tor (v2- vB 2)" T»(v2“ vB 2) T "ln 2 
1UO lo I Z

etc.
In (A.1)-(A.4) we have used the abbreviations

1/2

= -^-(v2 ln(l + A) - Vs2 ln(l + AB)) 
1 o

|(1 - A”5) - |(1 — A-7) I ,

- f d?r «>'

1 vm
+ ^7

2(9,2+v)1'2

(^v(2)2 - f v<«) 
7

~ 27 J" d<?' 9,4
If

8 r j 4 
f d?r ■?<
1!

The !ast term in (A.l) is compensated exactly by the same term in (3.10). The 
rem- ning terms in (4.1) only involve derivatives of Af0(z):

-7*2
2(?,2+v)1/2

v<2>A-3+ ln(l + A)

4 (^<‘)2-|VW)

135 v

1
3
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1/2
ab = 1 +

Appendix B

W0(z) = M?(z) 1 - (B.l)(for z > zy(r))..

(B.2)

dz

(B.3)

(B.4)

I ~ In t + ~ “ In 
[3 3 3

4

1 | dAf0(z )
2

2/ 
'/

xf 
d+272)

2------- In t arctan xf —

VB(z) 

V2 

and v<"> = (1/n !)d"v(z) / dz" .

■nF"1/2 

2V3

1__
dz vB(F)

etc. We continue with the formulae for F>0. In the case of F<0 everything is 
similar.

For z >z^(F) the only term contributing to (3.9) is
2  7-1/2+x , 7-1/2
dz = —-f=- f —---- dx = —y=-

V3 x2+l V3

where xf = V3F“1/2M(F) .
For F above Tc the profiles M0(z ) and MB(z) differ very little (see fig. 1) for 

all z , so we may put zy=O and obtain asymptotically

= ^V3F-1/2 (F large, F>0) .
o

The Oj -contributions of the large z region come from the terms calculated in 
appendix A where we may set fy = 0. From (A.l) for ty = 0 we get

J (v(z )2 In v(z )-vfl(z )2 In vfl(z ))

— — arctan xf , 
2 J I

In this appendix we perform the large z -part of the z integration in (3.9) 
and (3.10). For large z the difference between the actual and the reference profile 
is very small and we can find Af0(z ) as a small deviation of M®(F).

_6_+..
FS(D4

when z^(F) is sufficiently large._The derivatives of Af0(z ) in this region are very 
well given by the derivatives of MB(z ),

dM0(F)

2
3tt
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Infl+x^J+ZCxy) (B.5)

and (combined with the (v2—vB(z )2) term in (3.10))

(B.6)

dx . (B.7)

From (A.2) and (A.3) we obtain respectively the contributions

(B.8)

and

— arctan Xj

(t large, t >0). (B.10)

2
3tr

xf xf
(1+x/) (1+x/)

xf 
U+x/)

xf 
(1+x/)

xf 
d + Xf1)

1
18

(B.9)

The contributions for large z of (A.4) and further terms in the expansion of Oj 
are negligible.

For T>0 we find asymptotically from (B.5)-(B.9)

*/
Z(x?) = J’

o
In (1+x2)
(1+x2)

xf 
(1+x/)

7<»(z-)2 = nF'172
v(F) 2V3

+ — 
9tr

arctan Xf—

In (l+x/) + arctan xf —

arctan Xj —

The function I(Xf) in (B.5) is defined as

nF ~172 
2V3

nF'172 
2V3

-ik fdF

~ / dz v<2)(z ) ln v(z ) = “

1 Uo — 2/

f dz- (F(F)2-Ffl(F)2)
2/

- 9> I'I

Tln 5 JO
-In 2 
3

xf 
l+xz2

51 = r->«

_1+J_
9 9tr

-L+_L_
36 18-it

6
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CHAPTER IV

ABSTRACT

GRAVITY EFFECTS ON THE FLUCTUATIONS OF 
A LIQUID-VAPOUR INTERFACE CLOSE TO 

THE CRITICAL TEMPERATURE

In this chapter we consider the effects of gravity on the density fluc­
tuations in and near the liquid-vapour interface of a fluid very close 
to the critical temperature. The results complement those of a previ­
ous analysis of the gravity effects on the fluctuations in the one- 
phase region above the critical temperature. The correlation function 
is anisotropic and we distinguish between a longitudinal and a 
transverse correlation length which are height dependent. The longi­
tudinal correlation length profiles exhibit maxima above and below 
the critical temperature. The transverse correlation length increases 
with decreasing temperature and its value at the dividing surface ap­
proaches the capillary length at temperatures well below the critical 
temperature.
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1. Introduction

The state of a system near a critical point is very sensitive to small changes in 
the ordering field. As a consequence, fluids near the liquid-vapour critical point 
are strongly affected by the presence of a gravitational field. In the one-phase 
region gravity induces an inhomogeneous density distribution and all thermophysi­
cal properties become functions of height. In evaluating the effects of gravity one 
usually assumes that the local properties of the fluid at a given level can still be 
identified with those of a locally homogeneous fluid1'3. However, very close to the 
critical point the gravitationally induced density gradients become so large that the 
assumption of local homogeneity ceases to be valid. Then the presence of gravity 
leads also to intrinsic effects which modify the local fluid properties themselves 
and change the nature of the critical point phase transition. In the two-phase 
region below the critical temperature the (inhomogeneous) liquid and vapour 
phases are separated by an interface. While the gravitational field act . a pinning 
potential for the location of the dividing surface, it is normally considered to have 
in practice only a minor influence on the interfacial density profile". Again the 
situation changes very close to the critical temperature, where gravity will affect 
the structure of the interface because of the large compressibility of the two coex­
isting phases.

In a series of recent publications5'7 Van Leeuwen and Sengers have presented 
an analysis of some of these intrinsic gravity effects that occur very close to the 
critical point. In the first paper of this series5, to be referred to as I, they deter­
mined the density profiles induced by the gravity in the one-phase region at tem­
peratures above and equal to the critical temperature Tc and demonstrated that the 
density gradient remains finite at the critical temperature even at the level where 
the density equals the critical density pc. In the second paper6, to be referred to as 
II, the effects of gravity on the critical fluctuations were investigated. In the pres­
ence of a gravitational field the order-parameter correlation function becomes 
anisotropic, but it was found that the correlation length remains finite in all direc­
tions. In the third paper7, to be referred to as III, they determined the interfacial 
density profiles below Tc in the presence of gravity. The gravitational force 
prevents the interface thickness from growing indefinitely when the critical tem­
perature is approached from below and the interfacial density profiles below Tc are 
smoothly connected with the density profiles induced by gravity in the one-phase 
region.

It is the purpose of this chapter to discuss the effects of gravity on the order­
parameter correlation function in and near the interface. Specifically, we have 
determined the transverse and longitudinal correlation lengths as a function of 
height. These correlation length profiles are smoothly connected with the profiles
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rential equation for the correlation function

= p.(p(z)) - p.(pc) + gz , (2.1)

with

(2.3)

(2.4)
where the potential V(z) is given by

V(z) = C2(p(z)) ■

found in II for the correlation length perpendicular and parallel to the gravitational 
field in the one-phase region above Tc.

Our evaluation of the intrinsic gravity effects is based on the squared-gradient 
theory of van der Waals4. As discussed in I-in the squared-gradient theory has a 
number of shortcomings. First, the squared-gradient theory cannot deal con­
sistently with the small deviations of the correlation function of the homogeneous 
system from the Ornstein-Zernike form5'8. Secondly, it requires the use of a 
phenomenological interpolation function for the equation of state at the densities 
between those of the bulk iiquid and vapour phases4,7. The effects of these approx­
imations are expected to be small. In addition, however, the squared-gradient 
theory does no account appropriately for the presence of capillary waves in the 
liquid-vapour interface9"12. Nevertheless, by restricting ourselves to temperatures 
sufficiently close to Tc where compressibility effects become dominant, we expect 
to obtain an essentially correct picture of the nature of the intrinsic gravity effects 
on t'." critical phenomena in fluids7'13.

A = ?2(p(z)) / X(p(z)) • (2.2)

The quantities p.(p(z)), x(p(z)) and f;(p(z)) are the chemical potential p., the sym­
metrized compressibility xs(5p/dp-)7- and the correlation length £j, respectively, of 
a spatially homogeneous system with uniform density p = p(z) at the given tem­
perature T. The height z is taken to increase in the direction opposite to the gravi­
tational field and the level z = 0 is chosen as the level where p(O) = pc. Differentiat­
ing (2.1) with respect to z and neglecting the weak dependence of A on z trough 
p(z) as discussed in I, we also note that the density gradient <I>(z) = dp/dz satisfies 
the equation

-^--V(z) ®(z) = M’1 , 
dz

According to the squared-gradient theory, the density p(z) as a function of 
the height z in the presence of a gravitational potential gz satisfies a differential 
equation of the form4,5 (see chapter I)

A
dz2
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(2.5)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

Let n(r) be the number density of molecules at position r = (x,y,z) and 
n(r, R) the density of pairs of molecules at r=(z,y,z) and R = (X, Y, Z). We 
define a pair correlation function G(r, R) as

G(r, R) = n(r, R) — n(r)n(R) .

G(kx, k?; z, Z) = f dx J dy e1

which satisfies the equation

£7-{k2+ky2+V(z)} G(kx, z, Z) = 8(z-Z) ,

Goz(r R) a

,i[Mx-X)+*,(y-r)]G(r> >

Rather than the correlation function itself, we consider its Fourier transform, 
the structure factor. Because of the special role of the Z-direction along the gravi­
tational field, it is convenient to first define the partial Fourier transform

In a spatially homogeneous system the correlation function G(r. R) depends 
only on the distance |r—R|. In an inhomogeneous system, however, G(r,R) 
depends on r and R separately. Here we consider G(r, R) as a function of r or 
r—R for given R and thus for a given level Z. As shown in chapter I, for given R, 
the function G(r, R) satisfies the differential equation6

[V2—V(z)]G(r, R) = 0 . (2.6)

We note that this differential equation does not depend on the ■ national 
acceleration constant g explicitly, but only implicitly through the < . profile 
p(z) determined from (2.1).

The differential equation (2.6) is valid for positions r such t distance 
|r—R | is large compared to the intermolecular distances. In the sc..y homo­
geneous case the correlation length is independent of z and the co; ton func­
tion G(r, R) should reduce to the Ornstein-Zernike form15

|r-R|
which satisfies the differential equation

(y2-r2>)Goz(r-R) = C^r-R) ,

where C is a for our purposes arbitrary constant which we take to be unity. Near 
the critical point the correlation length £ is very large and we do not need to con­
sider deviations from the Ornstein-Zernike behaviour at molecular distances. 
Hence, to obtain a nontrivial solution from (2.6) we can formally extend it to all 
distances |r—R | as

[V2—V(z)]G(r, R) = 8(r—R) .
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and the the full Fourier transform

(2.13)

and

f(A;Z) = G(0;Z)[l + ia*2 + (itJt2+Ay2)52+^2€/2] + ■ ■ • , (2.14)

with

(2.15)

a(Z) = f dz (z-Z)g(z, Z) / G(0; Z) , (2.16)

(2.17)

g2(Z) = J dz h(z, Z) / G(O;Z) . (2.18)

(2.19)g(z,Z) = 8(z—Z) ,

(2.20)h(z,Z) = —g(z,Z) .

I

G(0;Z) = J dz g(z;Z) ,

tf(Z) = | f dz (z-Z)2g(z, Z) I G(0; Z) . 
— 30

:i* (r-X)G(r, R) = J dz eU'(l Z)G(tx, fc/, z, Z) .

(2.12)

Because of the translational symmetry perpendicular to the gravitational field, the 
structure factor G(t; Z) only depends on the reference position R through the 
height Z. We are interested in the behaviour of the correlation function for large 
distances |r — R | and hence in the behaviour of the structure factor for small wave 
numbers k. We expand G(Jt; Z) for small k, retain the terms up to those quadratic 
in kx, and k2 and obtain®

G(kx, z, Z) = g(z, Z)-(k2+ky2)h(z, Z)+ • • •

G(t; Z) = f dr e'

Here g, represents the longitudinal correlation length, i.e. the range of the correla­
tion function in the direction parallel to the gravitational field and J, represents the 
transverse correlation length, i.e. the range of the correlation function perpendicu­
lar to the gravitational field. As discussed in II, the coefficient a is a length which 
measures the asymmetry of the correlation function in the +z and — z directions. 
From (2.11) and (2.13) it follows that the functions g(z, Z) and h(z,Z) satisfy 
the differential equations

-^-V(z) 
dzz
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3. Scaling laws and universality

A* = (3.6)y(u).

(2.21)

(2.22)

(3.4)

(3.5)

We note in passing that the functions g(z, Z) and h(z, Z) 
tions/0(z—Z; Z) and/^z—Z; Z) evaluated in II by

/o(z-Z;Z) = g(z, Z) / g(Z, Z) ,

/!(z-Z;Z) = h(z, Z) / g(Z, Z) ,

are related to the func-

As shown in I-III the differential equation (2.1) for the density profile and the 
differential equation (2.9) for the correlation function can be brought into a 
universal form. As a first step the thermodynamic functions are made dimension­
less with the aid of the critical density pc, the critical temperature 7’ and the criti­
cal pressure pc. Specifically we define

AT* = (T-Tc)/Tc, Ap* = (p-pc)/pc , (3.1)

Ap* = [p(p. T)-p(pc, T')]pc/pc , (3.2)

X* = XPc'Pc, = Ap^ / pc = i2 / x' ■ (3-3)

The quantities Ap.’, x*. C and, hence, A" are those of a homogeneous system with 
density p and temperature T. Near the critical point these quantities can be 
represented in terms of scaling laws with universal exponents and universal scaling 
functions in terms of a scaling variable u = AT*/x0|Ap* I1'!3, where x0=B~l® is 
related to the amplitude of the power law Ap^tc=±B |AT* |p for the density along 
the coexistence curve. The scaling laws have the form16

Ap* = ±D |Ap* |8/i(u) ,

X*"1 = D|Ap*|*PX(«) ,

gp|Ap*

The scaling function X(u) for x*1 is related to the scaling function h(u) for Ap 
by X(u) = 8h(u) —P-1u dh(u)/du. The exponents 3, y, 8 = (P + y)/p. 
v = (2p + -y)/3 and tj = (2v—y)/v are the usual critical exponents, while x0< D, V 
and |0 are system-dependent amplitudes. We use the universal critical exponent 
values p = 0.325 and 7 = 1.240, from which the other exponents follow. The 
corresponding values of the system-dependent amplitudes x0, D, F and tj0 ^ave 
been presented in I and II for a number of fluids6’7.

To specify the universal scaling functions h(u) and T(u) we need to make a 
distinction between the one-phase region where u > — 1 and the two-phase region 
where u<— 1. In the one-phase region we use the closed-form approximants5"7
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(-y-l)Z2p
h(u) = (1 + h) (» > -1) , (3.7)

with

b (3.11)

« = CC • (3.13)

(3.14)

(3.15)

with

(3.16)

= *(~» 
8-1

(« < -1) ,

(H < -1) ,

(3.9)

(3.10)

(3.17)

(3.18)

l+Ed + u)^
1+E

Eo2r(Q) 
D2H%(J)V)2vl'<

z = &, Z = IZ,

T0 = +0*o'2. Co = DHoA^12

= — —— = 0.735 .7 (1 + EJ

Asa next step we define

g~ = g/go- Ho = Pc'Pcgo • (3-12)

where g0 = 9.81 m/s2 is the gravitational acceleration constant at the surface of 
the earth and rescale density, temperature and lengths as5"7

Cq2E2(0)

Values of the system-dependent scale factors Xo, To and £0 have been presented in 
previous publications for a number of fluids6,17. In addition we find it convenient 
to define

Ap. = ± |Ap|8/i(h) ,

X-1 = |A^X(u) ,

with E = 0.287 and

Y(u) = R2(u)X-’’',/7(u) (u > — 1) , (3.8)

with E(h) = (8 + u)/(7 + h). In the two-phase region we adopt the procedure of the 
Fisk-Widom theory for interpolating at densities between those of the liquid and 
vapour at coexistence4,18 as discussed in in. In our terminology this procedure 
yields

ft(H) = b[l-|h p]

f(h) = y(-i)|ur”''

Ap’ = XAp, AT* = tAT, 

such that

X = Xog’P*, t = Tog’*, J = CoS*-*'* 

with <}> = 1/(08 +v). The scale factors are

X0 = AoP*'2. t- = •
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(3.19)

(3.20)

and

(3.21)g(z,Z) = 8(z—Z) ,

h(z, Z) = -g(z, Z) , (3.22)

with

(3.25)

(3.26)

(3.27)

with

(3.28)

X

a(Z) = J df (F-Z)f(F, Z)/2(Z) ,

X

2(Z) = f dz g(F, Z) .

X

l2(Z) = ± f dF (F-Z)2g(F, Z)/Q(Z) ,
— X

X

V(Z) = f dF h(F, Z)/Q(Z) ,

(3.23) 

related to the functions g(z, Z) and h(z, Z)

V(z) = A ‘x 1 = |Ap|2v/PX(U)G(«) .

The functions g(F, Z) and h(z, Z) are 
in (2.13) by

g(z,Z) = Cg(F,Z), h(z,Z) = C3h(F,Z) . (3.24)

We note that the functions Ap., A and V depend on z through the density Ap(z).
In conclusion, we first determine the function Ap(z) from (3.20) as described 

in I and IH. We then solve the differential equations (3.21) and (3.22)_for g(z, Z) 
and h(F, Z) and finally calculate the scaled correlation lengths a = a/£, £/ = £//£ ancl 
6r=5»/C from

S'*'’

A-1 = |Ap|’>’,'lJG(n) ,

with G(u) = f(0)/y(u).
The gravitationally induced inhomogeneities are symmetric with respect to the 

central level where p=pc. Hence, it is sufficient to solve the differential equations 
(2.1) for z>0 and the differential equations (2.19) and (2.20) for Z>0. In terms 
of the rescaled quantities the differential equations become5’7

-^•|Ap| = (Ap.—z) A-1 
dz
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4. Method of solution

/o(z) = 0 , (4.1)

/l(z) = -/o<z) • (4.2)

(4.5a)

(4.5b)

(4.6)- liralim

which yields

(4.7)

for z>Z ,

for z<Z .

(4.3)

(4.4)

/i(0) = 0 , 

lim/^z) = 0 .

(4.8a)

(4.8b)

These scaled correlation lengths are universal functions of the scaled height Z and 
the scaled temperature AT.

In this chapter we focus our attention on the correlation lengths a, J, and g, 
in and near the liquid-vapour interface. The density profiles Ap(z) through the 
interface are calculated from (3.20) as a function of AT as described in III. The 
differential equations (3.21) and (3.22) are then solved numerically for a given Z. 
The procedure is similar to the procedure adopted in II for the determination of 
the correlation function in the one-phase region above Tc except the boundary con­
ditions are now treated by the presence of the 8-function in (3.21). We first solve 
numerically the auxiliary problem6

[ -

L &

subject to the boundary conditions

/o(O) = 1.

lim /o(z ) = °.

ib(Z) = —=------ =----- i-----=---------=“ •
/o(Z)//o(Z)+/o(-Z)//o(-Z)

The solution of (3.22) is subsequently constructed as 

h(F, Z) = ^(.Z')[fl(.z')+p(Z)f0(z')]/f0(.Z') , 

h(z, Z) = ip(Z)[/1(-r) + ?(Z)/0(-F)]//0(-Z) •

Here we adopt the notation/(z)=d//dz. The solution of (3.21) is constructed as 

Z) = iV(Z)/0(F)//0(Z) , for z>Z ,

g(z, Z) = 4/(Z)/o(-^W"Z) » for z<Z , 

where the parameter ip(Z) is determined by the condition 

dg(z, Z) lim dg(z, Z)  _j
dz z-z- dz
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where

(4.11)

(4.12)/o(*) = 0 ,

(4.13)hits) = -fats) .

5. Asymptotic analysis for large values of |AT|

1

(4.14)

(4.15)

(4.9a)

(4.9b) 

numerical

The small-gradient expansion mentioned in the preceding section is not suit­
able to determine the asymptotic behaviour of the solution of the differential equa­
tion for large |AT | in and near the interface. The reason is that the potential V(z) 
below Tc has an eigenvalue zero. In this respect the situation differs fundamentally 
from the situation in the one-phase region above Tc considered previously6.

Large values of |AT | correspond to small g' and we determine the asymptotic 
behaviour of the solution of the differential equations for large |AT| by developing

J = (z-Z)/?(Z) .

We then solve in successive approximation the differential equations

-^?-(l+X1s+X2s2+ ■ • • )

-^7-(l+X1r+X2r2+ • • • ) 
dr2

Explicit expressions for the expansions of /0(r) and h/r) have been presented in 
n. The functions g(z, Z) and h(z, Z) are then obtained as

g(F, Z) = ^(Z)tKZ)/0(r) ,

htz, Z) = ?(Z)<l>(Z)*iGr) ,

with tp(Z) again determined by the condition (4.6).

The parameters g(Z) and <?(Z) are chosen such that /i(z, Z) is continuous in value 
and slope at z=Z. Hence, they are calculated from

p(.Z)+f^Z)lf0(Z) = q(Z)+/i(-Z)//o(-Z) •

[p(Z)/0(Z)+/1(Z)]//0(Z) = -[q(Z)/0(-Z)+/1(-Z)]//0(-Z) .

Finally, we obtain the correlation lengths a(Z), i((Z) and ^,(Z) from a 
evaluation of (3.25)-(3.28).

At any given temperature AT the numerical procedure for solving the dif­
ferential equations becomes inaccurate for large values of |z~| and |Z|. However, 
then we can determine the solution explicitly from a small-gradient expansion like 
described in chapter H and in. For this purpose we expand the potential V(z) as

V(O = V(Z)SX,(Z)J', (4.10)
n =0
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Ap = (5.1)

z (5.2)

(5.4)

(5.6)

(5.7)

with

(5.8)-1) •

(5.9)

are now related 
to be determined

a perturbation expansion for small g'. The procedure is similar to the procedure 
adopted for the asymptotic analysis of the interface thickness in III. For this pur­
pose it is convenient to use the revised variables7

Ap*  Ap
|AT|P

So’lArr2'', (5.3)

-1/2=0.613. The differential equation (3.20) for the den-

lt=tll£ac and i = cxc 
and 6(z', Z) = /i(z,Z)/g2tc

V(z') = —[8|A’Pr 
0—1

The scaled correlation lengths d = 
to the functions g(z, Z) = g(z, Z)/^ac 
from

-^r-V(z') g(z.Z) = 8(z--Z) , 
dz’2

= A(-l)x(-l) 
with i0=[X(-l)G(-l)] 
sily profile becomes

5|apI = |A~p|*A(«) 
6(8—1)

where b is defined by (3.11) and where
g = ^(-DlArr1'* . (5.5)

The variables Ap, z and g are chosen such that in the two-phase region, i.e. for 
|A’p|sl, the differential equations for the density Ap(z) and the density gradient 

<J>(z)sdAp/dz become

4rlApl = TZT[|Ap|8-|Ap|)-gz , 
dz 01

d2 - --^--V(z-) 0(z') = g , 
dz'2

B |AT* |P 
z  z = Z  Z

^cxc ^CXC Ccxc

where = is the bulk correlation length of the homogeneous liquid and 
vapour phases at coexistence. This bulk correlation length ^„c = ^(Apctc) is given 
by
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(5.10)

(5.14)

A'po(f)

(5.15)

(5.16)

g-l(z,Z) = 0 , (5.17)

g0(z,Z) = V^g.^z, Z) + 8(z—Z) . (5.18)

(5.20)

For the equation-of-state parameters adopted by us 
For the second moment of <I>0(z) we find

was determined in III.

(5.19)

with the coefficient c_[ arbitrary. As the differential operator on the left-hand side 
of (5.18) has an eigenvalue zero with the eigenfunction <t>0(z), the right-hand side 
of (5.18) must be orthogonal to <f>0(z). The same holds for the gradient 
<I>1(z)=dA'p1/dz which satisfies the equation

-^-VoCz-) <f>!(z-) = V^Oofz-J + g .

-^r-V(z-) h(z, Z) = -g(z, Z) . 
dz

m(2) . ]• dz' z'2<f>0(z') = -2.053 .
— X

We first consider the expansion for the function g(z, Z) 

g(.z, Z) = g-ifz, Z)+g0(z, Z)+ • • • , 

where and g0 satisfy the differential equations

The solution of (5.17) is of the form 

g-Kz.z) = c_1<i>o(z')<i>o(Z) .

From (3.13), (3.14) and (5.5) we note that g is proportional to g'. If we take 
g=0, we obtain from (5.6) the intrinsic density profile Ap0(z) of the Fisk-Widom 
theory. We now develop a perturbation expansion for small g and write

A'p(z') = Ap0(z-) + AP1(z) + • • • , (5.U)

<I>(z') = <t>0(z') + (^(z') + ■ ■ ■ , (5.12)

V(z-) = V0(z') + Vi(f) + • • • , (5.13)

where <f>0(z)=dAp0/dz and where V0(z) is obtained from (5.8) b;. : .titution of 
Apo(z). Our notation is such that Ap,(z), <X>,(z) and V^z) are ..'.er g‘■ We
note that Ap0(±“>) = q:i> so that V0(±oo) = l and

m<°) = J dz' <t0(z') = -2 .
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if we multiply (5.18) and (5.20) with <f>0(z) and integrate over all z, we obtain

(5.21)

f dz- O0(z)V1(z)<i>0(z) + zn^(®g = 0 ■ (5.22)

(5.23)C-1 =

W f dz'zng,(f,Z) , (5.24)

(5.25)

(5.26)

with

(5.29)

C-1 f dz' 00(z')V1(z-)<i>o(z)+l = 0 .

so that (cf. (3.25), (3.26), (3.28))

d(?) = f [M,(1)(Z)-ZM,(0)(Z)]/Q(Z) ,

and we conclude

1 = __1_ 
m(0)g 2g

To evaluate the correlation lengths d(Z) and £;(Z) we consider the moments

S;2(Z) = | S (Af/2'(Z) —2ZM,(1)(Z)+Z2Af/0)(z)]/2(Z) , 
i = -1

M^0)(z) “ -1, - -Z, M$\z) = —(z2+2) . (5.30)

The moments AfL°J(Z) and mL2{(Z) in (5.25) and (5.26) dominate for small Z

<2(Z) = M^(Z)+M(o°\Z) , (5.27)

if we terminate the expansion (5.16) at i = 0. From (5.19) and (5.23) we obtain

M(2{(Z) = 0,

mL2{(Z) = g~\m(2>/m«»)<i>0(Z) . (5.28)

Because of the symmetry of gg(,z, Z) the moments Mg"\z') satisfy the differential 
equation

V0(f) = V1(z-)c_1m<'*)<i>o(z-)+z-" .
dz

For large values of z the gradient 4>0(z) decays exponentially7, while V0(z) 
approaches unity. Hence, for large values of z the moments Mq'\z') approach the 
values
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d(Z) = - (5.31)

e?(Z) (5.32)

(5.33)

(5.34)0 ,

*-l(z, Z) = V^h.^z, Z')-g^i(z, Z) , (5.35)

h0(z, Z) = Z) + V2(z)h_2(z, Z) —g0(z, Z) .

(5.36)

(5.38)c

where7

(5.39)K = y

need the zeroth

(5.40)N,(Z) = J dz-hi(z-.Z) .

1/2
= 0.144 .

Again we need the freedom in the solution of (5.34),

h_2(z', Z) = c_2«f>0(z-)<i>0(Z) , (5.37)

to make (5.35) soluble. If we multiply (5.35) with <i>0(z) and integrate over all z, 
we obtain with (5.19) and (5.21)

= -clj f dz' <f>0(z)2 = -4cltK ,
— X

—/ 1 ■ - ■ J dy
V2(82-1) o

To evaluate the transverse correlation length £((Z) we 
moments

,S+1_8±±/+.LlL

where <t>0(Z) is very large, while the moments Mgn\z') take over for large Z 
where <i>0(Z) vanishes. Then, however, the asymptotic forms (5.30) apply and we 
obtain for all practical purposes

Z<f>0(Z)
<i>o(Z)-«

1 (Z2+m(2>/m<0))<t0(Z)-2g

~ 2 <t>o(^)-«
We next consider the expansion for the function h(z, Z),

h(z, Z) = h_2(z, Z) + h_l(z~, Z) + ft0(z, Z) + • • • ,

where h_2, h_] and h0 satisfy the differential equations

d2 --^--Vo(^) h^(z,Z)

-^i-Vo(^) 
dz2

-^2~Vo(^)
dz2
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(5.41)

(5.43)

(5.44)

?,2(Z) = (5.45)

(5.46)

(5.48)

so that (cf. (3.27))
- , - o ...

(Z) = 2 N,(Z)/2(Z) ■

For the moment N _2(Z) we obtain

*-2(Z) = c_2m«”<i>0(Z) = 2Kg-2<f>0(Z) .

The moment N_{(Z) is not i 
from (5.35); there, however, N_2(Z) dominates. Because of the symmetry of

(5.42) 

interesting, since it is restricted to small Z as one finds

h0(z, Z), the moment N0(z) satisfies the differential equation

-V0(z) N0(z) = + ,

from • ■■■:•..ch we conclude that asymptotically for large z

^o(z) =■ A^°’(z) = -1 .

We thus obtain from (5.41)

— 2A?4>0(Z) + g2

-gi0(Z) + g2

The asymptotic expressions (5.31), (5.32) and (5.45) for the correlation lengths 
supplement the numerical data in the regime of small g and, hence, large |4T[, 
where the numerical procedure is in practice restricted to very small values of Z 
only.

It is of interest to consider the value of the transverse correlation length at the 
central layer Z = 0. For small values of g we obtain from (5.45)

t2(0) = 2K/g ,
or, using (5.2) and (5.5),

j,2(0) = |a0|Af|2’’-P , (5.47)

with o0 =4A'[A'(—1)/G( —1))1/2=0.99. As discussed in III, ct = ct0|AT|2'' is the 
scaled surface tension in the Fisk-Widom limit g-0. The capillary length La=t,La 
is defined by L2=o72g |Apcrc | so that

- JL - = J-Fo |AT|2v-p . 
2|AT|P 2

On comparing (5.47) with (5.48) we conclude that the transverse correlation length 
?,(0) approaches the capillary length La at temperatures well below the critical 
temperature19,20.
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6. Results

0 +2 *4

we have determined the correlation 
large number of temperatures. In figs.

a number of selected tem- 
some characteristic quantities 

: given in table I. Of special

ae
Q4

<o 0
-0.4

-0.8
0.8
0.4

•o o
-0.4

-0.8
0.8

0.4
to 0

-0.4

-0.8

Using the method described^ in_section 4, 
length profiles a(Z), £,(Z) and ^(Z) for a 
1-3 we show the correlation length profiles obtained at 
peratures below the critical temperature. Values of • 
associated with these correlation length profiles are 
interest are the levels Z = ±ZaK., where the local density Ap equals the density 
Apcc(. = ± |AT|^ of the homogeneous liquid and vapour phases at coexistence. 
These heights are also indicated in figs. 1-3. At temperatures above the critical 
temperature we recover the results reported in II. For comparison we show in figs. 
4-6 the same correlation length profiles at a few temperatures above and below the 
critical temperature.

We first consider the profiles a(Z) shown in figs. 1 and 4. As discussed in II 
a is the difference between the two unidirectional correlation lengths the posi­
tive and the negative z directions and is, therefore, a measure of the lack of sym­
metry of the correlation function in the directions parallel and opposite to the grav­
itational field. The structure of the profiles a(Z) as a function of height below the 
critical temperature is similar to the structure found in II for a(Z) in the one-phase

Fig. 1. Scaled asymmetry correlation length a as a function of Z for various values 
of AT^0. The dashed marks on the Z-axis indicate the positions Z = ±Zctc, where 
Ap= ± |APcX(_ |.

-2 0 *2 + 4
Z
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ST = -0.3ST=0

0.1

ST.-5-0AT=-I.O

0.1

ST.-I0.0,

0.1

AT=-0.3AT=0

0.1 .! . !■

AT = -5.0at=-i.o

01

AT=-20AT = -IO

0.1

where

1.0
^0.7

'"0.3

Fig. 3. Scaled longitudinal correlation length as a function of Z for variouj values of 
AT<0. _The dashed marks on the Z-axis indicate the positions Z = ±Zctc 
Ap=±|Ap„c|.
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Fig Jed transverse correlation length as a function of Z for variou^ values of 
ATsO. '. it; dashed marks on the Z-axis indicate the positions Z = ±ZCXC where 
Ap=±|Ar;„c|,
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AT €/(0) «,(zOT)5|(Z„C) £/(Zmax) g,(0)

AT=+5

IO

IO

-0.4

■o

Fig. 4. Scaled asymmetry correlation length a as a function of Z for selected values 
of AT.
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0
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0.563
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0.731
0.738
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0.788
0.720
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0.473
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Table I
Values of some characteristic quantities for the correlation length profiles.
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i

(6.1)

with

So (6.2)= 1.174 .

region above but close to the critical temperature. In fig. 7 we have plotted the 
maximum value amax as a function of Ar. At temperatures sufficiently well above 
Tc the correlation function equals that of a locally homogeneous system without 
any asymmetry, then the asymmetry increases with decreasing temperatures reach­
ing a maximum at AT = —3.9 and finally the asymmetry decreases upon further 
decrease of AT in accordance with the limiting behaviour given by (5.31).

Next we consider the transverse correlation length 5 shown in figs. 2 and 5. 
The correlation length profile £,(Z) reaches a maximum^ in the central layer Z=0 
at all temperatures. In fig. 8 we have plotted the value 5,(0) as a function of tem­
perature. At temperatures well above the critical temperature 5(0) becomes equal 
to the bulk correlation length £; at the critical density

e(0) = ioiAT rv,

uvI; m —, =
<•» Vx(u)G(u)

The transverse correlation length 5,(0) increases monotonically with decreasing 
temperatures crossing over smoothly from the bulk correlation length (6.1) well 
above the critical temperature to the capillary length (5.48) well below the critical 
temperature.

Finally, we consider the longitudinal correlation length 5 shown in figs. 3 
and 6. _The correlation length profiles 5(Z) exhibit a structure with two peaks at 
levels Z = ±Zmax away from the central layer and a local minimum at the central 
level Z = 0. The appearance of local maxima in the second-moment correlation 
length was also noticed earlier at temperatures slightly above the critical tempera­
ture and its physical origin was discussed in n. The two-peak structure in the 
correlation length profiles 5(Z) remains present at all temperatures below Tc and 
hence appears to be an intrinsic property of the correlations injhe interface. In fig. 
9 we have plotted the distance 2Zmax between the maxima in 5(z) as a function of 
AT. At temperatures well below the critical temperature this distance approaches 
the behaviour implied by (5.32). This distance increases when the critical tempera- 
ture is approached from below, reaches a plateau of about 3.14 near AT=0 and 
vanishes at a temperature AT = 3.8 above the critical temperature, where the two 
peaks merge into a single maximum at Z = 0. In fig. 10 we have plotted the values 
5(Zmax) and 5(0) as a function of AT. At temperatures well above the critical 
temperature, the correlation length 5(0)_ approaches the bulk correlation length 
(6.1). When the temperature decreases 5(0) approaches passes through a max­
imum value 5(0) = 0.52 at a temperature_ slightly above the critical temperature 
and 5(Zm„) through a maximum value 5(Zmax) = 0.79 at a temperature slightly
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Fig. 5. Scaled transverse correlation length
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Fig. 6. Scaled longitudinal correlation length 5/ as a function of Z for selected values of 
AT.
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1.0

0.8

0.2 -

0+5 -10 -15 -20

(6.3)

-5
ST

0.6 

i
IO

0.4

°+0

Fig. 7. Maximum value amlx of the asymmetry correlation length as a function of 
AT. The hashed curve represents the asymptotic behaviour implied by (5.31).

below the critical temperature (jz(0) and 6/(Zmxx) decrease with decreasing tem­
peratures in accordance with the asymptotic behaviour implied by (5.32)

The interface thickness L = t,L was defined in III as the distance over which 
the density varies from that of the bulk liquid and vapour at coexistence

i = 2Z„c .

Some values of the height Zac are given in table I. The positions Z = ±ZCXC where 
the density becomes equal to that of the homogeneous liquid and vapour at the 
phase boundary are also jndicated _in figs. 1-3. In table I we have also included the 
corresponding values C/(Zcxc) and ^,(.Zm') of the correlation se levels and g, still 
differ significantly from the bulk correlation length 5cXc = S(^Pcxc)-

The definition (6.3) of the interface thickness based on the density profiles 
implies that L goes to zero at the critical temperature. From the informauon pro­
vided in figs. 1-3 and in table I, we see that the actual correlation lengths g, and g, 
differ from the bulk correlation length of_the coexisting liquid and vapour phases 
over a distance appreciably larger than L. In fact we note from_table I that the 
peaks in g,(Z) are located at a distance Zmax which is larger than Zac. Let Z = ±Z' 
be the levels where the actual correlation lengths reach values close to the correla­
tion length g(Ap) of the locally homogeneous liquid and vapour phases. From figs. 
2 and 3 we note that the levels Z=±Z' can be identified reasonably well at lower
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7. Discussion
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temperatures. Hence, we can consider an alternate interface thickness L based on 
the density profiles. Closer to the critical temperature the interface thickness L' 
based on the correlations can be defined less precisely, but it is certainly larger 
than the distance 2Zm„ between the two peaks in the profiles of the longitudinal 
correlation length. Thus an interface thickness based on measurements of the 
structure factor of the interface does not vanish at the critical temperature, but at a 
temperature somewhat above Tc.

The range of the correlation function of a fluid close to the critical point in 
the presence of a gravitational field can be characterized by three correlation 
length a, and £;. The quantity a is a measure of the asymmetry of the correla­
tions in the directions parallel and opposite to the gravitational field, the 
transverse correlation length, i.e. the correlation length in the direction perpendic­
ular to the gravitational field, and Sj( the longitudinal correlation length, i.e. the 
correlation length in the direction along the gravitational field. These correlation 
lengths depend on the height Z, the temperature AT* and the strength of the

Fig. 8. The transverse correlation length £,(0) at Z=0 as a function of AT. The 
dashed_curve for AT>0 indicates the power law (6.1) for the bulk correlation 
length 5(0). The dashed curve for AT<0 indicates the power law (5.48) for the 
capillary length La.

0.2L-
•10
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a(Z,\T',g') = ^g' (7.1)— v<J> ’

€,(Z, AT*,g*) = log' (7.2)

«/(Z. AT’.g*) = ^g' (7.3)

between the location of the maxima in £z(Z) as a func- 
indicates the asymptotic behaviour implied by (5.32).

i

-5
AT

?IO

where n(Z, AT), £,(Z, AT) and £z(Z, AT) are universal scaling functions. In this 
chapter we have determined these scaling functions for the correlation lengths as a 
function of Z and AT. The correlation length profiles in the two-phase region 
below Tc are smoothly connected with the correlation length profiles in the one- 
phase region above Tc. When the temperature is decreased the transverse correla­
tion length ij, increases monotonically from the bulk correlation length £ at tem­
peratures well above Tc to the capillary length La at temperatures well below Tc 
with a finite value at the critical temperature itself. The longitudinal correlation 
length exhibits a two-peak structure at all temperatures below Tc. This two-peak

gravitational field g'. They satisfy scaling laws of the form

Z AT* 1

AT* 1 
| ' 

T0« J
AT* ) 

1 
■W J

Z~v*l

-v4, _

z

Fig. 9. The distance 2Zmax 
tion of AT. The dashed curve

3

2
o

in
C\J
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(7.6)
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__ I
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_ I
-15
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Fig. 10. The values g;(Zm„) and £;(0) of the longitudinal correlation length The 
dashed curve for A7'>0 indicates the power law (6.1) for the bulk correlation 
length. The dashed curves for 4T<0 indicate the asymptotic behaviour for £/(Zmax) 
and £,(0) implied by (5.32).

0.3 y

can be written in

where La=Lo/|t;xl. is inversely proportional to Vg in accordance with (5.46). This 
alternate form shows explicitly that gravity enters via the capillary length La.

O(Z, AT\/) = I ,
\ Scxc Saxe )

[-Z-, ^2-1
\ Scxc Scxc )

W.LT'.g') = ^-1
\ Scxc ^cxc )

structure persists at the critical temperature and disappears at a 
Tc-

Below the critical temperature the scaling laws (7.1)-(7.3) 
the alternate form

O.7PI74|AT17'
11 

/r
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Our analysis of the gravity effects on the correlations applies to temperatures 
very close to the critical temperature, where the effects due to the large compressi­
bility of the liquid and vapour phases will be dominant. However, the asymptotic 
behaviour for large negative values of AT will be affected by effects due to the 
presence of capillary waves11 which have not been incorporated here. The effects 
of capillary waves can be assessed in the first approximation by adopting the full 
density profile Ap(z) codetermined by the capillary waves and then solving with 
this density profile the differential equation (2.9) for the correlation function. 
This procedure may modify the values for the various correlation lengths at large 
negative AT. but will preserve the general structure of the correlation lengths pro­
files including the appearance of two peaks in the height dependence of the longi­
tudinal correlation length.
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CHAPTER V

ABSTRACT

A MOLECULAR-DYNAMICS SIMULATION OF 
A LIQUID-VAPOUR INTERFACE IN TWO DIMENSIONS

§
We present a simulation of a two-dimensional system of Lennard- 
Jones particles, carried out on a special purpose molecular-dynamics 
hardware processor. We study the behaviour of the liquid-vapour in­
terface in two dimensions. The interface width is observed to 
diverge as a function of the interface length in accordance with capil­
lary wave theory. Also the transverse structure function is seen to 
diverge for small wavenumbers, which indicates the development of 
long wavelength correlations along the interface.
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1. Introduction

2. The two-dimensional simulation

V(r) = (2.1)

In our simulation the particles interact via 
potential given by

4e[(<r/r)12-[(<r/r)6] . r^rc
.0 , r>r„

a truncated Lennard-Jones pair

In the last ten years several computer simulations of liquid-vapour coexistence 
have been carried out, most of them in three dimensions^ for small particle 
numbers and system sizes. A simulation of two -dimensional liquid-vapour coex­
istence has been carried out by Abraham^. This author simulated a 256 particle 
system by Monte Carlo methods, proving the existence of an equilibrium liquid­
vapour interface in two dimensions. Because of the small interface tension in two 
dimensions the interface strongly fluctuates and is irregularly structured.

A theory describing interface fluctuations is due to Buff, Lcvet and Stil- 
linger^, who argue that the actual interface is build up by thermal! 'ited inter­
face modes, called capillary waves, superimposed on an intrinsic ?. ' ce. These
capillary waves cause the interface width w to diverge as a functi . ;he inter­
face length L. In three dimensions this leads to the divergence w • L/a0), aQ 
being a microscopic length. This divergence is too weak to be obse • \ : <n experi­
ments or simulations. In two dimensions, however, the divergence goes as 
w2~(L—aq), which should be observable for system sizes large enough.

Here we present a molecular-dynamics simulation of a two dimensional liquid 
in coexistence with its vapour in which the divergence mentioned above can be 
observed. The molecular-dynamics simulation been carried out with the aid of the 
special purpose computer constructed by Bakker7’9. This molecular-dynamics pro­
cessor has been used before by Bakker, Bruin and Hilhorst^® to study two dimen­
sional melting, and by Bruin, Bakker and Bishop11 to study the two dimensional 
phase diagram of Lennard-Jones particles. The special purpose computer uses the 
leap-frog scheme for numerical integration of the equations of motion of up to 
16383 particles. One time-step for a 16000 particle system takes about three 
seconds of computation time. The hardware of the molecular-dynamics processor 
confines the particles to a square LxL box on which periodic boundary conditions 
are imposed.

In the simulation described here, the liquid phase was located in a strip paral­
lel to the x-axis of the periodic box, the vapour filling the remaining space. We 
have simulated system sizes ranging from L = 38cr to L = 236cr (ct being the effec­
tive diameter) during very long simulation times, using from 5432 to 16000 parti­
cles. The interface width has been determined for different interface lengths.
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(2.2)

L/2

-L/2

Fig. 2. Schematic drawing of the liquid (shaded area) and vapour regions of the sys­
tem.

y

I

Fig. 1. Phase diagram of a two dimensional system of Lennard-Jones particles. The 
triple and the critical temperatures are Tf*=0.415 and T* = 0.533, respectively12.

The value of rc is taken to be 2.5ct. For convenience we define a reduced tem­
perature T*, density p*, and time t* by

T* = kBTlt, p* = pa2, t* = tl(p'/mle) ,

with m the particle mass, and kB Boltzmann’s constant.

0.8

0.6

0
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We have simulated a two-dimensional film coexisting with its vapour. The 
phase diagram of fig. 1 for a two-dimensional Lennard-Jones system shows that 
the region where an equilibrium interface can exist is rather narrow, since there is 
a triple temperature of T‘= 0.41512 and a critical temperature of T* = 0.53312. 
The temperature in our simulation was chosen just above T*.

In the first few runs the initial liquid-vapour configurations were constructed 
in two different ways. The first method was to perform a molecular-dynamics 
simulation of a bulk liquid, filling the whole LxL box, until equilibrium was esta­
blished. Then all particles outside a central strip parallel to the x-axis were elim­
inated (see fig. 2). Next, the system was equilibrated further until via evaporation 
liquid and vapour densities and temperature reached stationary values and the two 
free interfaces relaxed to equilibrium.

In the second method a solid strip, filling the shaded area in fig. 2, at low 
temperature and with free edges parallel to the x-axis, was heated ver- iowly and 
melted until a stationary temperature above the triple point was read . id there 
equilibrated further. In a few cases melting the solid produced a large . in the 
bulk liquid. We then continued the equilibration process until the lar,;.- 'terface 
fluctuations, caused by the hole being driven out of the liquid, had relaxed to 
equilibrium.

Both methods took almost 105 time-steps, with Ar* = 0.005, to produce an 
equilibrium interface. Both methods also led to interfaces with the same gross 
features, which is additional evidence that true equilibrium had been reached. In 
all later runs the second method was chosen, because that method produces initial 
configurations without diminishing the number of particles.

In figs. 3 we present a snapshots of the particle positions of an Z, = 113o sys­
tem with 5432 particles at T" =0.427±0.003, just above the triple temperature. In 
the bulk liquid many bubbles appear, giving us the rough estimate (jB~4cr for the 
bulk correlation length t,B. On length scales smaller than the bulk correlation 
length the interface between liquid and vapour cannot be expected to behave like a 
single-valued interface. It cannot be distinguished in a unique way from the sur­
rounding bubbles and islands. On length scales larger than %B the interface 
between liquid and vapour is sharp. The presence of interface waves is quite 
apparent in figs. 3. Averaging over all interface fluctuations results in a value for 
the interface width w. A typical relaxation time of the long wavelength interface 
fluctuations is of 104-105 time-steps for the system sizes considered in our simula­
tion.
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3. Interfacial profile and interface width

[

. y

tt

• • nf.__
Fig. 3. Snapshot of the particle positions for the L = 113cr system at T* =0.427 
after a trajectory of 7X 105 time-steps following equilibration.

. A-

In order to study the system size dependence of the interface width, we have 
carried out calculations with various system sizes ranging from L = 38cr to 
L = 236cr, and using from 5432 to 16000 particles at the same temperature 
r* = 0.427±0.003.

The density profile n(y) of an individual configuration is defined such that 
n(y)LAy is the number od particles in a strip of width Ay centered at y and



82

0-4

0 2

-40 -20 y/o ——
Fig. 4. The symmetrized average density profile p(y) for the Z- = 113cr system, ob­
tained from a trajectory of 8x 105 time-steps after equilibration. The observed liquid 
and vapour densities are pf=0.709± 0.004 and p*=0.040±0.003.

I 
per2

06

parallel to the x-axis. The strip-width Ay is taken of the order of O.5cr. The aver­
age density profile p(y)=(n(y)) is calculated by averaging over the profiles of 
many configurations.

In fig. 4 the average density profile of the L = 113ct system is shown. We 
obtained this profile from a trajectory of 8x10s time-steps after equilibration, cal­
culating the profile every 10 time-steps, with Ay=0.44cr. The y coordinate of the 
center of mass of the liquid does not stay exactly at y = 0. Although the deviations 
are small, we have corrected for them in our calculation of the density profile. The 
average density profile has been symmetrized with respect to y = 0. The noise on 
the profile flattens out as one averages over longer system trajectories and is con­
sidered to be of statistical origin. We observed a vapour density of 
pj=0.040 ±0.003 and a liquid density of p;‘ = 0.709±0.004, which agrees with the 
known phase diagram12.

A second simulation was carried out for a L = 236ct system with < ' JO parti­
cles. After an equilibration time of 10s, we averaged the density prof' ,-r a tra­
jectory of 5x10s time-steps. A snapshot of a 16000 particle configure is given 
in fig. 5. The resulting density profile, calculated with Ay = 0.45o, is >wn in fig. 
6. The liquid and vapour densities observed for this system are p;’ = 0.710±0.004 
and p*=0.037±0.003, in good agreement with the densities of the smaller system.
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to diverge as the square root of the box-length L.

•• . < • x \ ’ ‘V,, ’

Fig. 5. Snapshot of the particle positions for the L=236or system after a trajectory 
of 5X 105 time-steps following equilibration.
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Comparing figs. 4 and 6 we see a large system-size effect on the width of the 
profile. According to capillary wave theory the interface width is mainly due to 
thermally excited interface waves6. In two dimensions these interface modes cause 
the interface width w 

kBT 
—(L-n0) 
Tb

where yb is the bare interface tension and a0 is a characteristic length of the bulk 
liquid.

,s X ’ * .'
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0 4

0.2

-80 -40 y/a

(3.3)

0 
-120

per2

I
0 6

Fig. 6. The symmetrized average density profile p(y) for the L = 236cr system, ob­
tained from a trajectory of 5X105 time-steps after equilibration. The observed 
liquid and vapour densities are p/’ = 0.710±0.004 and p* = 0.037±0.003.

In order to extract from our simulations a characteristic value for the interface 
width we employ the definition

w = (pf—p^)/p*'(yG) , (3.2)

where p'(yG) denotes the derivative of p(y) with respect to y at the position of the 
Gibbs dividing surface defined by

o
f dy[p*(y) —pj] = J dy [pf-p’(y)] .

-i/2 yc

Fig. 7 shows the observed box-length dependence of the interface width. Included 
are also the results of simulations of systems with L = 38a, 64a-, 153a- and 189a, 
obtained from 1X105, 1.4x10s, 4x10s, and 3x10s time-steps, respectively. A 
point computed by Abraham5 at a slightly different temperature T* =0.445 has 
also been represented. The error bars in fig. 7 are based on the values of w 
obtained from partial results (see fig. 8), which are averages over blocks of 5xl04 
consecutive time-steps.

Within the statistical uncertainty, the interface width is seen to follow the 
square root behaviour (3.1) predicted by the capillary wave theory. Hence we are



85

400 -

200 -

100 200L/CT

observing here the diverging interface width in two dimensions.

4. Correlations parallel to the interface

(4.2)

Fig 7. Boxlength L dependence of the interface width >v. The filled circle denotes a 
point computed by Abraham5 at T* =0.445.

600 - 
(w/cr)2

More information about the liquid-vapour interface can be gathered from the 
behaviour of the pair correlation function, especially from the transverse density­
density correlation function o-r(y, x12),

*12) = Pr(y, Ai2)-p(y)2 , (4-1)

where pr(y, x12) is the distribution function of pairs at distance x12 with given y. 
The Fourier transform of crT with respect to the x coordinate, called the transverse 
structure factor, is

°0

&T<.y,k') = ^(y, x)exp(ifcr)dx .

Wertheim13 showed by theoretical arguments that in the interfacial region 
O'T'Cy, k) exhibits a divergence for k-0, which demonstrates the existence of long- 
range correlation parallel to the interface. In a molecular-dynamics study of a 
three-dimensional system this divergence was observed by Kalos, Percus and 
Rao14, who identified the origin of these long range correlations as capillary
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computed in our two-dimensional simulation

(4.3)

all N(Ay) par-

Fig. 8. Some partial results for the density profile of the L = 113cr system averaged 
over blocks of 5X 104 consecutive time-steps.

waves. Following Kalos et al.14 we 
the function

*) = < exp[-ik(x,-xp])/<N(Ay)) ,
ij-l

where k = 2trK/L; k = 1,2  The summation over i and J runs over 
tides in a strip of width Ay centered at y and parallel to the x-axis. For small 
strip width Ay the function Sr(y, k) is connected to the transverse structure factor 
crr(y, k) by14

Sr(y,k) = l + ar(y,k)Ay . (4.4)

The summation over terms with i=j in (4.3) gives rise to the first term on the 
right-hand side of (4.4).

In fig. 9 we show ST(y, k) calculated for the system with L = 236or and 16000 
particles by averaging over a trajectory of 3.25x10s time-steps. The full line has 
been computed at y = ±44.1<r, i.e. in the center of the interfacial regions on both 
sides of the film. The dots come from the bulk liquid. We chose Ay = 0.46cr, small 
enough not to influence the results very much and large enough to obtain sufficient 
statistics. The k-0 divergence of ST(y, k) in the interfacial region is clear, indicat­
ing the presence of long wavelength correlations up to the size of the box. The

0 , y/a

0.6

♦
per2

0.4
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fig. 9

5. Concluding remarks

04------r-
0 ' 6 '

k<7 ----

I-
S/y.k)

fig. 10

Fig. 9. The transverse structure factor S-j-iy, k) for L=236cr. The full line has been 
computed in the center of the interface over a trajectory of 3.25X105 time-steps. 
The dots come from the bulk liquid.

Fig. 10. The transverse structure factor Sf(y, k) for L = 113<t , averaged over a tra­
jectory of 2.5 x 105 time-steps. The full line has been computed in the center of the 
interface. The dots come from the bulk liquid.

b
S.ly.H

result of ST(y, k) for smaller system (L = 113ct, Ay = 0.44o) is given in fig. 10. It 
shows a reasonable agreement with the larger system up to the smallest possible 
wavenumber k, which we take as evidence for the reliability of our results.

4 ' 6
kcr—

The interface in two dimensions turns out to be very rough and foamy. This 
is due to the very small two-dimensional interface tension. The averaging over the 
large interface fluctuations leads to the interface width, which diverges as a func­
tion of the box-length L. A typical relaxation time of the long wavelength inter­
face fluctuations for the system sizes considered here is 104 to 105 time-steps.

A feature due to the square-box geometry is that our liquid film has a rela­
tively small width-to-length ratio as compared to other simulations. We have 
looked for correlations between the shapes of the two interfaces by comparing 
subaverages of ST(y, k) (on blocks of 2.5X104 time-steps), calculated separately
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for the individual interfaces. No correlation was observed.

In summary, we have confirmed the principal predictions of capillary wave 
theory for a two-dimension liquid-vapour interface.
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CHAPTER VI

ABSTRACT

SIMULA CION OF A LIQUID-VAPOUR INTERFACE 
IN AN EXTERNAL FIELD

The influence of gravity on the suppression of the capillary fluctua­
tions of a liquid-vapour interface is studied by simulating a 
Lennard-Jones system in two dimensions in a gravity-like field. The 
results are compared to the capillary wave theory. A lower length 
cut-off is found for the capillary wave lengths which is an order of 
magnitude larger than the estimated width of the intrinsic interface.
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1. Introduction

It is well known that the interface between coexisting liquid and vapour is not 
properly defined without an external field. The reason is that thermal or capillary 
waves of the interface tend to diverge and therefore smear out the interface unless 
a field, like the gravitational field, suppresses these waves1. So the structure of the 
interfacial profile, as it is observed in the laboratory, is to a certain extent influ­
enced by the gravitational field.

In a three-dimension system the effects of the capillary wave; re relatively 
small, but in lower dimensions the effects are large. Therefore w made a
molecular-dynamics simulation of a two-dimensional liquid-vapc . face in
order to analyse the field effects on the interface and see whether ssible to 
make a distinction between the "intrinsic" and the "external" part . ■ terfacial 
profile.

In the limit of small field, i.e. small gravitational acceleratic he field 
effects on the interface are well described by the capillary wave theory. This 
theory assumes the existence of an intrinsic or bare interface with a surface tension 
yb and a width wb, and calculates the spectrum of the thermal waves of such an 
interface2’3. The only ambiguity in the theory is the lower wavelength cut-off a0 
on the capillary waves. In a three-dimensional system this cut-off has to be 
imposed to avoid small wavelength divergences. In two-dimensional systems a0 is 
not necessary to reach a formal consistent theory, but it is clear that the notion of 
capillary waves is not well defined on scales smaller than the intrinsic width. It is 
therefore reasonable to take a0 near wb the width of the bare interface, which is of 
the order of the bulk correlation length ^B. Shifts in a0 are conceptually a matter 
of whether the small wavelength capillary waves are seen as excitations contribut­
ing to the shape of the intrinsic interface or as waves of the intrinsic interface.

The appropriate value of the cut-off a0 has been a dispute for some time. In 
a recent paper Kayser4 calculates a0 near the triple point and arrives at values 10 
times the correlation length (which equals the interparticle distance at the triple 
point). Near the critical point a0 may increase to values of 20 HB. These estimates 
are based on the influences of a finite geometry.

In chapter V5, we have simulated a two-dimensional (12-6) Lennard-Jones 
system near its triple point without a field and observed the effects of a finite 
geometry on the interfacial width. The dependence of the width on the size of the 
system was found to be in good agreement with the theory. In this chapter we add 
a gravity field and study the effects of varying g on the interface width >v. We 
note that realistic values of g, i.e. those corresponding to the earthly gravitational 
effects on noble gases are hard to simulate because of the extreme weakness of the 
earthly gravitational force as compared to the intermolecular forces. In the
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2. Capillary wave theory

(2.2)

In capillary wave theory the interfacial profile p(y) which interpolates 
smoothly between the densities of liquid and vapour phases, is formed by averag­
ing over the ensemble of thermal fluctuations £(r) around an intrinsic interface 
Pb(y), which is located at y = 0. The thermal excitations of the interface are called 
capillary waves. The gravitational potential gy is taken to increase as function of 
y-

= -4=- C dy' f dq e-^'-^PbCy-y') . 
v2tt _x _x

The probability that a fluctuation J(r) develops is given by exp( —AlkBT), 
where the Helmholtz free energy A exists of an intrinsic free energy, associated 
with the intrinsic interface, and a free energy W which represents the work 
required to create £(r). In the capillary wave approximation we confine ourselves 
to smooth and single-valued C(r)=C(x). The resulting density profile is found as

P(y) = <Pz,(> — 5(-v))> (2.i)

where the brackets denote a statistical average over all possible fluctuations of the 
interface. The displaced interface pb(y — £(.*)) can be written as

P/,(?-^(x)) = f dy' 8(y'-£(x)) pfr(y~y')

simulation we have to use much stronger values of g in order to have any effect on 
the significant bits of the position variables of the particles. By varying g we can 
easily interpolate between the strong field and the zero field case simulated earlier 
in order to predict the effect for realistic values of g.

The simulations have been carried out using the Delft Molecular Dynamics 
Processor^. This required certain special arrangements for the representation of 
the gravitational field. As we have to use strict periodic boundary conditions we 
have to split the square box into two halves. In the upper part the particles feel a 
linearly varying potential with gradient — g and in the lower half the particles feel 
a gradient So all particles are gently driven to the middle layer of the box. 
The result i •_ /.quid layer in the middle of the system flanked by a top and bot­
tom layer . pour. Thus we simulate two liquid-vapour interfaces simultane­
ously.

This chaptc- is organized as follows. In section 2 we give a brief outline of 
capillary wave theory. In section 3 some simulation details are given and in section 
4 we present the results. The chapter closes with a discussion of the results.
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(2.3)

(2.4)

(2.5)

(2.6), n = 1, 2, ■ •

(2.7)

= exp (2.8)

(2.9)
kBTv2

, (2.10)arctan — arctan

L

where p; and py, respectively, are the liquid and the vapour density 'he bulk 
coexistent phases, and yb is the surface tension of the intrinsic interfa

In the case of small interface oscillations the square root in can be 
linearized. Then the different surface modes in a fluctuation £(x) a" . oupled, 
which becomes clear when we express £(x) in its Fourier series

C(*) = £ A(*)exp(ikr) .
k

Because of the periodicity of the system in the simulations the allowed wave vec­
tors are

dC(x) 
dx

dx ,

27tP]) 1

kBTLcap 

1b
w2 = ■—

cap V2-rr
^Lcap

La0

. 2irn 
k = —

where L is the length of the system. Substitution of (2.5) into (2.4) results in

W = 2 |A(*) |2 [hPl-pv)g + ^ybk2]L . 
k 2 2

Using (2.7) we can easily calculate (e1^) to be

^Lp 1 
2 J ’

where is the mean square fluctuation £(x)

= <?-<£>2) = S fr7[|(p/-p.)«+T 
4>o 2 2

In a large system the summation over k in (2.9) may be replaced by an integral,
giving

so that the average profile is

PO) = J dq ]■ dy' pfc(y-y ')e-l®’’<ei«t>

The work needed to create £(x) exists of a gravitational term and a term which 
accounts for the increase of interfacial area compared to the area of a flat interface

«X)

w = (P/~Pv) s [ f Sy dy] dx
L 0

W1 
wcap
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(2.11)

(2.12)

3. Some simulation details

(3.1)V(r) =

V2 r rP(y) = ------  J dy' pd(y-y')exp -
wcap — x

We have simulated a two-dimensional liquid-vapour system by the molecular- 
dynamics method. The molecules interact via a truncated Lennard-Jones (12-6) 
pair potential.

where Lcap = [2yb/g(P/- pv)]* is the capillary length and a0 is the lower 
wavelength, where we cut off the capillary fluctuations. On the large wavelength 
side a cut-off is provided naturally by the system size L of the periodic system. 
With (2.8) and (2.9) we can now carry out the Fourier transform in (2.3) resulting 
in

f4e[(o7r)12— [(cr/r)6] 

1°
The distance rc, where we cut off the potential, is chosen to be 2.5ct, which is the 
value commonly used in molecular-dynamics simulations. The differential equa­
tions describing the trajectories of the atoms are solved in the Delft Molecular 
Dynamics Processor. All quantities of a Lennard-Jones system can be expressed in 
units which refer to the potential (3.1). These reduced units are denoted^by a 
superscript *. For example we define a reduced temperature T , density p and

y>2 

?w 2 *‘vvcap

We conclude that the average density profile is the convolution of the bare profile 
and a Gaussian term of width due to the capillary waves. Not much is 
known7 about P(,(y), but we expect it to be a monotonic function of y, which 
smoothly conrucu; liquid and vapour phases. When the derivative of pj,(y) with 
respect to y ? Gaussian, with width wb , the derivative of the convoluted profile 
will also be : ian of width w, where

M'2 = G•

In the capillary approximation the influence of the gravity field on the intrin­
sic interface is supposed to be small compared to the effect of the field on the 
capillary fluctuations. Far from criticality this approximation is expected to be rea­
sonable. Very close to the critical point however gravity is known to have large 
effects on both form and width of the intrinsic profile, due to the large compressi­
bility of the coexisting phases near the critical point7. Because our simulations are 
performed just above the triple point we expect all dependence of w on the gravity 
field to be in the capillary length Lcap or in wcap, whereas wb is more or less a con­
stant and small compared to w.
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(3.2)

(3.3)

4. Results

(4.1)

The conditions of our simulations are identical to those of the previous 
chapter where no external field was present. We have taken systems containing 
5432 molecules in a square periodic box of linear size L = U3ct. The temperature, 
as in chapter V, is just above the triple temperature, namely T* =0.427. while 
Kipie = 0-415

The atoms undergo each simulation time-step Ar (Ar* =0.005) a constant 
acceleration due to the gravitational force towards y = 0. Initial configurations for 
each g' have been constructed from a configuration with a nearby field constant 
g . The g'=0 configuration has been taken from the system simulated earlier5. 
For every new field strength g’ the configurations are equilibrated until the densi­
ties of liquid and vapour phases have become stable, although spatially dependent 
on y, and the interfaces on both sides, have relaxed to equilibrium. The whole 
procedure of equilibrating takes about 105 time-steps for each new configuration.

time r* by

T* = kBTl£, p" = per2, r" = t/(aVm/e) 

and a reduced gravitational constant by

g‘ = sfme/e) .

The dependence of the interfacial width on an external potential is studied by 
simulating a liquid-vapour coexisting system in two dimensions under influence of 
a gravity field. The parameter g* which governs this field has been chosen in the 
range from g* =0 to g* =0.54x 10-2.

We define the density profile n(y) of a configuration generated during the 
simulation such that n(y)LAy is the number of particles in a strip centered at y 
and of width Ay and transverse to the direction of the external field. The strip 
width Ay is determined by Ay=L/256. The quantity which can be compared to the 
capillary wave theory is the average density profile

P(j) = <n(y)> ,

which is calculated as a trajectory average of the profile n(y).
In fig. 1 we show the density profile p(y) of a system in a small external field 

(g‘=0.15x 10-2), while fig. 2 shows the average profile of the system in the larg­
est field we have simulated (g* = 0.54x 10-2). Both profiles are obtained from a 
trajectory of 2x10s time-steps following equilibration, where the density profile 
n(y) is calculated each 20 time-steps. For reference the coexisting densities of 
liquid and vapour phases in a field-free system (p;*=0.709 and p* = 0.0037)5 are
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Fig- 1. Symmetrized density profile p(y) for a system with g*=0.15x 10-2, obtained 
from a trajectory of 2x 105 time-steps following equilibration. The dotted lines denote 
the coexisting densities of the liquid and vapour phases as obtained in chapter V.

-W -20 y/<7_
Fig. 2. Symmetrized density profile p(y) for a system with g =0.54x 10 2, obtained 
from a trajectory of 2x 105 time-steps following equilibration.



96

A0050 0050

0025 0025

0 0

-40 -20 -40y/<7 — y/cr

fitted by a

fitted by a

t 
dpcVdy

0-075

given by the dotted line. Due to the external field the center of mass of the system 
is fixed at y = 0. The corrections of the location of the center of mass, which have 
been carried out periodically, were very small. In figs. 1 and 2 we can clearly see 
the effect of the external field on the bulk phases, due to their finite compressibil­
ity: the gravity compresses both phases and the density increases towards y = 0, like 
an atmosphere. In capillary wave theory these compressibility effects are neglected.

The width w of the interface is determined by fitting the derivative of p(y) 
with respect toy to a Gaussian of width w (see figs. 3 and 4 for fits to the profiles 
of figs. 1 and 2 respectively).

In fig. 5 we show the dependence of the squared interface width on the 
parameter g’. Error bars are based on values of w obtained from subaverages of 
the density profiles and upon the difference between the lower and the upper inter­
face. The line drawn in fig. 5 is a result of a fit to the data of the free parameters 
a0, wb and ib in the capillary wave formula (2.12). The behaviour predicted by 
the capillary wave theory is obeyed reasonably by the simulation data, within the 
accuracy of the simulation. The result for the free parameters is

,1 
dpazdy

0-075

fig. 3 fig. 4

Fig. 3. dp(y)/dy for the density profile in fig. 1 (g* =0.15x 10“2) 
Gaussian.

Fig. 4. dp(y)/dy for the density profile in fig. 2 (g* =0.54x 10-2) 
Gaussian.
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20

0-00400020

(4.2)

5. Discussion

10

yb = 0.05 + 0.01 , 

aj = 12+5 , 

M'S s 1.5 .

In figs. 6 and 7 we present snapshots of two particle configurations influenced 
by fields of respectively g*=0.15xl0-2 and g’=0.54x 10-2. The suppression of 
capillary fluctuations of the interface due to the applied field is apparent.

The dependence of the width of the interfacial profile of a two-dimensional 
coexisting system on an external potential is described reasonably well by consider­
ing the profile as a convolution of any rather sharp profile and a part due to the 
capillary excitations of the interface. The uncertainty of our data does not permit 
a very accurate determination of the parameters yb, a0 and w;, in the capillary 
wave expression (2.10). Especially the value for the width of the intrinsic inter­
face wb is hard to get. We obtain however a upper bound, w^Sl.So-. For larger 
values of wb it is not possible to fit (2.10) to the large g data, which are most 
accurate because of the almost complete suppression of the capillary waves. The

40 
!

(w/o)2

30

9* —

Fig. 5. Dependence of m'2 on the gravity field g . The fitted curve corresponds to 
the parameters yb — 0.05, ag= 12 and w»=l.



gravity field ofFig.

intrinsic interface width of wfcS1.5o’ does not disagree significantly with the value 
wh = 1.7cr found by Heath and Percus8 in a Monte Carlo simulation of a three- 
dimensional system.

The lower wavelength cut-off a0, below which the fluctuations of the interface 
are thought to contribute to the intrinsic interface width, is found to be a0=12cr. 
Normally a0 is estimated to be of the order of the bulk correlation length or the 
width of the intrinsic interface9'14. In our field-free system we have a bulk correla­
tion length of £fl=4rr, which length has been determined from the average size of 
the vapour bubbles in the liquid bulk phase5. Our estimate of a0 is therefore larger

;. 6. Snapshot of a particle configuration influenced by a 
= 0.15xl0“2.

98
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gravity field of

(5.1)2 g-0.

1

i

Fig. 7. Snapshot of a particle configuration influenced by a 
«*=O.54X1O-2.

then usually expected. The value however agrees with the value ao=*10<r sug­
gested by Kayser4 for an interface at temperatures near the triple point.

In the previous chapter5 we concluded that the interface width of a two- 
dimensional system in zero field diverges as the square root of the system size L, 
as the limit of (2.10) for small g* predicts,

2 kBT C^~~ao)
"cap = ------------P 2tt2 7b

Together with the results of this chapter we have confirmed the predictions of
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capillary wave theory.
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CHAPTER VH

ABSTRACT

SIMULATION OF WETTING AND DRYING AT 
SOLID-FLUID INTERFACES

The adsorption is studied of a fluid at a structured solid substrate by 
means of computer simulations on the Delft Molecular Dynamics 
Processor. Two types of particles are present, 2904 of one type for 
building a three-layer substrate and about 8500 of the other type for 
composing the fluid. Interactions between like and unlike atoms are 
modeled by pair potentials of Lennard-Jones form, cut off at 2.5a. 
Simulations are performed at constant temperature and variable ratio 
of substrate-adsorbate to adsorbate-adsorbate attraction. On the basis 
of measurements of density profiles, coverages, surface tensions and 
contact angles, a wetting as well as a drying phase transition have 
been identified. Both transitions are of first order.
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2. Description of the system
Computer simulations of the wetting transition are difficult because one needs 

a large system to accommodate the various phases (substrate, liquid and vapour) 
and consequently the system equilibrates slowly near the phase transition. In lattice 
gases (Ising models) Monte Carlo simulations of the wetting problem have been 
quite successful1. In fluids, with continuous degrees of freedom, simulations are 
harder to perform. Previous molecular-dynamics simulations of adsorption dealt 
with numbers of particles ranging between 200 and 120018'19. The influence of 
solid walls (substrates) was represented by external potentials.

We report on simulations using the Delft Molecular Dynamics Processor20 
with two types of atoms, 2904 of one type for building a solid substrate and about

1. Introduction
Since the theoretical discovery of the wetting phase transition in 1977 by 

Cahn1 and by Ebner and Saam2, and its experimental confirmation in 1980 by 
Moldover and Cahn3, many statistical mechanical models4 and theories featuring 
density functionals3 have displayed a phase transition from partial to complete wet­
ting. Several experiments have shown a wetting transition0 and many have studied 
the question of incomplete or complete wetting7 and discussed the thickness of 
wetting layers8.

It has often been argued on the basis of scaling theory that a wetting (or dry­
ing) phase transition is unavoidable and ubiquitous near a critical point. However, 
scaling arguments alone are inconclusive as far as the necessity of the transition is 
concerned9, even in systems with only short-range forces10. Theorc i.:al and experi­
mental cases have been found where the transition does not occur (neither wetting, 
nor the complementary phenomenon of drying)9'11'12'13. As far know, sys­
tems without a wetting transition involve a subtle interplay bet" " short-range 
(e.g., exponential decay) and long-range (power-law decay) force-

On the basis of the evidence gathered so far it is reasonable ■?. conclude that 
the existence and the nature (first- or second-order character) of a wetting or dry­
ing transition are far from universal. They sensitively depend on microscopic 
details of interfaces (e.g., chemical structure of substrate-adsorbate interface) and 
on the details (in particular the range) of the direct interactions (resulting from 
intermolecular forces) and the fluctuation-induced interactions between inter­
faces14.

As an important bridge between theoretical and experimental approaches com­
puter simulations can complement our understanding of wetting phenomena. 
Modern computational statistical mechanics makes use of (super-) computers15 and 
special purpose computers16 in an attempt to simulate systems -in our case contin­
uum fluids- in a highly realistic fashion.
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(2.1)<*>AS (rij)

(2.2)

(2.3)
y tot

(2.4)(x^+yij-2z^)/2si ,

8500 of the other type for composing the fluid adsorbate2*. All pairs of atoms i 
and j interact with Lennard-Jones potentials where A or B are replaced by s 
for atoms in the solid and by f for atoms in the fluid. We have

12“’

where r,y = Ir,-^ All pair potentials are cut off at 2.50-^. As a consequence, we 
are dealing with short-range interactions only.

The solid substrate is structured. We took €JJ=50€^ in order to build a stable 
close-packed FCC solid substrate of three layers. The layers belong to (100) planes 
of the solid and the first and the third layer form the surfaces of the substrate. 
Particles in the solid are three times more massive than in the fluid
Therefore, apart fro.;' small vibrations the substrate is rigid. The lattice spacing, 
dictated by a„=0.847oyz is chosen such that there is a mismatch between solid 
and fluid. This prevents solidification of the first adsorbed liquid layers. The 
interaction between substrate and adsorbate is further characterized by 
o‘Jy = 0.912o-yy. This particular proportionality factor has been chosen close to the 
mean of ass and The cubic box in which the fluid and the substrate reside 
has linear size L = 29.1oyy and the boundary conditions are periodic in all three 
dimensions. Note that adsorption takes place on either side of the tree-layer sub­
strate. Because of the potential cut-off, adsorbed atoms on one side are strictly 
outside the interaction range of adsorbed atoms on the other side.

An important advantage of working with a live wall is that all interfacial ten­
sions are measurable as mechanical forces rather than being obtained indirectly 
from surface free energies. Denote the total free energy of the system by

F = -kBT logZ 

where Z is the canonical partition function. The total surface tension of the sys­
tem Trot *s then defined as

f dF 1

where sA. is the substrate 
solid Ns and in the fluid Nf

area. Temperature T, volume V, numbers of atoms in the 
are fixed. After differentiation one obtains22

7,0, = <sA.B i<jrij arij

where ( • • • ) denotes the thermal average.
This result is equivalent to the mechanical definition of the surface tension as 

the integral around the (periodic) system of the difference of transverse and
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(2.5)

>//2s4

(2.6)+ ys.m: •

where

(2.7)
N,

do not expect 
<r„ can be deli­

cately adjusted to minimize lateral stresses at a given temperature. We performed

normal components (with respect to the substrate) of the pressure tensor23:
La

7 tot = J dz [pw(z)-pr(z)j , 
-La

where z is the coordinate perpendicular to the substrate. We have assumed 
equivalence of x and y directions. In a bulk phase the difference pN~Pr vanishes 
and no contribution to the surface tension is made.

In cases where the presence of the solid is represented by an external potential 
acting on atoms in the fluid, eq. (2.4) can not be used as such. For a completely 
rigid solid we can rewrite (2.4) as

= d<l>ff(r.j)
7'°' r.

+ {^Xi i+y‘

is the external potential, and y5lnl is an internal contribution associated with the 
substrate and arising from the potential The thermal average ( • • • )y is now 
taken over the ensemble of a fluid in an external potential.

The first (mechanical) term on the right-hand side of eq. (2.6) can be cast 
into the form of eq. (2.5) where the pressure tensor pertains only to atoms in the 
fluid, and the integration is done from the solid surface (z = 0) to the bulk liquid 
phase. The second term represents the direct interaction between solid and fluid. 
The last term is not relevant for obtaining contact angles since it drops out in the 
difference 7J( — (v denotes vapour, I denotes liquid). An example of this pro­
cedure using eq. (2.6) are the simulations by van Swol and Henderson19.

In our simulations we obtain all surface tensions directly from eqs. of the 
form (2.4) or (2.5). Remark that the surface tensions are well defined only if one 
can integrate (2.5) from inside a bulk phase (where Ph=Pt) to another bulk phase. 
Since our solid consists of only three layers which are in general also subject to 
lateral stresses (e.g., due to periodic boundary conditions), we 
pN=pT inside the substrate. In fact, the system size L relative to i
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3. Thermodynamic of wetting and drying: profile symmetries
The evidence f the occurrence of wetting or drying transitions in computer 

simulation of flhas been rather limited up to now. Van Swol and Henderson^ 
located in their • . of 512 particles interacting with square-well potentials a 
drying transitio the basis of an examination of density profiles and coverages 
in addition to ?..ilysis of surface tension data, with the help of statistical sum 
rules. In their system, the statistical sum rules can be worked out to yield practical 
equations because of the piecewise constant potentials (square wells). In section 5 
we discuss the relationship between their results and ours.

We briefly review some basic thermodynamic relations. The condition of ther­
modynamic stability

7„ s ysl + ylv (3-1)

expresses that a solid-vapour interface with surface tension y^ is thermodynami­
cally stable as long as the inequality is strictly satisfied. In this case the solid is 
incompletely wet (assuming that the solid preferentially adsorbs the liquid phase, 
i-c« If the equality is realized, the stable profile consists of a solid-liquid
interface with tension yst combined with a liquid-vapour interface with tension 7/v 
at a macroscopic distance away from the solid surface. The solid is then com­
pletely wet. Analogously,

yil S 7„+Yh. <3-2)

expresses incomplete (<) or complete ( = ) drying of the solid. For incomplete wet­
ting or drying, the contact angle 0 is defined by

y^cos© = y„-yd , <3-3>

expressing mechanical equilibrium of the three-phase contact line (Young’s law).
Our simulations are done in the canonical ensemble. The number of atoms in 

the solid, Ns, as well as in the fluid, Nj, are fixed. It is then possible to enforce 
liquid-vapour coexistence by adjusting Nf such that at least one liquid-vapour

this fine-tuning and achieved the condition of isotropic pressure-tensor components 
in the interior n —4 layers of a substrate built of n (>4) layers. The corresponding 
system size L was then used for the three-layer substrate in our simulations. This 
particular choice of system size has the advantage that the numerical values for the 
measured tensions ysl and y^ are much lower than they would be if extra lateral 
stresses would occur. Still, in our simulations ysi and y^ are two orders of magni­
tude greater than y/v. Besides trying to reduce the ratio ysi/yiv for facilitating 
accurate measurements, there is in principle no reason for minimizing the stresses 
because their effects cancel in the difference yst-y^.
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(3.4)7,o, = 27l( + 27iv

or

(3.5)(fig. 2) .

(3.6)(fig. 3) .7,o, = 7J( + 7Iv + 7/v

0 8 -

04

z/q, —

7,o, 2yJV“f2*y^v

The asymmetric profile has

interface is maintained in the system. At a given temperature, we thus obtain the 
pressure corresponding to phase coexistence in bulk.

Density profiles (density versus z) can consist of two solid-liquid interfaces 
and two liquid-vapour interfaces bounding a vapour phase in the middle (fig. 1). 
They can also be composed of two solid-vapour interfaces and two liquid-vapour 
interfaces bounding a liquid (fig. 2). These profiles are symmetric: the coverage 
(the integral along z of the excess density of adsorbate relative to bulk density) is 
the same on both sides of the substrate. Although both sides of the substrate are 
identical, asymmetric profiles also occur. They contain one solid-vapour, one 
solid-liquid and one liquid-vapour interface (fig. 3).

The symmetric profiles correspond to a total surface tension

(fig- 1) ,

12 ■ 

I
Paf! -

Fig. 1. Density profile of a symmetric (completely wet) configuration at €r = 0.85, 
averaged over a trajectory of 5.2X104 consecutive time-steps. Dark peaks 
correspond to the substrate layers. The arrows denote the periodic boundary.
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Fig. 2 Density profile of a symmetric (completely dry) configuration at €r —0.3, 
averaged over a trajectory of 2.6X 104 consecutive time-steps.

For studying the wetting or drying phase transitions one can vary the tem­
perature at liquid-vapour coexistence. The transition is expected when the tempera­
ture is increased towards the critical temperature of the fluid1-®. In the case of 
wetting an adsorbed liquid film of microscopic thickness grows suddenly into a 
layer of macroscopic thickness. For drying, the adsorbed phase is a vapour. The 
principal variables for discussing these phase transitions are temperature and sur­
face field24. In the case of wetting one can make the transition from the incom­
pletely wet phase to the completely wet phase either by raising the temperature or 
by increasing the preference of the solid for adsorption of the liquid phase. The 
latter possibility corresponds to increasing the surface field which in our system is 
represented by the ratio of the Lennard-Jones parameters. Remark that
one may treat €r as an independent variable, keeping €„ and fixed. This 
feature is also exploited in experiments where one chemically alters the outermost 
layers, thereby modifying the local solid-fluid interactions12.

In our simulations it is convenient to study wetting at fixed temperature and 
varying er, because then the coexisting bulk densities p/ and pv and also the sur­
face tension of the liquid-vapour interface y^ are fixed, and only the coverages 
and the substrate-fluid surface tensions vary. Under these circumstances the ther­
modynamically stable profile, which minimizes ytol, can have different symmetry. 
If surface phase transitions take place, singularities occur in the minimal total
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Fig. 3. Density profile of an asymmetric configuration at er = 0.65, averaged over a 
trajectory of 5.2X 104 consecutive time-steps.

surface tension as a function of er. In the case of a first-order phase transition the 
derivative of this function is discontinuous and metastable continuations of stable 
profile symmetries are expected. From eqs. (3.4)-(3.6) it follows directly that if a 
profile like that in fig. 1 is stable, the substrate is completely wet (0=0). Indeed, 
if y,0, as given by (3.4) is lower than the values of y,o, in (3.5) and (3.6), then a 
direct solid-vapour contact is not possible in equilibrium because its tension y„ 
would exceed the sum ys/ + yiv. Analogously, the substrate is completely dry 
(0=tr) if the stable profile has the form of that in fig. 2. Finally, the stability of 
an asymmetric profile (fig.3) implies incomplete wetting or drying (O<0<tt).

12 

t, 
P°n

4. Results from the simulations
The speed of the special-purpose computer which we have used is comparable 

to that of a CRAY-1 supercomputer. Our simulations took a total of about 2000 
hours of CPU time. We have simulated the system at a fixed temperature which 
equals T* =kfl77eyy = 0.9, which is between the triple temperature T,*=0.7 and the 
critical temperature T'=1.26 of the bulk adsorbate. The temperature is kept con­
stant by regularly adjusting the kinetic energy. This is done for the two types of 
atoms separately. At a given value of tr we have allowed 1 x 104 time-steps of 
Ar* =r/(o-jy"V,my/eyy)=0.01 for equilibration. The initial configuration for a 
specific value of er was taken to be an equilibrated configuration at a slightly

8
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Fig. 4. The positions of the atoms projected on the xz-plane for an asymmetric con­
figuration with er = 0.65 (For clarity all z-coordinates are shifted by a small amount 
with respect to the density profile in fig. 3).

different er. The equilibration time was long enough to obtain stable bulk densi­
ties in liquid and vapour, total energy, and coverages in most of the cases. After 
equilibration measurements were made of pressure-tensor components^ and den­
sity profile (every 13 time-steps), and kinetic energy, potential energy and pressure 
(every time-step). To get a notion of statistical reliability the runs were divided in 
subruns of 5200 time-steps. Typically runs took from 5 up to 20 subruns. Error 
bars in our figures 7, 8 and 10 are based on results from these subruns.

At the first stage of our investigation we have looked at density profiles and 
coverages, between €r = 0.1 and er-1.0. The following qualitative picture 
emerges. At low er the symmetric (completely dry) profiles occur, and symmetric 
(completely wet) profiles are seen at high er. In between, asymmetric profiles 

are r^e overlaps (intervals of er values) where both symmetriesappear. There 
are found.

To complement he information contained in the density profiles of figs. 1-3, 
we have visualize.• snapshots of particle configurations. For example, for an 
asymmetric profile we have projected the positions of the centers of all atoms in 
the box onto a plane parallel to the xz-plane. The result is shown in fig. 4. We 
have also represented the adsorption at the substrate surfaces by taking a section 
of approximate width 2oyy parallel to the xy-plane. This section includes the
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surface layer of the substrate and the first adsorbed atomic layer. The atoms are 
visualized as circles of approximate diameter ass and cr,y, respectively. Fig. 5 
shows the adsorption at the solid-liquid interface, and fig. 6 presents a view of the 
corresponding adsorption on the opposite surface of the substrate, at the solid­
vapour interface. The densities of these first adsorbed layers correspond to the 
fluid density peaks in fig. 3 closest to the substrate density peaks on the left and 
right, respectively.

Looking at the symmetric density profiles in fig. 1 and 2 one can see that our 
box is not extended enough along the z-direction to comfortably accommodate 
three bulk phases (liquids or vapours). This problem is inherent to the hardware 
structure of our computer.

Our second source of information is provided by data of the total surface ten­
sion ylol as defined in eq. (2.5). Fig. 7 displays ylol versus er. Data points with 
open circles refer to asymmetric profiles and filled symbols (circles ar ■-.tares) 
correspond to symmetric profiles. We distinguish three curves. Fit. . a curve 
(open circles) between cr“*0.1 and er=0.8, which is more or less a s-v-ight line, 
associated with asymmetric profiles. This curve meets a steep curve (filled 
squares) representing completely wet substrates at er=0.8, and almost merges with 
the latter at higher er. We see that below er=O.78±O.O3 the incompletely wet 
substrate is the thermodynamically more stable configuration, whereas the com­
pletely wet substrate minimizes ylo, above this value of er. The third curve (filled 
circles) consists of data points of completely dry substrates. These data are based 
on relatively short observation times (about 4 subruns) and therefore less accurate. 
We will further comment on these data in the next section. However, if the data 
are complemented with information from contact-angle measurements, the drawn 
curve results for the total surface tension of completely dry substrates. We see 
that below er = 0.54±0.03 the completely dry substrate minimizes y,ol, whereas the 
incompletely dry substrate is the thermodynamically more stable configuration at 
higher er.

The third route toward understanding the behaviour of our system has been 
the determination of contact angles on the basis of surface tensions corresponding 
to the distinct interfaces in the system. This is easy whenever interfaces are 
separated by bulk phases where the integrand of eq. (2.5) vanishes. In the cases 
of asymmetric profiles we have been able to measure accurately the liquid-vapour 
tension. We have obtained •y(v = 0.22±0.01 and found that it is indepen­
dent of er, as fig. 8 shows. Moreover, this numerical value agrees with that 
obtained in a fully periodic liquid-vapour system without substrate. In that system 
ylo,=2ylv. Simulations were performed on our DMDP and, independently, on a 
mainframe IBM26.
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pletely dry substrates. The full line is constructed from contact angle measurements
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Less straightforward is the determination of ysl and y„, because the solid 
substrate is only three layers thick. To appreciate fully the difficulties involved in 
separating interfaces from bulk phases, we can examine the profile of the 
pressure-tensor component difference pN(z')—pT(z'), displayed in fig. 9. This pro­
file corresponds to the density profile of fig. 3. We notice that only in the bulk 
vapour phase pN(z)—pr(z) has negligible fluctuations around zero. In the bulk 
liquid the fluctuations are significant but fortunately yield zero average already 
over small intervals AzSoyy. Therefore, ylv and also the sum ysi + y„ can be 
accurately measured. The important problem is to separate ysl and yJv. We have 
obtained an approximate separation as follows. Contributions to the integrand in 
eq. (2.5) arising from the interactions of the substrate with the adsorbate on one 
side, have been attributed to the interfacial tension on that side. Remark that 
these contributions are physically similar to those that make up the second term of 
eq. (2.6). Further, contributions arising from the solid-solid interactions within 
the second (central) substrate layer are divided equally over either side. Note 
that these contributions physically correspond to a part of the last term in eq. 
(2.6).

Fig. 10 then shows cos©, as obtained from eq. (3.3), for asymmetric profiles 
(open circles in fig. 7). The data corresponding to incompletely dry or
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incompletely wet substrates (-l<cos0<l) follow a strikingly straight line. In 
accordance with fig. 7 these data suggest that incompletely wet substrates are 
metastable for era0.78. Indeed, these states violate eq. (3.1). Both the data of 
fig. 7 and those of fig. 10 locate the wetting transition at er = 0.78±0.03. The con­
sistency between total surface tension and contact-angle measurements relies par­
ticularly on the reliability of our approximate separation of yst and y„. We can 
thus trust our approximation and rely fully on fig. 10 to tell us where the drying 
transition occurs, i.e. at er = 0.54±0.03. We recall that the solid curve drawn in 
fig. 7 has been deduced from data which underlie fig. 10 and has not been meas­
ured independently.

This analysis concludes the thermodynamic determination of the phase transi­
tions. In the next section we v------ -------------------
in our simulations.

5. Discussion
We first comment on the shorter observation times of completely dry sub­

strates. The associated density profiles show dry walls and a bulk liquid in the 
middle of the system (e g. fig. 2). The position of the center of mass of the liquid 
droplet can fluctuate in time due to velocity fluctuations inherent in our simula­
tions. Indeed, the molecular-dynamics is constrained by the requirement that the

° ° g85
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Fig. 9. The profile of the reduced difference pN(z')— pT(z) (in units t-fflOj ') for 
er = 0.65.

center of mass of the N=N5+Nf atoms be at rest. Relative motion of the sub­
strate and the bulk liquid adsorbate naturally occurs. Independently of er this can 
cause the substrate and the droplet to collide, typically after 4 subruns. At very 
low er (e.g. at 0.1) this hardly damages the droplet, and the droplet leaves the 
wall after a considerable time (15 subruns). This sequence of events is shown in 
fig. 11. We have performed this simulation with appreciably less adsorbate atoms 
than usual (Ny“5000 instead of 8500) to allow a better accommodation of the 
vapour phases. At er around 0.4, however, the collision changes the profile drasti­
cally and the illusion of a phase transition from the completely dry to the incom­
pletely dry state is created. Indeed, measurement of the internal energy u (per 
unit area) revealed the absorption by the heat bath of a latent heat of adsorption 
Au=“ —l.Oejy/cryy2. As can be seen in fig. 7, at er = 0.4, ylol increases in this event 
by an amount A-y^O.leyy/cryy2, and thus a metastable state is reached. This is true 
to the extent that the bulk contribution to the total free energy is not affected. We 
have presented our density-profile measurements during this time evolution in fig. 
12. The time that the droplet stays attached to the wall is longer than we are able 
to measure. Typical fluctuations of the internal energy u over a time of the order 
of a subrun are order 0.1eyy/cr^2, which is a tenth of the latent heat associated 
with the adsorption of the droplet on the wall.
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in the remainder of this section we attempt a comparison of the results 
obtained by van Swol and Henderson19 with ours. Their simulations are based on 
a constant-temperature molecular-dynamics procedure for a square-well fluid and 
are performed on 512-particle systems interaction via a (ct, 3<r/2) square-well 
potential at a reduced temperature of T* = l, which is ca. half-way between the 
triple- and critical-point temperatures.

Their system is asymmetric in the z direction, consisting of one hard-wall 
boundary, which is necessarily always completely dry, and an opposite square-well 
wall, which can adsorb either vapour or liquid, depending on the depth of the 
well. In this way liquid-vapour coexistence is ensured. Only at the attracting wall 
the density profile can undergo a qualitative change. This happens at the drying 
transition. The wetting transition can not be observed in their system, because 
incomplete wetting can not be distinguished from complete wetting: in both cases 
the square-well wall is covered with a liquid phase and the hard wall by a vapour. 
This problem also makes it impossible to get hold of both ysl and y„ at the 
square-well wall simultaneously.

An important difference in the geometry of the systems is that their box is 
rectangular and measures approximately 7x7x32 (in units of oyy in each direc­
tion) along x, y and z axes, respectively, whereas our box is cubic with sides of 
29,l<ryy. Clearly, in our box the substrate area is 16 times larger and the number

5
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of adsorbate atoms is 16 times bigger as well, allowing substantial transverse fluc­
tuations. Moreover, we have incorporated corrugation effects of a structured (and 
live) substrate. Together with the use of Lennard-Jones potentials this has permit­
ted us to obtain realistic density profiles.

In their simulations, van Swol and Henderson vary the ratio ewoB of the well­
depth of the wall-adsorbate potential and the well-depth of the fluid-fluid potential. 
This e.wali corresponds qualitatively to our ratio er of Lennard-Jones potential 
depths. A semiquantitative comparison is possible by remarking that in our 
Lennard-Jones system we can calculate an effective wall potential by integrating 
4>sf over the substrate atoms. One obtains in an approximation where the sub­
strate is a homogeneous continuum,

^,//z) = Jdr'^ydr-r'|)ns ,

where ns is the number density of the FCC solid, which equals ctsj3 for nearest- 
neighbour distances equal to rmin, where d4>„(rmin)/dr = 0. The result is

] M

Fig. 11. Time evolution of a density profile at €r = 0.1. (a) After an initial motion 
to the right the droplet turns to the left, and touches the substrate after 4 a 5 
subruns; (b) The droplet stays near the surface for 15 subruns; (c) the droplet leaves 
the substrate and (d) moves to the center in 5 additional subruns.
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Therefore, elvaH=2.76er. We conclude that our drying and wetting transitions 
occur at e„,aH=-1.5 and €^=-2.2, respectively. This can be compared with the 
value found by van Swol and Henderson for the location of the drying transition 
0.85se>vaZ;sl and with their extrapolations which suggest a possible wetting transi­
tion at e,va„=2.1.

We believe there are some important differences in the interpretation of the 
measurements between their work and ours. When they gradually lower er in 
their simulations, they interpret the spontaneous and sudden detaching of a liquid 
droplet from the square-well wall as a signal of a transition to the completely dry 
state. They also remark that this detaching can be significantly delayed owing to 
metastability of the state where the droplet is attached. In our simulations we 
have not seen droplets detach for er>0.2. To the contrary, even for er signifi­
cantly below 0.54 (i.e. below the drying transition) we have seen droplets attach 
to the substrate, as described in the previous section. These observations seem 
hard to reconcile with the thermodynamic picture offered by the measurements of

Fig. 12. Time evolution of a density profile at er = 0.4. (a) initially a droplet is near 
the center; (b) the droplet moves to the left (c) and reaches the substrate after 4 
subruns; (d) configuration after 10 additional subruns.

The value of ip^at its minimum equals

(d)(c)0 8

0-4
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Fig. 13.The coverage T] in the first adsorbed atomic layer. Open circles give Tj at 
the solid-liquid interface, filled circles give T] at the solid-vapour interface. Arrows 
denote the jumps in the coverage which would occur at the drying and wetting phase 
transitions in equilibrium.
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the surface tensions. Since we are lacking complementary information, such as 
knowledge of the total free energy F of our system, we can only speculate why we 
have seen droplets attach and have not seen the reverse process. Our conclusion is 
that the dynamical behaviour of the system should be interpreted with caution and 
that a measurement of the surface tensions has been our only guide for the ther­
modynamic location of the phase transitions.

In our opinion the most convincing evidence for the first-order character of 
the wetting and drying phase transitions comes from the large hysteresis in the 
(symmetry of the) density profiles upon monotonically varying er. This is also 
reflected in the intersections and metastable continuations of the branches of 
versus er (fig. 7). The discontinuity in slope of y,o, versus er is approximately the 
same for both phase transitions. This can be most clearly seen in fig. 10 from the 
difference in slope between the dotted lines (cos0=±l) and a straigb- ; e. which 
would fit the data well for — 1<cos0<1. Furthermore, we have cor: spcndingly 
observed important hysteresis in the coverage and, in particular, in th. ber of 
particles Tj in the first adsorbed atomic layer. The following fig.' : (.'ig. 13) 
shows F, versus er for asymmetric profiles. The vertical lines mark it: :.?■ of the 
phase transitions and indicate the corresponding jumps of Tj. At the drying transi­
tion T] at the solid-liquid interface drops by an amount of 310 particies. At the

o
o
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Samenvatting

De invloed van uitwendige velden op het gas-vloeistof grensvlak

In dit proefschrift worden een aantal aspecten bestudeerd van het grensvlak 
dat twee met elkaar coexisterende fasen verbindt. De gemeenschappelijke noemer 
van de bestudeerde onderwerpen is de aanwezigheid van een uitwendig veld dat de 
structuur van het grensvlak beinvloed. De overgang van de ene fase. bijvoorbeeld 
een vloeistof, naar de andere fase, bijvoorbeeld een dampfase, gebeurt niet 
sprongsgewijs maar vindt geleidelijk plaats over een klein gebied waarin de eigen- 
schappen van het systeem veranderen van karakteristieke vloeistof-waarden, naar 
de damp-waarden. Bij het kritieke punt van het systeem verdwijnt bet onderscheid 
tussen de coexisterende fasen, en divergeren enkele grootheder.. waaronder de 
compressibiliteit, de correlatielengte en ook de breedte van het grensgebied.

Een uitwendig veld, zoals bijvoorbeeld het gravitatieveld b joedt een gas- 
vloeistof systeem ten gevolge van de compressibiliteit. Vanwege ee grote compres­
sibiliteit nabij het kritieke punt, induceert de gravitatie daar jthomogeni- 
teiten in het systeem, die op en zelfs boven het kritieke punt leidcn tot een 
grensvlak dat grote gelijkenis vertoont met het grensvlak in de coexisterende fasen.

De structuur van het dichtheidsprofiel wordt veroorzaakt door twee soorten 
fluctuates. Allereerst vindt er in het grensvlak een herschikking plaats van de 
deeltjes. Verder kan het grensgebied als geheel fluctueren. De tweedc soort fluc­
tuates noemt men capillaire golven. Zij worden thermisch geexciteerd ten koste 
van extra oppervlaktespanning en gravitatie-energie. In twee en drie dimensionale 
systemen zijn deze golven catastrofaal voor het dichtheidsprofiel in een veldloze 
situatie: de breedte van het grensgebied divergeert voor alle temperaturen (boven 
de kritieke temperatuur is er geen grensgebied). In de praktijk echter worden de 
capillaire fluctuates in toom gehouden door de zwaartekracht.

Klassieke theorieen, gebaseerd op de van der Waals vergelijking, beschrijven 
de grensvlakken in de gemiddelde veld benadering en geven zowel van de kritieke 
fluctuates als van de capillaire golven geen adequate beschrijving. Meer recent zijn 
deze theorieen op een fenomenologische wijze aangepast, binnen het kader van de 
van der Waals theorie, met de correcte schaalwetten en niet klassieke exponenten. 
Een juiste beschrijving van de capillaire fluctuates valt echter ook buiten het 
bereik van deze gescbaalde theorieen. Een systematische behandeling van alle fluc­
tuates in het systeem kan volgen uit een renormalisatie-groep aanpak, eventueel in 
combinatie met een uitwendig veld dat de fluctuates controleert.

In hoofdstuk II van dit proefschrift zijn de dichtheidsprofielen berekend van 
een gas-vloeistof systeem in het kritieke gebied in een gravitatieveld. Gebruik is 
gemaakt van de e-expansie, een techniek waarin op systematische wijze alle
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proefschrift (hoofdstuk V-VII) worden 
systemen met grensvlakken beschreven. De

de dichtheidsprofielen 
van het werkelijke 

, een hypothetisch

fluctuaties rond het optimale gemiddelde veld profiel in rekening worden gebracht. 
De expansieparameter e geeft de afwijking aan ten opzichte van een vier dimen- 
sionaal systeem. Omdat daar echter de capillaire golven het grensgebied niet struc- 
tureel veranderen ten opzichte van de van der Waals theorie gaat de divergentie 
van de breedte van het profiel voor lager dimensionale systemen in veld nul ver- 
loren in het eindresultaat. Wei geeft de theorie universele dichtheidsprofielen, 
onafhankelijk van microscopische details van de interacties.

In hoofdstuk III worden de oppervlaktespanningen van 
in hoofdstuk II berekend in de e-expansie door de vrije energie ■ 
systeem n een veld te vergelijken met de vrije energie van 
referc <■. ysteem. Dit referentiesysteem wordt gevormd door een verzameling 
horn.-. systemen waarvan de dichtheid past bij de locale sterkte van het gravita- 
tieveh; Het dichtheidsprofiel van het referentie systeem heeft een sprong bij de 
coex: tende dichtheden van een veldloos systeem. Deze sprong verdwijnt bij het 
kriticke punt. De oppervlaktespanning zelf wordt pas nul bij een temperatuur even 
boven het kritieke punt.

Hoofdstuk IV is een vervolg op eerdere berekeningen van van Leeuwen en 
Sengers. In een geschaalde vorm van de van der Waals theorie zijn, in een uitwen- 
dig veld, de correlaties in de omgeving van het grensvlak bepaald met behulp van 
een numerieke analyse. Voor enkele limiet gevallen zijn asymptotische formules 
afgeleid.

In het tweede deel van dit 
moleculaire-dynamica simulaties van 
simulaties zijn verricht aan de Technische Universiteit Delft met een speciaal voor 
moleculaire dynamica ontworpen computer, die zeer snel is, grote systemen aan 
kan, en vooral ook in ruime mate voor deze berekeningen beschikbaar is.

In hoofdstuk V en VI zijn simulaties beschreven van twee dimensionale 
Lennard-Jones systemen bij het triple punt. De berekeningen in hoofdstuk V zijn 
gedaan zonder uitwendig veld, terwijl in hoofdstuk VI een gravitatiepotentiaal aan 
het probleem is toegevoegd. In twee dimensies spelen capillaire fluctuaties op het 
grensvlak een zeer grote rol. In veld nul divergeert de breedte van het grensvlak 
ten gevole van deze fluctuaties in een oneindig systeem. In een eindig systeem 
wordt deze divergentie onderdrukt doordat langgolvige fluctuaties niet mogelijk 
zijn. De simulaties in hoofdstuk V bestuderen het effect van de systeem grootte op 
het onderdrukken van capillaire golven en tevens het ontwikkelen van correlaties 
over grote afstanden in de zone van het grensvlak. Beide effecten, voorspeld door 
de capillaire golf theorie, worden in simulaties waargenomen. In hoofdstuk VI is 
een gravitatieveld aangelegd dat eveneens de capillaire golven onderdrukt. De 
resultaten van de simulatie zijn gebruikt om een schatting te maken van de in de
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capillaire golf theorie voorkomende vrije parameters.
In het laatste hoofdstuk wordt met behulp van moleculaire-dynamica simula- 

ties de adsorptie op een substraat bestudeerd van een coexisterend damp-vloeistof 
systeem. De aanwezigheid van het substraat werkt als een "uitwendig" veld op de 
adsorbaat deeltjes. Het substraat wordt gevormd door trillende Lennard-Jones 
deeltjes en bijgevolg heeft het "uitwendige" veld structuur, die bepaalde preferente 
posities op het substraat weerspiegelt. Alle krachten in het systeem zijn van korte 
dracht, vanwege de in de moleculaire dynamica noodzakelijke afsnij-afstand van 
de potentialen. Door variatie van de relatieve sterkte van de substraat-adsorbaat en 
de adsorbaat-adsorbaat aantrekking wordt de mate van adsorptie op het substraat 
gevarieerd. Met behulp van metingen van de oppervlaktespanning van het systeem 
en tevens van de contacthoek, die een macroscopische druppel maakt met een 
oppervlak, zijn de locaties van de fase-overgang waarbij de vloeistof overgaat tot 
het bevochtigen van de wand, en die waarbij de damp de wand at "drogen", 
vastgesteld. Tussen de twee fase-overgangen bevindt zich een f;.'. aarin zich 
druppeltjes met een eindige contacthoek op het oppervlak kunntr \den. De
structuur van de grensvlakken tussen substraat en vloeistof of da-c; L -nede het 
vloeistof-damp grensvlak zijn nauwkeurig bepaald.



125

CURRICULUM VITAE

Ik ben geboren op 17 mei 1959 te Utrecht. In 1977 behaalde ik het diploma 
Gymnasium p in Roermond. Aansluitend begon ik mijn studie aan de Rijksuniver- 
siteit te Utrecht. Het kandidaatsexamen N1 (hoofdvakken natuurkunde en 
wiskunde, bijvak sterrenkunde) heb ik in juni 1979 afgelegd. Hierna heb ik de af- 
studecrrichting theoretische natuurkunde gekozen, waarin ik in augustus 1983 doc- 
toraal ex: nen deed. Begin januari 1984 begon ik als wetenschappelijk assistent in 
dienst de 'Stichting voor Fundamenteel Onderzoek der Materie’ (F.O.M.) aan
de Te< -Jie Universiteit van Delft, waar een groot deel van het in dit proefs- 
chrift even onderzoek is verricht. Sinds de aanstelling van mijn promotor 
aan de : ,suniversiteit te Leiden ben ik werkzaam aan het Instituut Lorentz.



126

LIST OF PUBLICATIONS

1)

2)

3)

4)

5)

6)

7)

8)

J.H. Sikkenk, J.M.J. van Leeuwen, E.O. Vossnack and A.F. Bakker, Simula­
tion of a liquid-vapour interface in an external field.
accepted.

J.H. Sikkenk and J.O. Indekeu, Wetting and drying in the Delft Molecular 
Dynamics Processor.
to appear in Physicalia Magazine.

J.H. Sikkenk, J.O. Indekeu, J.M.J. van Leeuwen, E.O. Vossnack and A.F. 
Bakker, Simulation of wetting and drying at solid-fluid interfaces, 
submitted.

Apart from minor modifications, the capters II and III are contained in the 
publications 2) and 3) respectively, chapter IV in 4), chapter V in 1), chapter 
VI in 5) and chapter VII in 8).

J.H. Sikkenk and J.M.J. van Leeuwen, An e-expansion for the interfacial pro­
file in an external field.
Physica 137 A (1986) 156-177.

J.H. Sikkenk and J.M.J. van Leeuwen, An e-expansion of the surface tension 
in an external field.
Physica 137 A (1986) 178-195.

J.H. Sikkenk, H.J. Hilhorst and A.F. Bakker, A molecular-dynamics simula­
tion of liquid-vapour interfaces in two dimensions.
Physica 131 A (1985) 587-598.

J.H. Sikkenk, J.M.J. van Leeuwen and J.V. Sengers, Gravity e’feets on the 
fluctuations in a vapour-liquid interface close to the critical term armure. 
Physica 139 A (1986) 1-27.

J.H. Sikkenk, J.O. Indekeu, J.M.J. van Leeuwen, Molecular-dynamics simu­
lation of wetting and drying at solid-fluid interfaces.
Phys. Rev. Lett. 59 (1987) 98-101.



BI3LIOTHEEK
INSTITUUT-LORENTZ 

voor theoretische nafuurkunc 
Postbus 9506 - 2300 RA Leiden 

Nederland



Stellingen behorende bij het procfschrift:

1)

2)

3)

4)

5)

THE EFFECT OF EXTERNAL FIELDS ON THE 
LIQUID-VAPOUR INTERFACE

ledere dichtheidsfunctionaaltheorie leidt tot een oppervlaktespanning van het 
substraat-adsorbaat grensvlak, die als functie van de sterkte van de substraat- 
adsorbaat interactie monotoon daalt. Dit wordt niet bevestigd door de resulta- 
ten van moleculaire-dynamica simulaties.

Bij de berekening door Kraus en Schatz van de gemiddelde vrije weglengte 
van een electron in een sferoi'daal deeltje, waarbij wordt verondersteld dat het 
electron na botsing met het oppervlak van het deeltje in een willekeurige 
ruimtehoek verstrooid wordt, wordt ten onrechte aangenomen dat de verde­
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nemelijk maakt met behulp van schaalwet-hypotheses, geeft geen uitsluitsel 
over het daadwerkelijk optreden van deze fase-overgang. Voor bepaalde 
keuzen van de schaalfuncties is het argument zelfs incorrect.

J.W. Cahn, J. Chem. Phys. 66 (1977) 3667.

Het is onwaarschijnlijk dat "prewetting" in moleculaire-dynamica simulaties 
waargenomen kan worden als een abruptc afname in de substraat-bedekking 
wanneer de bulk-gasdichtheid van coexistentie af verlaagd wordt. Waar- 
schijnlijker is dat de ligging van de "prewetting"-overgang kan worden gevon- 
den door het vergelijken van de oppervlaktespanningen van stabiele en meta- 
stabiele configuraties.

De mate waarin de substraat-adsorbaat potentiaal, bepaald met behulp van 
4He-adsorptiemetingen op glasbolletjes, afwijkt van de theoretisch verwachte 
van der Waals potentiaal wordt nog vergroot door het in rekening brengen 
van capillaire condensatie. De afwijking kan mogelijkerwijs worden verklaard 
door de "excess"-adsorptie in de eerste geadsorbeerde lagen.

M.G.M. Brocken et al., in Proc, of the XVIII-th Int. Conf, 
on Low Temp. Phys., Kyoto, 1987.
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Het niet-universeel gedrag van een dichtheidsprofiel van een grensvlak in een 
uitwendig veld, waartoe Jasnow en Rudnick concluderen, wordt veroorzaakt 
door de wijze waarop zij capillaire fluctuaties in hun berekening implemen- 
teren. Hun conclusie is niet correct.

Het feit dat de uitbreiding door de Dominicis van het stochastische ener- 
giemodel van Derrida leidt tot een gerekt exponentiele vervalswet voor de 
correlatiefuncties, is onvoldoende om de magnetische relaxatie van spinglazen 
te verklaren.

10) Onderzoek van wetting- en dryingverschijnselen is noodzakelijkerwijs grens- 
verleggend.

De door van Leeuwen en Sengers gekozen definitie van de oppervlaktespan- 
ning van een grensvlak in een uitwendig veld leidt niet tot convergentie in de 
e-expansie en dient daarom geen voorkeur te krijgen.

J.M.J. van Leeuwen en J.V. Sengers, Physica 132A (1985) 207.

Het aantal mogelijkheden om N echtparen zodanig rond een tafel te plaatsen 
dat slechts 2m personen hun eigen partner als buur hebben is:

= s (-I)"1’' (2N-Z-DI2' (J (y). 
l=m

Bij grote aantallen echtparen nadert de kans dat niemand naast zijn eigen 
partner zit tot 1/e.

CN,m
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