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Chapter 1

General Introduction

1 atroduction

1

/stems separate into two coexisting phases below a certain temperature. The 
c region between the coexisting phases can be characterized by a number of 

.'ties such as the surface tension, the profile of the order parameter and the 
Nation functions. It is the task of statistical physics to calculate these properties 

, , the microscopic interactions between the constituting particles. We study the 
problem in the context of a simple classical spin system (the Ising model) that already 
exhibits much of the essentials of the problem. For instance, the Ising model falls 
into the same universality class as liquid-vapor system and therefore has the same 
critical behavior. For low dimensional systems a field is needed to keep the interface 
from wandering too much, since otherwise it would average out completely [1]. For 
the liquid-vapor system this would be the gravitational field and for the Ising model 
it is a linearly varying magnetic field.

As yet, there are only two partial solutions to the problem, which start with 
certain assumptions on a level where already much of the microscopic details have 
been integrated out. The oldest, due to van der Waals [2, 3], assumes that it is 
meaningful to define a local free energy density. For the local free energy density one 
takes the bulk free energy density of a homogeneous system in a field, which is equal 
to the local field. In addition there is a squared gradient term that accounts for the 
free energy associated with a gradient in the system. The solution is obtained by 
minimizing the total free energy. Thus the solution for the system with an interface 
is constructed out of the bulk solution and the width of the interface is determined 
by the bulk correlation length.

In this approach one encounters the following problem. In the interface region the



is
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/e ex- 
rional

ly locally iomo- 
ritical 
:uate, 
d the

order parameter (the density for a fluid or the magnetization for the Ising model) runs 
through a continuous set of values, which the homogeneous system cannot assume 
without violating the stability criteria. The ‘loop’ in the van der Waals equation of 
state nevertheless provides such a continuous transition from the liquid to the vapour 
phase. A similar loop occurs in the mean field equation of state for the Ising model. 
Using these equations of state, the surface tension and magnetization profile can 
be derived. The status of the loop remains unclear because in a correct derivation, 
within the context of equilibrium statistical mechanics, the loop should be absent [4].

The validity of the theory is restricted to the region close to the critical point 
because the approximation is only justified when the system is near!
geneous, that is, when the gradient in the interface region is small. In 
region however, the mean field nature of the van der Waals solution is 
as it leads to the wrong critical exponents. Fisk and Widom [5] have 
theory to yield the correct critical behavior and van Leeuwen and Senge 
tensively studied this modified version of the theory in the presence of a 
field.

The most serious shortcoming of the van der Waals theory is that the i’’actuations 
connected to the interface, which are waves on the interface surface, are not incor­
porated in the theory. The surface or capillary waves are soft (Goldstone) modes 
connected to the breaking of the translation symmetry in the direction perpendicular 
to the interface. They will smooth out the interface and cause the width to diverge 
as the pinning field goes to zero. But in the van der Waals theory the interface width 
remains finite i.e. the interface is intrinsic.

In the other partial solution, the full problem of two coexisting bulk phases 
replaced by an hamiltonian that accounts only for the capillary waves. The full 
problem will indeed reduce such a capillary-wave theory when all the microscopy 
details up to the bulk correlation length have been integrated out [7]. The problem 
with this approach is that the constants entering in the capillary-wave hamiltonian 
cannot be easily related to the full microscopic hamiltonian [8, 9, 10, 11]. These 
constants are, the surface tension, which is the amount of free energy that is associated 
with enlarging the surface area, and the minimum wave length cutoff for the capillary 
waves. The capillary-wave theory shows that in the thermodynamic limit, the mean- 
squared displacement of the interface diverges as g(d~3^2 for dimensions d < 3 and 
as ln(p) for d = 3, when the field gradient g goes to zero.

The two partial solutions have later been combined. The van der Waals theory, in 
the modified form of Fisk and Widom, yields an intrinsic interface on which capilary
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waves, on a length scale larger than the bulk correlation length, are superimposed 
[9, 10, 11].

We conclude that the main fysical features, relevant to the interface problem, 
are well understood and that it allows one to calculate, for instance, the interface 
profile in a reasonably satifactory way. But a complete theory starting from the first 
principles of statistical mechanics, which would incorporate the above mentioned 
partial solutions and shows how they supplement c.q. merge into one another, is still 
lacking. The problem is difficult because the bulk and interface fluctuations, cannot 
be separated from one another on all length scales. On a length scale larger than the 
bulk correlation length only the capillary waves remain (capillary-wave theory) while 

shorter length scale the fluctuations are predominantly bulk like (van der Waals 
But on the scale of the bulk correlation length the two types of fluctuations

< ■ d can no longer be distinguished.

st hod of renormalization has been used to calculate interfacial profiles, starting 
the Landau-Ginsburg-Wilson hamiltonian (which confines the validity of the 

results to the critical region) [12, 13]. The famous e-expansion (d = 4 — c) can be 
carried out which allows one to incorporate, in a systematic way, the effects of the 
fluctuations around the mean field theory of van der Waals. In principle it includes 
the capillary waves, but since they are suppressed in an intermediate stage in the 
calculation, the divergence in the interfacial width is not recovered for d = 3 (c = 1) 

[13]-
We have studied the possiblity to obtain the constants, entering in the capillary­

wave hamiltonian, by intergrating out the microscopic details up to the bulk corre­
lation length, by means of well known real-space renormalization techniques. This 
supplement would complete the capillary wave description. The idea is to start at 
some temperature T below the critical temperature Tc, carry out the renormalization 
up to a length scale beyond the bulk correlation length where the capillary wave 
description is valid and then lead the capillary-wave solution back along the renor­
malization trajectory to the starting temperature [14]. In principle this can be done 
for any interface property, the surface tension, magnetization profile or correlation 
functions.

We encountered two difficulties in these attemps. First, in any real-space renor­
malization procedure one must locally decouple the dynamical variables to some
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Because the renormalization approach failed, the full interface problem in dimension 
d = 2,3 is not solved in this thesis. In chapter 2 we present an exact solution of 
the interface problem in the presence of a pinning field, for the ID-Ising model. For 
the one-dimensional chain the point, temperature T = 0 and magnetic field gradient 
g = 0, behaves as a critical point, in the sense that near it, the usual critical scaling 
behavior applies (the scaling regime). Because the critical point is located at T = 0, 
the system will never spontaneously separates into two coexisting phases, and the 
separation must be induced by the linearly varying magnetic field. In the scaling

endence 
I shape 
,ion via 

where 
by the 

igle 0 is 
2K'(|cos0| + |sin0|). For reasonable renormalization transformations 

K ~ which impli'

extent. In many renormalization schemes, like that by Migdal [15, 16] and Kadanoff 
[17, 16] where bonds are relocated (moved), this will damage the coherence along 
the interface. At very low temperatures a sharp interface should remain sharp un­
der renormalization. If not, the interface keeps broadening at very low renormalized 
temperatures and the resulting interface width depends on the length of the renor­
malization trajectory. Second, in the Ising model the surface tension <z(0) is angle 
dependent and the free energy associated with the deformations of the interface is de­
termined by the stiffness s(0) = a(0) + d2a(0)/d02 [18]. Thus one is forced to consider 
tilted interfaces. It follows from simple scaling arguments that the surface tension 
scales as <r(0) = 1^<rz(0) where the accent indicates the renormalized value and b
is the factor by which the system has been rescaled. So the surface tee ' ricreases 
by factors of fcd_1 along the renormalization trajectory but the angul 
is preserved. This is consistent with the invariance of the equilibrium 
under renormalization, which is related to the angle dependent sui' 
the Wulff construction or a Legendre transformation. At low temp.' 
the the entropy is unimportant, so that the free energy can be apprc. 
energy of the groundstate, the surface free energy of an interface witb 
given by <r(0) —
the coupling constant K indeed transforms as K ~ which implies the cor­
rect scaling behavior for the magnitude of the surface tension. The angle dependence 
however is different from that close to Tc where the surface tension is isotropic. Thus, 
for the angle dependence of the surface tension to be invariant under renormaliza­
tion, one cannot stay within the simple Ising model. The proliferation of coupling 
constants, which is usually cut short one way or another in order to keep the problem 
tractable, seems therefore to be essential.
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For the 2D-Ising model the zero-angle surface tension <nsjng(0) is equal to the 
free energy density /gOS(®) °f the SOS model [21]. In this approximate interface 
model, overhangs and bubbles are excluded so that each configuration can be spec­
ified by a set of height variables. That nevertheless the exact surface free energy 
of the Ising model results, is due to a fortuitous cancellation between the contibu- 
tion of the overhangs and bubbles in the Ising model [22, 23]. To understand this 
one has to consider Vdovichenko’s combinatorial solution to the 2D-Ising model. In 
Vdovichenko’s approach, the set of configurations that make up the surface free en­
ergy can be separated from the bulk configurations. This is only possible at the 
expense of introducing additional non-existing configurations, which can have neg­
ative as well as positive Boltzmann weights. It has been shown for a finite strip of 
Ising spins, that all the configurations that contribute to the surface free energy of 
an interface, starting at the left side of the strip at a fixed height hi = 0 and end­
ing on the right side at any possible height hT, are exactly (after cancellation due 
to the different signs of the Boltzmann weights) the SOS configuration of the inter­
face. Since in the thermodynamic limit the contribution of the configurations with

regime the scaled temperature variable r = exp(—4K)/g controls a cross-over from 
a local (r 1) to a non-local (r C 1) field regime. In the local-field regime the 
width of the interface is proportional to y/r. But as r decreases the correlation 
length increases and starts to resist the rapid variation of the magnetization in the 
interface region. Therefore the profile becomes flatter than it would be in the local­
field approximation. This is described well by the Fisk-Widom theory, where the 
non-local behavior is accounted for by a squared gradient term. Its results are exact 
up to second order in r-1 and accurate for all r > 1. When the correlation length 
exceeds the width in the local-field approximation (that is when r ~ 1), we enter a 
new regime where the profile is determined by capillary-wave fluctuations. Here the 
l?' : - vVidom theory fails, but now the capillary-wave theory becomes applicable.

dimension d = 2 the full problem proved to be too difficult. But for the 
model without a pinning field, the angle dependent surface tension [19] 
.agnetization profile for an interface with a zero tilt angle [20] can be cal- 
cactly. Quite surprisingly, the zero-angle magnatization profile is simply 

liary-wave solution, depending only on the microscopic details of the model 
! the stiffness s(0) [18]. In chapter 3 we study a general Solid-on-Solid model 

model), which is an implementation of the capillary-wave model on a micro­
scopic level. We show that also for this model the interface profile and the finite-size 
corrections can be traced to the stiffness alone.
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Chapter 2

The Interface in a One-Dimensional System

Introduction2.1

■,he

8

Very few calculations exist of interfacial profiles [1], even for mode permit
an exact evaluation of the partition function. The reason is that in tensions
(d < 3) an external pinning field is necessary to localize and shap :c ’terface, 
because without pinning the interface wanders away due to capillary v.-avfc: and the 
transition zone between two coexisting phases spreads over macroscopic distances [2].

Pinning can be achieved by a field that couples to the order parameter. The 
most natural case is to take it linearly varying in space. For the fluid this is a 
gravitational field, for the Ising model it is a linearly varying magnetic field. Even 
the one-dimensional Ising chain in a varying magnetic field is a non-trivial problem 
for which the standard solution techniques as the transfer matrix method are not 
applicable [3]. In this paper we show however that a recursive method provides a 
relatively simple and transparent solution.

The only interesting region in a one-dimensional chain is the low temperature 
regime where a competition takes place between the energy, which tries to make 
the interface sharp, and the entropy which diffuses the interface. For all non-zero 
temperatures the entropy wins for an interface without an external pinning field. 
We will show that in the appropriate scaling variables the analysis can be phrased in 
complete analogy with the scaling to be expected near an ordinary critical point. Thus 
the one-dimensional model can serve as a testing ground for approximate interfacial 
theories. We have compared the Fisk-Widom interfacial theory [4, 5] with the exact 
results as a function of the scaled temperature variable which controls the cross-over 
from a non-local or capillary wave regime to a local-field regime. In the local-field 
regime the agreement is of course excellent. But the Fisk-Widom theory fails when



2.2 The general recursion relations

hn (h C 1). (2.2.1)

aJtonian, partition sum and free energy of the system

(2.2.2)

(2.2.3)
{s„}

and

(2-2.4)F(K,g) = —kBT InZ

respectively, with the parameters K and g denoting the the ratios

(2.2.5)g = h/kBT.K = J/kBT,

(2.2.6)

(2.2.7)m„ —» ±1, n —♦ ±oo,

and

(2.2.8)m0 = 0

9

Z(K,g) = Eexp(ff [S]) = £ exp ( YJJCSnSn+1 + flnS„)

«[S1 = -X,(JSnSn+l + HnSn) 
n

are given by

the profile becomes strongly non-local. It is in this regime that the effects associated 
with a non-zero critical exponent tj (tj = 1 for d = 1) become apparent.

In section 2.2 we give the recursive solution for the magnetization and surface 
tension, which is made explicit for the capillary wave limit in section 2.3 and 2.4, and 
put into a scaling form in section 2.5 and 2.8. The local-field- and cross-over regime 
are analysed in section 2.6 and 2.7. In the last section the results are compared with 
the Fisk-Widom theory and the chapter closes with a short discussion.

sider a chain of Ising spins Sn = ±1 in a magnetic field Hn which varies 
with distance. As our interest will always be in the limit of vanishing field, 
•at is considered to be small,

The magnetization profile mn is given by the canonical-ensemble average of Sn:

 £{$} S„exp(J7[S])
£{S) exp(/7 [5])

Far from the interface region the magnetization saturates,



(2.2.9)

(2.2.10)

(2.2.11)H' = 2H = 2y«H, a' = 2a = 2y° a

(2.2.12)

(2.2.13)

and

(2.2.14)9, V'a)

10

fLF(^’S) = 52 V’LF^'S")- 
n

by symmetry (mn = —m_„).
We define the surface tension

i.e. the exponents yn and ya 
factor b gives

at the free 
■ove. That 
itely equal 
'eld of the 
logeneous

m(H,a) = tfH~dm(tfHH,by°a)

= m(y/gn,l,a/y/g)

= CT(1,«/%/?) = <^(«/v?)

= m(l,a/H) = m(a/H).

over the local-field free energy

a as an excess free energy,

a = F(K,g) - FLF(K,g),

a(g,a) = bd

The appropriate scaling variable is therefore a/H. Similarly, for the system with a 
linearly varying magnetic field we have

m(n,j,or) = V”-dm(b-xn, VH^g, If-a) 

= m(y/gn, a/y/g)

are both equal to 1. Rescaling the system with a scale

Here V’LfC-^’S”) *s the free energy density of an Ising chain in an homogeneous 
magnetic field, the field being equal to the local field gn in the inhomogeneous system 
at site n.

When in the following we speak of the local-field regime we m 
energy and thus the magnetization etc. are local as we have defis 
is, the local value of a quantity for the inhomogeneous system is ap 
to the value for a homogeneous system, with the field given by th 
inhomogeneous system. So in the local-field regime the problem of t 
system reduces to that of an homogeneous system.

The point (T,g) = (0,0) behaves like a critical point in the sense that in its 
vicinity the usual scaling behaviour holds (the scaling regime). The scaling forms 
for the magnetization and the surface tension are easily derived for the Ising chain 
in a homogeneous magnetic field H. By summing out the even spins one obtains 
for the renormalised magnetic field H' and temperature variable a'(a = exp(—27<)), 
linearized around the ”critical point” (T, H) = (0,0),



t = V?", (2.2.15)

(2.2.16)n) =

y/g as is suggested by comparing

(2.2.17)2cosh(<yn + H' + KSn_i) = exp (GJ +

(2.2.18)

(2.2.19)exP(2G^) = 7 + 7n*;
and

(2.2.20)

11

-F/kBT = Y,Grn. 
n

By substituting the possible values ±1 for S„_i, (2.2.17)

= xn 4- 07" 
axn + 7" ’

0, 
+H,

It shows that in the critical regime the magnetization is only a function of the scaling 
variables t and r and surface tension is only a function of r, with t and r defined as

r = a2/g

can be solved to give

□ring our results with theirs we will take H 
the baling variables of both systems.

it is not practical to calculate the magnetization profile and surface tension di­
rectly from (2.2.6) and (2.2.9). Another (indirect) strategy is to seek recursion rela­
tions by summing out the spins starting from the boundaries of the system coming 
either from the right or from the left. In each step the spin Sn to be eliminated feels 
an extra field which is the effect of all the spins to the right of n (or similarly 
for the effect of the spins left of n). Coming from the right and eliminating the spin 
Sn, one has the relation

— H, n < 0
n = 0 
n > 0

When T —♦ oo or g —♦ 0, i.e. when r is large, the behavior of the system becomes 
local-field like either because the spins decouple and do not feel their neighbors or 
because the neighboring spins feel approximately the same field and the system is 
locally homogeneous. Thus the scaled temperature variable r can be viewed as a 
measure for whether the system is close to (r 1) or far from (r <S 1) the local-field 
regime.

.-.bort and Widom [1] have studied the one-dimensional Ising chain in an external
■ field that varies with n as a stepfunction

Here is the extra field which spin Sn induces from the right on its neighbor 
Sn_! and GJ is a spin independent quantity that builds up the free energy



(2.2.21)Xn = exp(2H;),

and a and 7 stand for

(2.2.22)7 = exp(-2g).

(2.2.23)

with

(2.2.24)

(2.2.25)

or

(2.2.26)=

(2.2.27)

(2.2.28)mn+l

with zn related to xn by

(2.2.29)z„ = ozn,

(2.2.30)linin^oo^n = 1,

12

An analogous equation is obtained by starting the elimination from the left, leading 
to

Eliminating the spins from the right and from the left one obtains t 
of spin S„ as that of an effectively free spin in the field gn + +

etization
T is

or2

XnVn ~ 7"

*n!/n + 7"

in the new variables.
With some manipulation one can dispose of the variable y„ in the foregoing equa­

tions. Our problem is then reduced to the following two recursion equations for 
n > 0

1
1 - a2

where x„ is a new quantity defined as

m„ = tanh(jn + H' +

a = exp(—2K),

zn + q27"

which should be solved together with the conditions on mn given by (2.2.7) and 
(2.2.8). Since 7" —» 0 for n —+ 00, z„ approaches

yn = exp(2H‘n).

Vn + <*7 
1/n+i =-------——,+ 7

* + mn +
1 — or2

( or2
- mn Zn H-------\ (



(2.2.31)

(2.2.32)= e

with

(2.2.33)gn

(2.2.34)

2.3 The

Z„ (2.3.1)

and

mn+l — rn„ 4“ (1 rn„)z, (2.3.2)

(2.3.3)

(2.3.4)Z„ =

13

which is compatible with the boundary condition (2.2.7) for m„ as one sees from 
(2.2.28).

From (2.2.18), (2.2.19) and (2.2.29)

-F/ksT = l^lnl(7

we find for the free energy

This is the limit T —» 0, while keepings = h/ksT fixed (r = a2 / g —» 0). The behavior 
of the magnetization profile in this limit, is similar to that in higher dimensions, close 
to T = 0 where the capillary wave solution becomes exact.

Rewriting (2.3.1) in terms of the inverse of zn,

-±_=1+r, 
zn-l zn

and using (2.2.30), one obtains after some manipulation:

exp(-gn(n +1))
EJl„exp(-pj(; + 1))'

■ of the local magnetic field. Thus the surface tension can be written as 

7~nz„ + 1 + a2 + c?1*lzn 1 
7-n2LF + 1 + Q2 + Q27n/2LF ]

r = 0 solution

z„ + 1 + a2 + a27"z;’)

The free energy Fjoc is also given by (2.2.31) but then with zn replaced by the 
value obtained by setting z„_i = zn in (2.2.27), which gives

z\^ — e~r (sinhr + \/sinh2T + a2J

The general solution of the recursion relations deduced in the last section cannot 
be given explicitly. They can be solved however if we set a = 0 in which case the 
recursion relations become



(2.3.5)Amn =

(n > 0) (2.3.6)

(2.3.7)erf(t)

and

(2.3.8)

The capillary wave solution2.4

14

exp(—x2)dx =

are these one-kink 
: approximation is 
0 solution here in 

wave description

;exp(-pj(j + 1)) 
5=o

and m_n = —m„.
For later use we will also give here the continuum version of th' 9 essions

By introducing the difference Am„ = m„+i — mn we can solve (2.3.2) rather easily, 

exp(-gn(n + 1))

obtaining for the magnetization

mn

”»«= 52 = 52 exp(-ffi(j + 0) /£
5=0 5=0 / 5=0

exp(—t2)
J(°° exp(—x2)dx

to lowest order in y/g.
The important features of the above results are, firstly, that the interface is not 

intrinsic, which means that it broadens and finally becomes infinite (disappears) as 
the field gradient g goes to zero. Thus the interface must be maintained by a non-zero 
field gradient. Secondly, the magnetization and other site-dependent variables depend 
on the combination t = y/gn as expected from scaling and not on the combination 
t = gn, the expression for the local field.

Because the interface is zero dimensional there are no other capillary waves possible, 
than a shift of the location of the interface as a whole (the wavenumber q is zero mode 
for higher dimensional interfaces). The capillary wave approximation for the one­
dimensional Ising chain therefore consists in allowing only the one-kink configurations. 
(A kink is a pair of neighbor spins with opposite signs i.e a broken K bond.) The 
only configurations that play a role in the limit T —♦ 0 and g fixed 
configurations and the magnetization profile in the capillary wave 
just the above obtained r = 0 solution. We will rederive this r = I 
the capillary wave formulation and, more importantly, the capillary 
allows also for a simple derivation of the surface tension in the limit r —» 0.



El = Er + €( (2-4.1)

with Er the reference energy

(2-4.2)

2K + gl(l + 1) (/>0) (2.4.3)

(2-4.4)

(n>0) (2.4.5)

(n>0) (2.4.6)

(2-4.7)

(2.4.8)

(2.4.9)a/kBT ~ —In

15

n

and q the energy of the configuration relative to the reference energy 
/

2K + 2£gn = 
n=0

C(. For the partition sum we have 
oo

sxp(-Er) 22 exP(-«i)

We will label the one-kink configurations by an index I that specifies the position 
of the kink which is between the spins Si and S/+l for I > 0 and between the spins 

and Si for I < 0. The energy of a configuration, given by the hamiltonian (2.2.2), 
is written as

. :. je magnetization

= —---- = 1 - 2 2^exp(-c() / > . exp(-e()
l=n I lx~oo

Substituting the above expression for and using that e_, = e( we find again the
r = 0 result

F/fcflT = .E«-In J2<“
I

Because for T —» 0, F\QC/kBT is just Er, the surface tension (2.2.9) becomes

<r/kBT = —In 52 e-“ 
l

By subsituting the above expression for ej we obtain

[“ Zoo dl exp(-9/2)] = ~£ln(’rr)- (^ <
Since the capillary wave solution corresponds to the limit r —» 0 (T —» 0 and g fixed), 
we see that in this limit the surface tension diverges logarithmically.

= 52 exP(-ffj(i + !)) /52exP(-Sj(J + U) 
j=o / 5=0

The surface tension is also easily obtained. From (2.4.4) we have for the free 
energy



2.5 The scaling regime

(2.5.1)w„ =

(2.5.2)w„_i =

(2.5.3)

and

(2.5.4)

(2.5.5)Wo — Wo + 2tw0 + r = 0

and to first order in

(2.5.6)ti>i — 2(wq — t)wi = two + (2t2 — 1)wq + 2rt.

(2.5.7)

(2.5.8)
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The magnetization is expanded in the same way. First 
of w„ and r:

- mo w0 H----- )
\ woz

w„ + —) |
wj J

is appropriate in the scaling regime.

- mn (wn

compared to 1

considered 
parameter 
a function

see 2.3.8)) and we

we write (2.2.28) in terms

W„_1 = Wo + y/g(wt — Wo) + »(^W0 — till + Wj) + . . .

The dot means differentiation with respect to the argument t = y/gn. Substitution 
of these two expressions into the recursion relation (2.5.2) and equating powers of y/g 
results to lowest order in

m„+i = m„ + y/g ( (w„ - -^-)

where we have neglected a2 as compared to 1 as
Substituting the expansions for m„ and mn+l, similar to (2.5.3) and (2.5.4) for w„, 
in (2.5.7) we find to lowest order in

riio = (w0-------)
\ w07

write (2.2.27) as

In the last section we have deduced an exact expression for the magnetization in the 
limit T -t 0 and g fixed, which is the "capillary wave” limit. In this section we will 
derive an approximate solution for the whole scaling regime.

In order to do so we first introduce the rescaled variable

so that close to r = 0, wn is of order 1 (:

wn + rv/gexp(-2v^t) 
y/gwn + exp(—2^/gt) ’

with r and t the scaling variables given in (2.2.15). We see that 
fixed, w„ depends only on the parameter ^Jg and an expansion 
should be adequate. In accordance with the r = 0 solution we tak 
of t = y/gn, considered as a continuous variable. Thus we write

w„ = w(y/gn) = w(t) = w0(t) + y/gwi(t) + gw2(t) + ...



and to first order in yjg

(2.5.9)— m0mi — Wi

(2.5.10)

isult

(2.5.11)2tv — rv = 0.

(2.5.12)

0. Also, with

(2.5.13)mo = w0(l — m0),

17

- 2™°'

Z„ 
>"0 = ——

Jg
exp(-P)

J“exp(—x2)dx

and it is easy to show that this expression satisfies (2.5.5) with r = 
r = 0, (2.5.8) becomes

Tl; = —v/v,

i + -^
W0.

Hermite type differential equation with non-integer coefficients, so the so­
il t ill be an infinite series rather than the well known Hermite polynomials. We 
will not solve the equation here, because later we shall present some general numeri­
cal solutions of our problem using the exact discrete recursion relations from section 
2.2. An important check however, can be carried out. From (2.5.5) our earlier capil­
lary wave solution should be retained (at least in its continuum version) in the limit 
r —» 0. From (2.3.8) we have

One sees that it is possible to determine successively higher powers, first w and 
then m, through linear, inhomogeneous first order differential equations after first 
having solved (2.5.5) which is non-linear. It is a Riccati type differential equation 
and can be transformed into a linear, homogeneous second order equation through 
the substitution:

wo.

which is indeed satisfied by relation (2.3.7), using (2.5.12). Thus we conclude that for 
any fixed r the magnetization can be expanded in powers of y/g where the coefficients 
of this expansion are functions of t = y/gn. For r = 0 the capillary wave solution 
of the previous section is recovered by this expansion method. The higher terms in 
the expansion in y/g correspond, for r = 0, to the deviation of the exact form (2.3.6) 
from the continuum expression (2.3.7).

rnx + ( w0 H----- )
\ w07



2.6 The local field regime

(2.6.1)

(2.6.2)

and thus

(2.6.3)

(2.6.4)

(see also (2.2.32)) and

(2.6.5)2i(T) =

(2.6.6)

(2.6.7)Mo =

and

(2.6.8)

(2.6.9)(r = gn)-Mo =

18

a2'
2o 4-----

z0,

Using this expansion in (2.2.28) together with (2.6.2), we obtain

1
1 -a2

z„ = *o(r) 4- gzi(r) + g2z?(r) + ...

When r 1, the behavior of the system should become local-field like, that is, the 
magnetization profile becomes a function of r = gn. In this section we derive a 
solution for the local-field regime from the general recursion relations obtained in 
section 2.2.

Writing (2.2.27) as

 zn + rgexp(-2r) 
w„ + exp(—2t)

we see that an expansion in g should be adequate. We put

= Af0(r) + gMi(r) + g2Af2(r) + ...

____________(z0 + e 2t)2zq____________
(zo + e-’T)(zo + e-jT - 1) -t- zq 4- a2e-2T

For the magnetization we proceed in an analogous way, putting

1 — a2

Zn-1 = *o(r) 4-g{zi(r) - zo(t)} +g2{z3(r) - z2(r) 4- |z0(.

Substitution in the basic recursion relation (2.6.1) yields after . >■" manipulation 
and selection in powers of g

zo(r) = e-T(sinhr 4- \/sinh2T 4- a2)

M (1 - a2)M0 - z,{(l - Mq) + (1 + M0)a2/z2)
1 2a2 — zo(l + a2/zo)

The first equation is easily solved for Mo with the aid of (2.6.4): 

sinhr



n.

The cross-over regime2.7

had

(2.7.1)

and

(2.7.2)m(t)

(2.7.3)

(2-7.4)

(2.7.5)

(2.7.6)+ ...
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u>o — 2^wo — 1=0

w0 — 2wowi + 2gti>i = 0

ti>i — w2 — wowa + 2gwj = 0

=- w(t)2 + 2tw(t) — r

-m(t)

where t = y/gn and
(2.7.1) can

w(9)

yTT?-5g 1 
8(1 + 92)5/2 r2

Substitution in (2.7.1) yields for successive powers of r'

■ scaling regime we

and we

1 
2(1 + 92) r +

In >’■- foregoing sections we have analysed two essentially different regimes, the scaling 
and the local-field regime. In this section we give an 1/r expansion for the 

'.n the scaling regime and show that in the limit r —♦ oo the local-field solution

As expected this result is indeed the so-called ” local-field approximation”, i.e. the 
magnetization at site n is equal to the magnetization, which we would have if there 
existed a constant field in all space, its value being that of the actual field at site 

This solution follows from (2.2.27) and (2.2.28) when we put zn_i = zn and 
mn+i = mn. It shall be clear that in principle the procedure sketched above can be 
pushed forward to obtain corrections on the local field Mq up to any desired order in 

9-

r = a2 /g. We start by assuming that for large r the solution for 
be written as an expansion in r-1,

= | Wo(q) + —— + + ...

with the argument

find for w(q) up to second order in r' 

w(«) = >/r(q + 0 + q1) {1 +

^2(7)
rJ



(2.7.7)

mo (2.7.8)

(2.7.9)

= (wo + 1) (2.7.10)w0W2(l - mo) + (1 + m0)

(2.7.11)

(2.7.12)1 -m =

2.8 The surface tension

20

1

(2.7.13)

(2.7.14)

TTlj

we compare this 
—> oo and obtain

some calculation we find the

wowi(l — ttiq) + 4^(1 + rha) — wofno 
Wq

WqW2 ~ Wy

Wq

In the local-field regime zn ~ z^ and the surface tension a ~ 0. Therefore we focus 

on the scaling regime and start by rewriting the expression for the surface tension 
(2.2.34) in the appropriate scaling form.

The tails of the chain (|n| ^>1) are always in the local-field regime because there 
9 T — 9n an<I the local field can be considered as uniform over large distances.

— -^-(1 - u>o)mi — womil.
Wo J

It yields for the magnetization up to second order in r-1

j „ 6 5 1 1 i 
v'l + 9’ \ 8 (1 + q2)3 r2 )

The expansion up to second order will be used in section 2.9 where 
expression with the Fisk-Widom theory. Here we take the limit r 
from the scaling regime equations the solution

w(q) = \/r(q + i/l + q2)

m(,) - 7T77
In order to compare with the local-field solution we remark the following. In the 
scaling regime formulas, the variables acquire structure when the argument t = y/gn 
is of the order 1. Then r = gn ~ y/g and thus small. So, in the local-field expressions 
(2.6.4) and (2.6.9) we can approximate sinhr ~ r and exp(—r) — 1, yielding again 
(2.7.13) and (2.7.14). This shows that the local field regime corresponds tor>l-

For the magnetization we write

m(q) = m0(q) + ^ + ^ + ... 
r r

This expansion and (2.7.3) are used in (2.7.2) and after
following expressons for mo and higher coefficients:

_ Wq ~ 1

u>0 + 1 ’

mi = (u>o +1)



7s « |«| « i (2.8.1)

(2.8.2)

Not:

(2.8.3)

(2.8.4)

to attain its local field value 2t already at the boundary between

(2.8.5)

-a/kBT

(2.8.6)

21

al, the solution of w(t) is given by (2.7.1). Because w(l) is unsymmetric 
■luish the cases t < 0 and t > 0. For t ~ —6/7s <S —1 we see from (2.8.2) 

><>2(t) 2tw(t),r and (2.7.1) becomes

. i'(t) + r ~ 0,

t + Vt2 + r =

and again w(t) is seen
regions A and B.

We conclude that the contribution to the surface tension from region B is negligible 
because there z„ ~ Thus, to a high degree of accuracy, the surface tension is 
given by

1 + yffiw(0 + r/w(t))1
1 + 2v5rvZir+7 J 

w(t) + _L__27jrp'

—a/kgT = | £ In 

neA

that is, u'(t) assumes its local field value —r/2t.
For t ~ i/7s » 1 we have w(t),r w(t),2tw(t) and (2.7.1) becomes 

w2(t) — 2tu>(t) ~ 0

—r/2t, t « -1 
2t, t > 1

it w(t) is unsymmetric. For t —1, w(t) is small, while for t 1, w(t) is

Therefore we divide the chain into a central region A and the outer parts B. The 
border between the two regions is choosen to be at a very small magnetic field value 
|r| = 6, but such that |t| is already large:

(|t| = -!^>i) 
Vs

We will first show that around |r| ~ <5 the solution already becomes local-field like. 
The local-field solution for w(t) at this point in the chain can be written as (see 
(2.2.32))

zLF 
w(t) = -2— ~ 

7s

7~nzn + 1 + or27n/z„ 
7-”zLF + j + as7n/zLF

where we have also neglected a2 as compared to 1, appropriate in the scaling regime. 
Since z„ = Tsw(0 an<i for n € A, 7" ~ 1 and z^F ~ y/g(t + y/t2 + r), we can further 

simplify the expression for the surface tension and write

5^1 
[’



(2.8.7)

. he magnetic

(2.8.8)—a/kBT = --In 1 +

(2.8.9)(H « 1)

(2.8.10)
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1
~ ~6r

sinh2(7/) 
a2

■in from —oo

—a/kgT = -lln[l + (ar)"1]

l/21n(ar), r <1
—(2ar)“1, r > 1

In the second equation we have extended the range of the integr. 
to oo since the integral falls off as 1/g3 for large q.

Robert and Widom [1] obtain for the surface tension, in the ca< 
field profile is a stepfunction, the exact expression

where in the last equation we consider t = y/gn as a continuous variable (<? 1)«
From this expression we see that the surface tension has the correct scaling form 

(see (2.2.14)). For r 1 the expression is well approximated by the capillary wave 
solution (2.4.9) although this is not readily seen. In appendix 2A we will show that 
a rough estimate of (2.8.6) for r < 1 also gives the ln(r) dependence.

For r 1, the local-field regime, the surface tension is easily evaluated. We 
substitute the 1/r expansion (2.7.6) for w(q) into (2.8.6) and obtain

This agrees with our results if we take a = t for r < 1 and a = 3 for r » 1.
In Fig. 2.1 we have plotted the surface tension as given by (2.8.10) with a = 3,ff 

together with the exact values obtained numerically from (2.2.27) and (2.2.34). The 
curves coincide over the entire range of r values and we conclude that the surface 
tension is indeed given by (2.8.10) with a ~ 3,%.

The surface tension as defined by (2.2.9) can also be regarded as measuring the 
extent to which the solution is local-field like. The local-field regime corresponds 
to a ~ 0 and the solution becomes more and more non-local as the surface tension 
increases. Thus we see again that r 1 corresponds to the local-field regime since 
then a vanishes as 1/r.

1
2

-|ln[l + (H/a?]

In accordance with scaling (see section 2.2) we should take H ~ y/g when comparing 
their results with ours. Thus (H/a)2 ~ g/a2 = r-1. This suggests that the surface 
tension in our case is given by



2.9 The Fisk-Widom approximation

(2.9.1)

(2.9.2)

23

0(z) = 0(m(z)) + iA(m(z))(rh(z))2 - H(z)m(z).

1
Am(z) = Zf(m(z)) - H(z) - ~(m(z))2.

2 am

where we have absorbed a factor X/kgT in V>, A and H. The first term on the rhs, 
V>(m(z)), is the free energy density of a uniform chain with magnetization equal to the 
local magnetization m(z). The second is a Landau type contribution that accounts 
for the free energy associated with the gradient in the system, while the third is the 
usual Zeeman energy with H(z) — gz, the local magnetic field. In the local-field 
regime this assumption is of course correct. Away from the local-field regime the 
squared gradient term will account for the non-local behavior. The extent to which 
this term is capable of handeling the non-locality is studied in this section.

From (2.9.1) one deduces the variational equation

The basic assumption of the Fisk-Widom approximation [4] is the existence of a local 
free energy density </>(z) whose dependence on the position z in the chain is given by

ln(r)
. 2,1. The surface tension a as given by (2.8.10) with a = 3 (dashed line) 

. <i = z (dotted line) together with the exact solution (solid line), obtained 
. clerically from the general recursion relations given in section 2.2.

5

3

2

50



(2.9.3)

(2.9.4)H(m) = In

(2.9.5)kBTX =
T

and

(2.9.6)= Ine
with

(2.9.7)

m(9) = 4r2[m(g) - 9v/l -m2(9)] - (2.9.8)

into the

(2.9.9)

(2.9.10)mFW = mLF

24

According to Fisk and Widom [4]

A = ?/(kBTx)

dm' 
dH a

p(m) + a 
,p(m) - a

p(m) = ^/1 — (1 — a2)m

In higher dimensions A is only weakly dependent on m and is usually iaken as m 
independent (A(m) = A(0)), neglecting thus the third term on the rhs of (2.9.2). For 
d = 1, this is not the case and we compare the exact solution with the full Fisk-Widom 
equation as well as with the further approximated form for which A(m) = A(0).

Before confronting the numerical solutions of the FW-equation with the exact 
ones, we compare the 1 /r expansion for m, given by (2.7.12), with the same expansion 
in the FW-approximation. When o < 1 we can expand A(m) and H (m) to first order 
in a and putting the resulting expressions into the FW-equation we obtain the scaling 
form

with £ the correlation length and y the susceptibility of the homogeneous system. 
For the one-dimensional case we have the following exact expressions (for the homo­
geneous system):

p(m) + am' 
y/1 — m2 ,

(1-

mFW = mLF I1 -

m(g)m2(q) 
2(1 -m2(q))

with r = a2lg and q = t/y/r. Substituting the 1/r expansion (2.7.7) for m 
above equation we find for the local-field regime again

5 11 \
8(l + q2)3r2 +"7 ’

with m£p = q/y/l + q2 the local-field solution.
Similarly, we obtain for the FW-equation with A(m) = A(0)

6 1 1 \
1 8(1+ q2)7/2 r2 + '' J ’



conclude that FW-theory describes the non-locallity

25

: 2.2. Exact magnetization profiles for j= lx 10-6 and r = 0 (dashed 
0.01, 0.1 and 1 (solid lines). As r —♦ 0, the curves become steeper, the 

limiting curve of which is the analytically obtained capillary wave solution.

From the above expressions we 
well for r 5> 1

For smaller values of r, that is away from the local-field regime, we have cal­
culated the magnetization profile numerically. In Fig. 2.2 we plotted the profile as 
obtained from the recursion relations (2.2.27) and (2.2.28), showing the approach to 
the capillary wave solution as r —♦ 0. For r = 0.01 the profile has already reached 
its asymtotic shape. The Figs. 2.3, 2.4 and 2.5 show the exact and FW-solution for 
g = 1.0 x 10~6 and r = 1,0.1 and 0.01. We see that, for r = 1, the FW-profile is still 
a good approximation. For r = 0.1 the two solutions start to deviate and only for 
r = 0.01, the most non-local case, the FW-solution is beginning to flatten out, with 
an initial slope smaller than the exact profile, which has almost reached its final shape 
of the r = 0 solution. In the limit r —» 0 the FW-solution becomes infinitely broad. 
We conclude that the FW-equation is remarkably good in handeling the non-local 
behavior for r > 1.

The reason that the approximation deviates from the exact solution for r < 1 is 
that the coefficient of the squared gradient term A ~ 1/or diverges as r —♦ 0. As is 
shown by Fisk and Widom [4], A ~ with r) the critical exponent, defined by the

0.5 2
0 

0
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Fig. 2.4.
r = 0.1. The meaning of the lines is the same as in Fig. 2.3

0L 
0

Fig. 2.3. The exact- and FW-magnetization profiles for g — 1 X . .1 and 
r = 1. The solid line is the exact solution, the dotted line the solution of 
the full FW-equation and the dashed line the FW-approximation for which 
A(m) = .4(0). For this and higher values of r three curves coincide.
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and

3
(2.9.11)4-

and

A ~ [4a\/l — m2] (2.9.12)

F/kBT = J dz J>(z) (2.9.13)
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■ ■ I , ,

1

2_ 
a

- /'

/
. . I . , 

0.5
. . I ■ .

1.5

x/l — rri
2a

decay rate of the correlation function at the critical point. For a < 1 the correlation 
length (2.9.6) is approximately

0
0

t
2.5. The exact- and FW-magnetization profiles for g = 1 X 10

0.01. The meaning of the lines is the same as in Fig. 2.3

1_
a

We see that A ~ £ and thus the exponent r) = 1 for d = 1. In the limit T —♦ 0 and 
r fixed the behavior is similar to that in higher dimensions in the limit T —♦ Tc. But 
in higher dimensions r] is closer to zero (i) = 1/4 for d = 2 and r] = 0.03 for d = 3) 
and we expect the range of validity of the Fisk-Widom theory to increase for d > 1 
since A is less strongly divergent.

Next we compare the FW-approximation for the surface tension with the solution 
obtained from the exact expression (2.2.34) together with (2.2.27). We start from 
the definition (2.2.9) where the free energy of the inhomogeneous system is now 
approximated by the FW-expression

, . I , .

2

' 1 I ' 1 1 1 I ' '
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in pa ts

[A(m)(m(z))2 + gz (rn(z) ~ mLF(z))] (2.9.14)

with mjjp(z)

(2.9.15)

(m(q))2 + r2q (m(q)

(2.9.17)

(2.9.18)
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5
2
1

IQ-1 
io-2 
1O"3

mLF(z) =

- (2.9.16)

sinh^z 

ysinh2gz + a2

1 
4^/(1 - m2)

we find

. e obtain

as in (2.6.9)

3.32 xlO-2
8.11 xlO"2
1.53 xlO’1
7.52 xlO"1

1.76
2.89

3.37 xlO"2
8.16 xlO"2
1.55 xlO-1
8.28 xlO"1

2.42
5.62

2.93 xlO”2
7.16 xlO"2
1.36 xlO"1
7.14 xlO"1

2.08
4.84

we obtain for a'FW!kBT with

- 547 + O(p)
We see from (2.9.9) and (2.9.17) that the full FW-equation is exact up to second 
order in r-1.

Table 2.1. The surface tension in the Fisk-Widom approximation pared 
with the values obtained numerically from the exact expression (‘ The
accent denotes the approximation for which 4(m) = .4(0).

&FW/^bT = ~ [ dq 
r J—oo

with V»(z) given by (2.9.1). By integrating the expression for a 

opwlkgT — J dz

When we put the r 1 expansion (2.9.9) for m(g) into the above expression

aFH,/fcBT=i + O(l) 
or r°

which should be compared with (2.8.7). Similarly
A(m) = .4(0),

For a <K 1 the coefficient 4(m) is given by (2.9.12) and we can write aFw in a scale 
invariant form:
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In Table 2.1 we compare the approximated values for the surface tension obtained 
from (2.9.14) with the exact ones. For r = 1 the FW-approximation is still excellent. 
For r < 1, apYV > °exact- we v>ew the surface tension as a measure for non­
locality, the results show that the non-local behavior -put in through the squared 
gradient term- is exaggerated in the FW-approximaton in the limit r —> 0 (because 
the coefficient A ~ 1/y/r diverges).

The i .- rnperature behaviour of 
ing ma;

an one-dimensional interface in a linearly vary-
• c field has all the characteristics of an induced interface near a critical 

same scaling analysis applies and the scaling behaviour can be worked 
. ’etcly.

■ :aling regime the scaled temperature variable r = exp(—iK}/g controls
■ from a local (r>l)toa non-local (r <K 1) field regime. In the local­

field regbne the width of the interface is proportional to y/r. But as r decreases 
the coirelation length ~ 1/x/’’ -measured in the scaled distance variable t = 
y/gn- increases and starts to resist the rapid variation of the magnetization around 
t = 0. Therefore the profile becomes flatter than it would be in the local-field 
approximation. When the correlation length exceeds the width in the local-field 
approximation (that is when r ~ 1)) we enter a new regime where the profile is 
determined by capillary wave fluctuations. In the capillary wave regime the width 
remains of order 1 (measured in t) as r —» 0, i.e. the real width (measured in n) 
diverges as 1 / y/g.

The Fisk-Widom interfacial theory is an extension of the local-field approximation, 
where the non-local behavior is accounted for by a squared gradient term. Its results 
are exact up to second order in the r-1 expansion and accurate for all r > 1. For 
r <g 1 the width of the magnetization profile becomes proportional to the correlation 
length and thus proportional to 1/^/r. In the limit r —♦ 0 the profile becomes infinitely 
broad because there is no cross-over to a capillary wave regime in this theory.

The surface tension is defined as the excess free energy over the local-field ap­
proximation. It goes to zero as r-1 in the local-field limit (r —♦ oo) and diverges 
logarithmically in the capillary wave limit (r —» 0). For r > 1 the Fisk-Widom the­
ory gives accurate values for the surface tension, but for r < 1 the values obtained 
are too high.



Appendix

2A The surface tension for r 1

(2A.1)
w(t)

w(i) (2A.2)

and we can

w(t) = (2A.3)

(2A.4)

(2A.5)

(2A.6)

(2A.7)(i « -1)2t
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Ldl [wW + ^)-2'/i7T7 
with w(t) the solution of

w(t)

= u>(t)2 — 2tw(i) — r

exp(t2) 
2t

_ C(r)e

w(t) = C(r)e-”

In this appendix we give a rough estimate for the surface tension for r < 1 to show 
how the ln(r) dependence results from the expression

J dx exp(x2) = f dy exp(-j/(l - y/lt2)) ~ -

for t «C —1. Thus

J dx exp(-z2) = exp( * } f dy exp(-i/(l + y/4t2))

for t 1. In this approximation ur(t) ~
local field term —2\/t2 + r ~ —21 in (2A.1). The contribution from region A with 
t > 0 is therefore of order 1.

For t < 0, w(t) becomes small and we neglect w2(t) as compared to 2tw(i). In 
this approximation the solution of (2A.2) is given by

,3 [ dx exp(z2) 
Jo

with C(r) some amplitude. According to the capillary solution (2.3.8), C(0) = 2/yft- 
Again we estimate the value of the integral by changing the integration variable to 
y = 2t(x + i):

We treat seperately the cases t > 0 and t < 0. For t > 0, w', 
neglect r in (2A.2). Then w(t) is given by the capillary wave sol

exp(-t2)
exp(—x2)dx

We rewrite the integral by changing the integration variable to y = 2t(x — t):

= 1 L dy exp(~!'(1 + S'/44’)) - eXI>2< ~

2t, the local field value, which cancels the



(2A.8)
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1 /■"-a/kBT -?]_ dt — 2 Vi2 + r

Songers and J. M. J. van

term —2s/t2 + r ~ 2t. But when — 
not compensated and we 

1 r«
'-Inr

The second term is the local field value for t < 0. For t < — V—Inr this term starts 
to dominate over the other and the term r/w(t) in (2A.1) will cancel the local field 

ir < t < 0 the local field term —2y/t2 + r is 
have the order of magnitude estimate 

. 1. dt t = -Inr 2
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Finite-Size Effects and Capillary Waves in 
Solid-on-Solid Models

Many systems phase-separate below a certain temperature, creatin . interface be­
tween two bulk phases. The interface between the coexisting phases is deformed by 
thermally excited capillary waves [1]. The resulting fluctuations in the order param­
eter smear out the interface. The interface is called "smooth” if the width remains 
finite and "rough” if it diverges (in the limit of infinite system size and no pinning 
field present). Generally for dimensions d < 3 the interface is rough.

In lattice models the capillary waves are hindered by the fact that there is a 
minimum amount of energy associated with each deformation. Therefore, in d=3, 
the interface can be either rough or smooth. For high temperatures it is rough 
and (for certain orientations) a roughening temperature Tr exists below which the 
interface becomes smooth [2, 3, 4]. In the rough phase the discreteness of the energy 
spectrum becomes irrelevant and the interface fluctuations can be well described by 
a continuous capillary-wave picture.

The distinction between capillary-wave excitations of the interface and what may 
be called intrinsic fluctuations is difficult. In lattice models one can introduce the 
solid-on-solid (SOS) condition, which allows only wave like excitations. Bubbles and 
overhangs can be considered as the excluded intrinsic excitations, certainly at low 
temperatures. In spite of this simplification the general SOS interface problem has 
not been solved for d=3, with a few notable exceptions [5, 6, 7, 8]. In contrast, for 
d=2, the SOS model is generally solvable by the transfer matrix method [9, 10, 11)-

The capillary-wave model describes the long wavelength fluctuations of an inter-
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3.2 'The finite-size partition function

(3.2.1)- M)-

(3.2.2)- A.D/^T],

(3.2.3)< h\T\h' >= ezp[-V(|A - A'|)/*:bT],
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1

Consider a strip of a planar square lattice of width I (see figure 3.1). On every 
lattice point, labelled by i = 0,...,/ and j = ±|, ±|, ±|,..., there is an Ising 
spin Sij = ±1. Only nearest neighbour spins interact. In the SOS approximation, 
overhangs and bubbles are excluded so that each configuration can be specified by a 
set of height variables hi = 0, ±1, ±2, ±3 ... with i = 0,..., I. Let the energy of a 
configuration, with boundary conditions h0 = 0 and hi = n as indicated in Fig. 3.1, 
be given by

Z,(n) = £ezp[-£v(|A,-.
{*.} •=*

can be rewritten in terms of the transfer matrix,

£l(n) = £V(|Ai.

Here V is any positive valued function. Typically, we consider functions which diverge 
as the argument goes to infinity, e.g. a linear or quadratic function. The partition 
sum,

face. The constants entering in the capillary wave hamiltonian however, cannot be 
related easily to the microscopic hamiltonian of the model [12]. The SOS model 
permits this connection for d=2, as we shall see below, for a general microscopic 
hamiltonian and for any orientation of the interface. Recently Svrakic, Privman and 
Abraham [13] have performed such a calculation for a SOS model of an interface, 
making only infinitesimally small angles with the crystal axes and controlled by the 
specific interaction : K|hi — Aj|.

In this chapter we want to link explicitly the finite-size effects with the capillary 
waves for a general d=2 SOS model. In fact, by keeping the model general it displays 
this connection more transparently than by considering a specific SOS hamiltonian. 
In section 3.2 we derive the finite-size correction to the surface tension, linking these 
to :. face stiffness of the model. In section 3.3, the interface profile of a tilted 

derived in terms of the stiffness and in the last section we derive the 
c; . ave hamiltonian for this model, which again only depends on the micro-

t is of the model via the surface stiffness.



+
+

hj= n+

n = tan(e)Jf
e

 i +

o 21 Z-1 I

yielding

(3.2.4)

in the vertical direction of the strip, so

(3.2.5)

(3.2.6)

:e',k,< >= (3.2.7)
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h0=O

E < 
h'

ei,h' = e*’* 52 < 0|T|m > e”m 
m

in Dirac notation.
The system has translational invariance 

that

Z((n) =< 0|T'|n >

are e',h with the

*(«) = E exp[-V(|m|) + imq] 
m=—oo

where q is limited to the first Brillouin zone : —tt < q < tv. So a fourier transform of 
the height variables

1

with m = h' — h. Thus the eigenvectors of the transfer matrix 
eigenvalues

Fig. 3.1. A two-dimensional strip of Ising spins of width I \ oundary 
conditions ho = 0 and hi = n, forcing an interface into the sys ;'i cf length 
I' = 1/cosO between the endpoints (0,0) and (Z,n). The average inclination 
angle is given by tanO = n/l. Only solid-on-solid configurations are allowed.



diagonalizes the transfer matrix,

(3.2.8)< 917’1?' >= *(9)6(9 - 9')>

(3.2.9)

(3.2.10)

(3.2.11)= -^(*(9)) - *9<

(3.2.12):n0 =

(3.2.13)+ it] = 0.

Z,(t)

(3.2.14)

(3.2.15)= —*9>
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and the partition sum is simply given by

Z^n) = 7" F d(> A'(«)e”n- 
Z7T J—x

For large I one can evaluate this expression with the steepest descent method.
First we write (3.2.9) in the form

zi(t) = f J9 exp[-lf(q, t)]
Z7T J—k

with

Th-. ;; • J .k-n sum can also be transformed to an integral over the unit circle in the 
complex z-plane by changing the integration variable to z = e'q. One may deform 
the integration contour in such a way that it runs through the saddle point where the 
real part of assumes its maximum value. When I is large the complete integral 
is well approximated by the contribution comming from the immediate vicinity of 
the saddle point. The location of the saddle point q0(t) is determined by the steepest 
descent condition

d,f(q0,t) - -[
*(9o)

The accent in A'(g) denotes the derivative with respect to q. Returning again to an 
integration over q instead of z and extending it from —oo to +oo, one obtains to 
second order in the expansion around the saddle point:

ezp[-Z/(go(t),t)] r°° dgezp[-^„/(»>(t),t)(g-9o(t))2]
Z7T J—00 Z

e»p[-Z/(9o(0,<)l
>j2irld„f(q0(t),t)

Because later we will also need the other partial derivatives of /(<?, t), we &*ve fl16111 
here :



---- 1 (3.2.16)

(3.2.17)

a(Z',9) = (3.2.18)

(3.2.19)

with

Z' =

(3.2.21)

arbitrary interaction

(3.2.23)

(3.2.24)

(3.2.25)
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3(e) =

z 
cosO

If we take the limit I' 
the infinite system :

In the last equation we have used the steepest descent condition. The accent in Qo(O 
denotes the derivative with respect to the argument. Thus we find for the angle 
dependent surface tension of the tilted interface, which is the free energy per unit 
"length” associated with the interface,

V

= cosOf(q0(t),t) + “/n[27rrcos^„/(9o(t),t)],

(3.2.20) 

oo, we obtain the full angle dependent ce tension for

3(oo, 6) = <oo, 6) + (3.2.22)
Ou

(Since we will not consider the finite-size effect of the stiffness, we simply write s((?) 
from now on.) When we insert (3.2.21) into (3.2.22) and use (3.2.13) and (3.2.15) we 
have

Substituting (3.2.17) we get the final expression: 

1
CO33e3„/(90, t) ’

Again, this is the stiffness for an infinite SOS model with arbitrary interaction 
V(|h,— 7»,|). Comparing (3.2.19) and (3.2.24) we see that we can write the finite-size 
correction to the surface tension in terms of the stiffness : 

1 2xZ'<Z',< = <oo,«) + -Zn(^^).

<z(oo,0) = cos6f(g0(t),t)

Note that this expression is valid for a SOS model with an
V(|< - A,J).

Next we consider the angle dependent stiffness s(oo,0) for the infinite system, 
defined by [14]

1
21'
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(3.2.26)Z,(0) =

3.3 The interfacial profile

P(AA), (3.3.1)
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E P(AA) =
AS=x + l/2

z-1/2 

m/(.z) = E p(Ah) - 
A/i=—oo

*-1/2 

E 
A/»=-(*-l/2)

exp[—I'crfoo, 0)].
s(O)cos20

ZW.
O

-------z=o

■mphasize that this equation, which expresses all the finite-size effects of 
th . .. tension up to O(l/Z) in terms of the stiffness of an infinite system, is a 
consequence of a number of features of the model. We will discuss these points more 
fully in the discussion, within the context of other models such as the 2-d Ising and 
the 3-d SOS model.

Finally we use (3.2.18) and rewrite (3.2.25) to obtain the finite-size partition sum 
in terms of the surface tension and the stiffness of the infinite system :

.2. An interface with an overall inclination angle <A, and a fixed height 
< in the middle, so that the inclination angle is 0i in the first part and 
he second part.

To study the profile of a tilted interface we consider a bent one, as depicted in 
Fig. 3.2. Here we show an interface of length 21' under an angle </>, while the middle is 
fixed at height I tan<f> + A/i. This situation can be viewed as the result of appending 
two strips of width I , similar to the one in Fig. 3.1. For each strip, we use expression 
(3.2.14) for the partition sum with tan6t = (t + ^) and tanO2 = (Z — ^), and 
t = tan<t>

The magnetization profile mi(z) is defined as



(3.3.2)

(3.3.3)

(3.3.4)

P(AA) = (3.3.5)

(3.3.7)

with

P'(Ah') = (3.3.8)
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COS3^(^)(Ah)2].

may check 
one replaces the

(3.2.13) up 
e get up to

1- ~rl-?

For the tilted interface, the natural variables to use are : I' = l/cos<t>, Ah' = Ahcosip 
and z/ = zcos<t>, and the perpendicular height distribution P'( Ah') defined by

P'(Ah')Ah' = P(Ah)Ah. (3.3.6)

cos3 </>s (6) .
------------- ezp[-

^exp[-ls(^)(Ah')3].

Rewriting expression (3.3.1) for the magnetization profile, using the last two equations 
(and approximating the sum by an integration) we obtain

m{,(«') = mi(z) SS J‘ d(Ah')P'(Ah')

in terms of the vertical-height probability distribution

P(Ah) = gi(* + AA/W-Ah/n
^2/(0

These probabilities are normalised,

£ P(Ah) = l,
Ah=—oo

since removing the constraint in the middle yields the total One
that this condition remains valid for the expression (3.2.14) whe 
sum by an integration.

Since Ah is expected to be of the order y/7 (because of the rand; '< like nature 
of the problem [15]) we may expand in Ah/l. If we use the exp 
to (3.2.17) for the partition sum and for the derivatives of /(go!
orde O(/<°>) in the exponent

Z,(t±^) =

exp - l{/(fo(t),t)Tife(<)(Ah/l) + [23„/(g0(t), <)]-■( Ah/Q- )

To this order the denominator does not require expansion. Notice that in (3.3.2) the 
linear terms drop out. Using (3.2.24) for the stiffness and (3.2.25) for the surface 
tension, we find



(3.3.9)

3. apillary wave model

To.

ZiW = £ z,(t + )... Zi(t + (3.4.1)

ZL(t) = (Z,(i))’"Zcw(<6), (3.4.2)

)2], (3-4.3)Z.

(3.4.4)
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m;,(z')

Z1 — Zp

I

2-w=(i)m_i rCOS(f) J—oo

dx\ ...J dx'm_lexp[~^- £(z< - X<_1)2] 
J-oo . .

When inserting the expression for P'(AA') into (3.3.7) one arrives at the usual error 
function profile as obtained in capillary-wave theory [16]:

The attentive reader may object to this derivation of the profile (3.3.9), on the 
grounds that we have computed the distributions measured in the vertical heights 
and translated them to perpendicular height distributions. In appendix 3A we show 
that the derivation given above and the more correct one, where one works with the 
natural variables of the tilted interface right from the start, both result in the same 
expression for the magnetization profile.

with X{ = and t = tanifi and boundary conditions x0 = x, 
Substituting (3.3.4) for Z\ we find that

■m = 0.

with the capillary-wave partition function given by

where we have replaced the sums by integrations. Next we use expression (3.2.24) 
to eliminate 3?,/(<?o(<)3)> and change to the variables I' = l/cos<f> and x' = xcos</>, 
obtaining

= r dX1.
J—oo

1 }

utinuous capillairy-wave description for the SOS model, we join together 
m idth I. From (3.2.4) one can see that the partition sum for the SOS
mo« strip of size I is just a matrix element of Tl. Starting with a strip of
size L — ml (m = 2,3,4...), one can group the product of L transfer matrices into 
strings of length / and sum over all heights within each string. The resulting Z\ for 
each string can be regarded as the renormalised transfer matrix on a length scale 
I times larger. The total Zl for an interface with an overall inclination angle <f> is 
therefore



(3.4.5)

(3.4.6)

(3.4.7)

(3.4.8)

(3.4.9)

(3.4.10)

(3.4.11)
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wave contribution to the surface

---- oJ7^n(

Finally, we take the continuum limit by the substitution
xi = I'(r')

ar'
with r' = Vi. Then partition function (3.4.4) becomes

= ^{x'}^P[-^L-({^})]
with the capillary-wave hamiltonian given by

Alternatively one can write explicitly in terms of waves :
1 m~i

x'i = ~/= 52 i'(<:n)^«n(^r,)
vm n=l

where k^ — Tcn/mV,r\ = Vi and &(kn) is the amplitude of th. kn. Insert­
ing (3.4.9) into (3.4.4) yields

z~<*> - J-L"'**-)
n=l

Doing the gaussian integrals we get for the capillary 
tension :

= -l/n[zcw(^)] = -L’g coSkJ')}

Working this out gives, of course,
1 ■ ! 2rl‘ A , 1 , < ^L' x
2P"^cos^ + 2P/n(7Wcos^) (34 }

Comparing this with (3.2.25) shows that the finite-size correction to the surface ten­
sion is equal to the contribution of the capillary waves which are released when the 
restrictions at the boundaries are removed. Since the capillary waves are determined 
by the stiffness alone, the same holds for the finite-size correction.

We note that the standard capillary-wave hamiltonian (3.4.8) and the correspond­
ing partition function (3.4.7) are only approximately equivalent to the exact expres­
sion (3.4.11). When cosknV is expanded to order k* in (3.4.11) the result (3.4.7) is 
recovered. One could say that (3.4.11) displays a wavelength dependent stiffness but 
the dispersion found in (3.4.11) is a typical reflection only of the nearest neighbour 
character of the interaction of the SOS model, and is not sensitive to the detailed 
form of the function V(|AZi|).
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We considered a solid-on-solid model for interfaces in a 2-d (bulk) system. The site 
and height variables are both integer, with the former restricted to the range [0,/]. 
For nearest-neighbour interactions of arbitrary form V(|A/i|), we find the surface 
tension <r(Z', 0) as a function of both the tilt angle 0 and the length of the interface, 
I' = 1/cosO. Though one may not be inclined to take this function seriously for 
large angles, it does have a thermodynamic limit, <r(oo, 0), which is analytic for all 
0 € (—rr/2, tt/2). Thus, the stiffness [14] for an infinite system is well defined by 
s(0) = <r(oo, 0) + <z"(oo, 0).

-iing I' < oo correction to <z(Z',0) is the universal [17], Zn(Z')/2Z', being 
in<' of both 0 and V(|A7i|). The next order, O(l/Z'), has a "univeral” form,
in . ends only on s(0)cos2(0). We find it reasonable to interpret the first

■esult of capillary waves and the cos20 as an end point effect.

, found that the interface profile, exact to leading order, can also be 
exp,- ' term of s(0) alone, as in equation (3.3.9). This fact is again consistent 
with a description of the systems fluctuations by a capillary-wave picture with the 
effective hamiltonian given by expression (3.4.8), in which the only manifestation of 
the microscopic model is the parameter s(0). Note that the end point effect is absent, 
as it should, from the expression for the profile far from the system boundaries.

Unfortunately, there are limitations to the capillary-wave picture, especially for 
describing the finite-size effect of the surface tension. Of course, the leading order, 
Zn(Z')/2Z', will emerge from the capillary-wave picture. But this term is so universal 
that hardly any detail of the capillary-wave hamiltonian comes through. In this sense, 
only a Goldstone-like character of an effective hamiltonian is needed to produce such a 
term. At the next order, 0(1/1'), one expects contributions both from the end points 
and from the capillary waves. For our model, we believe it is possible to untangle the 
two in the following sense. For 0 = 0, the SOS condition forbids all configurations of 
the interface which go "beyond” the end points. In this case, only s(0 = 0) enters. 
However for 0^0, many configurations go outside the range [0, Z'], though they are 
restricted to [0,Z], Since these can be ascribed to "geometry” alone, we argue that 
they are responsible for the factor cos20. That this factor is completely insensitive 
to the microscopic hamiltonian further strenghens our argument to dissociate it from 
the fluctuations of the interface inside the system.

Note that it is meaningfull to speak of the interface going through the point t at 
height h, since we have a SOS condition. Thus we recall the example in section 3.3.
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Appendices

3A The magnetization profile

(3A.1)
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•th an interface 
should depend

am
i0 = z'cM[i -t(^-)]

te-size correc-
higher order than the boundar eiL.cts. The latter

theory for the 2-d Ising model beyond the universal 
ln(l,)/2ll term, we most look towards an exact calculation, simi! the work done 
by Abraham and Reed [18], of the magnetization profile associa 
at arbitrary angles. If capillary-wave theory is correct, that p 
only on s(0).

Finally we recall that for d > 2 the capillary-wave picture gi 
tions to the surface tension at a
always appears at 0(1//') while capillary-wave contributions are C’(/n(/,)/(0<i ')• 
Thus, in higher dimensions, we can expect to check the validity of the capillary wave 
theory only via the magnetisation profile.

In this appendix we will do the calculation of section 3.3 again, but now we work 
with the variables of the tilted interface right from the start. In Fig. 3.3 we have 
drawn an interface with an inclination angle <j>. The length of the interface is 21' and 
in the middle it has a fixed height A/i'. Most of the notation we use in this appendix 
is explained in the figure. To calculate the partition sum for this situation we use 
expression (3.2.14) for the triangles 123 and 345 so we have Z/O(to) with Zq = tank 
for the first triangle and with ti = tanO\ for the second. We want to expand 
these partition sums in . Basic geometry leads to the following equalities

There, the full partition sum over all interfaces from (0,0) to (2/, 2/ tanO), can be 
done by first finding two partial sums, over interfaces from (0,0) to (Z, h) and from 
(I, A) to (21,21 tanO), and then summing over h. In contrast, for the 2-d Ising model, 
where overhangs and bubbles proliferate, the full sum associated with an interface 
is not simply related to those associated with its segments. Thus, we are unable 
to untangle the finite-size effects due to capillary waves from those due to the end 
points. Therefore the 0(1/Zz) finite-size effect of the surface tension cannot be used to 
support the capillary wave theory. We will discuss this point in detail in appendix 30 
for two different definitions of the finite-size surface tension.

To test the capillary wave
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1

Fig. 3.3. An interface with an overall inclination angle 4>, and a fixed height 
z' = Ah' in the middle. The average inclination angle is #o = <i> + in the 
first part, where the triangle 123 is used for the calculation of the partition 
sum. In the second part, the average inclination angle is 0i = <f> — d<t> and the 
triangle 345 is used.

o

Ah1



and

(3A.2)

(3A.3)

Zi„(to) = (3A.5)

and

Z'M = (3A.6)

(3A.7)
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3B Finite-size effects in the 2-d Ising model

Here we consider the finite-size correction to the surface tension for the 2-d Ising 
model. There are two ways to define the finite-size surface tension.

/. = Tensol+t(^)J

with t = tan<?. Expanding t0 and to second order, we have 

iost + (H-P)(^) + t(l+P)(^)’

and

2ttV
x ezp{-Z'<z(oo, </>) - + ta(oo, - -1,

CO3(p 21'

The magnetization profile is again given by (3.3.7) with the probability P'(AA') as 
defined by (3.3.6) and

Zv(t)

Putting everything together we retrieve (3.3.9) for the magnetization profile. The only 
difference between (3A.6) and (3A.7), and the more intuitive approach in section 3.3 
lies in the terms linear in Ah'. But this is inconsequential since the linear terms 
cancel.

(3A.4)

Substituting the above four equations in expression (3.2.14) for rtition sum and 
using (3.2.24) and (3.2.25) we can express Z|0(t0) and Z|,(ti) ir> s of the stiffness 
and surface tension as follows

Zs(^)cos2^
V 27?

X ezp{—Z'cr(oo, <j>) + + tcr(oo, <£)]AV - - - s(.A;(AV)2}
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+ © +•<4
£pp^-4r+-i 
+ 4- 4- 4- +- 4-

Fig. 3.4. A square lattice of Ising spins. The correlation function between 
the points 1 and 2 on the dual lattice corresponds with Zseam IZnoaearn on 
the original lattice, where Zaeam is the partition sum when there is a seam (a 
serie of negative bonds along an arbitrary path between the points 1 and 2, 
indicated by the little thick lines) in the lattice. This forces an interface into 
the system between (0,0) and (Z,n). Since these end points are imbedded in 
an infinite lattice, the interface configurations are free to go beyond them.
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,e lie on 
confined

I -J--l(tn)

+1 +

definition 2 : By introducing an anti-ferromagnetic seam on a strip of Ising spins 
of width Z, between (0,0) and (Z, Itan 6), and with all spins up at the strip 
boundaries, creating a situation analogous to the one in section 3.2 for the SOS 
model. Now the interface is confined to the strip (see Fig. 3.5).

definition 1 : By introducing an anti-ferromagnetic seam into the ordinary Ising model 
between (0,0) and (Z, Z tan0)y thereby allowing the interface to make arbitrarily 
large excursions beyond the end points (see Fig. 3.4)

Fig. 3.5. Same as Fig. 3.4, except here, the end point of the ii. c 
the edges of a strip of width I. Thus the interface configurations are 
to this strip. This situation is similar to the one in Fig. 3.1.

Because the behaviour of the interface around the end points is very different for these 
two cases, we expect different end point effects, but the capillary wave contribution 
should be the same.

First, we translate both definitions to the dual form [19, 20, 21, 22, 23], in terms 
of the two spin correlation function, by the relation

a(r,cos0) = -lzn[ezp(-2K2)(a(l 0)<z(Z - 1 Itan 0))*Jrecboundari„]

where K? = PJ2 is the reduced vertical bond strength (and K\, the horizontal). The 
star indicates that the correlation function is defined on the dual lattice where the



(3B.2)<z(oo, 0) = 0j.stn0 4- 02cos0

and

(3B.3)s(f)

wl ■:

(3B.4)

wit,

(3B.5)cosh.&\ —

(3B.6)

and

a

71

7s

■] (3B.10)

(3B.11)
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= (1 + ezp(-4Ki))(l + exp(-4K2))

= 2exp( —2Ki)(l — exp(—47f2))

= 2exp(—2K2)(1 — ezp(—4K]))

(3B.7)

(3B.8)

(3B.9)

exp(4K2 — 202)],

___________  (a2 - 7^^ + 7?
-yt[atan20 + yja2tan2l) + (1 — tan20)(72 — 72tan20)]

______ (°2 ~ 7?) + 72tan2g
72 [a + yja2tan26 + (1 — tan20)(72 —yj*0”2^)]

2ir 
COS20s(0)

COs/102

71sin/i01sin0 + l2sinhQ2cos6 
,yiCoshQlcos26 + 72Cosh02Sin20

; /I') correction to the surface tension is 

sinhQ^coshQjsinO + coshQi3inhQ2cos8) 
yJ(sinh2Kisinh2K2)2 - 1

02 given by

reduced coupling constants K* are given by exp(—2K*) = tanh(Ki) for i=l,2. The 
factor exp(—2K2) is needed to put the expression on an equal footing with the SOS 
definition, it accounts for the extra broken A^-bond at one of the end points. Notice 
that the free energy for an interface of length I compares with a correlation function 
between spins, only (a horizontal) distance l — l apart.

For definition 1 we use a result of H. Cheng and T. T. Wu [24, 25] to obtain

2^

Since expression (3B.4) can be written as

1 sinh(2Ki) exp(4K2 - 2G2)sinh2Q2 
+ 2F nl«nft(2Kj) yJ[sinh(2K2)sinh(2K2)]2 - 1

one can interprete the second term as an angle dependent end point effect. In the
SOS limit K2 —♦ oo the endpoint effect vanishes.

For definition 2, D. B. Abraham found [4, 26]

7^-1 r An__________ exp(iqn)__________
1 ' 2x J-, 9 [cosA(/7(g)) + 3inh(l~/{q))co36*(q)]

1
21'



(3B.12)

(3B.13)

(3B.14)

with

(3B.15)= 7(9) - iqt

-i can be treated

(3B.16)(

and thus

(3B.18)

and

(3B.19)

(3B.20)
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7(9o) = e2

Z|(t) =r

For large I we may approximate Z/ by

Z,(~ ) “ 2x dq(l + cos6*(q))/2

cos6*(q0) = ^1 + (t/sinh(2K3))2

Using equation (3.2.23) one gets again expression (3B.3) for the stiffness while the 
0(1//') correction to the surface tension becomes

This form is very similar to expression (3.2.10) for the SOS mo 
in the same way, resulting in

1 ezp[-/g(9o(t),t)]
1 + cos5*(go) ^2irdq,g(q0(t),t)

with 9o(t), the solution of the steepest descent condition d9<7(9o(t), 0 = g>ven

90(1)=/©!, (3B.!7)

2x 1, 1 + 71 + (t/sinh2K3)\
+ F'"(—yj’

The first term is the contribution one expects from the capillary waves. But the 
second term cannot be interpreted so easily, making it again impossible to untangle 
the end point effects from the finite-size effects due to the capillary waves. In the 
SOS limit Kj —♦ 00 this last term vanishes.

where 7(5) and 6*(q) are elements of Onsager’s hyperbolic trangle [1]

 cosh(2K1)cosh(2KJ) — stnh(2K3)cos(g)

cosh(2Ki)sinh(2Kj) — cosh(2Ki)cos(q)
=-------------sinh(2K1)s,nh(7(9))-------------
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Chapter 4

4.1 ■action
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Free Fermion Approximation for the Ising 
Model with Further-Neighbor Interactions on a 
Ti - - ar Lattice

Since i>nsa.,3crs solution of the 2D-Ising model [1], many efforts have been made to 
extend the solution to include further-neighbor interactions. Such solutions would 
allow for a better modelling of real magnetic systems [2] and of course of all other 
systems that can be mapped onto the Ising model such as e.g. recent models for 
microemulsions [3, 4). The only generalisations along this line that have led to exact 
solutions are the free fermion models (models that can be rewritten as free fermion 
field theories [5]), where still certain restrictions have to be imposed on the allowed 
values of the coupling constants. But for a large range of values, where these condi­
tions are not met, simply ignoring them still provides a good approximation to the 
real solution (the so called free fermion approximation [6]). Of the different methods 
that can be employed to solve these models, Vdovichenko’s method [7, 8, 9, 10] has 
the advantage that it can easily be extended to yield the surface tension [11, 12, 13], 
as well as the corresponding equilibrium crystal shape [12, 13].

In this chapter we present the free fermion solution/approximation for the Ising 
model with first- and second neighbor interactions and a four-spin interaction on a 
triangular lattice, using the method of Vdovichenko [8]. In section 4.2 we define the 
model and rewrite it as a vertex-pair model on the dual lattice. The zero temperature 
phase diagram of the isotropic model is given in section 4.3. In section 4.4 we derive 
the free fermion conditions for which the solution will be exact and in section 4.5 we 
calculate the, in general approximate, partition sum and discuss the accuracy of the



•

4.2 The model

depicted in

(4.2.1)

with

(4.2.3)
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Fig. 4.1. The lattice is seen as built up out of overlapping diamonds. We 
assign to each diamond a first- and second neighbor interaction and a four- 
spin interaction, with coupling constants Ki, Li and Q, resp-.-lively, whose 
values are different for each orientation i.

£i(?) = + LiWt + Qi<ri<r2a3<r4), (4.2.2)

the energy of a diamond of type (i, q) and with n,(q) the number of times this diamond 
occurs in the configuration. Thus the partition sum becomes

z= e nni^tr1’’
{configuration^} «=1 9=1

Q3

approximation. The approximate critical surface of the model ved in section 
4.6 and in section 4.7 we study the surface free energy.

Consider a triangular lattice consisting of N sites with periodic boundary conditions. 
On every site there is an Ising spin cr = il. The interactions between the spins are 
as follows. Any two neighboring elementary triangles of the lattice form a diamond. 
To each diamond we assign three interactions (see Fig. 4.1), a first- and second 
neighbor interaction Ki and Li (along the two diagonals of the diamond) and a four- 
spin interaction Qi, with different values for each orientation z=l,2 or 3. In the 
interaction constants we have already absorbed a factor l/k^T for later convenience. 
Note that each triangle is part of three diamonds (the diamonds overlap), one in each 
possible orientation.

A diamond can occur in eight different configurations g, which are 
Fig. 4.2. The energy E of a configuration of the total system is given by 

3 8

£ = EE n.(9)e.(?)
*=1 9=1



“1(1) “i(2) “i(3) “i(4) “i(6) “i(7) “i(8)“i(5)

with the weights

(4.2.4)“.(?) = ezp[-e,(<?)]
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Z(KU K2, K3, Lu L2, L3, Qi, Q2, Q3) =

Z(-Klt -K2, K3, -Llt-L2, L3, QltQ2, Q3) 

Z(—Ki, K2, —K3, —L2,L2, —L3, Qi, Q2, Q3) 

Z(A"i, —K2, —As, LIt —L2, —L3, Qi, Q2i Q3)

(4.2.5)

(4.2.6)

(4-2.7)

Fig. 4.3. In the dual language configurations are specified, by drawing lines 
on the dual lattice, separating unequal spins on the original lattice. At every 
lattice site 2 or 0 line elements meet.

The partition sum is invariant under the following transformation. Reverse all 

spins on every other line parallel to one of three principal axis and combine it with a 

change of sign of the coupling constants K and L in the other two directions. Hence 

we have

Fig. 4.2. A diamond on the original lattice corresponds with a vertex-pair on 
the dual lattice. The figure shows all possible configurations q = 1,...,8 for a 
vertex-pair in orientation 1, and their weights cui(g).

The model is equivalent to a vertex-pair model on the dual (hexagonal) lattice 

[14]. In the dual language the configurations are specified by placing bonds connect­

ing nearest-neighbor sites of the dual lattice, while separating unequal spins on the
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the

Z — [<^1(1)1^3(1)013(1)] (4.2.8)E
with

(4.2.9)c.

(4.2.10)

c, = ( (4.2.11)

(4.2.12)
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Cl

Y

3
£2 JTa!‘<(’)jn.(S)+"<(6)cn.(7)+n.(8)

{conjigurationa} »=1

Fig. 4.4. Weights assigned to corners, bends and close encounters.

original lattice (see Fig. 4.3). Only 0 or 2 bonds meet at every dual lattice site, 
forming closed loops that cannot cross. A set of loops belonging to one configuration 
is called a graph. When there is no bond between two nearest neighbor sites on 
dual lattice, we speak of an hole.

With every diamond on the triangular lattice corresponds a vertex-pair on the dual 
lattice (see Fig. 4.2). In appendix 4A we derive all independent relations that exist 
between the numbers of vertex-pairs n,-(g) and show that, as a result, the partition 
sum can be written as

<M2)^i+i (3^4.3 (4)

1 )<•>•+! (1 (1)
b = ^(5)01,(6) /;l 

Vw,(3)u>,(4)J

q>i(7>,(8)01,4.1 (3)01^3(4) 1/2 
[w,(l)]2w,4.i(l)a>,4.3(1) '

and t = i (mod 3).
For the application of the method of Vdovichenko, a more appropriate formulation 

of the partition sum is [8]

z = [flM1)]* E J® 
• a
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Ig

(4.2.13)

(4.2.14)

and

(4.2.15)

(4.2.16)nt, = n,(5) + n,(6)

(4.2.17)= «.(2)

la = cjc’c^fc’x. (4.2.18)
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. over all graphs G on the dual lattice and Iq is the Boltzmann weight
: ion specified by graph G, which is given by

where tl 
of the c.

Fig 4.5. An example of a graph. The Boltzmann weight of this graph is given 
by It.

the total number of close encounters with orientation i in graph G, to each of which 
a weight x, is assigned (see Fig. 4.4). The factor in front of the sum rescales Ig so 
that Ig = 1 for G = 0 (the empty graph representing the configuration with all spins 
parallel). As an example, the Boltzmann weight for the graph in Fig. 4.5 is given by

the total number of corners (single turns) with orientation i in graph (7, to each of 
which a weight c, is assigned,

the total number of bends (two successive turns in the same direction) with orienta­
tion i in graph (7, to each of which a weight 6,- is assigned and

I

nCi = 2n,(2) + n,(7) + n.(8)

' a"d2)j".(S)+n.(6)cnd7)+n<(8) 

»—1

i=i

with the weight

_ _ _ o>,(l)fa>,(2)
’ c? <v,-(7)w,-(8)
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(4.3.1)
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(4.2.19)

(4.2.20)

(4.2.21)

4.3 The zero temperature phase diagram

For the nearest-neighbor Ising model the coupling constants L, and Q, are zero so 
that c,- = ezp(—A\+1 — K,+j) and z,- = 6, = 1 for i = 1,2,3.

= -Mn(n<v,(l))

Eb = EA — Nln(c2x)

Ec = EA-Nln(b2c2x)

Ed = Ea - (3N/2)ln(bc)

Ee = Ea — Nln(c)

Ef = EA-(N/2)ln(b2c3)

Expressing the corner, bend and close encounter weights in the original language 
of coupling constants, using (4.2.2) and (4.2.4), we obtain

we can also find the domains for these groundstates, if they are the only contenders. 
In the Figs. 4.7 and 4.8 we give these domains for Q > 0 and Q < 0. We prove in 
appendix 4B that the groundstates A - E are indeed the groundstates of the system 
in their domain. For state F the arguments presented are not sufficient to rule out 
possible other groundstates. We indicate why we find it plausible that F is indeed the 
groundstate in its domain. We have not further investigated this case as it involves 
an examination of the lattice on a larger scale than a hexagon (which is sufficient for 
A - E) and as the free fermion approximation is inaccurate in this region of the phase 
diagram anyway.

Cj = exp[—2(Li + Qi) — (K,+i + L<+i + Ki+z + I/i+a)] 

bi = exp[2(Li - Q.)]

Xi = ezp[4(L< + Qi)]

The groundstate for arbitrary coupling constants may be ver Heated since 
the various tendencies compete and disorder can exist down to emperature. 
Therefore we restrict ourselves to the isotropic case: = /<, Lt L and Qi = Q
f°r * = 1,2,3. A superficial inspection readily shows that the configurations A to F 
as shown in Fig. 4.6 are the groundstate in some part of the phase diagram. As the 
energies of the configurations are given by



Configuration A Configuration B

i

z\.
Configuration DConfiguration C

Configuration FConfiguration E

Fig. 4.6. The groundstates for the isotropic model.
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Fig. 4.7. The zero temperature phase diagram for the isotropic model with 
Q > 0. The letters A, B, C and E refer to the groundstates as given in Fig. 4.6. 
The boundary equations follow from equating their weights.

E 

b2C = 1

E
ex = 1

+5
K/Q->

+5
-K/Q-*

—5 hex? =
» = 1'

ex’ = 1

b = 1
ex1/’

-5
B

T-i/Q 
lex1/’ = 1

F-5 

b = c^x

Fig. 4.8. The zero temperature phase diagram for the isotropic model with 
Q < 0. The letters A up to F refer to the groundstates as given in Fig. 4.6.



4.4 The free fermion conditions

■(i + w,) (4-4.1)

(4.4.3)

(4.4.4)
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w„ = (-I)"'/, = -(-l)‘’/p (4.4.2)

with np the number of selfcrossings, tp the winding number and Ip the Boltzmann 
weight of path p. Similar to (4.2.13) we have (x; = 6; = 1)

3

4=n^
with nCi the number of times c,- occurs in path p. Note that the set of paths is much 
larger than the set of loops, because self-overlap is allowed and because expanding the 
rhs of the topological theorem also generates products of paths that partly overlap. 
The sum of all terms (=products of paths) without overlapping bonds gives exactly the 
Ihs of (4.4.1). So all other terms in the expansion must cancel. The sign introduced 
in the path weights takes care of that [7, 16]. This is the trick that decouples the 
paths and because the sign is determined by the winding number, it can be locally 
implemented by assigning a proper phase factor (exp[±ix/6]) to each turn in the 
path. The topological theorem is the foundation on which the whole method of 
Vdovichenko is based.

Thus the method of Vdovichenko replaces the sum over graphs by a sum over 
products of independent paths. For our model two complications arrise in this crucial 
step. First, it is evident that in the path weights no close encounter weights X; jL 1 
may occur, otherwise the path cannot be interpreted as a random walker with local 
transition probabilities. Therefore we put for the Boltzmann weight of path p

3/,=iuv
1=1

A graph consists of a number of closed loops. These loops are not independent because 
they avoid each other and because weights are assigned to close encounters. When 
xi = = 1 (the nearest neighbor Ising model) the loops can be made independent
by a trick. This can be expressed in the form of a topological theorem, which was 
first conjectu ed by Feynman [7] and later proven by Sherman [15, 16]:

G

On the lb 
the rhs (■ 
closed no., 
weight of p».

■ and side) we have essentially the partition sum of (4.2.12), while on 
■id side) there is a product over all closed non-periodic paths p (any 
die trajectory that can be traced out by a random walker). Wp, the 

p, is given by
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Fig. 4.10. The two new vertex-pair configurations, given in Fig. -an be 
considered as two additional path interpretations of a close encou ' The 
weight of a close encounter in a graph should be choosen equal io the sum 
of the weights of the three path interpretations of this close encounter, i.e. 
the diagram equation in this figure must hold (when close encounters have no 
bonds in common).

Fig. 4.9. The two new bond configurations for a vertex-pair that arise when 
working out the product over paths in the topological theorem (considering 
only the terms that do not cancel).

where the close encounter weights z, have been left out. Second, when the bend weight 

/ 1, the trick above does not give a complete cancellation of all additional terms 

in the expansion of the rhs of (4.4.1). In appendix 4C we show that all terms with 

an overlap, consisting solely of a number of occurrances of the bond configurations, 
depicted in Fig. 4.9, do not cancel. So it appears that the topological theorem cannot 

be used for a wider class then the nearest-neighbor Ising model. But we will show 

below that the contributions from the additional paths can be interpreted as close 

encounter weights in the graphs and that under certain restictions the topological 
theorem is exact even when z,,6, 1 (the two mistakes exactly compensate one

another).

We will now try to establish the conditions under which the topological theorem is 

restored again. It is custumary to speak of them as free fermion conditions because, 

when they apply, the model is equivalent to a free fermion field theory [5,6]. Consider 

the diagram equation in Fig. 4.10. If in all graphs on the Ihs of (4.4.1), each close 

encounter is replaced by the sum of the three diagrams, shown on the rhs of the



Fig. 4.11. Diagrams with two close encounters that have the bond q in common.

(4.4.5)Cixi ■ "hl^i+2(ci+lCi+2^i ~ Ci+lCi+2)

(4.4.6)

with

(4-4.7))’(*? - 1)

(4.4.8)
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diagram equation, then all surviving terms of the rhs of (4.4.1) are generated. So, if 
there are k close ^counters in a graph, there are 3* corresponding paths and the sum 
of their wei.J ; <ist be made equal to that of the graph. When the close encounters 
have no bcir . ommon we can do this by restricting the close encounter weights 
in the graj ordance with the diagram equation of Fig. 4.10 :

with - 2 for i = 1,2,3. On the lbs we have the factor that the diagram,
on the Ihs of the diagram equation, contributes to the graph weight. Similar, the 
three terms on the rhs are the factors, that the corresponding diagrams on the rhs 
of the diagram equation, contribute to the path weights. In the term on the Ihs 
there are two corner weights and a weight for the close encounter (only in the path 
weights close encounter weights are left out, not in the graphs). The first term on the 
rhs is cj because the close encounter weight cannot be incorporated in the path 
weights. The common factor fcf+i&J+a in the last two terms arises because the change 
in bond configuration makes bends appear/disappear (for each outward bond there 
is an exchange, bend <----* no bend, because one of its neighboring bonds has changed
its direction). The minus sign in the last term is due to the extra bond-crossing in 
the last diagram. So we obtain the free fermion conditions

Xi = 1 + b^b^Zi , Vi = 0, ±2

„ ,Ci+lCi+2 z, = (----------
Ci

When two close encounters share a bond (see Fig. 4.11), they interfere with each
other. For instance, for the first diagram in Fig. 4.11 we have (similar to (4.4.6))

= 1 + + ^b^‘+n+2<



6.+1 — bi+3 = 1 (4.4.9)

(4.4.6) becomes

(4.4.10)z«+i — i;+3 = 1

£,+i — Li+2 = Q,+i = Qi+2 = 0 (4.4.11)

and

exp(-4Qi) = (4.4.12)

(4.4.13)

(4.4.14)

which is the more usual form for the free fermion condition for this model.
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and all other free fermion conditions do factorize into products of 

total of only five restrictions which can be satisfied in a non-trivia.
(4.4.9) and (4.4.10) back to the Ising language with (4.2.19) to (4.2

;,.), leaving a 
Translating 

. we obtain

K = JT,+1 L = Ki Q = Qi
K' = Ki+2 L' = Li

cosh[2(Kj + £,)]
ccsh[2(Ki - i.)J

These are the free fermion conditions under which the topological theorem is valid. 

They reduce the model to the free fermion model on a square lattice, as studied by 

Fan and Wu [6]. This is shown in Fig. 4.12, with the non-zero coupling constants 

renamed as follows

with pi,Pa = 0, ±2 and pa,Pi = —2,0. In the last term, the exponent of 6a has 

an extra 2 because, if both close encounters change to a double bond configuration, 
the bond shared by the close encounters makes no exchange, bend <—> no bend. 

Therefore the equation does not factorize into two equations, with forms similar to 

that of (4.4.6). In this way, for every group of close encounters lumping together, 

new free fermion conditions will be found. In spite of all these compheations there 

exists a non-trivial solution. If we choose one direction as special (say direction t) 

and for the other two directions we set

In the dual language it means that the central bond of the vertex-pairs, depicted in 

Fig- 4.2, should be shrunk to a point (since they no longer correspond to a nearest 

neighbor interaction (A) = £)), so that the vertex-pairs transform into the vertices 

of the eight-vertex model. Equation (4.4.12) can also be written as



4.5 The free fermion solution/approximation
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Fig. 
as in 
lattii.

= expE/n(l + iy,)]
G T

=u (4.4.11) holds and we rename the other coupling constants 
the model is equivalent to the eight vertex model on a square 
n in the figure for t = 1.

What are the results so far? There are no free fermion solutions in our model, other 
then the ones already found for the square lattice. But if the free fermion conditions 
are not met, wrong weights are given only to the close encounters in the graphs. So 
for any set of values of variables c,, 6, and z, we can give an approximate solution that 
fully takes into account the corner- and the bend-weights, while the close encounter 
weights, dictated by the free fermion conditions (4.4.6), are in general different from 
the real close encounter weights given by (4.2.21). When the coupling constants are 
such (like in the ferromagnetic phase at low temperatures) that close encounters are 
rare, the result will be a good approximation (the free fermion approximation).

We will now continue with the weight (4.4.4) and use (4.4.1). On the basis of (4.4.1) 
it is easy to evaluate the partition sum. It is exact only when the topological theorem 
is exact, that is, when the free fermion conditions are satisfied. First we write the 
sum in a new form:



(4.5.1)

(4.5.2)

with

(4.5.3)

(4.5.4)

(4.5.5)
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(7«)

0

0 
(7«)-*K^

0
~/b'3Ci <frl 
~tbb'2c3<t>

0

7W
7^

7^M
tfW ^byxu2<p 

0 0

(4.5.6)

7-1t'2i>3^2 7-*6ici^
0

66'jCj^-1
0

6%
'■f~1b'3ci<f>

0
Sb^T2

0

7"’c? >

of weights of all paths of lengt starting in r 
in r' where 

. ,) is over all 
closed paths (also periodic) of length I, that can be traced out by . m walker.
Therefore Mi can be constructed out of matrices M2 that discribe ble step on
the lattice. The advantage of using a two step matrix M2 as a ba iding block
instead of the one step matrix Mx, is that in using M2 there are only 3 irections of 
arrival and 2 for leaving, making Afj a 6 X 6 matrix, while using Mx, there would be 6 
directions of arrival, giving a 12 X 12 matrix. (Note that all paths lengths are even.) 

In a derivation similar to that given by Feynman [7] we find for the free energy 
density

Tr M, = £ £ Y, «, 0)
f a (3

and Mi(f, a, r1, a’, (?) is the sum
where it arrives from direction a and leaves in direction & and e: 
it arrives from direction a' and leaves in direction 0'. The sum in 

can be traced out by

= “pE^I

In the second equation the logarithm has been expanded. The prime indicates that 
the s\im now runs over all closed paths (including periodic) and tp> is the period of 
path pf. Then the partition sum can be written as [16]

Z = exp[£o + f}lTrAf,]
1=0

f = -jfln(Z)

= - £(*• + Li + Qi) - A r dll r dq2 ln\det(I - A(«))) 
s Olt Jo Jo

with A the fourier transform of M2

ka0,a'p'(q) = £ exp(»« • r)M3(0, a, 0\ r, a', 0')
f

and I the diagonal matrix. For the matrix A we obtain

Aa0,o,<0»(£) =
(7«)-^

0

s-'W2
0

< (75)-,&aM'



with

(4.5.10)

with
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(4.5.11)

(4.5.12)

(4.5.7)

(4.5.8)

(4.5.9)

flo = 1 + Z1Z2Z3

det(i - a(?j) = nj + £[n? - 2(non> - ni+1n,+3)c<M>(gj)

93 = —(gi 4- q2) and z, is given by (4.4.7).
This completes the solution. It is exact only when (4.4.9) and (4.4.10) hold. But it 

also provides a good approximation when close encounters are rare, in the important 
configurations of both the exact and approximate partition sum. So we have a good 
low temperature approximation, for those phases, for which at least the groundstate 
and its lowest excitations, are free of close encounters. We consider this issue only for 
the isotropic case. Phase A (the phase that has configuration A as the groundstate) 
meets the nessessary requirements. For configuration B we can use the symmetries, 
given by (4.2.5) to (4.2.7), to map it onto configuration A (with anisotropic coupling 
constants). After the symmetry transformation the free fermion approximation can 
be applied, and the result will be a good low temperature approximation (for the 
free energy) for phase B. So we conclude that in the low temperature regime, for 
the isotropic model, the phases A and B are described well. For high temperatures 
bi 1 so that Xi — 1 (see (4.4.6) and (4.4.7)) and the approximation will also be 
reasonable. For the other parts of the phase diagram, no such regions exist where 
the approximation is accurate for both high and low temperatures.

and <f> = ezp(—t7r/6) is the phase factor for every counterclockwise turn and ^-1 for 
every clockwise turn. These phase factors give to every path p a sign (—1)*F where tp 
is the winding number. Working out the determinant that determines the free energy 
density, as given by (4.5.4), we find

b'i = ^/c,-+iCi+2 bi 

7 = exp(iqi) 

b = exp(iq2)

+ <(9°_Oj 1

- 4[n, + c?(Qo - 2)]sin(gj+1)sin(gj+2)]



(4.5.13)

they are dictated by

(4.5.14)

and the approximate partition sum is a strict lower bound.

4.6 The critical surface

(4.6.1)

flo + Hi + flj + fl3 = 2 maz(0o, Hi, flj, fl3) (4.6.2)
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< z*[l - (1 - x-»)(l - e-4*'-’"’)]*

For the isotropic model with K > 0 and £>Q>O(6>1 
conditions obey (see (4.4.6))

< (i+64*)*

so that the critical surface is given by the condition that the largest Q is equal to the 
sum of the three others or

, z > 0) the free fermion

This is the usual form for the critical condition of free fermion models [17]. For the 
exact free fermion solution, when (4.4.11) and (4.4.12) hold, (4.6.2) reduces to the 
critical condition for the free fermion solution of the square lattice as derived by Fan 
and Wu [6].

Part of the critical surface is clearly an artefact of the approximation. When we 
set Zj = — 1 for (=1,2,3, all fl’s are zero and (4.6.2) is satified. But then, according 
to (4.4.6), the weights x, of close encounters with /», = iz; = 0 will be zero. So all 
configurations with close encounters of this type will have their weights reduced to

with x given by (4.2.21) and x' the close encounter weights as 
the free fermion conditions, so that

i < n

<fet(7 — A($)) = i,1,0^(n0-n1-n2-n3)2 
+ 6,lko6n>,(ni — n0 — fij — n3)2 
+ ^(l.»^W,o(Oj — flo — fil — ffs)2 

+ — n0 — fij — n2)2

The free energy density as given by (4.5.4) is analytic unless the d- ■ ..inant given 
by (4.5.10) is zero. In the next section we will show that for a continuous phase 
transitions qt,qi is 0 or x and eq(4.5.10) becomes



(4.6.3)

(4.6.4)f

(4.6.5)f |T ••IT - Tc|

4.7 The surface free energy
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>1 point (Qq — fl] — Qj — O3) is of the order O(T—Tc). Performing 

' [18]

L

we expand it about qi = 0, x(t =

will diverge logarithmically, unless (v2 — 4uw) —♦ 0 as T —♦ Tei 

then a different critical behaviour will be found.
and the specif:

z = ±\/3 6c

The topological theorem is also valid when an interface contour, separating two co­
existing phases, is present in the system [11]. The interface contour becomes just 

another path, decoupled from all others. Thus the surface free energy can be cal­

culated between two coexisting phases (one of the phases A - F, coexisting with 

its opposite phase, for which the groundstate has all its spins reversed). In the ar­

gumentation below, we specialize to the case of phase A. For the other phases the 

argumentation would be analogous.
At T=0 a mixed boundary condition, as depicted in Fig. 4.13, forces the two 

degenerate groundstates to coexist, seperated by an interface contour. At 0 < T < Tc 

a typical graph will consist of a number of closed paths and an additional interface 

contour, running all the way across the system. The proof of Calheiros et al. [11], that 

the topological theorem can also be applied in this situation, is roughly the following. 

The two bonds on the dual lattice that mark the change from (+) to (—) boundary 

spins are connected through a new bond (with weight 1, and no bend weight at this 

bond) outside the existing lattice (see Fig. 4.13). Applying the topological theorem 
to the lattice with the extra bond, gives rise to a new class of closed paths, that

zero. This dramatic effect is solely due to the approximation since the real weights 
for these close encounters are always larger than zero.

If, for the isotropic case, we substitute (4.5.11) and (4.5.12) into the critical con­
dition (4.6.2) we find for the critical surface

(or z = — 1 which we have already exposed as an artefact of the approximation). 

To find the singular behaviour of the free energy
1,2). For instance, when qx = q2 = 0 we have

I ^9l i dqiln[(^0 - Qj — fl2 — fi3)2 + “9? + “9192 + w9a]
Jo Jo

and close to th

the integrate.
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bond 
zn,n)

new bond_ 
F=(M)1

Fig. 4.13. A typical configuration for the ferromagnetic phase at 0 < T < Tc 
when the boundary condition is chosen such that the spin up phase is forced 
to coexist with the spin down phase. An interface contour runs from r = (0,0) 
on the left side of the system to P = (m,n) on the right side. The average 

tilt angle 3 of the interface is given by tanO = n/m. The points f and r' are 
connected through a new bond, of which only the end parts are shown.



(4-7.1)

(4-7.2)F,(m, n)

/.(«) =

(4-7.3)

(4.7.4)
Tr(/-A(g))

with A; the eigenvalues of the matrix A and

(4.7.5)

/,(0) = kicos(0) + k2sin(0)

with

(4-7.7)
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ki = -i[qi(modir)]

k2 = —i[qa(modx-)]

c(?) = EIK1 - Mo)) 
.=1 J#.

6

= E(i-M

Similar to the 
give for the an

det(I - A(q))

Z+_(m,n) = Z++ £ Wr.
p'

with Z++ the partition sum with an all (+) boundary. The sum runs over all paths 
p' (the interface contours) that start in (0,0) and end in (m, n). Then the surface free 

energy is [12, 131

make use of this bond. All paths that use the new bond more than ones cancel each 
other, leaving as an additional set of paths all random walks starting in r = (0,0) 
and ending in r' = (m,n). Since all paths are decoupled [12] the partition sum Z+_, 

with mixed boundary conditions as Fig. 4.13, can be written as

which is harmless at the saddle point. The steepest descent method yields [13]

(4.7.6)

++ p-

obtained the bulk free energy, the random walk formalism will 
udent free energy density in the thermodynamic limit

1_____

y 1 + tan2(0)
lim lzn[/2’^i /2’^elp(-,g.r)Tr(/-A(q))-1] 

m-*oo m lJ0 2tT Jo 2tT ' ' V V

with r = (m,n) and tan(0) = n/m. This expression can be evaluated with the 
steepest descend method. Note that the saddle point does not change (in the ther­
modynamic limit) when Tr(I — A(g))-1 is replaced by [det(I — A(g))]-1 because



tan(O) (4.7.8)

with kx and kv given by (4.7.7) and A a constant controlling the volu: he crystal.

4.8 Summary
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x = Xkv

Y = Xkx
(4.7.9)

(4.7.10)

sum also completely deter-

and q is the imaginairy solution of det(I — A(q)) = 0 for which

d„det(I - \(q)) 
d^detil - A($))

Note that the determinant that gives the bulk partition 
mines the angle dependent free energy density.

For a continuous transition f, —* 0 as T —♦ Tc. Therefore ki,k2 —* 0 which justifies 
putting 91, 92 equal to 0 or % in our search for the critical surface.

Finally, we remark that the equilibrium crystal shape can be obtained as a Leg­
endre transformation of the surface free energy [12, 13]. If Y(X) the equilibrium 
crystal shape in cartesian coordinates then

We have derived an approximate expression for the partition function of an Ising 
model on a triangular lattice with further-neighbor interactions, by extending the 
method of Vdovichenko which is based on an equivalence between a summations over 
graphs and a summation over products of unrestricted paths with only local weights. 
The equivalence is exact only when the free fermion conditions are satisfied and is 
approximate outside the free fermion region. For the general solution, the path sum 
gives approximate weights to the close encounters in the graphs. Outside the free 
fermion region, the close encounter weights so generated depend on the configuration 
and cannot be seen as a local shift of the zt.

The approximation will be accurate when close encounters are rare. We have 
found these regions by deriving the zero temperature phase diagram for isotropic 
coupling constants. We find that for phase A and phase B (through the symmetry 
transformations (4.2.5) - (4.2.7)) close encounters are absent in the groundstate and 
in the lowest excitations (see Fig. 4.6). So we conclude that the phases A and B are 
described well in the low temperature phase by the free fermion approximation.

We have also calculated the approximate critical surface and given the surface 
free energies and equilibrium crystal shapes, using the extension of Vdovichenko’s 
method by Calheiros et al.



Append?

relations between the numbers of vertex-pairs4 A Cons?

(4A.1)

(4A.2)

(4A.3)
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an arbitrary configuration is

= /o(n.(3) + n,(4) + n,(5) + n,(6)) +

/i(n,+j(2) + n,+3(3) + n,+a(5) + n,+a(7)) + 

A(n.+i(2) + n,+i(4) + n,+i(6) + n,+i(7)) + 

/3(ni+a(2) -I- nl+a(3) + n,+J(6) + nl+3(8)) + 

A(n,+i(2) + nl+i(4) + n,+i(5) + n1+i(8))

L/, = i
5=0

The total number of bonds N} with orientation i for 
given by

Fig. 4.14. For the vertex-pairs, the fractions /, of the bonds that are assigned 
to it are indicated. A bond is part of five different vertex-pairs and the sum 
of the fractions of the bond, assigned to each of these vertex-pairs, is 1.

What are th . ions between the numbers of vertex-pairs n,(g) for an arbitrary 
configuration o the system? First, the total number of vertex-pairs with orientation 
i is given by the total number of sites

12 "■(<?) = N.

Next, note that every bond or hole is part of five different vertex-pairs. We assign 
a fraction fj of the bond (hole) to each of them, so that the bond (hole) becomes 
distributed over these five vertex-pairs. The most general distribution is shown in 
Fig. 4.14, with the condition that



(4A.4)

with

and

A/,- = Ji ~ f'j (4A.10)

while the condition (4A.2) becomes

(4A.11)

(4A.12)■’o,; — ■’i,; = s2ti = s3i,- = s4>i

or equivalently
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n,(5) = n;(6)

n,(7) = n;(8)

n,(2) + n,(7) = ni+1(3) + ni+1(5) = ni+3(4) + ni+J(5)

so,. = n.(3) + n,(4) + n,(5) + n;(6)

si,. = n,-+J(2) + n;+2(3) + n1+2(5) + n1+3(7)

a2,i — n.+i(2) + n,+i(4) + n1+i(6) + ni+1(7)

S3,; = n,+1(2) + n,+2(3) + n,+2(6) + n,+2(8)

s<,; = n.+i(2) + n,+1(4) + n,-+i(5) + n,+i(8)

(4A.13)

(4A.14)

(4A.15)

(4A.5)

(4A.6)

(4A.7)

(4A.8)

(4A.9)

EA/, =0 
;=O

of the variables Afj in favour of the others in 
independent and we find the solution

22 A/, Sj,. = 0 
j=o

We can use eq(4A.ll) to eliminate one 
eq(4A.4) so that the remaining A/,- are

If we choose two different distributions fj and fj and subtract the resulting expres­
sions for Nj we obtain the following consistency relation between the numbers n,:

In (4A.1) and (4A.13) to (4A.15) we have a total of 15 independent relations between 
the numbers n,-(g). With these, the partition sum given by (4.2.3) can be rewritten in 
the form of (4.2.8) by eliminating n,(l), n,(3) and n,(4) in favour of n,(2), n,(5)+n;(6) 
and n,(7) + n,(8), leaving only 24-15=9 independent variables: a;, 6; and Cj.

In appendix 4B we need the the relations between the numbers of vertex-pairs for 
the isotropic case where a; = a , !>, = b and c; = c for >=1,2,3. Summing (4A.1) and

7 = 0, ..,4



+

1

985 76

131210

Fig. 4.15 sible configurations

(4A.16)

4B The groundstates
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+ 11 +

(4A.17)

(4A.18)

(4A.19)

(4A.20)

♦ r

= n(3) + n(4) + n(5) + n(6)

+
+

2

on a hexagon (apart from symmetry).

i we obtain the consistency relations for the istropic case :

+ +
+

3

We restrict ourselves to the isotropic case and set a,- = a , 6, — b and c,- — 
c (or K; = K , Li = L and (?, = Q) for i = 1,2,3. In Fig. 4.6 we show six 
configurations A to F that are likely candidates for the groundstates. Assuming that 
these configurations are all the possible groundstates, the Figs. 4.7 and 4.8 give the 
zero temperature phase diagrams for Q > 0 and Q < 0 respectively. Let us now try to 
prove the correctness of these phase diagrams. The argumentation consists of three 
parts. In the first part we try establish the zero temperature phase diagram, using the 
consistency relations between the numbers of vertex-pairs as derived in appendix 4A. 
The consistency relations take into account the connectivity properties of the vertex­
pairs only to some extent. They are nessessary but not sufficient conditions for the

(4A.13) to (4A

f>(9) = 3Af

n(3) = n(4) 

n(5) = n(6) 

n(7) = n(8)

2n(2) + n(7) + n(8)



(4B.1)

and

(4B.2)2n(2) + n(7) + n(8)

Summing them we get

(4B.3)

(4B.4)(ca.1/3)2n(2)i,n(S)+n(6)cn(T)+n(8)in(l)+n(3)+n(4)W

74

En(,) = 3N

e? ■ 'vision for the 
, .1 figuration

= n(3) + n(4) + n(5) + n(6)

n(l) + 3n(2) + 2(n(7) + n(8)) = 3N

From the expression for the partition sum 
definition (4.2.14), we see that the weight W of

given by (4.2.8), together with the 
a configuration is proportional to

existence of a configuration. For this reason, for the groundstates B, E and F, the 
prove turns out to be incomplete. In the second part we employ a different strategy 
which proves to be useful! for establishing the groundstates B and E. For this, consider 
all possible configurations on a hexagon (see Fig. 4.15). Note that for configuration B 
and E in Fig. 4.6 every hexagon part of the lattice is in the same configuration (apart 
from symmetry). If this hexagon configuration has a lower energy then all others, 
the corresponding configuration B or E is the groundstate. With this additional 
argument, the complete zero temperature phase diagram can be found, except for 
the region in Fig. 4.8 where configuration F is assumed to be the groundstate. In the 
last part it will be made plausible (but not proven) that configuration F is indeed 
the only groundstate in this last region.

In the first part, all we need are the consistency relations and an 
weight of a configuration. In appendix 4A we have derived that for eve 
the numbers of vertex-pairs n(q) = n;(?) must obey the relation

For every point of the phase diagram, we will have to look for the values of n(2), 
n(5)+n(6), n(7)+n(8) and n(l)+n(3)+n(4) that will maximize the weight W, given 
the restrictions posed by the consistency relations. Since the consistency relations 
are not sufficient to imply the existence of a configuration, we will end by examining 
the realizability of the proposed solutions.

Because W ~ ln<3)+n(4)5n(5)+"(®)) while for the consistency relations only the total 
sum n(3)+n(4)4-n(5)+n(6) is relevant and not how the total sum is broken up into 
n(3)+n(4) and n(5)+n(6), it is favourable to set n(3)+n(4)=0, if b > 1, and to set



(■) 1

w
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weight is obtained when n(l)=3N and all other

(4B.5), except that the factors b are 
unchanged, except that n(5)+n(6) is

' consider all possible orderings of 
case b > 1 into the following four

n(5)+n(6)=o, if 6 < 1. First consider the case b > 1 and put n(3)+n(4)-0. Then we 
can eliminate n(5)+n(6) in favor of n(2) and n(7)+n(8), using (4B.2) and we have

W ~ (icx^)2n<J)(tc)n(T)+n(,)l"<*) (4B'5)

To decide which state will be the groundstate we 
the weights bex1/2, be and 1, thereby subdividing < 
subcases:

be, bex : Then the maximum 
n(q)’s are zero.

(ii) bex1! > 6c, 1 . this case we have to maximize n(2). According to (4B.3)
n(2) < A -2)=N only when n(l)=n(7)+n(8)=0. Substituting this into 
(4B.2) we n(5)+n(6)=2N (remember we put n(3)-f-n(4)=0). The only
way to imp -n this might be by making n(7) + n(8) > 0 for 6c > 1. But 
note that g n(7)+n(8) means decreasing n(2) (see (4B.3)) and at best
we can exci. two vertex-pairs of type q=2 for three vertex-pairs of type 
q=7,8 which wo;;d make the weight of the configuration lower. Thus n(2)=N, 
n(5)+n(6)=2N and all other n(q)’s zero gives the largest weight W for this case.

(iii) 6c > 1 > bex? : Ln this case we must maximize n(7)+n(8) and minimize n(2).
So we have n(7)+n(8)=3N/2 and n(2)=0 (see (4B.3)). Substituting this into 
(4B.2) we see that n(5)+n(6)=3N/2. Thus, having n(5)+n(6)=n(7)+n(8)= 
3N/2 and all other n(q)’s zero, the weight W obtains its largest value.

(iv) 6c > bex? > 1 : Again n(5)+n(6)=n(7)+n(8)=3N/2 is a good option. Improve­
ment is possible only by making n(2) > 0 although it makes n(7) 4- n(8) < 
3AT/2. From (4B.3) we see that we can exchange three vertex-pairs of type 
q=7,8 for two vertex-pairs of type q=2. If this increases the weight W [when 
(6CX1/2)4 > (6c)3 that is when bex2 > 1] we should eliminate all vertex-pairs 
of type q=7,8 in this way, obtaining n(2)=N and n(5)+n(6)=2N. Thus, for 
bex2 < 1, we should take n(5)4-n(6)=n(7)4-n(8)=3N/2 while for bex2 > 1, it is 
better to have n(2)=N and n(5)+n(6)=2N.

Next consider the case 6 < 1 and put n(5)+n(6)=0. Then the weight W becomes 

(ca.i)2n(2)(cjn(7)+n(8)1n(l)+n(3)+n(4) (4B.6)

Note that the weight W has the same form as 
missing, and that the consistency relations are



(vi)

< 1 and n(2)=N and.2
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one of the six configurations A to 
re- 

ri clear that 
Inspecting 

by configu- 
s maximum 

as will 
we show that, if we are to avoid 

so that, according to (4B.2) and (4B.3), 
(3)+n(4)+n(5)+n(6)=3N/2] the maximum for n(3)+n(4) is only N/2. 

case (viii) the ground- 
> 1 but if bx2 < 1 we stumble on the same problem as

If all the optimal solutions would correspond to
F as given in Fig. 4.6, we would be done. But remember that i - isistency 
lations do not imply the existence of a configuration. So it is m 
the solutions found for the above cases (i) - (viii) are actually real- 
Fig. 4.6 we see that the solutions for the cases (i) up to (vi) are r.. 
ration A,B,C or D. For case (vii) we found that the weight W rear 
value when n(3)+n(4)=n(7)+n(8)=3N/2. This turns out not to b • ible, 
be proven in the last part of this appendix. There 
vertex-pairs of type q=l,2 [n(l)=n(2)=0 
n(7)+n(8)=nl
So it is not clear which state will be the groundstate here. For 
state is configuration B if ex2 
in case (vii).

The dotted line in the Figs. 4.7 and 4.8 mark the regions that belong to case 
(vii) and case (viii) for ex2 > 1, the parts of the phase diagrams for which the 
groundstates are still unknown. In this second part of our argumentation we will 
prove the correctness of these parts of the phase diagrams as far as configuration B 
and E are concerned. Consider all possible configurations on a hexagon (see Fig. 4.15) 
and write the weight of a configuration of the system as a product of hexagon weights. 
Each site of the lattice will act as the central site of a hexagon ones. In this way 
every diamond (or vertex-pair) will be counted twice, so to each hexagon we will 
assign only half of its energy. There are only 13 different configuration possible on 
the hexagon (apart from symmetry) as shown in Fig. 4.15. The hexagon energy could 
be taken equal to the sum of the 6 diamonds that are present in it. Then there is no 
contribution from the K-interactions between the spins that lie on the boundary of the 
hexagon. To make the distribution of the total energy over the hexagons adjustable, 
we prefer to count the contribution of the K-interactions between the boundary spins

(v) 1 > c,cx^ : n(l)=3N.

cx^ > c, 1 : n(2)=N and n(3)+n(4)=2N.

(vii) c> 1 > cx^ : n(3)+n(4)=n(7)+n(8)=3N/2

(viii) c > cx$ > 1 : n(3)+n(4)=n(7)+n(8)=3N/2 for ex 
n(3)+n(4)=2N for ex2 < 1.

replaced by n(3)+n(4). Thus, analogous to the case b > 1 the weight W obtaines its 
maximum value when



groundstate£*

A

E

D,F

B

C,D

Table 4.1. Hexagon configurations and their weights.
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. J

c
F

-(3K+3L+3Q) 
-(2-f)K-L 
-K+L-Q 

-(l-2f)K-L+Q 
-(l-2f)K+L+3Q 

-fK+L 
fK+L 

-3(fK+L) 
(l-2f)K+L+Q 

K-L-Q 
K+L-3Q 
(2-3f)K-L 

3(l-2f)K-3L+3Q

hexagon 
configuration 

1
2
3
4
5
6
7
8
9
10
11
12
13

for a fraction f, and the contribution of the K-interactions that involve the central 
spin of the hexagon for a fraction (1-f) [ 0 < f < 1]. The hexagon energy e* is then 
given by

1 6 6 6
c* = ^[/<^aJ+i+(l-/)aoaJ-]+Z^a,a,+J+Q (4B’7)

where ao is the central spin and Cj for j = 1,... ,6 are the boundary spins. We have 
listed the hexagon energies in Table 4.1 together with the groundstates in which 
these hexagons are present.

If we choose f=2/3, hexagon configuration 3 has the lowest energy in the entire 
region assigned to configuration E in both the phase diagrams of Figs. 4.7 and 4.8. 
This proves that it is the correct groundstate for this region. Next consider the two 
regions where configuration B is assumed to be the groundstate. Both regions are 
divided into two parts by the dotted lines. We are concerned with the parts where it 
has not yet been proved that configuration B is the groundstate. If we choose f=l/3 
(when Q > 0) and f=2/5 (when Q < 0) we find that hexagon configuration 11 has 
the lowest energy for these parts. Thus configuration B is the groundstate in the 
whole region assigned to it in Figs 4.7 and 4.8.



5 5 5 5 55

R 9 9 9 9 99 9

5 5 5 5 5 5

5 5 5 5 5 5

R' 5 13 5 13 13 55

5 5 5 5 5 5
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Fig. 4.16. Two rows R and R' each of which consists of three layers of overlap­
ping hexagons. The numbers refer to the hexagon configurations in Fig. 4.15.
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Next consider all terms 
the terms that have 
group and choose a 
term of the group is 
terms leading to the  
neighbor Ising model the terms within each subgroup cancel each other. This is prove

figurations 5,9 and 11 
the rows 
be constructed. If 
the rows R and we obtain coni 
stack only row R' anc we obtain 
lowest energy so t 
configuration F 
two vertex-pairs

Finally, note 
reaches its maxi?

What remains is whether configuration F is correctly assigned in Fig. 4.8. This 
we can make plausible but not prove (since configuration F consists of two types of 
hexagon configurations we cannot use the same arguments as we used for configura­
tion B and E above). If we consider only the configurations that can be constructed 
out of the last six vertex-pairs of Fig. 4.3 then, amongst these, configuration F is 
the state with the lowest energy in this last region. For then, only the hexagon con- 

can occur and all possible states are obtained from stacking 
R and R', shown in Fig. 4.16. Thus only two possible groundstates can 

row R has the a lower energy then row R!, we should use only 
obtain configuration F and if rows R' has the lowest energy we 

configuration D. In this last region, row R has the 
figuration F is the best candidate for the groundstate. Since 
a larger energy then configuration B and E here, the first 

:«ably not so important in this part of the phase diagram. 
>)+n(4)=0 for row Rf. Therefore, if n(l)=n(2)=0, n(3)+n(4) 
Jue in configuration F where it is N/2, as was stated in the 

first part of our argumentation.

In this appendix we consider to what extent the terms, generated by expanding the 
rhs of (4.4.1), cancel. We will follow the arguments, given by Burgoyne [16], for 
the nearest neighbor Ising model on a square lattice. Apart from the difference in 
lattice (ours is hexagonal) we have the complication that the bend weights 6, 1.
We will not repeat the complete proof by Burgoyne but indicate only where slight 

modifications are needed.
First it is proved that the terms of the rhs with only single bonds add up to 

12 Since we work on a hexagonal lattice, there are no crossings (that means no 
complications with different path interpretations for a crossing as one has for the 

square lattice) and the statement is trivially true.
on the rhs which have overlapping bonds. Group together 

the same bonds the same number of times. Consider one such 
N-fold bond (N > 2). Remove this N-fold bond so that each 
a product of closed paths and a set of N path segments. The 
same path segments are collected in subgroups. For the nearest
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Chapter 5
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The Drift Velocity in Reptation Models for 
Electrophoresis

Electrophoresis is a widely used method in biology to separate charged polymers, 
e.g. DNA molecules, according to length. The polymers are inserted into a gel (itself 
a neutral polymer network in a solution) and pulled through the gel by an applied 
electric field. For weak fields and not too long polymers the mobility is inversely 
proportional to the polymer’s length. For longer polymers or larger field strengths, 
the mobility becomes length independent and the resolution is lost [1].

The motion of the polymers is highly restricted by the polymer network (the 
gel) in which they are embedded. For dense polymer systems Edwards and Doi [2] 
envisaged each polymer as confined to a tube, formed by the surrounding polymers. 
De Gennes [3] assumed that a polymer within a tube moves by diffusion of stored 
length —local accumulations of the polymer in the form of loops— along the polymer 
chain (reptation). The tubes themselves are assumed to be static since the motion 
of the confining network is slow compared to that of a single polymer.

Lerman and Frisch [4] pointed out that these ideas can explain the length sepa­
ration which is observed in electrophoresis. They extended the scaling arguments of 
de Gennes to include the self-avoiding walk character of the tubes and found that 
the drift velocity v scales with the polymer’s length N as v ~ N2l/~2. Here v is 
the scaling exponent for the average end-to-end distance R : < R2 >~ N2l/. For 
dimension d = 3, v ~ 3/5 and for a random walk v = 1/2 in all dimensions.

As the polymer creeps through the gel, it slowly renews the tube by occupying new 
gel pores at one end of the tube and abandoning tube sections at the other end. The
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head of the polymer, that choses the new tube segments, is biased by the electric field. 

Thus the tubes become oriented in the field direction. Assuming biased-random-walk 

configurations for the tubes it follows that v ~ (E/N)(l + cE2N) with E the electric 

field strengh and c a constant [5, 6]. The orientation contribution is third order in 

the field. When the third order term dominates the drift velocity becomes length 

independent as was oberserved in experiments.

Longer polymers can still be separated, using a recently developed pulsed field 

technique [7, 8, 9, 10, 11]. The pulse cycle in this technique consists of a field pulse 

in one direction followed by a shorter pulse in the reversed direction. When applied 

to polymers of a given length TV, a minimum in the drift velocity is observed as a 

function of the cycle duration. The cycle duration fmjn at which the minimum occurs 
is proportional to An even better length separation is obtained when the field

direction is period . eanged by 90 or 120 degrees.

To explain the icld experiments, fluctuations in the tube length are impor­
tant. Although a c<- ■ nee of the reptation idea, these fluctuations were discarded

in the early model.- • ,.,t focused on the effect of tube orientation on the drift ve­

locity. In these mode?.- ‘ was assumed that the polymer-as-a-whole slides through 

the tube under the influence of the total tangential force exerted by the electric field. 

Without a variable number of length defects, the tube length is fixed. New models 

were invented to allow the fluctuations in the tube length. The polymer was rep­
resented by a bead-spring chain [9] (a Rouse chain with entropic spring constants) 

or the tube was viewed as a connected chain of gel pores, each capable of housing 
more than one repton [10, 11]. A repton is a piece of the polymer of the order of the 

persistence length.
In experiments [12] and in computer simulations of the new models [9, 10, 11, 13], 

the following cycle was observed in the polymer’s motion. Local bunching (a local 

accumulation of length defects) leads to a partial or complete collapse of the polymer 
when the trailing end of the polymer catches up with the slower moving bunched 

part. Out of this collapsed state forms a A-shaped configuration as both ends of 

the polymer move simultaneously in the same direction (the field direction). The 

polymer, hooked around a gel obstacle, first fully stretches and then starts sliding off 

the obstacle with the longer end being pulled more strongly than the shorter end. 

When free from the obstacle, the stretched chain relaxes and the cycle can begin 

again.
Of course such a cycle of motion would be strongly disrupted by a pulsed field 

with a comparable cycle duration. Usually the dip in the drift velocity as a function
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. no more than two reptons 
realistic because in exper-

as follows [8, 9, 10, 11]. Either, in the collapsed 
a

zed into cells, 
5.1). The cells 
?olymer is seen 

string of charged reptons, i.e. pieces of the polymer of the oi ihe persistence 
length. Each of the cells that make up the channel (tube) is c;.. ed by at least 
one repton, expressing the connectivity of the polymer. There is no upper limit to 
the amount of reptons that may occupy a single cell. More than one repton in a cell 
means that the polymer has stored some of its length there. The excess reptons can 
move from cell to cell without mutual tension, according to transition probabilities 
(biased in the field direction), allowing the stored length to diffuse along the channel. 
In the interior of the chain the motion of the reptons is confined to the tube. Only 
through the movements of its endpoints can the polymer retreat from a cell or occupy 
a new cell. In this way the polymer can renew the channel configuration. The model 
makes the assumptions that there is no free sliding around gel fibers and that there 
are no lateral excursions of the chain through the sides of the tube. This limits its 
validity to low field strengths.

We will extend the model with the additional rule that 
may occupy the same cell. This makes the model more i 
iments the average pore size is of the same order as the persistence length. The 
reptons will hinder one another in their movements (excluded volume effects within 
a channel) and the mobility of the polymer is reduced. In the language of occupation 
numbers, introduced in the next section, the Rubinstein-Duke model (RD-model), 
allowing an arbitrary number of reptons in a cell, displays Bose statistics while the 
modified version, with 0 or 1 movable reptons per cell, displays Fermi statistics. In 
the following we will refer to the two versions of the model as the boson and fermion

of the cycle duration is explained
state a polymer is trapped in a nearly zero-velocity state, in which it looks like 
ball that constantly unravels and rewinds (A—►o-+V—>o—►A—►•••)• more
general, an asymmetry in the tube configurations is observed (like hookes at the tail) 
and a resulting asymmetry in the polymer distribution within the tube, which must 
be reversed when the field is reversed. The time trev after which the steady state 
behavior is restored is proportional to N, the same length dependence as for the cycle 
duration at which the dip in the mobility occurs.

The model investigated in this paper was developed by Rubinstein and Duke 
[10, 14] to study the effects of the length fluctuations of the ' be. It is a strict 
implementation of the original reptation idea by de Gennes, d ng the motion 
as driven diffusion of stored length along the chain. Space is 
such that neighboring cells are ordered in the field direction (s 
represent the gel pores and their size equals the average pore size 
as a
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In the RD-model, in arbitrary dimension d, space is discretized into d-dimensional 
cubes (cells) with edge length a. The electric field is along the direction of the body 
diagonal of the cubes such that neighboring cells are ordered in the direction of 
the field. The model is made one-dimensional by projecting the cell positions of the 
reptons onto the field direction, i.e. a polymer configuration is specified by giving the

ines the drift velocity to linear order in the field and the 
calculated exactly for both versions of the RD-model. The 
of the model are a consequence of the endpoint motion and

.:°re.
■iiie of this chapter. In the first two sections the model is 
er equation governing the model is given. In the stationary 

state, the solution .iaracterized by the constant currents of reptons within the 
different channels ami in the third section an expression for the drift velocity is given 
in terms of these currents. The full stationary state solution of the master equation 
for the RD(b)-model and an expansion of the drift velocity to third order in the 
applied electric field are presented in section 5.4. In section 5.5 the drift velocity 
for the RD(f)-model is calculated to linear order in the field by taking moments 
of the master equation. For small fields and long polymers there exists a scaling 
regime and in section 5.6 the scaling function is computed by a numerical finite- 
size-scaling analysis for the boson case. In the last section the effect of the periodic 
boundary condition on the value of the diffusion constant and the behavior of the 
scaling function is discussed, on the basis of numerical calculations done on both 

models with free endpoint motion.

case or the RD(b) and RD(f)-model.
All the effects mentioned above have been observed in computer simulations of the 

RB(b)-model [10]. Since the model is probably the simplest realization of reptation 
it is worth while to try and solve it analytically. Widom et al. [15] have worked out 
an explicit statistical mechanical formulation of the model. But solving it is difficult 
due to the endpoint motion (which couples the different channels) and because of the 
strong correlations which extend from one end of the chain to the other. In order 
to simplify the mathematics we will study mainly the model with periodic boundary 
condition. The periodic boundary condition decouples the transport of reptons along 
the chain from the endpoint motion. The results strongly suggest that it is transport 
of reptons alone, that determi] 
diffusion constan i 
more intriging p 
will not be add re

Here follows 
introduced and



Vi = (».+i - Xi)/a' (5.2.1)

(5.2.2)

a' = a/\/d (5.2.3)

B = exp(e/2) (5.2.4)
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= exp(eEa/2kBT)

projected cell positions x; of the reptons which make up the polymer. Alternatively 
we can specify the configuration of a polymer of N reptons by its (N — 1) internal 
coordinates, which are the differences

When there is no move connecting state y' to state y, W^Ij/) is zero.
In the RD(f)-model we restrict the maximum number of reptons that may occupy 

a cell to two, since the possibility of storing large numbers of reptons in one cell is 
clearly unphysical. Accordingly all moves that give rise to forbidden configurations 
are also excluded.

and its center of mass position

1 N

(see Fig. 5.2). Neighboring reptons lie within the same or in D i’1' Coring cells. So, 
for

the internal coordinates can only assume the values 1,-1 or 0 dep on whether 
the next repton is in an upward or downward cell or in the same ' he previous 
repton. When there are two or more reptons in a cell, the first and last can move to an 
adjacent cell that is already occupied by a repton. In this way the reptons will diffuse 
along the channel already traced out by the polymer. The two reptons at the end 
of the chain have more options for making a move. When the first (last) cell of the 
channel is occupied by just one repton, the end repton can only move by retreating 
into the deeper lying cell of the channel, making the channel shorter. When there are 
more reptons in the the cell, the end repton can occupy a new cell, not yet part of the 
channel and can do so by chosing one of the d upward or d downward moves. This 
will make the channel longer. So, it is through the movements of the end reptons 
that the polymer can renew the cell configuration of the channel.

The transition probabilities W(j/|y') for a transition from state y' to state y is 
wB when it involves an upward move and wB~l for a downward move. Here w is a 
hopping frequency for the reptons and B is a bias due to the applied electic field; it 
is the Boltzmann factor for the change in electric potential energy
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Fig. 5.2. The two representations y and (n,s) for the configuration of Fig. 5.1
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Fig. 5.1. 1., 
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configuration of the chain of reptons 
ernal coordinates of the state 
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(5.2.5)

5.3 The master equation

The master equation for the joint probability P(z,y;t) in the y representation is

(5.3.1)
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dP(x,y;t) 
dt = - ^y,y'),y'-,t) - W(!Z'|!,)P(x, y, t)J

En, = JV-L,

with A(y, yz) = ia*/N depending on whether going from state y' to state y involves 
an upward (+) or a downward (—) move. For the fermion case the sum over states 
is more restricted and the matrix W^(y|y#) is more sparse than for the boson case.

and the dynamics is confined to redistributing the zeroes over the cells.
Because of the way we count nj, there are states which are distinct in the y 

representation and yet have the same (n, s) representation. Since these states can 
be transformed into one another through cyclic permutations, corresponding to a 
renumbering of the reptons in the chain, these states will have the same weight. 
Therefore we must count each state in the (n, s) representation N/L times. (Repeated 
cyclic permutation runs the ^-sequence through N different states while at the same 
time it runs through only L different (n, s)-sequences, thus one state in the (n,s) 
representation corresponds to N/L states in the y representation.)

Periodic boundary conditions substantially simplify the problem. We add one 
extra internal coordinate yN = — xN and then repeat by identifying yx+i =
Vii Vn+2 — y? etc. Note that the periodicity is only in the internal coordinates 
and in general With the endpoints removed, every move changes the
configuration y by an interchange y, <-> yt+1 at some value of i, where one of the two 
internal coordinates is zero and the other is not (see Fig. 5.2). This makes it usefull 
to define the sequence si, Sj,..., with st- = il as the subset of j/i,..., yw which are 
different from zero. The s, are the internal coordinates of the repton pairs lying in 
neighboring cells, they give the shape of the channel. In addition we need to specify 
the number of zeroes in each cell, so we define the occupation numbers n, as the 
number of zero y's, preceding s,-. The zeroes after Sf, are included in accordance 
with the periodic boundary condition. The transition rules imp the sequence 
5» is an invariant of motion, as is the total number of zeroes



is solved by the Fourier trans-

(5.3.2)

find for the fourier

(5.3.3)

with

(5.3.4)

where 6 is the k>

(5.3.5)') exp[jgA(y, j/]W) =

(5.3.6)

(5.3.7)

(5.3.8)

(5.3.9)

89

P0(y) = y>(3)P(n,3)/(EP(n,a)]EV’Wl) 
n *

= 52 
v'

A,(y,/) = fz,(>■'/) -
v"

-delta and

Performing the operation exp(iqx) on 
components

dpAy,t)
dt

the master equation we

The dependence on the center of mass position x 
formation

The formal solutk ■ 5.3.3) is given by

PM = EAm V><n)(!/) ezp(A<”>t) 
n

with Aj”) and the eigenvalues and eigenfunctions of A,:

= A<">^">(»)
V

All eigenvalues must be zero or negative, otherwise the exponential in (5.3.6) will grow 
indefinitely. Conservation of probability implies that Ag has an eigenvalue Aj°) = 0 for 
9 = 0 (with the left eigenvector (1,1,..., 1) as can be seen by summing (5.3.4) over 
y for q = 0). The corresponding normalized eigenfunction V’o \v) ’s stationary 

solution Po(y) given by

E Wly) W = E W)
V y'

since the other contributions to P(x, y\ t) decay exponentially with time.
When we impose a periodic boundary condition the dynamics is reduced to 

changes in the cell occupation numbers n,-. The s-sequence is invariant i.e. the 
different channels are not coupled and we have independent solutions for each s.

Therefore we can write



(5.3.10)

where the step functions

(5.3.11)fl(n;) =

(5.3.12)

P(n1,...,n(_1,ni

5.4 The drift velocity

(5.4.1)
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with
equation.

The probability for a zero moving from cell i to cell 14-1 is wB1' and for the reverse 
process it is wB~*'. Thus, for the RD(b)-model with periodic boundary conditions, 
the master equation (5.3.8) reads

L
J2[e(n,)wB*’ + e(ni+i)wB-*i]P(n1,..., nL) =

L
J2[fl(n,)wB-,iP(nl,...,ni - l,n,+1 + l,...,nL)+

®(r»i+i)wB*'P(ni,..., nj + l,n;a; nt)]

0, n,- = 0
1, n. > 1

an arbitrary positive amplitude and P(n, s) the solution of the master

’»i+l>n«+2> • ■ • > nl)

make sure that the occupation numbers do not become negative ihey select the 
possible moves. (In the master equations for the periodic chains we suppress the 
s-dependence of the probabilities P(n,s).)

For the RD(f)-model n,- = 0,1 and the master equation becomes

L
- n,+i)wB*' 4- ni+1(l - ni)wB~9i]P(nu..., nL) =

L
22[n,(l - 4- ni+1(l - n^wB*]

where the factors n,(nt-+1) and nt+1(l — n,) select the possible moves i.e. they make 
sure that there is a zero to move and that the receiving cell is not yet occupied. After 
a zero has been exchanged between cell i and cell i + 1 the change in the occupation 
numbers is simply an interchange of the numbers n; and n,+1 which we denoted in 

(5.3.12) by n{ <—♦ n,-+1.

V *

The drift velocity v is defined as 

d dP(x,y,t)



(5.4.2)

(5.4.3)

(5.4.4)

with
(5.4.5)

(5.4.6)

(5.4.7)

(5.4.9)
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If we substitute for dP(x, y; t)/dt the expression given by the master equation (5.3.1) 

we find that

= 52 v: 
n

For the boson cast

u = £v(!')-po(!/;i)

a1 L
»»(«) = 3<

with

*••’)/12 p(n,s) =< v(n-s) >» 
n

h. velocity in state (n,s) is given by

vk(n,s) = ^£2[fl(n,)B'‘ _ ff(n,+1)B—)]s.-

The first term under the summation gives the contribution of the reptons moving 
from cell i to cell i 4- 1. The step function checks whether there is a movable repton 
present in cell i. When s, = 4-1 the move is upwards, contributing a term a'wB/N 
to V6(rt,s), in accordance with (5.4.3), and when s,- = —1 the move is downwards, 
contributing a term —a'wB^/N. Likewise the second term gives the contribution of 
the reptons moving from cell ii 4- 1 back to cell i. If we substitute (5.4.6) into (5.4.5) 

we find

is the average of the velocity

v(y) = 52 &(y',y)w(y'W
v'

in state y. When the periodic boundary condition is imposed and we restrict oursel 

to the stationary state,, we may use (5.3.9) and write

« = 52 52 ■<•’)/52 52 </>(«)=< u(s) >•
L -I,...,-; L L

4,.(a) = w[< 0(n,-) >„ B*'- < «(ni+l) >„ B «]

Jt,;(a) is the net flow of reptons (zeroes) from cell i to cell«+1. It is the const 
current of reptons that runs through the periodic chain and thus is independent 

of i as can be seen as follows. The master e<
form

dP
= gain term — loss term

di



(5.4.10)

(5.4.11)Jt.i-i(s) = Jb.M

(5.4.12)

(5.4.13)

(5.4.14)

(5.4.15)Jz(s)

5.5 The solution of the master equation for the boson case

(5.3.10)

(5.5.1)
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= w[< n,(l - n,+1) >n B“' — < ni+i(l - n.) >n B '•]

The master equation for the boson case

P(n>-’) = Ilrf'
Inserting this ansatz into the master equation yields

f>(n,)[wB'- + wB--1] = ^tf(ni)[wB-(p.+1/p1) + wB‘-> (p.-r/p.)] (5-5-2)

»=1 1=1

can be solved by the ansatz

with Ji,;(s) given by (5.4.8). Thus (5.4.7) becomes 
c

v(s) = 77J(3)
with

the expression for the rep ton current in the fermion case.

the end-to-end distance of the polymer in the direction of the c field.
Similarly we find for the fermion case

a'w L
u/(n>3) = 52[ni(l - ni+i)B,f - n,-+1(l - n,-)B-'')]*,

where now the factors n(l — n) select the movable reptons. Again the average of the 
terms in (5.4.14) between [ ] is independent of the cell i and v/(s) is given by (5.4.12) 
with

Muliplying dP/dt by n< and summing over n gives

T I \ T ! \>n= Jj(*) - /i-l(j»)

In the stationary state dP/dt = 0 and J,_i(s) = Jj(s) = J(s). Indeed, if we perform 
the operation nj on the master equation for the stationary state, i.e taking the 
first moment of (5.3.10), we find



Pi-iwB*'-' — p,wB *•-' = p,wB“' — p,+lwB “ (5.5.3)

(5.5.4)Pi =

(5.5.5)a*,,

(5.5.6)

(5.5.7)

(5.5.8)

(see (5.2.5))

Qn.lW = I2p(n>s) = Slip"1- 
n n I

(5.5.9)
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which is obviously fullfilled when the parts between [ ] 
when the p, satisfy

i > k 
i = k 
i < k

1,

-1,

The value of C 
will choose

52 ^(n.)/’(n, a)/ 52 p(n>J) = ^Qn-iM/Qn.^3) 
n n

with Qn,l(s) given by the constraint sum

are equal for all «, that is,

zero field (B = 1), and work with unnormalized probabilities

can be determined by normalizing the probabilities P(n,s) but we

C = ^(Bs - B~s)

such that pi = 1 for
P(n,s).

We return to the calculation of the drift velocity (5.4.12) within a given channel. 
The averages < fl(n,) >n, in the expression for the current (5.4.8), can now be 
evaluated. The sum over the occupation numbers must be performed under the 
constraint (5.2.5) which we remove by introducing, under the sum, the kronecker 
delta 6n_l n, in the integral representation

^JV-L.E. n. = ^7 / zn-l+i

where the contour runs counter clockwise around z = 0. Using this representation 
the summations can be carried out and we find

52 B^~

:a atii given by

This is the equivalent of (5.4.11), with (5.4.8) [or (5.4.15)] as the current, when there 
is only one zero hopping through the chain. It allows us to express all the p,- in 
terms of pi and the value of this constant current, say C, and by using the periodic 
boundary condition p£+1 = pi, pi can also be related to C. In this way we obtain

C
w(3s - B~s)

with the



If we think about the p/ as Boltzmann factors and write them as

(5.5.10)

the canonical

(5.5.11)= 52 ezp(-£ 52 E'ni)- 
n I

(5.5.12)A>

n, given bywith p the chemical potential and E the grand canonical par .

(5.5.13)

(5.5.14)z(s) = Qn-iM/QnjJs).

which is fixed by the average number of bosons (zeroes),

(5.5.15)

(5.5.16)
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= erp(/3p)

/ 1 -p;z(s)’

in the grand canonical description.
The repton current (5.4.8) is the same as the single repton current (5.5.3) with 

Pi replaced by < fl(n;) >„. Therefore Jj(s) is the single repton current (5.5.6) times 
z(s), the i independent proportionality constant between < 0(n,) >n and pt. Using 
(5.4.12) and (5.4.4) we have for the drift velocity

= = 52ezP(-/312(£' - p)m) = 7------ , A/p---- v
n i i 1 - exp^-^Ei - p);

So we see that the ratio of the two Q's in (5.5.8) is equal to the activity z(s)
of the ideal Bose gas

OPP i

v‘ = HGT < z(a)v(^S - B s) >, 
■IV Ju

which is as far as we can get without specifying the amplitudes t/>(s).
The natural choice for V>(s) is to give equal a priori probabilities to all configura­

tions y, which is the zero field solution for open chains. (For zero field W(j/, y') is sym­
metric and the right eigenvector is equal to the left eigenvector which is (1,1,..., 1)>

with Ei the "energy level" associated with cell I, we recognize Qni as 
partition sum for an ideal Bose gas of N — L bosons:

p, = e-^‘

Another way to lift the restriction (5.2.5) on the possible n configurations is to use 
the grand canonical description. Then we obtain for the avers./

< ®(n.) >„= i 52 0(n,)ezp(-0 ^,(.Ei — p)n,) = pie'
— n I



(5.5.17)Ms') =

(5.5.18)= 1.

(5.5.19)

(5.5.20)

with

(5.5.21)9(N,L,e) =

e + O(e3). (5.5.22)1 -vj =

may take only the maximum term

(5.5.23)»b =
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N- 1
L — 1

1
“ (2d+l)x

E 
L

E 
L

N-L
N- 1

1 
(2d + l)*

1 " 12£2JV £)(1 N1 27vD

EF> •) =
L '

a’w
»b =

1 N
(2d+l)" L

The factor N/L accounts for the difference in counting of the y and (n, s) configura­
tions, which we mentioned at the end of section 5.2. It is multiplied by the number 
of ways to distribute N - L zeroes over L cells. The first factor normalizes the i/i(s) 
such that

see just below (5.3.7).) Thus 4>(s) is proportional to the number of y configurations 
that correspond to the channel s. For the boson case this yields

(r)

In the fin 
±1 d tini'. 
downwarp 
drift velo'

a'w / 1 \
(2d+l)(jV —1) V " (2d + I)""1) '

However, for the leading term in (5.5.20) one 
L = 2d/V/(2d +1) which yields 

a’w 
(2d + 1)N

1
N (2d+ 1)N

The average over s is still a formidable task as z(s) has an intricate dependence 
on s. For small electric fields (see (5.2.4)) we can perform a systematic expansion in 
powers of c. In the appendix 5A we show that to third order in e, is given by

( Nl ) (2d)tJ(JV,£,e)a'w 1
= N (2d + l)"

ion we used that 1 = (2d)L, that is, each s,- can take on the values 
d-dimensional lattice since in each cell one can choose between d 

d upward neighbors. Thus we arrive at the final expression for the

1
12

The remaining sum over L can only be evaluated in closed form for the linear order 
contribution,



5.6 The diffusion constant

igh the Einstein

(5.6.1)

(5.6.2)1 -

(5.6.4)

(5.6.5)Sc

(5.6.6)
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The diffusion constant D 
relation,

< n,(l - n,+1) >„=
/ £-2
I N-L-l

L
N — L

L
N — L

can be obtained from the drift velocity throu;

we find to lowest order in e

J/(s) = w

■oven in [17]. Using (5.5.22) we find for the boson

1 
(2d+l)"

(AT - L)(2L - N)
£(L-1)

Summing (5.6.3) over i, the first term drops out and

(N - £)(2£ - N)
L2(L — 1)

Inserting (5.6.5) into (5.4.12) and using equal a priori probabilities for all configura­
tions y,

D
which is generally pr<

(°Tw
(2d + 1)N(N - 1)

For the fermion case the problem with just 
same as
probability. Although
an expansion for the anil velocity in powers oi €, by taking mo 
equation. To obtain v to linear order in the field, it is enough to t . 
of the master equation, yielding the repton current (5.4.15). E>? 
in this expression gives

Jz(s) - w[< n, - n,+1 >„ +s,- < n,(l - ni+1) + n;+1(l - n.) >. -j (5.6.3) 

To linear order in the field, we need to calculate the second average only to zeroth 
order in the field. To this order each state is equally probable and we simply have 
to count states. For the RD(f)-model the total number of states for a given channel 
{si,..., sl} is LI/((TV — L)\(2L — TV)!) which is the number of ways to pick N — L 
cells (the ones containing a zero) out of L. So < n,-(l — n,+i) >n, the number of 
states with one zero in cell i and none in cell * + 1, divided by the total number of 
states, is

case that

(2d+l) \N ) 
one movable rept.on is of course the 

(5.5.3) but the product property (5.5.1) does not apply o the many repton 
an explicit expression for P(n,s) is lackin . an still make

expansion for the drift velocity in powers of e, by taking mo- f the master
first moment 
B = 1 +c/2



in (5.4.4)

S2El=[JV/2] E....
(^) (5.6.7)

El=[N/2) 1

with

(5.6.8)[7V/2] =

(5.6.9)

(5.6.10)

with

(5.6.11)xln(x) — (1 — z)/n(l — z) — (2x — l)/n(2z — 1) + xln(2d)9(x)

(5.6.12)D,
a

d(2d 4- 3)([1 +
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L
N-L

Df = w

(1 - zp)(2z0 - 1) 
Xo

we find that the diffusion constant (5.6.1) is given by

E»i...

:d)L

[ N/2, N is even
1 (7V + l)/2, yV is odd

The sums ov are easy to compute

S2 = L(2d)L

N(N-L)(2L-N)
L3(L-1)

N f V
L\N-L)

and for large r. we can use Stirling’s approximation for the factorials and replace the 
summations c\ ir L by integrations over x = L/N. This yields

2 /i/a dx [(1 - x)(2x - l)/z3] exp[Afy(z)]
/1/2 dx x-1 exp[Ng(x)]

When N is large, the main contribution of the integral comes from a narrow region 
around x0 = 1/2(1 + ^/d/(d + 2)) where g(x) is maximum, (^'(x0) = 0), and

d(2d + 3)’1,/2 “ 1)W (n) ~(2d + 3)W(jv)

Note that Dj < Di> because of the restriction on the motion by the fermion exclusion 
principle. When d is large the difference between the two diffusion constants becomes 
small. This is because the configurational entropy of the long channels is larger than 
that of the short ones (since each cell has 2d neighboring cells). Therefore, the 
behavior of the chains which are stretched over many cells will dominate and the 
low density of zeroes will make the difference between the two kinds of statistics 
unimportant. But the result may be very different when the entropy, due to the 
many ways that the n reptons within a cell can be positioned, is taken into account.



5.7 The scaling function

(5.7.1)

(5.7.2)

(5.7.3)
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/approxl

This moment method works also for the boson case, but it is essential that one 
can take moments at fixed channels s. In appendix 5B we the method apply the to 
the master equation for open chains in the y-language, which does yields a number 
of interesting relations, but an explicit expression for the diffusion constant is not 
obtained. Applying the operation y, on the master equation gives the drift velocity 
v in terms of < yi >„ and < yj >„ (see (5B.9)). Performing the operation 
on the master equation yields an expression for the current of reptons J along the 
chain. The current is zero because after the full y-average as many reptons move to 
the right as to the left. In one form the relation J = 0 is a relation between < yi >» 
and < yj >„. Thus we can eliminate < yj >y in favor of < yi >, ■ d write the drift 
velocity v in terms of < y, >y, the orientation of the first link polymer chain 
(see (5B.18)). To obtain the diffusion constant one still needs ate the 1/7V
correction of < yi >„.

and b -- ezp(^x/6).
The true scaling function can easily be obtained numerically, starting from the 

expression for the drift velocity (5.5.19). One should take long polymers and small 
electric fields to obtain accurate results. To keep the computer time within reasonable 
limits, we have calculated the drift velocity for chains up to N = 30. Therefore finite- 
size effects have to be added to the above scaling form

3Nvt , 1 , . , 1— = /(x) + <7(x)- + h(z)—+ ...

aw(-rt \V = IN /(X)
For the RD(b)-model with periodic boundary condition the expansion of the drift 
velocity to third order in 6 confirms the scaling hypothesis (see (5.5.23)). An approx­
imate evaluation of the drift velocity for the whole scaling regime [16] also yields a 
scaling form (5.7.1) with the scaling function

_ [°° dcr aexp(—a2)(6a — b~°) 
W " /-oo exp(-^/2)(bP - 6-m)

In the remainder of this chapter we set d = 1. Widom et al. [15] have proposed a 
scaling form for the drift velocity in the limit € —► 0, N —► oo while keeping x = TVe2 
fixed :
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5.8 The RD-model with free endpoint motion
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Fig. !te scaling function /(x) for the Rubinstein-Duke model with peri­
odic bou-.-lary condition and equal probabilities for the channels. The points 
have been obtained by finite size scaling and the full curve is an approximation.

o 
o

Does the imposed periodic boundary condition change the diffusion constant and 
the scaling function or are the results obtained also correct for the model with free 
endpoint motion, in the long chain limit? The free endpoint motion couples the 
different channels and because of the bias due to the field, the polymers are oriented

We computed vb for N = 5,..., 30 (and matching values for 6, given x). For each three 
consecutive values of TV = i, i4-1, i4-2 we calculated fi(x),gi(x) and /i,(x). Of the thus 
obtained values /,(x) i = 5,... 28, /asC*) is our best estimate for f(x). The error 
is estimated from the way the series fi(x) converges. In Fig. 5.3 we plot /approx(^) 
given by (5.7.2) together with the numerical values ^(x). For the periodic chain 
with the amplitudes V>b(5) given by (5.5.17), the scaling function is monotonically 
decreasing, because, as the chain gets longer or the field is larger, the reptons get 
trapped in the peaks of the A-shaped parts of the channel (a long sequence of y, = 4-1 
followed by a sequence of y,- = —1). This probably is an artefact of the model because 
free sliding around gel fibers is excluded in this local-hopping model [18].

.6 

s



put this effect in by hand, by

^(s) = (5.8.1)

(5.8.2)
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in the field direction. In a provisional way we can 
choosing for the amplitudes (in the boson case)

to third order in e which should be compared with (5.5.23). Thus f, values of
x the increase in mobility due to the orientation of the polymers is important
than the slowing down due to the A-shaped configurations. If for large .dues of x 
the scaling function is dominated by the third order term, the drift velocity becomes 
independent of N, as is observed in experiments. The above shows that it might be 
possible to incorporate the main effects of the endpoint motion by a properly chosen 
channel statistics.

In Table 5.1 we show how the limiting values -1/12 in (5.5.23) and +1/12 in 
(5.8.2) for the coefficient Cj of the linear term in the expansion of the scaling function, 
f(x) = 1 + C]X + ..., are approached as the chains get longer. Note that in the first 
colum the convergence to the asymptotic value is very slow. But when orientation 
effects are included in the amplitudes iZ’s(.s) the value +1/12 is reached already for 
quite small polymers.

The diffusion constant is not affected by the orientation because the field depen­
dence of 0i(s) makes no contribution to the first order term of the drift velocity. 
But the periodic boundary condition can still affect the diffusion constant because it 
reduces the mobility of the end reptons. If the end reptons are not allowed to move 
at all, the drift velocity of the chain must be zero. Of course this is true for any 
repton in the chain. The drift velocity seems to be limited by the slowest repton 
and it is probable that for a chain with free endpoints, the mobility is limited by the 
motion of the internal reptons, because they are more restricted in there movements

awe. 1
Vt= 37V(1 + l2l + ---)

Each time the last repton moves into a new cell, a new s,- is added to the s-squence 
with probability ~ B‘l. After renewing the whole channel this way the new config­
uration has an amplitude ~ fl, B*' = Bs. Similarly the first repton can choose the 
new channel but then the amplitude ~ n. B~“' = B~s. Adding the two we roughly 
estimate that V>(s) ~ (Bs + B~s). Thus the more oriented polymers get a larger 
weight. They also move faster since ut(s) ~ S(Bs — B~s) (5.5.16) and an increase in 
the mobility is to be expected. If we substitute (5.8.1) into (5.5.16) ■ vc find



N

50

300
400
500
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Table 5.1. The coefficient ci as a function of N for the RD(b)-model with 
periodic boundary conditions, with and without orientation correction.

100
200

80
90

20
30
40

60
70

5
6
7
8
9
10

-7.835
-8.084
-8.167
-8.208
-8.233

6.472
7.238
7.642
7.865
7.995
8.077
8.281
8.311
8.321
8.326
8.328
8.329
8.330
8.331
8.331
8.333
8.333
8.333
8.333

-7.341
-7.505
-7.623
-7.711
-7.780

ci(10-’) 
with 

orientation 
correction

c>(10-’) 
without 

orientation 
correction

-0.256
-1.113
-1.887
-2.554
-3.116
-3.590
-5.886
-6.689
-7.096
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Fig. 5.4. The scaled diffusion coefficient versus the number of reptons for the 
fermion case with free endpoint motion. The values have been determined by 
a direct solution of the master equation for chains up to N = 12 and by a 
Monte Carlo simulation for larger systems. The error bars give the standard 
deviations and the dotted line is the assymtotic value N2D/a2w = 
for the periodic chain.

XI.

than the endpoints. If so, treating the end reptons as internal reptons, as the peri­
odic boundary condition does, will not diminish the velocity of the polymer and the 
diffusion constant is the same as for the periodic chain.

To give a more satisfactory answer to the above questions we have computed 
numerically the drift velocity and diffusion constant for polymers with free endpoint 
motion. For the short chains (N < 12) we have used the following iterative method.



Cl

periodic

Table 5.2. The coefficient Ci for open chains as compared to periodic chains.

(5.8.3)in*_oo[Z +

(5.8.4)
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-0.011
-0.031

-0.018 
-0.25

fermion 
periodic

boson
open 

-0.062 
-0.060 
0.115

open 
-0.021 
0.114 
0.40

number of 
internal 

coordinates 
3 
6 
9

with I th 
we take t 
easily be ■■ 
and (5.4.2; have for the diffusion constant

D = lira'to^F 52 v(y)po(y)

and the results for the fermion case are plotted in Fig. 5.4. The values for the longer 
chains have been obtained by Monte Carlo simulations. Whether D = 72p.6.c. = 
3V3 — 5 for N —> oo cannot really be decided because for N > 50 the error bars 
become too large. The same is true in the boson case for which Widom et al. have 
carried out the Monte Carlo simulations [15]. But since in both cases the value Dp.b,c. is 
approached fairly well, it strongly suggests that indeed D = Dp,b,c. for N —» oo. This 
would mean that the diffusion constant is unaffected by the process of tube renewal 
and is determined only by the transport of reptons along the chain (for N 1).

For small chains the iterative method is accurate enough to calculate the coeffi­
cient Cj of the linear term in the expansion of the scaling function /(x) — 14-Ci® + .... 
In Table 5.2 we give Ci for different values of TV, in the boson- and fermion case, both 
with and without periodic boundary conditions. In both cases Ci is negative for peri­
odic chains and becomes positive for free chains above a certain length. In the fermion 
case the enhancement of the drift velocity due to the orientation of the polymers seems 
to be more pronounced. For the free bose chain of length N = 10, C\ = 0.115 which 
should be compared with Ci = 0.07995 (see Table 5.1) for the periodic bose chain of 
length N = 9 with orientation correction included.

Because all eigenvalues of Ao are zero or negative

\ iAo(y,y')]t^trial(y') 
I min I

matrix and the most negative eigenvalue of Ao. For Ptrial(v) 
o field solution (Po(y)]c=o = (1, • ■ •, l)/3"-1. The value for Amin can 

d by repeatedly applying the matrix Ao to Fjrjai(y). Using (5.6.1)
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In its most basic results the RD-model is similar to the tube models of Lumpkin, 
Dejardin and Zimm, and Slater and Noolandi [5]. The form of the drift velocity 
v ~ awc(l 4- Cit^N'j/N is the same for all three models since it is a consequence of 
restricting the motion to a tube. Assuming that the tube configuration is random­
walk like, a 1/N dependence in linear field order results. The N independent third 
order term is a consequence of the stretching (orientation) of the tube in the presence 
of an electric field, due to the biased way in which the endpoints renew the channel.

The motion of the polymers within the tube on the other hand is quite different in 
the three models. The RD-model is a strict implementation of the original reptation 
idea by de Gennes [3], describing the motion as driven diffusion ofs -..red length along 
the chain. In the other two models, the polymer-as-a-whole slid; igh the tube 
(collective motion) under the influence of the total tangential lc 
electric field. This sliding motion excludes fluctuations in the tub- 
when the model is extended to the recently developed pulsed- 
Also the delicate interplay between internal and endpoint me:.'. 
RD-model, is not considered.

In the reptation model we distinguish two processes, (1) the transport of reptons 
from one end of the chain to the other and (2) the motion of the endpoints, acting as 
the source and sink of reptons, while at the same time renewing the tube. The two 
processes are strongly correlated because the transport of reptons depends on the 
shape of the tube, which is determined by the endpoint motion, while the movements 
of the endpoints depend on the rate at which the length defects diffuse away from 
the source or arrive at the sink. Yet, we have boldly decoupled this delicate interplay 
by imposing a periodic boundary condition. This way the tranport of reptons in a 
tube can be studied, isolated from the endpoint motion. In each channel, which are 
now decoupled, there exists a constant current of reptons J and the drift velocity 
in the channel is simply a'(S/N)Jt the effective distance in the field direction per 
repton times the current. The drift velocity to linear order in the field, averaged 
over all channels, is compared to that of the full problem, i.e. with endpoint mo­
tion. The open-chain value, which has been obtained numerically, comes very close 
the periodic-chain value for long polymers. This suggests that it is the transport of 
reptons along the chain that determines the linear order term of the drift velocity 
(diffusion constant). For higher orders in the field one must take the endpoint motion 
into in account. We can do that as follows. Because the periodic boundary condition
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5A Expansion of the drift velocity in power of e

(5A.1)

(5A.2)

11(1 + ip,)”' = 
I

(5A.3)

105

considered in the RD(f)-model. It affects the proportiality constant 
ponent of the N dependence in the diffusion constant. The diffusion 
ated shows a reduction in the mobility, but not much. The boson and 
e the two extremes regarding to the amount of polymer that fits into 
hould give an indication as to how the drift velocity depends on the 

size.

derive formula (5.5.20). For small electric fields (B ► 1) we can
We start

decouples the channels, one is free to choose the weight given to each channel con­
tribution in the average over channels. Thus carefully choosing the channel statistics 
one may hope to incorporate the main effects of the endpoint motion. One of these 
effects is the orientation of the polymer, which contributes to the third order in the 
field. We have shown that a natural choice yields promising results. Presently we 
are studying the extent to which a properly chosen channel statistics can yield the 
correct scaling function.

Also the mutual exclusion of polymers can approximately be separated into two 
parts. First, the mutual exclusion of the tubes, which can also be incorporated in 
the channel statistics (see Lerman and Frisch [4]). It will modify the exponent in 
v ~ . Second, the excluded volume effect for the reptons moving within a tube.
This ha< 
but not 
constan 
fermion 
a gel pc- 
average

In this appendix we
perform a systematic expansion of the drift velocity (5.5.19) in powers of e.
by expanding z(s). For pi we obtain from (5.5.4) and (5.5.6) the series 

e t2 _pi = 1 + ttf 52 + rr 52 *k.iakjsi+i-isi+i-i + • • • =1 +
i,k ij,k

and we may write (5.5.9) as

Qn,l =

with <>„ the average over all n satisfying (5.2.5). The product is expanded as

1 + n^P‘ + 52 n'nm<5pi<5pm 
I (l.m)

+ 52n,(n| “ + ■



The averages over the n, are readily calculated,

(5A.4)I / m,

Consequently

(5A.5)Qnj, =

(5A.6)

So

(5A.7)

(5A.8)z(s)

(5A.9)

(5A.10)

(5A.11)

(5A.12)

(5A.13)
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AT — 1 
£-1

< >'= = (AT — L)/L,

< n(nm >'= 6, = (AT - L)(N — L — !)/[£(£ + 1)],

< ni(n( — 1) >'= 2bj.

we obtain for Qn.l,

1 + 52 ^P' + 2^

we have the sums

no linear

52 + 52 SPi +
. 1 / I

From (5A.1) and the matrix a*,, given by (5.5.5) one sees that IZi^Pi has 
term in e,

(Z,-2)^4,.+252i.J (2d)L, 
•J /

(5A.7). The diagonal terms 6,-,- of

where (Z, m) stands for a pair I / m.

S(Bs - B~s) = S*e + + ...,

and the sum over s has to be carried out. Typically

52 S4 = £(3£ — 2)(2d)L,
•

52 152
• \ *•>

where stands for the terms of either (5A.6) or 
(5A.6) and (5A.7) yield

L W
J, 52 ak,iam,i = |(£2 - 1).

t3 
52^pi= st 52 + • • ■

I ij.k,l

we may ignore its square in (5A.5) to order 62. The other re- s 
c2

52 sPi = nr 52 m jSi+|_iSj+(_i + ...

For the ratio z(s) we obtain from (5A.5) and (5A.4)

= (^4) 0 - z^6p' - + - ■) ■
which, with (5A.6) and (5A.7), is accurate to order c2. This must be multiplied by 
the expansion



(5A.14)

rX'-rX’-s’-df))' (5A.15)

5B Open chains

}P(y) =

]P(s.-i <-» y.)+
t=2

(5B.1)

(5B.2)» = 2,..JV — 1Vj-l = VJ

with

v

(5B.5)
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(5B.3)

(5B.4)

an invariant of motion. Therefore we work in 
tat ion. The master equation for a chain of N reptons is given by

over i and j gives only a contribution for (5A.6),

are present

For an chain the channel is not 
the y r

= < ViB*' + d(l — yl)(B — B *) >„
»> = < (1 - y^B*- (1 - yfyj-iB-*-'

for j = 2,..., N — 1 and

N-l

22 K1 - yLMB
(1 - = 1) + B-1P(yi = -1)]+
(1 - y^B-'P^ = 1) + BP(yN^ = -1)]+ 
dylB^'P^ = 0) + d^jB^-PivN-i = 0)

VN =< -VN-1B *"-1

+ 1/L1(1 - y?)B'

yLMB^+yLi(i-y^B-^-']+
[(1 - !/?) + (1 - y^MB + B-1) + y^B* + ^B"’"'-

Summing the master equation over y yield the same expression on both sides of the 
equality sign, which is a consequence of the conservation of probability. The first 
moment of the master equation, obtained by applying the operation Vi on (5B.1), 
gives the the constant velocity of the reptons in the direction of the field

while the total sum of bij

t 52 -1).

Now all the ingredients for the evaluation of the sum over s in (5.5.19) 
and we find

^2(3)5(Bs-B-s) =



(5B.6)

(5B.7)

with

(5B.8)6 =

(5B.9)

(5B.10)Ji-x = Ji

with

v

for j = 2,..., N — 1 and

(5B.13)

(5B.14)= F(-yN_1,-yw_2,...,-yi)

and thus

(5B.15)

for any function F(y). Applying (5B.15) to J; we see that J; = and therefore

(5B.16)J, = 0 j =
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(5B.11)

(5B.12)

Jn =<

B-B-1
B+B-1 

which makes

A = <y?B«-d(l-y’)(B + B-1)>,

< F(yi) >,=< F(-yN_i) >y

The value of this current is zero, because after averaging over all y as many reptons 
move to the right as to the left. This can be seen by using the left-right symmetry, 
that is, draw a vertical line through the middle of Fig. 5.2 and and mirror the chain 
in this line. This symmetry implies that the probability distribution obeys

v/a'w = vi = i(B + B ')[< y> >„ +6{2d — (2d — 1)

We can find another relation between < yx >y and < yj >., ■ forming the
operation y? on (5B.1). It yields the constant current of rep

The total drift velocity (5.4.2) is simply

, . a'w .
v =< v(y) >,= — > . Vj = a wvj 

5=1

Since y = 0, ±1 we can write

yB> = |(B + B-’)y[l + ytf]

yl >J]



(5B.17)

(5B.18)<5 + (1 +

(5B.19)< !/> >,= e

btain the diffusion constant one has to know the O(l/N) correction of
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In de statistische mechanica tracht men het macroscopisch (grootschalig) gedrag van 
een fys >?h systeem te verklaren vanuit de microscopische situatie, die wordt gegeven 
door d stenen (atomen, moleculen, etc.) en hun onderlinge wisselwerking. Het 

.mica” verwijst naar de bewegingswetten die de tijdsevolutie van het 
icroscopisch niveau bepalen. Gelukkig is het volgen van de continue 
op microscopisch niveau niet nodig voor een adquate beschrijving van 
cheeigenschappen. In plaats daarvan start men met de basis aanname, 
van een macroscopische grootheid gelijk is aan zijn gemiddelde waarde, 

over alle (voor het systeem toegankelijke) micro- 
scopische toestanden. Met ”statistisch” wordt dan ook niets anders bedoeld dan de 
eenvoudigste van alle gebruikte statistische bewerkingen: de middeling. Maar zelfs als 
het probleem is teruggebracht tot het nemen van gemiddelden, blijft het moeilijk om- 
dat het aantal termen in de middeling zo astronomisch groot is. Alleen als de termen 
betrekkelijk eenvoudige reeksen vormen is de berekening uiteindelijk uitvoerbaar. Ex- 
acte oplossingen beperken zich derhalve tot eenvoudige model systemen, die hooguit 
recht doen aan de meest essentiele kenmerken van het oorspronkelijke probleem.

In dit proefschrift worden twee onderwerpen bestudeerd aan de hand van derge- 
lijke model systemen. Het eerste onderwerp betreft de grenslaag tussen twee coexiste- 
rende fasen. Een klassiek voorbeeld hiervan is de grenslaag in een vloeistof-damp 
systeem. In de grenslaag varieert de dichtheid continu van de vloeistof- naar de damp 
waarde omdat een abrupte overgang in de dichtheid wordt vervaagd door thermische 
fluctuates in de dichtheid, soortgelijk aan die welke zich voordoen in de bulkfasen. 
Op deze wijze ontstaat een intrinsiek dichtheidsprofiel met een eindige breedte. Een 
verdere uitsmering van dit profiel over een veel bredere laag is het resultaat van de 
golvende bewegingen van het intrinsieke profiel (de capillaire golven). Het zijn de 
eindigheid van het grensoppervlak en de onderdrukking van de capillaire golven door 
de zwaartekracht, die voorkomen dat de golven met lange golflengten leiden tot een 
divergentie in de dikte van de grenslaag.
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Een eenvoudig model voor het vloeistof-damp systeem is het Ising model. Dit is 
een roostermodel met op iedere rooster punt een spin die slechts twee standen kan 
aannemen, op of neer. De spins wisselwerken alleen met hun naaste buren. Voor 
temperaturen beneden de kritieke temperatuur gaan de spins bij voorkeur parallel 
staan (spontane magnetisatie). De twee coexisterende fasen zijn derhalve, een fase 
waarin de spins gemiddeld omhoog wijzen (positieve magnetisatie) en een fase waarin 
de spins gemiddeld omlaag wijzen (negatieve magnetisatie). In hoofdstuk 2 wordt het 
model opgelost voor een 1-dimensionale keten van spins in de aanwezigheid van een 
lineair varierend magnetisch veld. Dit veld is analoog aan het zwaartekrachtsveld 
in het vloeistof-damp systeem. In een 1-dimensionale keten vindt geen spontane 
fase scheiding plaats, maar wordt deze gemduceerd door het lineair varierend veld. 
Voor hoge temperaturen en kleine gradienten in het magnet-sch veld, volgt de locale 
magnetisatie nauwkeurig de variatie in de sterkte van het 'ioca-d veld gedrag). 
Naarmate de temperatuur daalt en/of de veld gradient tot rdt het gedrag
steeds minder locaal t.g.v. de capilaire golven, die bier sle< huivingen zijn
van het grenspunt tussen de twee fasen. De resultaten v deken met de
theorie van Fisk en Widom die een goede benadering blijk behalve daar
waar de oplossing gedommeerd wordt door de capillaire gol

In hogere dimensies is het Ising model, in aanwezigheid v~.,n eei? ■ bieair varierend 
magnetisch veld, niet oplosbaar en een verdere vereenvoudiging is noodzakelijk. Deze 
vereenvoudiging wordt gezocht in een beschrijving van de grenslaag, los van de twee 
bulkfasen. In principe is dit mogelijk door de microscopische details uit te integreren 
tot op een lengte schaal, groter dan de gemiddelde omvang van de bulk fluctuaties. Dit 
leidt tot een capillaire-golf theorie waarin alleen de golfbewegingen van de grenslaag 
resteren. De microscopische details van het probleem komen nu nog slechts tot uiting 
via twee parameters in de capillaire-golf hamiltoniaan. Dat zijn de stijfheid (die 
voor een isotroop systeem gelijk is aan de oppervlakte spanning) en de minimaal 
toegestane golflengte, die van de orde van de bulk correlatie lengte is. Het afleiden 
van een uitdrukking van deze twee parameters uit de microscopische interacties, staat 
gelijk aan het oplossen van het volledige probleem en is dus al even moeilijk.

Een spin model op een rooster waarin alleen de capillaire-golf fluctuaties in reke- 
ning worden gebracht, maar dan op iedere lengte schaal, dus ook op microscopisch 
niveau, is het SOS model. Voor dit model kan de connectie tussen de macroscopische 
eigenschappen en de microscopische detail voiledig worden uitgewerkt. In hoofdstuk 
3 wordt een algemeen SOS model bestudeerd. Het blijkt dat op macroscopisch niveau 
de microscopische details alleen tot uitdrukking komen in de stijfheid.
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In het laatste hoofdstuk wordt 

reptatie modellen voor 
niek in biologic voor het scheiden 

moleci. 

gel (ee 
niet al 

de pol ?n. Voor langere polymeren en/of 

mobiliteii . lafhankelijk van de lengte

Het 2D-Ising model zonder magnetisch veld is wel oplosbaar. De oplossing me­
thode van Vdovichenko leidt zelfs tot een ontkoppeling van de bulk- en grenslaag 

bijdragen aan de vrije energie. Dit maakt het mogelijk de oppervlakte spanning van 

de grenslaag op eenvoudige wijze te berekenen. In hoofdstuk 4 gebruiken we deze 

methode om de vrije energie en de oppervlakte spanning uit te rekenen voor een 
Ising model met naaste- en volgende-buur interacties. De oplossing is exact onder 

gegeven restricties (de vrije fermionen oplossing) en is een redelijke benadering voor 
een veel groter bereik van de koppelingsconstanten.

een geheel ander onderwerp bestudeerd, namelijk, 

electrophorese. Electrophorese is een veel gebruikte tech­

van uniform geladen polymeren (zoals DNA 

naar lengte. De DNA moleculen worden door een electrisch veld door een 

••werk van neutrale polymeren) been getrokken. Voor zwakke velden en 

oge polymeren is de mobiliteit omgekeerd evenredig met de lengte van 
een sterker electrisch veld wordt de 

en gaat de resolutie verloren.

Dit ze< •. complexe systeem wordt tot een betrekkelijk eenvoudig model gereduceerd 

op grond van de volgende overwegingen. De kluwe van polymeren die de gel vormt 
zit vol met kleine porien Een DNA molecuul in de gel strekt zich uit over een aan- 

tal van deze porien die tesamen een kanaal vormen. De bewegingsvrijheid van het 
lange molecuul is in hoge mate beperkt tot bewegingen in de lengte richting van het 

kanaal. Het molecuul kan zich gedeeltelijk ophopen in een of meet van de porien. 

Deze stukjes opgeslagen lengte (lussen in het DNA molecuul) kunnen door thermi- 

sche beweging door het kanaal diffunderen, bij voorkeur in de richting van het veld. 
Deze vorm van voortbewegen wordt reptatie genoemd vanwege de gelijkenis met de 

verplaatsingswijze van sommige soorten reptielen zoals slangen.

In het model wordt de ruimte opgedeeld in een regelmatig rooster van cellen die 
de porien representeren. Het DNA molecuul wordt voorgesteld als een streng van 

geladen reptonen. Reptonen zijn stukjes van het DNA molecuul van een zodanige 

lengte dat het molecuul op deze schaal volledig flexibel is. De reptonen die een 

DNA molecuul vormen, liggen in een serie aaneengesloten cellen (het kanaal). Twee 

opeenvolgende reptonen bevinden zich in dezelfde cel of in twee aangrenzende cellen, 
hetgeen de connectiviteit van het polymeer tot uitdrukking brengt. Meerdere rep­

tonen in een cel betekent dat het polymeer lengte heeft opgeslagen in de cel in de 

vorm van lussen. Deze extra reptonen kunnen van cel naar cel springen, met over- 

gangswaarschijnlijkheden waarin de voorkeursrichting t.g.v. het veld tot uitdrukking
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komt. Verder zijn er de volgende twee restricties op de beweging van het molecuul. 
De connectiviteit moet behouden blijven en voor de interne reptonen (alle behalve 
de twee eind reptonen) is de bewegingsvrijheid beperkt tot het kanaal. Alleen via de 
beweging van de eind reptonen kan het kanaal langzaam worden vernieuwd, doordat 
nieuwe cellen worden bezet en oude cellen worden verlaten.

Dit leid tot de bovengenoemde lengte afhankelijkheid van de mobiliteit. Het verlies 
aan resolutie voor langere polymeren en/of een sterker electrisch veld is het gevolg van 
de orientatie van de moleculen in het veld. In het laatste hoofstuk wordt aangetoond 
dat de mobiliteit van de polymeren tot op eerste orde in het veld, onafhankelijk is 
van de processen die het kanaal vemieuwen. Dit maakt een exacte berekening van de 
mobiliteit tot op laagste orde in het veld mogelijk.
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dit proefschrift

4. De universele verklaring

plaatsing

H. Lim et al., J. Chem. Phys. 92 (1990) 709
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van de rechten van de mens zou men beter kunnen 
herformuleren als een universele verklaring van de plichten van de mens.

Hoofdstuk 5 van

3. Reptatie modellen voor electrophorese waarin de reptonen met elkaar verbonden 
zijn d.m.v. veren met een entropische oorsprong, zijn niet in overeenstemming 
met de experimentele situatie, waarin de gemiddelde porie grootte in de gel van 
de orde van de persistentielengte is.

5. Speculatieve psychologische theorieen horen niet thuis in het onderwijspakket 
van een beroepsopleiding.

2. Als men de effecten van de vrije eindpuntbeweging van de polymeren in het 
Rubinstein-Duke model in rekening wil brengen d.m.v. een goed gekozen waar- 
schijnlijkheidsverdeling over de kanalen (in een berekening met periodieke rand- 
voorwaarden) is een orientatiecorrectie alleen onvoldoende.

1. De verklaring die Noolandi et al. geven voor het geobserveerde minimum in 
de mobiliteit als functie van de polymeerlengte (in constant-veld electropho­
rese experimenten) berust op de beperktheid van hun model, waarin alleen de 
collectieve beweging van het polymeer in beschouwing wordt genomen.

6. De marge tussen nog te goed zijn om in aanmerking te komen voor 
in een bejaardentehuis of te slecht, is wel erg klein.



7.

8.

9.

Een holistische wereld zal nooit worden begrepen.10.

11.

12.

Andre Kooiman, maart 1993.

i io nd

De voortvarendheid waarmee videocamera bezittend Nederland de kinderjaren 
van haar kroost vastlegt, belooft een gouden toekomst voor psychologisch on- 
derzoek.

vele kinderen dat Sinterklaas eigenlijk de 
grote rol bij de ontkerkelijking in Nederland.

T. W. Burkhardt, in Real-Space Renormalization, Vol. 
30, uit Topics in Current Physics, T. W. Burkhardt en 
J. M. J. van Leeuwen, eds. (Springer-Verlag, Berlin, 
1982).

j H.’T I

..

De verbijsterende ontdekking van 
buurman is, speelt mogelijk een

Het komt de leesbaarheid van de nederlandse wet ten goede als de typografische 
weergave daarvan een afspiegeling vormt van de structuur van de wet.

Het real-space renormalisatieschema van Migdal voor het Ising model, waarin 
koppelingen worden verschoven, kan men interpreteren als bestaande uit een 
gedeeltelijke ontkoppeling van de spins gecombineerd met een beperking op de 
toegelaten configuraties. De toestandsom wordt zodoende benaderd door het 
maken van twee elkaar grotendeels compenserende fouten.

De diffusie constante die in hoofdstuk 5 van dit proefschrift wordt afgeleid voor 
het Rubinstein-Duke model is onafhankelijk van de richting van het electrisch 
veld t.o.v. de roosterassen.
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