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INTRODUCTION AND SUMMARY

The main purpose of this thesis is to investigate the statistical properties
of several co-operative systems. The first three chapters are devoted to a
discussion of ferro- and antiferromagnetic spin systems. Although the
properties of these systems are qualitatively well described by the molecular
field theory, there exist a number of important discrepancies between
theory and experiment. Since the main assumption underlying this theory
is that the spins of different atoms are statistically independent of each
other, it is evident that for the construction of a better approximation one
has to take into account correlations between different spins. In chapter I
the statistical theory of a ferromagnetic spin system with isotropic coupling
between nearest neighbour spins is formulated in such a way that correla­
tions between neighbouring spins can be introduced in a simple way. To
this end the partition function of the spin system is expressed in terms of a
pair density matrix of a nearest neighbour pair of spins. With the help of
this pair density matrix an effective Hamiltonian He for a spin pair is-
introduced, and it is shown that He contains only two coupling terms and a
term representing an effective field acting on the two spins of the pair. The
molecular field approximation is obtained by assuming that the coupling
terms are zero. A next approximation is obtained by assuming that the
effective coupling is equal to the actual isotropic coupling between the
spins, which is shown to correspond to the limiting behaviour of He for high
temperatures. This “constant coupling” approximation constitutes a
straightforward generalization of the well-known quasi-chemical approxi­
mation for an Ising spin system to the case of Heisenberg coupling. The
thermodynamic properties of the spin system, and in particular the critical
data, are calculated on the basis of this constant coupling approximation
and numerical results are given for various lattices. It is shown that in this
theory the difficulty of an anti-Curie point does not occur.

In chapter II the theory developed in chapter I is extended to an anti­
ferromagnetic spin system with a two-sublattice structure and isotropic
nearest neighbour coupling. Both the case of a parallel and of a perpendicular
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external field are discussed. In contradistinction to the ferromagnetic case
the contant coupling approximation for an antiferromagnetic spin system
leads to the appearance of an anti-Curie point.

The application of the theory to ferro- and antiferromagnetic spin systems
with Ising coupling is given in chapter III. In this case, the effective Hamil­
tonian contains only one coupling term. The constant coupling approxi­
mation which is obtained by assuming that this effective Ising coupling is
constant is shown to be equivalent to the quasi-chemical approximation.
For an antiferromagnetic spin system with an external field of arbitrary
magnitude in the preferred direction this approximation is worked out in
detail. The critical data are evaluated, and an explicit formula is derived
for the critical curve in the B vs T  plane.

In chapter IV the properties of a monolayer of particles, adsorbed on a
surface with a two-sublattice structure, with a positive interaction energy
(repulsive force) between neighbouring particles, are investigated by making
use of the formal relation between the partition function of such a monolayer
and that of an antiferromagnetic Ising spin system. On the basis of the
constant coupling approximation it is shown that for temperatures lower
than a certain critical temperature the adsorption isotherms show two
discontinuities corresponding to transitions between the disordered state
and a state with long-range order. The heat of adsorption is calculated as a
function of the relative covering of the surface.

In chapter V the ground state of a one-dimensional crystal with anti­
ferromagnetic coupling is investigated. Generalizing a procedure introduced
by Slater and Hulthén, the energy of this state is approximated by means of
a variational method. On the basis of this approximation it is found that, in
contradiction to the predictions of the molecular field theory, the ground
state of a chain with isotropic coupling shows no antiferromagnetic long-
range order. If the coupling has uniaxial anisotropy, however, long-range
order occurs if the anisotropy is large enough. The critical value of the
anisotropy is calculated and the anisotropy dependence of various quantities
is investigated.
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Chapter I

CONSTANT COUPLING APPROXIMATION FOR
HEISENBERG FERROMAGNETISM

§ 1. Introduction. Although the molecular field theory gives a good quali­
tative description of the statistical properties of ferro- and antiferromagnetic
spin systems, there exist a number of important discrepancies between
theory and experiment. As appears from the usual derivation of the molecu­
lar field theory from the Heisenberg model »j, the main assumption under­
lying this theory is that the spins of different atoms are statistically inde­
pendent of each other. The result is that in this approximation the short-
range order and the specific heat vanish above the Curie temperature
contrary to the experimental findings. It is the purpose of this chapter
to formulate the statistical theory of a ferromagnetic spin system with Hei­
senberg coupling between nearest neighbouring spins in such a way that the
correlation between neighbouring spins can be taken into account in a simple
way. To this end the partition function of the spin system is expressed in
terms of the pair density matrix of a pair of nearest neighbouring spins (§ 2)
m analogy to the expression of the partition function of a gas in terms of thé
pair distribution function. This pair density matrix is then used to define an
effective Hamiltonian for a pair of nearest neighbouring spins, and this
effective Hamiltonian is shown to be of a particularly simple form, which
makes it a convenient quantity to work with. With the help of this form­
alism, the molecular field approximation can be derived in a natural way (§3),
while the “constant coupling” approximation (§ 4) yields a straightforward
generalization to the present case of Heisenberg interaction of G u g g e n-
h e i m ’s 2) well-known quasi-chemical approximation for an Ising spin
system. The details of this approximation are worked out in §§ 5, 6 and 7,
and the extension of the theory to greater spin values is discussed in § 8. In
§ 9 the present theory is compared to other theories, in particular to the
closely related cluster method of P. R. W e i s s 2). Finally, in § 10, some
remarks are made about possible improvements of the theory.
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§ 2. General theory. The Hamiltonian of a lattice of N  spins \  with a ferro­
magnetic Heisenberg coupling between nearest neighbouring spins is given
by

H 2J £ <m> S< • S, -  2(iB 2 , S {„ (1)

where S <M> is a sum over all pairs of nearest neighbours; ƒ is the positive
coupling constant; S, is the vector spin operator, in units %, of the spin,
H is the magnetic moment per spin; B is the external magnetic field in the
^-direction. The density operator of the canonical ensemble describing the
equilibrium properties of the spin system (l)'is given by

q =  Z-1 exp (— pH), (2)

where p =  1 fkT  and Z  is the partition function
Z =  Tr [exp (— /iff)] =  S, exp (— PEt), (3)

in which Tr indicates the trace, the sum runs over all the eigenstates I of the
Hamiltonian (1), and E l is the energy of the state I. The states I can be di­
vided into N  +  1 groups corresponding to the N  +  1 possible values of the
z-component of the total spin, Si S<„ which is a constant of the motion with
the eigenvalues m = -  ±N, Instead of m we shall
use the long-range order parameter S defined by

S =  2m/N, (4)

which in the limit N  -* oo can assume all values between — 1 and +1. Be­
cause S is an exact quantum number, we can write the partition function
(3) in the form ...

Z =  Ss Zs, (5)

where the sum runs over all values of S, and where Zs is given by

Zs =  S', exp [— pEj), (6)

in which the sum runs over all the eigenstates /o f (1) belonging to the given
value S of the long-range order parameter (4). Let S* {p, B) be that va ue
of S which, for given values of p and B, makes (6) a maximum. In the limit
N  -*■ oo, we may then put in the usual way:

In Z =  In Zs., (7)

where care should be taken that in the limit of vanishing external field one
first performs the limit N ^  oo and then makes B tend to zero, ensuring in
this way that only the states for which S >  0 are taken into account. From
the definition (6) of Zs, we see that

9 (In Zs)ldp =  - E { P ,  S), (8)
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where E is the average value, at the temperature T  =  1 jkfi, of the energy
(1) over all the states with a given value of S:

5) =  Zg1 Si E t exp (— 0E,). (9)

Following G u g g e n h e i m 2) we integrate eq. (8) at constant S  (and B)
over /?, giving

In Zs(fi) =  -  f i  E(fi', S) dfi’ +  In g(S), (10)

where use has been made of the fact that at infinitely high temperature
(/? =  0) the partition function (6) is equal to the number g(S) of states
belonging to the value 5 of the parameter (4):

2V!
Zs{0) =g(S) =  [*JV(1 +  S)]! f tN(  1 -  5)]! ' (11)

From eqs. (7) and (10) we see that the partition function Z  of the spin system
can be calculated if the function E((i, S) is known.

We shall now show that the average energy E(fi, S) can be expressed in
terms of three quantities relating to a pair of nearest neighbouring spins,
which have a simple physical significance. To this end we consider the density
operator (2) in a representation in which all the S iz are diagonal, i.e. we use as
basic functions the spin product functions [sx . . . .  sjy>, where each s{ can
assume the two values Consider an operator Q of the form

Q  =  £ < w >  ( 12)

where Qfj acts only on the nearest neighbouring spins i and j. The average
value Q(S) of Q, in the ensemble (2), over the states belonging to a given
value of S can be written in the form:

fi(S) =  Tr' (qD)/Tr' q = \Nz  Tr (e(2) Q{2]), (13)

where g(2) is given by

<V2 I 1̂ 2̂  ̂=  (Z[Zs) <SiS2S3 • . . Sy |g| . . .SyyJ (14)

Tr' means the trace over all the states corresponding to the given value of
S, z is the co-ordination number, the superscript (R) indicates the restrictive
condition

— iN S  — (sx +  s2), (15)

and the subscripts 1 and 2 refer to a definite pair of nearest neighbouring
spins. In virtue of the symmetry properties of the Hamiltonian (1), the
matrix (14) is the same for all pairs of nearest neighbouring spins, as can
easily be proved.

The 4 x 4  matrix g<2) defined by (14) can be interpreted as the density
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matrix of an ensemble of pairs of spins. We can then introduce an effective
energy of the pair of spins described by g(2) by putting

e<2> =  exp (— pHe)/Tr [exp (— /?#*)]. (16)

The effective Hamiltonian H e defined by (16) depends in general para­
metrically on @ and S, but not on B since in the right-hand member of eq.
(14) the factors depending on B drop out. The most general form of H e can be
found by the following argument. Since Siz commutes with H, all the
matrix elements <sx . . .  sn\q\ s[ . . .  s,y'> of q for which s{ ^  s{ vanish
so that, according to the definition (14) of g(2), we have

<sxs2 |e(2,| s[s2> =  0, unless s1 +  s2 =  s[ +  s2. (17)

In virtue of the equivalence of all lattice sites, and hence of the two lattice
sites involved in (14), we further have the symmetry relation

<sxs2 |g(2>| s;s;> =  < v i le<2)! V iX  (18)
From (17) and (18) it follows that, apart from an uninteresting constant
term, the effective Hamiltonian must be of the following simple form:

H e = -  2A1S1 • S2 -  2ri2SXzS2z -  2fiA9 (Su  + S2z), (19)

in which the quantities A f are functions of /S and S, but not of B, which, at
least in principle, can be determined from the Hamiltonian (1) by means
of the relations (2), (14) and (16). The quantities A x and A 2 are effective
coupling constants, and the quantity A z is an effective field of the nature of
the Weiss molecular field. _

With the help of the expression (13) for the average value Ü of an operator
of the form (12), we can now express the average energy E defined by (9)
in terms of the quantities A t occurring in (19). The Hamiltonian (1) is of the
form (12) with H m given by

tf<2> =  -  2 /  Sx • S2 -  (2fiB/z) (Su  +  S J ,  (20)

and according to (13) we then have
E =  H  =  \Nz  Tr (e<2> H<2>). (21)

Because H (2) and H e commute, the operators p(2) a n d # (2) also commute, and
we can therefore introduce a representation in which q{2) and H m are simul­
taneously diagonal. Writing out the trace in (21) in this representation the
basic functions of which are the singlet and triplet functions of the spin pair,
to be denoted by |0> and |1>, }2>, |3> respectively, we get:

E — %Nz 2jL0 fv Ev, (22)
where the eigenvalues Ev of Hm are given by

E0 =  I / ;  E1 =  — \ J  — 2fiBjz\ (23)
E2 =  -  17; Es =  -  u  + 2fiB/z,
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and where, according to (16), the eigenvalues ƒ„ of g(2) are equal to

/, =  exp ( -  0e„)/2v exp (— /toj, (24)

the £v being the eigenvalues of the effective Hamiltonian (19), which are
given by

eo 1-41 -f- i-42> ei =  i-4^ .
e2 — — i ^ i  +  i 4 2; e3 =  — \A 1 — \A 2 +  2fiAz.

We have thus succeeded in expressing in eq. (22) the average energy E
defined by (9), and hence, according to (7) and (10), the partition function (3)
of the spin system, in terms of the coefficients A ( occurring in the effective
Hamiltonian (19). Since we have two relations between the /„, namely the
normalizing relation

S ,/, =  1, (26)
which is a consequence of the definition (14) of gi2>, and the relation

Sit S2t =  fi f3 =  S, (27)
which can be obtained by calculating by means of (13) the average value, for
the given value of S, of S, Sit, we need to give only two additional relations
between the ƒ„ to determine these quantities, and hence the partition
function (3), completely. For instance, we can give A^fi, S) and A 2(fi, S) ; the
value of A a(fi, S) is then determined by eqs. (24) —(27). Examples will be
given in the subsequent sections.

Finally we remark that the expression (22) for E may be written in a form
that is completely analogous to the equation

Els =  -  \NzJa  — N/uBS,

expressing the average energy EIb of an Ising spin system in terms of the
long-range order parameter 5 and the short-range order parameter a (cf. eq.
(III. 2)). To this end we introduce the quantity

T — 4SX • S2 =  A +  /2 +  /3 — 3/0. (28)
Making use of (27) and (28) the expression (22) can be written in the form

E  =  -  \N zJ t -  N/xBS, (29)

which shows that the quantity r is the analogue in the Heisenberg case of
the short-range order parameter a used in the Ising case (cf. § 7f).

§ 3. The molecular field approximation. The molecular field approximation
can be obtained in the present formalism by assuming that the effective
coupling constants A 1 and A 2 appearing in (19) are zero:

A x = 0 ; A 2 =  0. (30)
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The two relations (30) together with the relations (26) and (27) determine the
/„ completely, and it is not necessary to make any assumptions about the
coefficient A 3 in (19). Eq. (30) is the precise formulation of the usual state­
ment that in the molecular field approximation the spins are assumed to
be statistically independent, or that the fluctuations in the local field are
neglected. From (30) we find:

/0 =  /a =  i(l -  S>); Zx - i O + S ) * ;  /» =  i 0  -  S)2. (31)

The quantity (28) is then equal to
t =  S2, (32)

from which we see again that r is the analogue in the Heisenberg case of
the short-range order parameter a in the Ising case for which eq. (32) is the
Bragg-Williams equation.

Substituting (32) in the expression (29) for E, and evaluating the ex­
pression (10) for the partition function Zs, we get:

In Zs =  /S(iNz JS2 +  NfiBS) +  In g(S). (33)

That value of S which makes (33) a maximum, and which is therefore equal
to the average value of S in the ensemble (2), is the solution of the equation

S =  tanh P(/j,B +  ^zJS), (34)

which is the basic equation of the molecular field approximation x). For this
value of S, the effective field A 3 occurring in (19) is given by

A S = B +  (35)
which is identical to the usual expression for the Weiss effective field. From
the fact that we have obtained (35) by maximizing the partition function
(33), i.e. by minimizing the corresponding free energy, it is clear that the
expression (35) for the effective field leads to the best approximation that
can be constructed on the basis of the assumption (30) that the spins are
statistically independent.

§ 4. The constant coupling approximation. In this section we shall discuss
a generalization of the familiar quasi-chemical approximation for an Ising
spin system 2) to the present case of a spin system with Heisenberg coupling.
This extension is made possible in virtue of our formulation of the problem
in terms of the effective Hamiltonian (19), as we shall now show.

The present formalism can obviously be set up also for an Ising spin
system, the only difference being, as can easily be seen, that the coupling
constant A x appearing in (19) is then rigorously equal to zero, so that the
effective Hamiltonian contains only an effective field and an effective Ising
coupling, but no effective Heisenberg coupling. The molecular field approxi-
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mation can then be obtained by putting the remaining coupling constant A 2
equal to zero. Further, as we shall see in chapter III, one can obtain the
quasi-chemical approximation for the Ising spin system by assuming that
A 2 is independent of and S, as in the molecular field approximation, but
not equal to zero but equal to the actual coupling constant ƒ which can be
shown to be the limiting value of A 2 for high temperatures and S == 0.

In virtue of this reformulation of the quasi-chemical approximation for an
Ising spin system, we can now generalize this method to the case of Heisen­
berg coupling by assuming that the coupling constants A 1 and A 2 appearing
in the effective Hamiltonian (19) for a Heisenberg spin system are both
independent of /? and S, but not equal to zero as in the molecular field
approximation (30), but equal to the correct limiting values for high temper­
atures and S =  0. By means of an extension of the high-temperature ex­
pansion method of O p e c h o w s k i 4) one can show that for S =  0 the
high-temperature expansions of A t and A 2 are of.the following form:

Ai =  J  +  S?-! «1 *(£ƒ)*; A 2 =  sr_ ! a2k V J ) \  (36)
where alk and a2k are constants depending only on the lattice structure;
for lattices which do not contain closed triangles of nearest neighbouring
sites, an  and a21 are equal to zero. We now introduce the assumption that for
all values of /? and 5 the quantities A 1 and A 2 are equal to the limiting values
of (36) for -> 0, i.e. we p u t:

Ai =  / ;  A 2 =  0. (37)
In this approximation the effective coupling (19) is thus assumed to be a pure
Heisenberg coupling with a coupling constant equal to the actual coup ling
constant ƒ. We shall call this the “constant coupling” approximation, which
is thus the analogue of the quasi-chemical approximation for Ising systems.

Closely related to the present approximation is the approximation method
of P. R. W e i s s 3), which is the analogue for the case of a Heisenberg spin
system of the B e t h  e-P e i e r 1 s 5) 6) cluster method developed for Ising
spin systems and equivalent co-operative systems. In this theory it is
assumed that a cluster of spins consisting of an arbitrary spin of the lattice
and its z nearest neighbours behaves statistically as an isolated cluster which
is placed in the given external field acting on all its spins, and in an “internal”
field acting only on the outer spins. The magnitude of the internal field is
fixed by the requirement that the average magnetic moments of the central
spin and the outer spins are equal. In the case of an Ising spin system it can
be proved 2) that for lattices which do not contain triangles of nearest
neighbouring sites this cluster method is completely equivalent to the quasi­
chemical method in virtue of the fact that in those systems the energy of a
group of spins is equal to the sum of the energies of the constitutive pairs of
neighbouring spins. For Heisenberg systems, however, this is not the case
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because thè pair energy operators do not commute with each other;
consequently the constant coupling approximation is not equivalent to the
P. R. W e i s s approximation. A discussion of the main differences between
the two theories will be given in § 9.

§ 5. Derivation of the basic equation of the constant coupling approximation.
From the basic assumption (37) of the constant coupling approximation we
find with the aid of the equations (24) and (25) the following relations for the
quantities /.: p *

/,//. =  **. <39>
where * =  exp (fij). These equations, together with (26) and (27), determme
the fv completely as functions of ft and 5. We can calculate r  from (28) and
substitute the result into (29), after which the integration in (10) can be
performed. In order to avoid unnecessary explicit calculations we observe
that, according to (19), (27), (28) and (37), we have the relations

Tr [e(2) H tf ,  S)] =  -  S) -  2/j, A3{p, S) S, (40)
Tr [Q{2\dHJdp)] =  -  2n{dA3/dp) S.

If we introduce the quantity
Z,  =  Tr [exp (— 0Ht)], (41)

we find that
0 (In Zt)/d0 =  -  Tr fe,2) He] -  0 Tr [e,2) (dHJdp)] =

=  \Jx +  2[iS m A z) m .  (42)

Since S is kept constant, we may write

\J r  =  0 (In Ze -  2f}(j,A3S)fdf} =  d{\Jrp ~  s -/vln f * ) W >  (43)
where the last expression has been obtained by making use of the relation

ƒ, ln U - h T ^  =  jtPJT +  2ftft A 3S -  ln Z„ (44)

which follows from (16), (40) and (41). We can now integrate eq. (43). At the
lower boundary of the integral we have ft =  0, i.e. X  — 1; in this case the f v
assume the same values (31) as in the molecular field approximation. We get
the following expression for the partition function Zs :

ln Zs  =  -  S) -  \N z f v In f ,  -  (z -  1) In g(S), (45)

where E is the average energy for constant S given by (29). The equilibrium
value of S is found by maximizing the right-hand member of eq. (45) with
respect to S at constant 0. This is most readily done by making use of eq.
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(44) again, and of the relation

3 (In Z e)jdS =  -  p Tr [e,2) [BHJdSf] =  2ppiS(dA3/dS), (46)

which is easily derived from (41) and (19). We find

0 =  P l i [ B -  zA3(P, S)] +  $(z -  1) In [(1 +  S)/(l -  5)], (47)

where, according to (24), (25), (27) and (37), A a(P, S) is given by

exp (2(ifiAa) =  =  [(S2 +  A 2 -  A 2S2)* +  S]fX( 1 -  S), (48)

where X  stands for

X  =  2*2/(l +  x2) =  2 [1 +  exp (— 2ftj)]-1. (49)

In order to facilitate a comparison with the corresponding equation (34)
from the molecular field theory we write (47) in the following form:

5 == tanh p \jiB +  \zj<p[p, S)], (50)

where <p(P, S) is given by

<p(P> S) =  (PJ)-1 [In {(1 +  S)/( 1 -  5)} -  2fipA j =

=  (PJ)-1 In {[(S2 +  Z 2 -  X 2S2p  -  S ] /X { \ -  S)}. (51)

According to eq. (50) the expression B  +  | zjcpfjr1 can be interpreted as the
effective field for an individual spin, which should not be confused with the
quantity A 3 which is the effective field for a pair of neighbouring spins and in
this approximation proves to be equal to B  +  \{z — 1) /y / i-1. In the mo­
lecular field approximation the two effective fields are both equal to
B  +  \zJSfji~1, as appears from eqs. (34) and (35). Fig. 1 shows cp as a function
of S  for various values of the temperature; in the limit T  oo we get <p =  S.

With the aid of the expression (45) for the partition function Zs  we can
now express the thermodynamic quantities of the spin system in terms of
P, B  and 5; for given values of p and B  we can then obtain the equilibrium
value of S from (50). I t is more convenient, however, to use the variables X , y
and u, given by eq. (49) and by

V =  exP (2Pi*B).
u =  exp (2PfiA^j, '

in the place of p, B  and S. The equilibrium value, for given values of X  and y,
i.e. of T  and B, of the quantity u is then given by the equation

y « ( * - A'V
\1 +  u X /

(53)

which is easily obtained from (47) or (50). I t is remarkable that eq. (53) which
we shall refer to as the basic equation of the constant coupling approximation



is formally identical with the well-known Bethe-Peierls equation (III. 6)
for an Ising system so that we can use many results derived from the
latter equation, provided we take care of the difference between x and
X  =  2x2j(\ +  x2). In the next section we shall discuss the solutions of
the basic equation (53).

J ig . l. tp as a function of the relative m agnetization S =  M/N/z for z — 6 and various
values of the tem perature.

§ 6. The Curie temperature. In the case of a vanishing external field, i.e.
y =  1, eq. (53) has, as is well known, two solutions:

1) A solution u =  1 which exists for all temperatures. I t can be shown that
this solution is stable only for X  <  X c =  z/\z — 2). According to (57) and
(60) there is no spontaneous magnetization in this case; it is the para­
magnetic solution.

2) A solution with u =£ 1, which can be written in the implicit form

« ' / ( ‘ - D -  1

X  =  u -  —1)- ‘
(54)

This solution which corresponds to S* >  0 exists only for X  >  X c and is
stable in this temperature region. Hence there is a Curie temperature Te,
given by X e =  z/(z — 2), i.e. by

or kT,  = 2 /  (in  — ) _‘. (55)

12



In table I the values of T* = 2kTcjzJ are given in the molecular field
approximation, the P. R. W e i s s 3) approximation and the constant
coupling approximation.

TABLE I

Critical tem perature T e* =  2 k T J zJ  for various lattices

Lattice z
molecular field
approximation

P. R. W e i s s
approximation

constant coupling
approxim ation

Linear chain 2 1 none none
Honey-comb net 3 1 none none
Quadratic layer 4 1 none none
Hexagonal layer 6 1 none 0.607
Simple cubic lattice 6 1 0.617 0.607
Body-centered cubic 1. 8 i 0.725 0.721
Face-centered cubic 1. 12 i ? 0.822

The results listed in the fourth and fifth column are seen to differ only
slightly except in the case of the hexagonal plane lattice for which the P. R.
W e i s s  theory predicts the absence of a transition point, in agreement with
the results of the spin wave theory, whereas the constant coupling approxi­
mation yields a transition point at T* =  0.607. The probable reason for this
discrepancy will be discussed in § 9. We observe that in lattices with z <  4
no transition occurs, while the corresponding restriction for Ising lattices
is z <  2.

For B =£ 0 there occurs no transition; u is a continuous function of x with
continuous derivatives.

It is a well-known fact that if we keep zJ constant and let z go to infinity
the formulae of the quasi-chemical approximation for an Ising spin system
approach to the corresponding formulae of the molecular field theory. We
can readily verify that this is also true for lattices with Heisenberg inter­
action; eq. (55) for the Curie temperature, for instance, goes over into the
equation kTc = \ z j  which is the equation determining T c in the molecular
field theory. In the treatment given above this property goes back to the
fact that in the given limit ƒ  tends to zero so that the assumption (37) about
A 1 and A 2 becomes identical with the assumption (30) of the molecular field
theory.

§ 7. Calculation of the properties of the spin system. For the calculation of
the magnetic and caloric quantities of the spin system we first express the
long-range order parameter 5 and the short-range order parameter r given
by (27) and (28) in terms of u and x ; the equilibrium value of u is then given
implicity by eq. (53). With the aid of (38), (39) and (52) we find

/o : fi '■ tz ■ is =  1 '■ x2u : x2: x2/u. (56)

13



Consequently S and r  are equal to
„ =  x2(u2 — 1) ___ =  X (u2 — 1)

u -f- x2(u2 -f- u +  1) X u 2 +  2u +  X
— 3u +  x2(u2 +  u +  1)

T =  ------------------------------------- ;---- . (Ool
U +  * 2(w2 +  U +  1)

For B  =  0, T >  F,. we have m =  1 and hence
5 =  0, (59)
t =  3(*2 -  \)/{3x2 +  1);

at the Curie point r  is equal to 3 (z — 1) h
a. The magnetization is given by

M  =  kT[d (In Z)/dB] =  N/iS. (60)

In virtue of the formal equivalence of the relations (53) and (57) between u,
S, X  and y, to the corresponding equations for an Ising spin system (cf. ch.
Ill) , the M  vs T  curve at B  =  0 for a Heisenberg spin system (fig. 2) can be

Fig. 2. The long-range order parameter (relative magnetization) S =  M/Nf t  for z =  6
as a function of the temperature in the molecular field approximation (m.f.) and the

constant coupling approximation (c.c.).

obtained from the corresponding curve for an Ising system by means of a
change in the temperature scale, which is determined by the replacement of

14



X by X  =  2x2l (1 -f Xs). This change of scale, however, has an im portant
consequence: a t the absolute zero we have x  =  oo and thus X  =  2, which
implies th a t the spontaneous magnetization has not its maximum value, as
it should have, bu t is equal to  the spontaneous magnetization of an Ising
spin system at the finite tem perature given by x =  2:

M 0 =  N/zS0, S0 =  (ŵ  — l)/(wo T" u0 -)- 1), (61)

where u0 is th a t solution of

1 — u0
/  u0 + 2 y -1
\  2u0 -j- 1 / (62)

which is >  1. For z =  6, 8 and 12 we find S0 =  0.955, 0.991 and 0.9995
respectively. We see th a t the deviation from the exact value 1 decreases
rapidly with increasing z; for z oo, S0 approaches to  1 (cf. eq. (64)). The
foregoing can also be formulated in this way th a t for x oo the effective
field A 3, and hence, according to eq. (25) the distance between the triplet
levels sv  s2, e3, tends sufficiently rapidly to  zero to prevent the pairs of the
ensemble to fall into the lowest state, state 11>; consequently the system as
a whole is not in its lowest state even if T  =  0. The origin of this difficulty
must lie in the fact th a t for very low tem peratures the constant coupling
approximation is no longer a good approximation; this will be discussed
in § 9.

For a non-vanishing external field, however, no difficulty arises. To under­
stand this one should bear in mind th a t y  depends not only on B  bu t also
on T  so tha t by (53) u depends on T  both through x  and through y ; therefore
the M  vs T  curve is no longer obtained from the corresponding Ising curve
by such a simple change of the tem perature scale as in the case B =  0. If
we write

y =  xzB'> B* a  2fiBjzJ, (63)

we see th a t for x  -»  oo (T -> 0 ) ,y  tends to oo as xzB* so th a t the magnetiza­
tion at the absolute zero is equal to the magnetization of an Ising spin system
at x =  2 and y =  oo; in this case we have u0 =  oo and hence S0 =  1 ; the
case B* =  0 appears to be a singular case.

For finite tem peratures we can expand u, and hence S, in powers of
y =  {yXz)~l =  x~zB’ (i +  $*-*)*:
u= {X y)-' [1—(z—1) (X2- l )  y - i ( z - 1) (X2- l )  ((z -2 ) X 2- z ) y * . . .] ,

5  =  1 — 2y — 2(zX2 — z — 1) y2 . . . .  (64)

Although this is an expansion for low tem peratures only if B* =£ 0, it yields
also a useful approximation for B* =  0; in the la tte r case we can interpret
it as an expansion for large z, or, more precisely, as an expansion in powers
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of X~*. For instance, for T  — 0, i.e. X  =  2, we have

S0 =  1 — 21_z -  (32 -  1) 21_2z. . .  (65)

Although from a theoretical point of view the singular behaviour of the
spin system for B = 0, T = 0 (lim ^ o  limT_*0 S =  1 ^  limT_̂ 0 limB_,0 S = S 0)
is a shortcoming of the present method, the deviations from a regular
behaviour are relatively small, the most unfavourable case being th a t of
a lattice with z =  6 (lattices with z <  6 cannot be ferromagnetic), for which
the discrepancy is less than  5 per cent.

b. The susceptibility per spin for B  =  0 and T  >  T c is given by

X =  4fyi2x2/[z -  (z -  4) *2]. (66)

The 1 lx vs T  curve is not a straight line as it is in the molecular field ap­
proximation bu t shows a curvature which is most pronounced in the
neighbourhood of the Curie point. For the paramagnetic Curie tem perature
which is the tem perature for which the asymptote of the curve (66) inter­
sects the T-axis, we find kT  = \ z j  so th a t the ratio between the para­
magnetic and the ferromagnetic Curie tem perature appreciably exceeds the
value 1.

c. The energy is calculated from (29), (57) and (58):

_  -  jN zJ  [ -  3u +  x2(u2 +  « + ! ) ] -  N/j,Bx2 (u2 -  1)
u +  x2(u2 +  u +  1)

For B  =  0, E  is a continuous function of T  with a discontinuity in the
derivative a t T  == T c so th a t we have a transition of the second order, above
the Curie tem perature we have

E =  -  |N zJ  (x2 -  l)/(3*2 +  1). (68)

d. The jump in the specific heat can be calculated with the aid of the
expansion of X  in powers of u — 1 in the neighbourhood of X  =  X c

we obtain

( « - I )2
6 ( r - l )  +

3 z2(z -  4)2
A c — ________ :-------- ------

32 (z -  1) (z -  2)
(69)

For 2  =  6, 8 and 12 this is equal toO.81 Nk, \ .\0 N k  and 1.29 N k  respectively.
The only value calculated by P. R. W e i s s ,  namely th a t for the body-
centered cubic lattice (z =  8) is much larger (Ac =  2.05 Nk), bu t this dis­
crepancy can be traced back to the use by W e i s s  of a wrong expression for
the mean energy.
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e. The entropy S is given by — kT  In Z = E  — TS so that we get

S =  — \Nzk 2„ /„ In /„ — (2 — \ ) k  In g(S). (70)

For 5  =£ 0 we find that S 0 for T  0, but for B =  0, S has a finite limit;
this fact has the same origin as the fact that in this case M  does not reach its
saturation value for T  -> 0.

At the Curie point S is equal to

Se= N k ["In 2-----— -----L 8(z -  1) {32 In 2+ (2—4) In (2—4)—4(2— 1) In (2— 1)} , (71)

so that., in contrast to the prediction of the molecular field theory the system
does not reach its maximum entropy Nk In 2 at the Curie point; between
T = T e and T =  00 it acquires a relatively important contribution to its
entropy, which for 2 =  6, 8 and 12 amounts to 0.314 Nk In 2, 0.199 Nk In 2
and 0.1 IS Nk In 2 respectively.

/. The short-range order. There are at least two possibilities of defining a
short-range order parameter for a Heisenberg spin system. First one can
define a parameter a which is equal to the difference of the probabilities to
find equal or opposite values for the 2-components of spin of a pair of nearest
neighbouring spins. This definition is identical with the definition for the
short-range order parameter of an Ising spin system. In our case we get

a — 45izS2z ----- /o +  fx — fz +  ƒ3
x2(u2 +  1) -  u{x2 +  1)
x2(u2 +  1) +  u{x2 -F 1) ' (72)

The second definition is that of the quantity which measures the difference in
probability for a pair of spins of being parallel (in a triplet state) or anti­
parallel (in a singlet state). This quantity is the quantity r introduced in § 2,
which in the present formalism plays the same role as the quantity a in the
theory of Ising systems. According to (28) and (58) we have

T SB 4S-L • S2 3/0 +  /l +  +  f3 =
x2(u2 -f u +  1) — 3u
x2(u2 -(- u +  1) -f- u

For B =  0, T  >  Tc we get

<* = ~  l)/(3*a +  1) =  (X — l)/(X +  1); (73)

this is equal to \r, of course, since in the disordered state there is no preferred
direction in space so that Slx S2x =  Slv S2y =  S22. At the Curie point we
have a =  (2 — l)-1, just as in the case of an Ising system. For 5  =  0,
7 -> 0 we get: a <x0, x r0, where

o0 —  (u0 l)/(u0 - f  1),

•, -  1; <74>

2
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for 2  =  6,8 and 12, a0 is equal to 0.919, 0.983 and 0.999 respectively. Fig. 3
shows a and r  as functions of T  for 2 =  6 and B =  0. We see that the two
curves have a large “tail” above the Curie point, the critical values being
i  and f  respectively.

Fig. 3. The short-range order parameters a and r for z — 6 as functions of the reduced
temperature T* — 2h-T!zJ  in the constant coupling approximation.

§ 8. Extension of the theory to higher spin values. The general theory de­
veloped in § 2, and in particular the constant coupling approximation, can
be extended to spin values greater than This extension is straightforward
and does not present any essentially new aspects. We mention only one
result: in the constant coupling approximation the Curie temperature T „ of
a system of spins s is determined by the equation

(2n +  1) [(2 — 1) n(n +  1) — 22s(s+l)] exp [»(» +  1) //^ T c]=0, (75)
which can easily be solved by numerical methods. The results may be com­
pared with the values recently calculated by B r o w n  and L u 11 i n-
g e r 10) using the P. R. W e i s s 8) cluster method. Table II shows the
values of T* =  [3kTJ2zJs(s +  1)] for the simple cubic (s.c.) and the body-
centered cubic (b.c.c.) lattice, and for spin values up to 3, in the molecular
field approximation 1), the P. R. W e i s s approximation and the constant
coupling approximation.

In the limit s -> oo, eq. (75) goes over into the following equation for the
reduced Curie temperature T * :
z(z — 1) T *  [exp (6fzT*) —  1] — 3 [(2 — 2) exp (6jzT *) +  2] =  0. (76)
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The values of T *, calculated from this equation, are also included in table II.

TABLE II

Critical tem peratures T c* =  [3kTJ2z Js(s +  1)]

spin lattice
molecular field
approximation

P. R. We i s s
approximation

constant coupling
approximation

v . s.c. 1 0.617 0.607
b.c.c. 1 0.727 0.721

s.c. 1 0.739 0.737
b.c.c. 1 0.817 0.811

*r, s.c. 1 0.773 0.773
b.c.c. 1 0.836 0.836

2 s.c. 1 0.783 0.788
b.c.c. 1 0.847 0.847

•/.
s.c. 1 — 0.796

b.c.c. i — 0.853

3 s.c. 1 — 0.801
b.c.c. 1 — 0.855

s.c. 1 ' --- ' 0.813
b.c.c. 1 — 0.864

We see that in those cases where the calculations with the aid of the
We i s s  approximation have been carried out, the results of this approxi­
mation and the constant coupling approximation are nearly identical.

§ 9. Discussion of results and, comparison with other theories. In the pre­
ceding sections we have seen that for vanishing external field the constant
coupling approximation, in contradistinction to the molecular field theory,
predicts the existence of an appreciable amount of short-range order above
the Curie point, to which corresponds a “tail” in the energy, specific heat and
entropy vs T  curves, in agreement with experiment. Moreover the curve for
the inverse susceptibility as a function of T  shows a curvature, giving different
values for the paramagnetic and the ferromagnetic Curie temperature, the
latter of which was found to lie considerably lower than according to the
molecular field theory.

Although much the same results were obtained by the P. R. W e i s s  3)
cluster theory, there are several important differences. First the constant
coupling approximation can be applied to the paramagnetic state as well as
to the ferromagnetic state, while the cluster method is not suited to a treat­
ment of the ferromagnetic state, the formulae being so complicated that
even for the calculation of the critical data and of the thermodynamic
quantities in the paramagnetic phase series expansions must be used. In our
theory simple closed expressions are found both for T < T C and for T  >  T c.
The simplicity of the formulae is a consequence of the fact that in the present
method a pair of spins is chosen as basic system whereas W e i s s  considers
clusters of z +  1 spins. From a theoretical standpoint the present method
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has the advantage of giving a statistical foundation to the various approxi­
mations. In the We i s s  method the internal field is introduced ad hoc so
that one gets no insight into the nature and the accuracy of the approxi­
mation ; in the general theory developed in § 2, however, the effective field
arises in a natural way and can, at least in principle, be calculated rigorously.

Another advantage of the constant coupling approximation is the absence
of an “anti-Curie point”. As was pointed out by A n d e r s o n 7), the
Wei s s  method predicts the existence, for the case of vanishing external
field, of an anti-Curie point below which no ferromagnetic ordering can exist,
which indicates the failure of the theory at low temperatures. In the present
approximation, however, no anti-Curie point occurs; the spontaneous magne­
tization increases continuously if the temperature is lowered from T = T c to
T =  0. The only unsatisfactory point is that for B =  0 and T =  0 the
magnetization does not reach its saturation value N/u but a value that is
somewhat lower (at most a few per cent). This shows that for very low
temperatures the constant coupling approximation is not a good approxima­
tion, which is not surprising because the basic assumption (37) makes it
essentially a high-temperature approximation. The inadequacy of the as­
sumption (37) in the lowest temperature region can be verified by calculating
by means of the spin wave theory the low temperature behaviour of the
parameters A{) it is found e.g. that in the limit T  -> 0, A1 tends to zero, in
contradiction to the assumption (37) that A1 = J.

Finally the constant coupling approximation is a suitable starting point
for the development of further, more accurate approximations (cf. § 10),
whereas the next step in the P. R. W e i s s  approximation would be the
analogue of the “second approximation” of B e t h e s), in which the basic
cluster is extended to include the next nearest neighbours of the central spin,
which method is certainly too complicated to be of any practical use. The
W e i s s approximation itself, on the other hand, is almost certainly a better
approximation than the present one in the case of lattices containing triangles
of nearest neighbouring spins, such as the hexagonal plane lattice and the
face-centered lattice, where there are pairs of nearest neighbouring spins
among the nearest neighbours of a given spin; this is because the interactions
between these pairs can be accounted for explicitly in a B e t h  e-W e i s s
cluster but not in a pair of spins. Even in this case, however, a higher approxi­
mation of the “constant coupling” type will yield more accurate results in a
much simpler way.

For an Ising system there is, in addition to the quasi-chemical method and
the B e t  h e -P e i e r 1 s cluster method, a third equivalent approximation
method, viz. that of K i k u c h i 8). In an unpublished report K i k u c h i 9)
applies this method to a Heisenberg spin system. Postulating a certain
expression for the entropy of the system he obtains a first approximation
that can be proved to be equivalent to ours. He calculates the Curie temper-
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ature for various lattices in first and second approximation and observes
that for T  =  0 the spontaneous magnetization does not reach its saturation
value. Further details of his work, however, are not given.

For high temperatures we can compare the results of the various approxi­
mation methods to the exact series expansions calculated by O p e c h o w s -
k i and Z e h l e r 4). The only case where a sufficient number of terms has
been given in the literature to make discrimination between the various
methods possible is that of the susceptibility of a simple cubic lattice. If we
expand the expression (66) for the susceptibility in the constant coupling
approximation , in powers of /?/, we get

Zee. =  Pi*2 [1 +  i * m  +  i*(* -  2) (/?/)2 +
+  £*(** - 4 z  +  f) OS/)3 +  &z(z* -  6** +  *-£z -  I) OS/)4 + . . . ] .  (77)

For the simple cubic lattice we have the following expansions:

Xm.t. =  Pf*2 [1 +  3(/S/) +  9OS/)2 +  27OS/)3 + 81 OS/)4 + . . . ] ,
Zp .r.w. =  Pi*2 [1 +  308/) +  60s /)2 +  (/I/)3 +  i£J|A OS/)4 +  . . . ] ,  (78)
Zee. =  Pi* 2 [i +  3os/) +  60S/ ) 3 +  lios/ ) 3 +  200s/)4 +  .. .] ,
Zex. =  Pi*2 [I +  3(/3/ )  +  6 os/ ) 2 +  110s/)3 +  H H P J V  + . . . ] ,
where the subscripts m.f., P.R.W. and ex. refer to the molecular field, P. R.
W e i s s  and O p e c h o w s k i  method respectively. Whereas the W e i s s
method which is most related to our treatment results in an expansion which
agrees with the exact one up to the coefficient of (/S/)2, the present method
gives agreement up to the next coefficient and a much more satisfactory
approximation to the coefficient of ifi/ ) 4: for the latter we find the value 20
instead of the value 10725/448 =  23.94 given by Wei ss ,  while the exact
value is 165/8 =  20.63. This makes us belief that the value of the Curie
temperature — which is the temperature for which \/% becomes zero —
calculated in § 6 on the basis of the constant coupling approximation, is a
rather good approximation to the exact value.

§ 10. Concluding remarks. The foregoing analysis shows that it is possible
to express the partition function of a spin system with Heisenberg inter­
action between nearest neighbours in terms of the density matrix of a pair of
nearest neighbouring spins, and that this pair density matrix can be described
in terms of an effective Hamiltonian of a pair of neighbouring spins, which is
of a very simple form. This formalism proved to be particularly suited to the
introduction of approximation methods, two of which were discussed: the
molecular field approximation and the constant coupling approximation.

In principle there are two ways of improving the constant coupling approxi­
mation by means of this or a similar method. The first way consists in the
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replacement of the pair of spins as the basic system by a larger group of spins,
e.g. a triangle or a square, followed by an assumption about the effective
Hamiltonian of such a system, which is the analogue of the assumption (37)
for a pair of spins (c/. the method developed by K i k u c h i 8) in the
theory of order-disorder in Ising systems), the second one in the replacement
of the assumption (37) by a more appropriate assumption. The former proce­
dure is advantageous if we want to discriminate between lattices which have
the same co-ordination number, but a different topology, such as the simple
cubic lattice (z =  6) which according to the spin wave theory has a finite
Curie temperature, and the hexagonal plane lattice which has the same co­
ordination number but is not ferromagnetic. The second procedure is prefer­
able from a general point of view, since the possibility of expressing the
partition function (3) in terms of the pair density matrix is a natural conse­
quence of the fact that the Hamiltonian (1) contains only pair interactions.
Moreover, it is conjectured that the quantities A 1 and A 2 are continuous
functions of T  and S, without a jump in any of the derivatives at the Curie
point. The reason for this conjecture is that even if one makes the drastic
assumption that A x and A 2 are independent of T and S, as in the assumptions
(30) and (37), one obtains a consistent theory with the appearance of a Curie
point for B =  0. The singularity occurring in the temperature dependence of
the thermodynamic quantities can be traced back to a singularity in the
dependence of S* on T, and is not due to any singularity in the functions
A^i3, S) and A 2(p, S), although the functions A 1 (/?, S*) and A 2(P, S*) of the
temperature alone show, of course, a singularity at the Curie point. We think
therefore that the quantities A t and A 2 are particularly well suited to the use
of interpolation methods between low- and high-temperature expansions.
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Chapter II

CONSTANT COUPLING APPROXIMATION
FOR ANTIFERROMAGNETISM

§ 1. Introduction. The purpose of this chapter is to extend the theory
developed in the preceding chapter, hereafter referred to as I, to anti­
ferromagnetic spin systems with an isotropic coupling between nearest
neighbouring spins, and in particular to develop the constant coupling ap­
proximation for this case. We shall restrict ourselves to systems with a two-
sublattice structure, but we shall treat both the case of a parallel and of a
perpendicular external field. The general formalism for these two cases will
be developed in § 2 and § 9 respectively, the molecular field approximation
will be discussed in § 3 and § 10, while the constant coupling approximation
will be considered in §§ 5-8 and § 11. A discussion of the results of the theory
will be given in § 12.

A. Parallel external field

§ 2. General theory. The Hamiltonian of a lattice of N  spins \  with an
isotropic, antiferromagnetic coupling between nearest neighbouring spins
is given by

H  — 2J S <M> S4 ■ S, -  2p B  Sia. (1)

We restrict ourselves to lattice structures that can be divided into two
sublattices A and B such that all the nearest neighbours of a site of the
A-lattice are on the B-lattice, and vice versa.

As is well known, the case of an external field parallel to the sublattice
magnetizations can be realized only if there is a preferred direction for the
sublattice magnetizations. At a certain critical value of the external field,
the threshold field, a transition occurs from the parallel to the perpendicular
case. We shall not discuss these threshold phenomena, and we shall restrict
ourselves throughout to vanishingly small external fields. We shall neglect
the influence of the anisotropy on the properties of the spin system, although
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a very small anisotropy must, of course, always be present to stabilize the
parallel arrangement in the presence of an external field, but this anisotropy
is left understood in eq. (1) and the following. It is easy, however, to extend
the theory given below to the case in which a staggered anisotropy field is
present.

Using the spin product functions |sf> =  ^  . . .  s<y>, we can write the parti­
tion function of the spin system in the form

z  =  2 Sl...,N <s< | exp (— pH) | s<>. (2)

The sum runs over the 2N sets of values sv . . . ,  sn, where each s< can assume
the values ±  i- If we classify the spin product functions according to the
possible values of the order parameters S and s defined as

5 =  (2/iV)SfS<, (3)

s =  (2JN)Zi di s(, (4)

where dt =  -f- 1 for the spins on the A-lattice, and =  — 1 for those on the
B-lattice, we get

Z  =  ZSaZ & s ) ,  (5)

where the sum runs over all values of S and s, and where

Z(S, s) =  2'j <s4 | exp (— pH) \ s(> , (6)

2" being a sum over all the sets sv . . . ,  sn satisfying the relations (3) and
(4) for the given values of 5 and s. The quantity Z(S, s) can be written in the
invariant form proposed by K u b o x) 2),

Z(S, s) =  (2ni)~2f f  A' Tr [A exp ( -  pH)] dAx d22, (7)
where

A  a  exp [Ax (2| 5 J  +  (2, «5,5 J ] ,  (8)
A'  =  exp -  [Ax (iNS) +  A2 (INs)], (9)

and in which the boundaries of the two integrations are —too and + io o .
The ratio Z(S, s)/Z is the probability distribution function for the quanti­
ties )NS  and )Ns in the given canonical ensemble. Following K u b o 2), we
shall assume that in the limit N  -> oo we may put

In Z  =  In Z(S*, s*), (10)

where 5* is the value of 5 which maximizes the quantity
Z(S) =  2 S Z(S, s), (11)

while s* is the value of s which maximizes Z(S*, s). Because of the fact that
s is not a constant of the motion, it is not possible to give a rigorous justi­
fication of the second step, since it is not obvious that the central limit
theorem will apply to s. However, A n d e r s o n 3) and K u b o 1) 2) have
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shown on the basis of the spin wave approximation that the fluctuations in s
reduce to the normal value if the anisotropy is taken into account, and it is
therefore very likely that the assumption (10) does not involve any approxi­
mation. In addition to the precaution mentioned in I, § 2, we must take care
that only the states with s >  0 are taken into account, since otherwise we
would always find an average sublattice magnetization equal to zero. This
can be effected by introducing a staggered anisotropy field which for the
spins on the A-lattice points in the -[-^-direction and for the spins on the
B-lattice in the —̂ -direction. This field can then be made to vanish after
the performance of the limit N  -> oo.

By the same argument as we used in I, § 2, we now get:

In Z(S, s) =  — E(S, s ; p') dp' +  In g(S, s), (12)

where g(S, s) is the number of spin product functions for which the para­
meters (3) and (4) have the values 5 and s:

a iS  s ) =  { i N ) l ____________ : .
V ’ ' [JiV(l +  S +  s)]I [iJV(l -  S — s)]!

' ____________ :______________________mi_______________________________ ___  ( 1 3 )[iiv(l +  S - S)]![1JV(1 - S  +  s)]\ 1

and where E is the following average value of the energy:

E(S, s] p) =  Z(S, s)-1 S ' <s< | H exp (— pH) | s<>. (14)

For an arbitrary operator Q we define the following “average value for
given S and s”:

Q(S, s) — [Z/Z(S, s)] 2 S( <sf ( \{qQ +  Qq) |.s,>, (15)

where q is the density operator

Q =  Z-1 exp (—pH). (16)

In contradistinction to the ferromagnetic case, cf. (I. 13), it is necessary to
introduce here the symmetrized product %(qQ-\- Qq) in the definition (15) of Q.
Because of the fact that s is not a constant of the motion, 2 "  <.si | qQ \ s>> is
not necessarily equal to S ''<5̂ ] and without the symmetrization, Ü
would not be real. For an operator of the form

Ei =  S <M> Qfij, (17)

where the sum runs over all pairs of nearest neighbours, and Qff acts only on
the spins i and ƒ, we can write (15) in the form

0  =  | ^ T r ( e‘2)i2<a)), (18)
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where Tr indicates the trace, and where g(2) is defined by its matrix in the
|s{> representation:

<sis2 \q{2 )\ s ; s ; >  =  \  [z/z(S, s)] m*L,s  <siV3 ■■■sn l e l  S1S2S3. . .  sNy +
■T <s1s2s3 . . .  sn |e| s1s2s3. . .  sjv/>]. (19)

The superscripts (R ) and (R') refer respectively to the restrictive conditions

Sf=3 si =  i  NS  -  (Sl +  s2) ; Sf=3 diSi =  \  Ns -  (s, -  s2) (20)
and

Sf_3 Si =  $ N S -  (si +  s2) ; £f= 3 disi =  ^ N s - ( s ’1 -  s'). (21)

The density operator e(2) is Hermitian in virtue of the fact that we used the
symmetrized product in the definition (15), and the matrix (19) of e(2) is the
same for all pairs of nearest neighbouring spins, if 1 and 2 always refer to the
A- and the B-lattice respectively. This restriction has the important conse­
quence that the symmetry relation (1.18), viz.

<S]S2 |g^| SjS2)> =  .̂s2s1 |ĝ  |̂ S^y,

valid in the ferromagnetic case, does not hold now, and this circumstance
constitutes an essential difference between the ferro- and the antiferro­
magnetic case. The relation (1.17), viz.

<sis2 | e (2 )l sis2> =  0 unless sx + s2 =  ŝ  +  s2, (22)
on the other hand, holds also in the present case, because S is still a constant
of the motion.

As in the ferromagnetic case, we introduce the effective Hamiltonian He
for a pair of nearest neighbouring spins in the ensemble of pairs described
by p<2) by putting

q{2) =  exp (— 0He)/Tr [exp (— (23)

However, the most general expression for He now contains four rather than
three terms:
H e =  — 2A1S1 • S2 — 2A2 S1zS2z — 2/iA 3(S1z +  S2z) — 2/xAi (Slz — S2J. (24)
In addition to the quantities A v A 2 and A 3 occurring also in the ferro­
magnetic case (cf. (1.19)), the effective Hamiltonian (24) contains a staggered
effective field A t corresponding to the fact that the two sublattices are no
longer equivalent. The quantities A { are functions of S, s and /3, but not of B.
Since the Hamiltonian (1) is an operator of the type (17) with

H<2> =  2 /S 1-S2 -  (2/iB/z) {Slz +  S2Z), (25)

we can express the average energy E defined by (14) in terms of the quantities
A {. Writing out the trace in (18) in the representation in which H{2> is diago­
nal, the basic functions of which are the singlet and triplet spin functions to
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be denoted by |0> and |1>, |2>, |3> respectively, we get:

E — H =  \  Nz S;L0 gg» E„ (26)

where the eigenvalues Ev of H{2'' are given by

E0 =  — f- J ] Ex =  \  J  2fiBjz, ^ 7 )

E a =  \ J \  Ea =  |  ƒ  +  2/j.B/z.

For A i ^  0, He does not commute with H(2), and in contradistinction to the
ferromagnetic case, the matrix g^ is not diagonal in the representation,
the matrix elements o$ and g$ in general being different from zero. In order
to express the matrix elements of g(2) in terms of the parameters A { we make
use of the fact that, according to (23), the eigenvalues of g{2] are given by

ƒ„ =  exp (— 13ev)/T,v exp (— fie,), (28)

where the ev are the eigenvalues of the effective Hamiltonian (24):

e o =  £  “ t”  i  ^ 2  —  “ I-  4 [i*A%ft] fi! =  £  A i  \ A 2 2/xAa,

e2 =  £ A-y -f* £ A2 -f- [A\ -f- 4/A4J]*; e3 “  £ -^i £ -̂ 2 "k 2fiAa.

The non-vanishing elements of g(2) are then given by

e o o  =  / o cos2 £ M +  fi.sin2 2 e f f - A ;

g{22 =  fo sin2 £ «  +  /2 cos2£ co; fo II (30)

sQ =  Ö20 =  £ {fo -  fi) sin

where co is defined by
sin co =  2fiAy [A2 +  4/c2 A%]~*; — £ 7 1  <  co <  £ tt. (31)

The quantity co determines the eigenfunctions of He and is a measure for the
difference in behaviour of the spins on the A-lattice from those on the B-
lattice. For co =  0 the eigenfunctions of He are equal to those of H{2) and are
given by the singlet and triplet functions 2- i (a/S — /?a); aa; 2"i(a/S +  /la);
$9. For co =  \n, on the other hand, the eigenfunctions of He are a//; aa; /3a;
/9j8. As remarked already in connection with the expression (24) for He, the
occurrence of co is characteristic for antiferromagnetism. In the ferromagnetic
case He and 77<2> commute, and we have co =  0.

There are three relations between the five quantities fv and co, one being
the normalizing condition

Tr p(2) — ~Lvfv — 1, (32)

which follows from the definition (19) of p(2), while the other two can be
obtained by calculating by means of (18) the average values of £,• Siz and
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E.d.S^, which are equal to $NS and %Ns respectively:

S u  + S2z —■ A — /a — S, (33)

Si. -  Siz =  (/o -  h) sin w = s. (34)
In virtue of the relations (32), (33) and (34), the ƒ„ and co are completely
determined if we give two additional relations between these quantities;
for instance, it is sufficient to give T X(S, s, /?) and A 2(S, s, /?). In the subse­
quent sections we shall discuss two examples.

Finally, introducing the quantity

T  =  —  4 Sx ■ S2 =  3o$ —  p i l ’ —  0 2 2  —  0 33  =

=  f0 (1 + 2  cos a>) — /i +  /2 ( 1— 2 cos m) — f3, (35)

we can write the expression (26) in the form

E = -  I  N zjr  -  N^iBS, (36)

which is formally identical with the corresponding expression (1.29) in the
ferromagnetic case.

§ 3. The molecular field approximation. The molecular field approximation
can be obtained in the present formalism by assuming that the spins are
statistically independent, i.e. by putting

A 1 =  0; A 2 =  0. (37)

Making use of the relations (28), (29) and (31)-(34),we deduce from (37) that

/„ =  i (1 + S  +  s)(l  - S  + s); A =  i ( l  + S  +  s)(l  + S - s ) ;

ft =  i  (1 +  S- -  s) (1 -  S -  s); /, =  i  (1 -  5 +  s) (1 -  5 -  s); (38)

sin co =  1.
The quantity (35) is equal to

t =  s2 -  S2, (39)

and is independent of /3. Substituting (39) into eq. (36), and evaluating the
expression (12) for the partition function Z(S, s), we get

In Z  (S, s) =  p [i NzJ  (s2 -  S2) +  N/tBS] +  In g(S, s). (40)

The values of 5 and s which make (40) a maximum, and which are therefore
equal to the equilibrium values of these parameters, are the solutions of the
equations

f S +  s =  tanh p\juB — %zJ(S — s)], (41)
iS  — s =  tanh 18[juB — izJ(S  +  s)]. (42)

Since S +  s =  2 Sl2, S — s =  2 S2l, eqs. (41) and (42) are identical with the
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basic equations of the molecular field theory of antiferromagnetism 4). For
these values of 5 and s, the effective fields A s and A i are given by

A S = B -  \ zJS h~\ (43)

A *=  \  zJSjU-1. (44)

For A 3 At and Aa — A i we find the usual expressions for the "effective
fields” acting on the spins of the A- and B-lattice respectively.

§ 4. The constant coupling approximation; derivation of the basic equations.
In Analogy to the ferromagnetic case (I, § 4) we assume in this approximation
that the effective coupling parameters A 1 and A 2 are independent of S, s
and /?, but not equal to zero as in the molecular field approximation, but
equal to the correct limiting values for vanishing S, s and ft:

A-i — — J', A 2 =  0. (45)

With the help of (28) and (29), the relations (45) can be transformed into
two relations between the quantities ƒ„ and co, which, in conjunction with
the relations (32), (33) and (34) determine the fv and co completely as functions
of 5, s and ft. By a reasoning similar to that given in I, § 4, we then find from
(12), (35) and (36) the following expression for the partition function
Z(S, s):

In Z(S, s) =  — /3E(S, s) — £Nz ƒ„ In ƒ„ — (z — 1) In g(S, s), (46)
where E  is given by (36).

The equations determining the equilibrium values of S' and s, i.e. the
values of S and s which maximize (46), can be written in the form

j  5 +  s =  tanh p \juB -  \  z j  {#(S, s, p) -  qo(S, s, /?)}], (47)
IS  — s =  tanh p\jiB  — \ z j  {#(S, s, P) + <p(S, s, /?)}], (48)

where & and cp are defined as

® =  (fiJ) 1 [ 11°  {(1 —  s) (1 — 5 +  it) 1(1 +  5 -} - s) (1 +  S —  s)} -f-

+  2PpAtf, (49)
9 = (PJ)-1 i i  In {(1 +  5 +  s) (1 -  5 +  s)/(l -  5 -  s) (1 +  S -  s)j -

-  2PpAJ. (50)

In (49) and (50) A s and A 4 are functions of 5, s and p, which in principle can
be obtained from the relations (28), (29) and (31)-(34). The quantities 0  and
(p are therefore functions of 5, s and p, but not of B. We have written the
equilibrium conditions for S and s in a form that is closely analogous to that
of the corresponding equations (41) and (42) of the molecular field approxi-
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mation in order to facilitate a comparison between the two approximations.
The limiting values of the quantities 0  and <p for —> 0 are 5 and s

respectively. Fig. 1 shows <p as a function of s for 5 =  0 and various values
of /?. The function 0  is identically equal to zero for 5 = 0 .

Fig. 1. <p as a function of s for z — 6, S =  0 and various values of the temperature.

For the calculation of the thermodynamic properties of the spin system
it is convenient to introduce in the place of S and s the quantity

u =  exp (2Pfj,A3), (51)

which was also used in the ferromagnetic case, and the quantity co, defined
by (31), which in the constant coupling approximation is given by

sin cu =  2pAt LP +  < co <  |  n. (52)

In the place of ft and B we shall use the quantities x and y defined by
x =  exp (/?ƒ), (53)

y =  exp (2/SyiiB). (54)

From (28), (29), (45) and (51) we derive

fo ■■ h '■ f 2 '■ fa =  xv '■ u '■ xlv : llu> (55)
where v is given by

vl/cos o (56)
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The equations determining the equilibrium values of u and on for given
values of x and y, are obtained from (47) and (48) by making use of eqs.
(32)-(34), (52) and (55). We get

y =  « 1 +  uXJ)/(u +  Z+)]2"1, (57)

y  — « [(1 +  uX+)/W(u +  -XL)]*-1, (58)
where

W m (59)

2f± =  i  [(1 ±  sin co) xv +  (1 =f- sin on) x/v]. (60)

The equations (57) and (58) will be referred to as the basic equations of the
constant coupling approximation for an antiferromagnetic spin system. The
solutions of these equations will be discussed in the subsequent sections.

§ 5. The paramagnetic and, the antiferromagnetic solution. The basic equa­
tions (57), (58) have two solutions, for one of which the sublattices A and B
have equal magnetizations, while for the other the sublattice magnetizations
are different. This follows from an examination of the relation between u, on
and x obtained from (57) and (58) by elimination of y :

(u2 +  1) [W2X_ - X +] + u [W2(X2_ +  1) -  (X2+ +  1)] =  0. (61)

1) From (59) and (60) we see that for on — 0 we have W =  1, X + =  X_  =  X,
where X  is defined as

x  m  -!-(l +  x2). (62)

In this case eq. (61) is satisfied for all values of u. The basic equations reduce
to

y = u[(\ +  uX)/(u +  Z)]*-1, (63)

which is tó be compared with the basic equation (1.53) for the ferromagnetic
case. For all values of y, u is now a continuous function of x without a
singularity in the derivatives; for B =  0 we have u =  1. According to (34),
co =  0 implies that the two sublattices have equal magnetization; this is
the paramagnetic solution.

2) If we take on ^  1, we obtain a second solution by solving the quadratic
equation (61) for u:

« =  (QiQs ±  Q&JKQiQ» T  (64)
where the following abbreviations have been used:

Qi *  l(x+ -  i) -  w (x_  -  i)]*,
Q2 ■=: [(X+ +  1) -  W(X_ +  1)]*, (65)
<?3 -  [(*+ -  1) +  W(X_ -  1)]*,
Q* *  l(x+ +  i) +  w (x_  +  i)]*.
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z —1
(66)

Inserting (65) in (57) or (58) we get

=  ( QiQs±Q2Qi \  ( QiQ*±Q2Qs \
y  \  QlQz T  <?2<?4 /  V T  <?2<?3 /

The equation (64) yields a relation between u and co depending parametrical­
ly on x, while eq. (66) determines m implicitly as a function of x and y. Since
in this case s ^  0, we call this the antiferromagnetic solution. In (64) and
(66) the upper sign corresponds to y >  1, i.e. to B >  0, the lower sign to
B <  0. The case B =  0 will be treated in the next section.

§ 6. Antiferromagnetic solution and critical temperature for vanishing external
field. It follows from eq. (66) that for B — 0 we have Q2Q4, — Q2Q3 =  0.
Since Q\ >  0, this implies Q2 =  0, or

W =  (X+ + l ) l (X_+  1). (67)
Since Q\ vanishes for m — 0 and tends to — 00 for co the equation
Q2 =  0, or (67), has a solution co #  0 if d(Ql)/dco is positive for co =  0.
Now, we have

[0(<2l)/VUo =  2(*2 -  1) -  —^ 7  (*2 +  3) In x, (68)z — 1
so that there is an antiferromagnetic solution if 2(z — 1) (x2 — 1) >
>  z(x2 +  3) In x. For the temperature corresponding to x = xc, where xc
satisfies

2(z — 1) [x\ — 1) — z(x\ +  3) In xc =  0, ' 6̂9)
tw is a double solution of (61). The antiferromagnetic solution then coincides
with the paramagnetic solution. Equation (69) has two roots xc, whereas
the equation (1.55) for the Curie point of a system with ferromagnetic Hei­
senberg interaction, and the corresponding equations for systems with ferro­
magnetic and antiferromagnetic Ising interaction have only one root. This
means that, in addition to the upper limit Tc for the temperature region in
which an antiferromagnetic phase can exist, there is also a lower limit Te..
Calling the former temperature the Curie, or Néel temperature, as usual, the
latter one can be called the anti-Curie temperature. In table I the values of
T* = 2kTJzJ and T* = 2kTc./zJ are given in the molecular field approxi­
mation, the cluster approximation of P. R. W e i s s  and L i 5) and the
constant coupling approximation.

table 1
Critical temperatures T *  and 2>* for different lattices

Lattice z
molecular field
approximation

W e i s s- L i
approximation

constant coupling
approximation

T c* T c-* Tc* T c-* T c* Tc-*
simple c u b ic .................
body-centered cubic . . .

6
8

1
1

0
0

0.668
0.795

0.327
0.178

0.677
• 0.791

0.287
0.183
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We see that the present approximation yields values of the Curie temper­
ature which differ only slightly from those obtained by L i, whereas the
differences in the anti-Curie temperatures are relatively larger. A closer
examination shows that eq. (69) has no roots x e >  1 for z <  6. The hexa­
gonal plane lattice (z =  6) and the face-centered lattice have not been
included in the table because the two-sublattice picture does not apply to
these lattices. Finally, we see from (69) that, if we keep zJ  constant, we have
in the limit z -> oo : T* =  1, T*. =  0, in accordance with the well-known
results of the molecular field theory.

The equation for the critical curve in the B vs T  plane separating the anti­
ferromagnetic and paramagnetic phase, i.e. the curve along which co =  0 is
a double solution of the basic equations, can be obtained by performing in
eq. (66) the limit co -+• 0. We get

?± =  [X ±  l]1; q'± =  [2(X -  1) -  {z/(z -  1)} (X  ±  1) In x]* (71)

For a given value of B, eq. (70) determines the transition temperature,
while for a given temperature it yields the value of the "transition field” , i.e.
that value of the external field for which the antiferromagnetic long-range
order vanishes. One can easily verify that for y =  1 eq. (70) reduces to eq.
(69). For values of B  and T  corresponding to points "outside” the critical
curve the paramagnetic solution is stable, for points inside the curve the
antiferromagnetic solution has a lower free energy.

§ 7. Calculation of the properties of the spin system. In order to calculate
the magnetic and caloric quantities of the spin system, we express these
quantities in terms of u, co and x with the aid of eq. (55). For the para­
magnetic (p.m.) phase we have co =  0 so that all quantities are expressed in
terms of u and x alone, where u is determined by (63). For the antiferro­
magnetic (a.f.m.) phase we can express u, with the aid of (64), in terms of
co and x, so that the quantities can be expressed in terms of co and x, co being
determined by (66).

a) The total magnetization M  of the lattice, and the difference m of the
magnetizations of the A-lattice and the B-lattice are given by

According to (33) and (34), the long-range order parameters S and s are
equal to

g_gl ±  q+q'+ \ ( i+q~ ±  q-q+
t  q+q+' =F q~q+

(70)

where

M  =  N fiS ; m =  N/zs. (72)

S =  (u — \\u)f(xv +  u +  x/v +  \ju),
S — x(v —  t/v) sin co/(xv +  u +  x/v -f- 1 fu), (73)
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where v is given by (56). We get

p.m.: 5

a.f.m. : 5

u *  —

u2 -f- 1 +  u(x2 -f- 1)

___ QiQiQzQi___ ,
(X+X _ — 1) [W2— 1) ’

s =  0; (74)

(X+ -  X_) (W2X_ -  X +)
s = {X+X_  -  1) (W2 -  1) (75)

For B — 0, eqs. (75) reduce to

5 =  0; s =  (W -  l)/(W +  1). (76)

b) For the susceptibility per spin for B — 0 and T  <  Tc (parallel suscep­
tibility x\\) we find, after some lengthy but straightforward calculations

X\\ =  8fr 'W K W  +  1) [z(X+ +  X JV )  -  (z -  2) (W +  1)]. (77)

For the susceptibility for T  >  Tc (paramagnetic susceptibility x) we get

X =  2fr*l\zX - ( z -  2)] =  Apn2!\zx2 -  (z — 4)]. (78)

For T = Te (j3 =  jic) the two susceptibilities % and X\\ are both equal to

Zc =  4py/[zx2e -  -  4)], (79)

so that the susceptibility is a continuous function of T  with a discontinuity
in the derivative at the Curie point. For z =  6 and z — 8 we have %c =  0.84 %0
and Xc =  0-92 Xo respectively,1 where Xo — l^\zJ ■ According to the molecular
field and the spin wave theory 2) Xo is the value of the perpendicular sus­
ceptibility Xx at the absolute zero. Whereas in the molecular field x± is
independent of T, the spin wave theory predicts a slow decrease of Xx w'th
increasing temperature. The present results are in qualitative agreement
with the latter prediction.

c) We shall consider the following short-range order parameters:

ax — 45la.S2a! =  (/0 /2) cos co,

ov =  451i(52ï =  (/0 /2) cos co, (80)

= ■— 451zS2s = /o /id- fi fz>

** = +  °v +  oz) =  It.

The quantities ox, ov and oz are equal to the difference of the probabilities
of finding opposite or equal values for the x-, y- and ̂ -components respectively
of a pair of nearest neighbouring spins. The quantity r* =  \x  has been in­
troduced as an order parameter rather than r  itself, because, in contrast to
the corresponding quantity for a ferromagnetic spin system, the quantity r
can assume values larger than 1, the largest eigenvalue of — 4SX- S2 being 3,
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and not 1. For B — 0 we find

ax — av — (cos m) (xv — xlv) lixv +  xlv +  2) =

=  (cot co) (W  — 1)/(JF +  1) =  s cot co, (81)

az =  (xv -f- x/v — 2)/(xv +  x/v +  2).

For temperatures above the Curie point we have

=  <h, =  a. =  r* =  (** -  !)/(** +  3) =  (X  -  1)/(X +  1). (82)

As in the ferromagnetic case, there is a large amount of short-range order
above the Curie point. For z =  6 and z — 8, the value of r* at the Curie
point is equal to r* =  0.295 and r* =  0.181 respectively.

d) The energy E  can be calculated from r  and S with the aid of eq. (36).
e) The jump in the specific heat for B =  0 can be calculated with the help

of the expansion of x  in powers of co in the neighbourhood of x =  x c:

— l~i , * — 1 — 1 z(x2„ — 1) (x2c -  13) +  (36^ +  12)
X° L  3z x* +  3 z(x2c — 1) (*J — 9) +  16** M

We obtain

Ac = 3 Z ~  1 ~  ^  ~  0 (x2c ~  9) +  16^]2
z (^  +  3)4 z(^ — 1) (x\ — 13) +  36^ +  12 (83)

For z =  6 and z =  8 this is equal to 0.66 Nk and 1.16 Nk respectively. For a
simple cubic lattice L i 5) found a higher value, but his calculations were
based on the expression for the mean energy E  introduced byP . R. W e is s 5),
which can be shown to be incorrect for T  <  T c.

f) The entropy S is given by —kT  In Z  =  E  — TS. From (46) we find

S =  — \Nzk /„ In /„ — (z — 1) k In g(S, s). (84)

At the Curie point the entropy is equal to

Sc =  N k  [In 2 — z {x* (In xc)f(x* +  3) — \  In J (** +  3)}], (85)

so that between T  =  T c and T  =  oo the entropy increases with an amount
which for z =  6 and z =  8 is equal to 0.496 N k  In 2 and 0.257 N k  In 2 re­
spectively. This is in qualitative agreement with the experimental results of
F r i e d b e r g 6), who found that in CuC12.2H20  nearly one third of the
entropy of the spin system at T =  oo is gained above the transition temper­
ature.

§ 8. Extension of the theory to higher spin values. The theory developed in
the previous sections can be extended to spin values greater than J. One finds
that in the constant coupling approximation the Curie temperature T c of a

35



system of spins s is determined by the equation
[2zJlkTc -  4(z -  1)] s(s +  1) +  [2zs(s +  1) JfkTc +

+  (* — 1)] (2n +  1) exp [— n(n +  1) J/kTe] =  0. (86)

Table II shows the values of T* — [3kTJ2zJs(s + 1 )] , calculated by means
of this equation, for the simple cubic (s.c.) and the body-centered cubic
(b.c.c.) lattice and for values of s up to 3. For comparison, the values of T*
in the molecular field approximation4) and the W e i s s -  Li  cluster
approximation 7) are also given.

In the limit s -> oo the values of T *  are given by the same equation
(eq. (1.76)) as in the ferromagnetic case. These values have also been included
in table II.

TABLE II

Critical temperatures Tc* = [3kTJ2z Js(s +  1)]
spin lattice molecular field W e i s s - L i constant coupling

approximation approximation approximation

V , s.c. 1 0.670 0.677
b.c.c. i 0.790 0.791

1 s.c. 1 0.774 0.776
b.c.c. 1 0.847 0.840

■/, s.c. i 0.794 0.794
b.c.c. 1 0.852 0.852

2 s.c. 1 0.801 0.801
b.c.c. 1 0.857 0.857

V , s.c. 1 — 0.806
b.c.c. 1 — 0.860'

3 s.c. 1 — 0.809
b.c.c. 1 — ; 0.863

s.c. 1 — 0.813
b.c.c. 1 — 0.864

B. P e r p e n d ic u l a r  e x t e r n a l  f i e l d

§ 9. General theory. We shall now consider the case of a vanishingly small
external field in the ^-direction, i.e. perpendicular to the direction of easiest
magnetization. The Hamiltonian of the spin system is given by

H =  2J S <M> S, • S, — 2pB S, Six, (87)

where the arbitrarily small anisotropy along the 2-direction has again been
left understood. Instead of the partition function Z(S, s) for fixed values of
S and s, given by (6) or (7), we now have to consider the following quantity

Z(SX, st) =  ( 2 A' Tr [A exp (— ]3H)] dAx d72, (88)
where

A SE exp [Ax (S, S J  +  72 (£, <5,. S J ], (89)

A' =  exp — +  72(|iVs,)]. (90)
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According to .K u b o 1) 2), (88) is the probability distribution for the quanti­
ties %NSX and ^Nsz, corresponding to the operators Six and d(S iM
respectively. Since these operators do not commute we cannot find a repre­
sentation which brings (88) into such a simple form as (6); it is necessary to
use the invariant expression (88). The total partition function Z  is given by

Z = l N * f / Z ( S x, s , ) d S x dS'. (91)

Following K u b o  we assume that in the limit JV -H » w e may put
In Z =  In Z ( S l  s*). (92)

The average value of an operator Q for given values of Sx and sz is now
defined as

D(Sxt sz) =  [Z/Z(Sm, s j]  (2m )-* f /A '  Tr [\A(qQ +  Qg)] d lx dA2, (93)

where g is the density matrix (16) for the Hamiltonian (87). Using the same
argument as in § 2 and in I, § 2, we get

In Z(SX, sz; /S) =  -  fg E(SX, sz; /S') d/J' +  In Z(SX, sz ; 0), (94)

where E — H  is the average, in the sense of (93), of the energy (87). Using
the relation

Tr A  =  {exp [*(A? +  # * ] +  exp [ -  |(A? +  $*]}" (95)

we can calculate In Z(SX, sz ; 0) by means of the method of steepest descents.
The result is

In Z(SX, s„;0) =  In g(S) =  .

=  - N  [i(l +  S) In £(1 +  5) +  i( l  -  5) In i( l  -  5)], (96)

where 5 =  (S| +  s2z)K
For an operator of the form (17) we can write (93) in the form (18), where

É?<2> is now defined as

<S1S2 le(2)| Va> =  [Z/Z(SX> s j]  (27ii) -2 .
• f f  A. -f- A q)\ d^i d.̂ -2* (^ )

The matrix elements (97) are real, and satisfy the symmetry relations

<V 2 IQ12'] V2> •= <Sxs2 le(2)| V2> (98)
and

<S1S2 le(2)l S1S2> =  <— s2, — sx |e(2) I — s i  — s[>, (99)

which follow from the symmetry properties of the Hamiltonian (87) and the
operators qA  and Ag. The effective Hamiltonian defined by (23) now has the
general form

H. =  -  2A1S 1 • S2 -  2A 2SlzS 2l -  2A'2SlxS2x -  2A"2(SlxS2z -  S lzS2x) -
— 2fiAa (Slx -|- S2x) 2fiAi (Slz S2z), (100)
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where the quantities At are functions of S,, s* and ft. The average E of the
energy (87) can be written in the form

\N zJ t —  N/nBSx

4S7"S2 =  - 4 T r  [e'2» Sr S2].

( 101)

where t is defined as
( 102)

With the aid of (94), (101) and (102) the partition function ƒ (Sw s.) can then
be expressed in terms of the quantities A ,  Two relations between the six At
can be obtained by calculating by means of (18) the average values of
£ • Six and £* <5; Siz, which are known to be equal to %NSX and 2 sz resPe
tively, so that we have . .

Tr[eW(Slx +  S2x)] =  Sx, (103)

Tr [q{2){Su -  S J ]  =  s.. (104)
To determine the A< completely, we must therefore give four additional
relations between the At, two examples of which will be discussed in
subsequent sections.

8 10. The molecular field approximation. In order to obtain the molecular
field approximation for the case of a perpendicular external field, we assume
that the spins are statistically independent, i.e. we put

Ax — Ai

From (105) we can derive that

Aa -- Ao — 0.

. o2 _  S2

(105)

(106)

and, consequently, that
In Z(SX, s.) =  j8 [{NzJ(sl -  S®) +  NfiBSx] +  In g(S).

The equilibrium values of Sx and sz are given by
(SJS)  In [(1 +  S)f{ 1 -  S)] =  2P/tB -  faJSx,

(.sJS) In [(1 +  S)f(\ — S)] =  fajsz-

For the perpendicular susceptibility per spin we find

in agreement with the well-known result of the molecular field theory

8 11 The constant coupling approximation. The constant coupling approxi
ination for fhe case of a perpendicular e ternal field is " J V — 8
that the effective coupling in (100) is a purely isotropic, antiferromagnetic
coupling with a coupling constant equal to / ,  i.e. that

F  & -  ( 1 1 1 )

(107)

(108)
(109)

( 110)

Ax =  J: A 2 a 2 — a 2 — o.
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By a reasoning similar to that given in § 4 and in I, § 4, we find that
In Z(SX, st) =  -  pE(S„ s.) -  W *  fv In ƒ , - ( * ' -  1) In g{S), (112)

where the quantities ƒ„ are the eigenvalues of the pair density matrix (97).
The equilibrium values of Sx and sz are then determined by

(z -  1) (SJS) In [(1 +  S)/{ 1 -  S)] +  2Pp(B -  zA 9) = 0, (113)

(z -  1) (sJS) In [(1 +  S)/( 1 -  S)] -  20nzAt -  0. (114)

In these expressions A z and A i are functions of Sx, sz and ft, which in prin­
ciple can be calculated from the equations (103) and (104). In the limit of
small external fields, i.e. for fxB <  J , the quantity 5 is approximately equal
to sz, while in first order the eigenvalues ev of H e are given by

e0 =  [— i  — 1/cos co — £(A3/A 4)2 (1 — cos co)2/cos co] ƒ,

H =  (115)
e2 =  [ -  f f  1 /cos CO +  i(AJAJ*  (1 +  cos co) 2/cos co] / ,

e3 =  [i ~  2(AaIAi)z] J,
where, in accordance with eq. (52), cos co is used as an abbreviation of
ƒ [ƒ2 4[fAXr*- From (103) and (104) ^  follows that in this approximation

Sx =  (2ftfi)-1 [8 (In Sv exp (— ftev))j8A^ =

(AJAJ [-
- j-  COS OJ

s z =  (/o'— /l) s in c°>

—  COS CO 1 +  COS CO , 4 cos CO I
1 COS CO

sin co, (116)

(117)

where the fv are the eigenvalues of g(2) for B =  0. Since in the limit of
vanishing external field there is no difference between the “perpendicular”
and the “parallel” case, the /„ are equal to the quantities given by eq. (55),
with u =  1.

Eliminating A z, A4 and sz from (113), (114), (116) and (117) we get the
following expression for the perpendicular susceptibility per spin:

f*s x
X ±  —  b

ffl (X+-XJ)  r(l +cos2co) (X+-A T _)-2sincocosco(X++ X _ -2 )]
= 7 J {■x + + X_ + 2) [sin2 w(X+ + X_  -  2) -  sin co cos co(X+ -  X J )] ' V

For T = Tc, x± is equal to the critical value (79) of the paramagnetic and
the parallel susceptibility, so that the susceptibility is continuous at the
Curie point.

§ 12. Concluding remarks. A comparison of the molecular field and the
constant coupling approximation shows that essentially the same differences

39



exist between the two approximations in the antiferromagnetic case as in the
ferromagnetic case discussed in I. According to the constant coupling approxi­
mation there is an appreciable amount of short-range order above the Curie
point, giving rise to a “tail” in the energy-, specific heat-, and entropy vs T
curves, and to a curvature in the \ / / v s T  curve leading to a Curie point lying
considerably lower than the molecular field value. Finally, the parallel, the
perpendicular and the paramagnetic susceptibilities are equal to each other
at the Curie point, the common value being smaller than the value of the
perpendicular susceptibility at the absolute zero in the molecular field and
the spin wave theory. On comparing these results with those of the cluster
theory of L i 5), we see that most of what has been remarked in I about the
relation between the constant coupling approximation and the cluster theory
of W e i s s  for the ferromagnetic case applies also to the present case of
antiferromagnetism. The main advantages of the present method are the
fact that the general formalism is based on an exact expression for the parti­
tion function of the complete spin system, and the fact that in the constant
coupling approximation the relevant formulae are relatively simple, thus
making the analysis tractable even below the Curie temperature. However,
in contradistinction to the ferromagnetic case, the constant coupling approxi­
mation now leads to an anti-Curie temperature of the same order of magni­
tude as in the theories of W e i s s  and L i. Consequently, it is doubtful
whether the constant coupling approximation gives a useful approximation
below the Curie temperature. Thus, the high-temperature character of the
constant coupling approximation is more pronounced in the antiferro­
magnetic case than in the ferromagnetic case, and to obtain more reliable
results below the Curie temperature it will be necessary to replace the
assumptions (45) and (111) of the constant coupling by more appropriate
ones. Above the Curie temperature we can compare the results of the present
and other approximations to the exact series expansion in powers of \/T.
Apart from the replacement of /  by — ƒ there is no difference with the ferro­
magnetic case discussed in I.
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Chapter  III

CONSTANT COUPLING APPROXIMATION
FOR ISING SPIN SYSTEMS

§ 1. Introduction. In this chapter the theory developed in the preceding
chapters, hereafter referred to as I and II, is applied to spin systems
with Ising interaction between nearest neighbours. As we shall show,
the constant coupling approximation is in this case equivalent to the
familiar quasi-chemical approximation*) 2) 3), and hence, for lattices
which do not contain triangles of nearest neighbours, also to the cluster
approximation of B e t  h e 4). The latter approximation, originally intro­
duced in the theory of superstructure in binary alloys, was applied to ferro­
magnetism by P e i e r 1 s 6) ; the theory was elaborated by F i r g a u 6).
Extending this treatment to antiferromagnetic systems with a magnetic
field of arbitrary magnitude in the preferred direction, F i r g a u  (l.c.) and
Z i m a n 7) derived the “basic equations” determining the temperature- and
field dependence of the thermodynamic quantities, but they did not give an
explicit solution of these equations for the antiferromagnetic phase. In this
chapter we shall describe the antiferromagnetic equilibrium state in an
analogous way as the paramagnetic state and the equilibrium state of a
ferromagnetic system, namely by expressing the thermodynamic quantities
in terms of one auxiliary quantity which has a simple physical significance,
and by deriving a relation between the equilibrium value of this quantity,
the temperature and the external field.

In § 2 we discuss the application of the theory developed in I, and in
particular of the constant coupling approximation, to a ferromagnetic Ising
spin system. In § 3 we apply this approximation to antiferromagnetic
systems in an external field in the preferred direction, i. e. parallel to the
spins. The Ising model is not suited to a treatment of the more general case
where the external field has an arbitrary direction relative to the preferred
direction. In §§ 3-5 this application is worked out in detail.
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§ 2. The constant coupling approximation for a ferromagnetic Ising spin
system. The Hamiltonian of a lattice of N  spins with ferromagnetic Ising
interaction between nearest neighbours is given by

H =  -  2 /  2 <m> S <sS „  -  2/iB %  S iz. (1)

The problem of determining the partition function Z  of the system can be
formulated in the same way as for a system with Heisenberg interaction (cf. I,
§ 2). In  the representation of the spin product functions |sf> the Hamiltonian
(1) is diagonal; consequently the density m atrix q of the spin system, the pair
density m atrix  g(2), and the effective pair Hamiltonian H e, connected to H
by the relations (1.2), (1.14) and (1.16), are also diagonal in this representa­
tion. I t  follows th a t the isotropic-coupling param eter A 1 occurring in (1.19)
is rigorously equal to  zero so th a t the effective Hamiltonian contains only an
effective Ising coupling and an effectieve field but no effective Heisenberg
coupling. If the anisotropic-coupling param eter A 2 is given as a function of
the long-range order param eter S and of /3 =  1 fkT, the partition function of
the spin system can be calculated in the way indicated in I. For g( ) and H e
we can use the representation of the spin product functions |s1s2> in the
place of the singlet and triplet functions used in I ; we let the indices v =  0,1,
2 and 3 refer to the functions \+ h  — £>, |+ £ , + £ > ,| — + i>  and |—£, —
respectively. For the average energy E  a t a given value of S we find

E =  — J  N zjo  — NfiBS, (2)

where, in accordance with the usual definition, the short-range order para­
meter a is given by  _____

<y = 4 S lzS 2~ =  — /o +  Zi — ft +  f& (3)

the ƒ„ being the eigenvalues of the pair density m atrix  p(2).
I t  is readily verified th a t the assumption th a t there is no effective coupling

between two neighbouring spins, i.e. th a t A 2 =  0, leads, also in this case, to
the molecular field approximation 8). In  order to  go beyond this approxi­
mation we assume th a t A 2 has a constant value which is not equal to  zero
but equal to  the correct limiting value for T  -*■ oo and 5  =  0. By expanding
A 2, by  means of a m ethod analogous to the high-temperature expansion
methods of O p e c h o w s k i 9) and K i r k w o o d  10), into a power series
in f l j  we find th a t this value is equal to the actual coupling constant ƒ. We
thus put

A 2 =  / .  (4)

The constant coupling approximation for an Ising spin system obtained in
this way is equivalent to the well-known quasi-chemical approxim ation1) 2) 3),
first introduced in the theory of liquid and solid mixtures. This can be seen
from the relations

/ 1 /3 / / 0 / 2  =  /o  =  /21 (3 )
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which are easily derived from the assumption (4). Applying the procedure
developed in I, §§ 2, 4 — which is now completely equivalent to G u g g e n-
h e i m’s method 3) of deriving the equation describing the equilibrium prop­
erties of an “Ising system” — we find the following relation between the
quantities y, x and u, introduced in I :

y =  u [(m +  x)l( 1 +  wx)]*-1. (6)
Eq. (6) is identical to the equation obtained by B e t  h e 4) and P e i e r l s 5)
in a completely different way. It should be noted, however, that, whereas
the quasi-chemical and the constant coupling approximation are equivalent
for arbitrary lattices, the method of B e t h e and P e i e r l s  is equivalent
to the quasi-chemical, and hence to the present method only for lattices
which do not contain triangles of nearest neighbours. For “triangle lattices”
the Bethe-Peierls equation is different from (6).

For comparison with the basic equation (1.34) of the molecular field
theory we write eq. (6) in the form

S =  tanh /? \jiB +  \zJcp{S, /3)], (7)
where cp(S, /?) is given by

tp(S, p) =  OS/)-1 In {[(S2 +  x2 -  *2S2)* -  S]/x( 1 -  5)}. (8)
Fig. 1 shows <p as a function of S for various values of the temperature.
It follows from eq. (6) that there is a Curie temperature Tc given by

=  z/(z — 2), or kTc =  //In  [z/(z — 2)]. (9)

T - oo

Fig. f. <p as a function of the relative magnetization S =  M/N/t for z = 6 and various
values of the temperature.
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For B — 0 and T  <  T c, the “basic equation” (6) can be written in the form
x  =  (u.zKz~1) — l)/(« — m1/*3- 1»). (10)

For the calculation of the magnetic and caloric quantities of the spin system
we express these quantities in terms of u and x ; the equilibrium value of the
quantity u for given values of x and y (i.e. of T  and B) is then determined by
eq. (6). For the magnetization and the energy we find the expressions

M  =  N/ux(u2 — 1 )/(xu2 2u +  x), (11)
E =  — \  NzJ(xu2 — 2u +  x)l(xu2 -f 2u +  x) — MB. (12)

In addition to the results given in the literature 6) we can also calculate the
entropy at the Curie point. Making use of the relation — kT \n  Z =  E — TS
we find

Sc =  Nk  [In 2 — J (̂  In 2  4* (z — 2) In (z — 2) — 2(z— l) In (z— 1))]. (13)

This differs from the maximum entropy Nk In 2 of the spin system by an
amount which for z =  6, 8 and 12 is equal to 0.087 Nk In 2, 0.059 Nk In 2
and 0.036 Nk  In 2 respectively.

Further we want to compare the high-temperature expansion of the
expression for the susceptibility for B  =  0 and T  >  Te in the constant
coupling approximation (c.c.),

X =  2P/j?xl[z — (z — 2) *], (14)

with the corresponding expansion in the molecular field theory (m.f.) and
with the exact series expansion calculated by O g u c h i n ) (ex.). For the
simple cubic lattice (z =  6) we have

m.f.: * =  #*•{ 1 +  3(f}J) +  9(f}JY +  27(/?ƒ)* +  81 (/?ƒ)* +  .. .] ,

c.c.: * =  /v* [i;+ w )  +  V W  +  f w ) 3 +  + . . . ] .  (is>
ex.: * =  W  [1 +  3((iJ) +  f(/3/)2 +  f(/?/)3 +  3- f ( ( i jy  +  . . .].

Whereas the molecular field theory predicts correctly only the coefficient of
(/?ƒ), the present approximation gives also the correct values of the coef­
ficients of (/}J)2 and {pJ)3 and a much better approximation to that of (/?/ ) 4.

§ 3. The constant coupling approximation for an antiferromagnetic I  sing
spin system. We now consider a lattice with antiferromagnetic Isingcoupling,
i.e. with the Hamiltonian

H  =  2ƒ SfzSjz 2/zB Sj Siz, (16)

with positive coupling constant ƒ; we restrict ourselves to lattices with a
two-sublattice structure. It is easily verified that for such a system the
effective Hamiltonian He for a pair of neighbouring spins contains, in addi-
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tion to the two terms occurring also in the ferromagnetic case, a term repre­
senting the interaction with a field pointing in opposite directions for the two
spins. If, for this case, we define the short-range order parameter a as

a =  — 4S1zS23 =  fo ~  fi +  fa — tz> (17)
we get the same expression (2) for the energy as in the case of a ferromagnetic
spin system. The partition function of the spin system can then be calculated
in the usual way if the coupling parameter A2 is given as a function of the
long-range order parameters 5 and s, and of /3. The quasi-chemical approxi­
mation is obtained by assuming that for all values of S, s and /?, A2 is equal
to its limiting value for vanishing 5, s and /3. Evidently this value is equal to
—ƒ for an antiferromagnetic system. We thus put

A , =  -  (18)

From this assumption we easily find that the f„ satisfy the relation

/0/.//1/3 =  *2- (19)
The other relations between the fv are

S , / , =  l, (20)
/1 -  / ,  =  5, (21)

fo — fz =  s- (22)
Eq. (22) comes in the place of the corresponding equation (11.34) for a spin
system with isotropic interaction. The ƒ„ are completely determined by the
relations (19)-(22). We can now apply the procedure developed in I, §§ 2, 4.
For the ƒ„ we find

f o ' f i ' f i -  fa =  xv : u : x/v : 1/w, (23)
where

v =  exp (2$fiA$i (24)
Ai being the staggered effective field occurring in the effective Hamiltonian
(cf. (11.24)). Using u and v as parameters instead of 5 and s, we find that the
equilibrium of the spin system is described by the equations

y =  uv [(v +  xu)I(u +  xd)]z_1 =  u [1T(1 +  ux_)I(u +  *+)]2-1, (25)
y =  (u/v) [(1 xuv) I (uv +  x)]2-1 =  u [(1 -)- ux+)/W(u +  x_)]2-1. (26)

The quantities W, x+ and x_, defined as
W m (27)
x± m xv±x, (28)

have been introduced to stress the analogy of the equations (25) and (26) to
the corresponding equations (11.57) and (II. 58) for the case of isotropic
nearest neighbour interaction. If we now express the thermodynamic quanti­
ties of the system in terms of u, v and x, we can, at least in principle, deter-
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mine the equilibrium values of the quantities u and v for given values of T
and B from (25) and (26). In the present form, however, these “basic equa­
tions” (which were earlier obtained, in a more complicated form, by F i r-
g a u 6) and Z i m a n 7)) are not suited to actual calculations. Therefore we
shall, in the next section, bring them into a more tractable form.

§ 4. The paramagnetic and the antiferromagnetic solution; the Curie temper­
ature. The basic equations (25) and (26) have two solutions, for one of which
the two sublattices have equal magnetizations, while for the other the sub­
lattice magnetizations are different.

1) For v =  1 we have W =  1, x± — x, and eqs. (25) and (26) reduce to
y =  u [(1 +  xu)l(u +  x)]s-1, (29)

which is to be compared with the basic equation (6) for a ferromagnetic Ising
spin system. For all values of y, u is now a continuous function of x without
any singularity in the derivatives; for y =  1 (vanishing external field) we
have u =  1. From the definition of v we see that in this case A 4 vanishes so
that the two sublattices are equivalent; this is the paramagnetic solution.

2) If we take s ^ l , a  second solution is obtained by eliminating y from
(25) and (26) and solving the resulting quadratic equation for u :

*  =  ( Q l Q ,  ±  T  ( 3 0 )

where the following abbreviations have been used:
Q4 = [(xv — 1) — w1/lz-1) (x — w)]-,
<?2 =  [(*» +  1) -  vmz~V (x +  »)]*, (31)
<?3 =  [(*» — 1) +  W1/<Z-1) (x — v)]1,
Q4 = [(xv +  1) +  Vi n z ~ v  (x +  i>)]*.

In this case A 4 does not vanish; this is the antiferromagnetic solution. In­
serting (30) into (25) or (26) we get

=  / < ? 1 < ? 3 ± < ? 2 < ? 4 \  ( Q l Q ,  ±  <?2«?3 V - 1 ( 3 2 )

which is formally identical with the corresponding equation (11.66) for a spin
system with isotropic interaction. The upper sign in (30) and (32) corresponds
to B >  0 (y >  1), the lower sign to B <  0. For B =  0 we have @2(?i =
=  O2O3 =  0; since Q\ is positive, this implies Q2 — 0, or

* =  (vzl{z~1] -  \)/(v -  vlliz~1]), (33)
which equation is the counterpart of eq. (10) valid for ferromagnetic systems,
v coming in the place of u. We can conclude that for B =  0 the antiferro­
magnetic solution is possible only for temperatures lower than a certain
temperature Te, the Curie, or Néel temperature, which is given by (9).

The equation for the transition curve in the B vs T  plane separating the
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antiferromagnetic and paramagnetic phase, i.e. the curve along which v =  1
is a double solution of the basic equations, can be obtained by performing in
eq. (32) the limit v -> 1. We get

/  (z — 2) xa -  z ±  q \ (  {z — 2) x2 +  z ±  q V"1
y \  2x A  2{z — 1) x )  ’ ^

q =  [(:X2 -  1) ({z -  2)2 *2 -  z2)]*. (35)

For a given value of B, eq. (34) determines the corresponding transition
temperature, while for a given temperature it yields the value of the “transi­
tion field”, i.e. that value of the external field for which the antiferromagnetic
ordering vanishes. One can easily verify that for 5  =  0, i.e. y =  1, eq. (34)
reduces to eq. (9). For T =  0, i.e. x =  1, on the other hand, we find

2fi \B\ -  z j ,  (36)
indicating that the maximum value of |B|, for which the state with complete
antiferromagnetic ordering (5 =  0, s =  1) is the ground state, is equal to
zJ/2/i. For |5| >  zJ/2/j., the ordering effect of the external field predominates

Fig. 2. The transition curve between the antiferromagnetic and the paramagnetic
phase for the simple cubic lattice; B* =  2fi \B\jzJ.

over that of the antiferromagnetic coupling so that the state with complete
ferromagnetic ordering (|S| =  1, s =  0) is the ground state. The transition
curve for the simple cubic lattice (z =  6) is shown in fig. 2. For values of B
and T corresponding to points “outside” the curve, the system is in the para­
magnetic phase, for points inside the curve both the antiferromagnetic and
the paramagnetic phase can exist, the former one having the lower free
energy, as be can shown easily.
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§ 5. Calculation of the properties of the spin system. From the analysis in
the preceding section it follows that both for the paramagnetic and for the
antiferromagnetic phase we can express the thermodynamic quantities of
the spin system in terms of x and one auxiliary quantity, and that the equi­
librium is then described by one equation determining the temperature- and
field dependence of this auxiliary quantity, just as in the ferromagnetic case.
We first express the various quantities in terms of u, v and x with the aid of
eq. (23). For the paramagnetic phase we have v =  1 so that all quantities are
expressed in terms of u and x alone, where u is determined by (29). For the
antiferromagnetic phase we can express u, with the aid of (30), in terms of v
and x, so that the quantities can be expressed in terms of v and x, v being
determined by (32).

a) The total magnetization of the lattice and the difference of the magneti­
zations of the A-lattice and the B-lattice are equal to N/iS and N[is respec­
tively. For the paramagnetic (p.m.) and the antiferromagnetic (a.f.m.)
phase we find, respectively:

u2 — 1p.m.: S —------------------; s =  0, (37)
u2 -f- 1 +  2 xu

a.f.m.: S =
(x2 —

QiQzQsQi___  .
j )  ^ 2 * / ( * - l )  _  J )  ' S

x2(v2 -  1) (w2/(z-1) -  1)
(x2 -  1) -  1) • [ ’

For B =  0, eqs. (38) reduce to

S =  0; s =  ( v ^ - 1) -  l ) / ^ * : 1’ +1) .  (39)

b) The susceptibility for vanishing external field is given by

X =  8P/i2v'l{z- 1] {vzl{z- 1] +  I)"1 [z{xv +  xvll{*-1]) -  (z -  2)(td/(‘- 1) +  I)]"1, (40)

which for T  >  Tc reduces to

X =  2 W  [zx -  (z -  2)]-1. (41)

The susceptibility is a continuous function of T  with a jump in the derivative
in the Curie point. The value of x in this point is

Xc =  {[>(* -  2)/2(z — 1)] In [z/(z — 2)]} *0, (42)

where xo — P-2IZJ  is the critical value of the susceptibility in the molecular
field approximation 12) .  For z = 6 and z =  8 we have Xc — 0.973 Xo an(i
Xe =  0.986 xo respectively.

c) For the short-range order parameter a, given by (17), we find

p.m.: <r= (2xu — u2 — \)f(2xu +  u2 +  1), (43)

a.f.m.:a =[(*®-H)(*'U/<*"1)— 1)—2*2(w2—fl2̂ ) ] / ^ 2- 1) (t^/c-D-1)]. (44)
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For B — 0, these equations reduce to
p.m.: a = (x — l)/(x +  1), (45)

a.f.m.: a = \x{v2 + 1 )  — 2v]/[x(v2 +  1) +  2v\. (46)
d) The energy E can be expressed in terms of a and S with the aid of

eq. (2). £  is a continuous function of T , but the specific heat shows a jump
in the transition point, which for B =  0 is equal to the jump in the specific
heat for a ferromagnetic Ising spin system.

e) The entropy at the Curie point has, for B =  0, also the same value as in
the ferromagnetic case, as can readily be verified.

§ 6. Concluding remarks. By its very nature the constant coupling approxi­
mation is a good approximation in the region of high temperatures and small
externa] fields. For Ising spin systems, however, as contrasted with the
systems with isotropic coupling discussed in I and II, it is also a good low-
temperature approximation in virtue of the well-known relation between the
high- and low-temperature behaviour of the partition function for an Ising
system 13). In the present formalism, this relation is expressed by the fact
that for a ferromagnetic Ising spin system the limiting value of A 2 for
T-> 0, S =  1 is equal to J  which is also the limiting value for T  oo, 5 =  0,
and that for an antiferromagnetic spin system the limiting value for T -*■ 0,
s =  1, S =  0 is equal to — ƒ. Therefore, no anti-Curie point or other low-
temperature singularity occurs, and the constant coupling approximation is
a useful approximation also in the neighbourhood of the absolute zero. In
principle, the approximation can be improved by replacing the assumptions
(4) and (18) of constant coupling by more appropriate assumptions. In this,
connection we remark that all the equations that can be derived on the basis
of the relations (23) alone, or of the corresponding relations for the ferro­
magnetic case, without making use of the basic equations (e.g. the equations
(11), (12), (37), (43)) are rigorous, if x is considered as an abbreviation of
exp (j8|^a|).
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Chapter IV

THE STATISTICS OF AN ADSORBED MONOLAYER
WITH REPULSIVE INTERACTION BETWEEN THE

ADSORBED PARTICLES

§ 1. Introduction. The adsorption isotherms of a localized monolayer with
negative interaction energy (attractive force) between neighbouring ad­
sorbed particles were first investigated by F o w l e r 1) and P e i e r l s 2),
using, respectively, the approximation methods of B r a g g  and W i l ­
l i a m s 3) and of B e t h e 4), which were originally introduced in the
theory of superlattices in binary alloys. In this chapter we shall investigate
the properties of an adsorbed layer with positive interaction energy by
means of the method developed in the preceding chapters, hereafter to be
referred to as I, II and III. In particular we shall develop the constant
coupling approximation for this case, which, for a lattice with a two-sub-
lattice structure, is completely equivalent to the B e t h  e-P e i e r 1 s approx­
imation. Earlier, the latter approximation was applied to the same case by
W a n g 5). However, W a n g  discussed only the disordered phase, pre­
dicting that in monolayers of this kind no critical phenomena would occur.
Although in later work 6) 7) he mentioned the possibility of a phase with sub­
lattice ordering, he only discussed some symmetry properties of this phase
without giving a detailed analysis. Such an analysis is given in this chapter.
In § 2 the general method for the calculation of the grand partition function
of the monolayer is discussed, and the constant coupling approximation is
derived in § 3. With the aid of this approximation the adsorption isotherms
are studied (§ 4), and the heat of adsorption is calculated (§ 5).

§ 2. The grand -partition function of an adsorbed monolayer with repulsion
between neighbouring particles. We consider an ideal gas of pressure p and
temperature T  in contact with an adsorbing surface. The following assump­
tions are made:

1) The surface has N  sites on which a particle can be adsorbed. These sites
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form a two-dimensional lattice which can be divided into two sublattices,
A and B, in such a way that the z nearest neighbours of a site on the A-lattice
are on the B-lattice, and vice versa.

2) The particles of the gas are adsorbed without being dissociated or asso­
ciated ; each adsorbed particle occupies one site of the lattice, and no site is
occupied by more than one particle.

3) The adsorbed particles form a single layer (“monolayer”).
4) There is a positive interaction energy (repulsive force) between particles

adsorbed on neighbouring lattice sites, while particles that are not nearest
neighbours do not interact.

The energy of such a monolayer is given by

F  =  F r 2 <M> (1)

where Vr is the interaction energy for a pair of neighbouring particles, and
where Va is the energy of adsorption per particle. The number 0, (i =  1,
...,2V) is equal to 1 or 0 accordingly as the itb lattice site is occupied or
empty, and the first sum runs over all pairs of nearest neighbours. The
expressions 2 0t and 2 dfij are therefore equal to the number of adsorbed
particles and the number of nearest neighbour pairs of adsorbed particles
respectively. If the adsorbed phase is in thermodynamic equilibrium with the
gas, the grand partition function of the monolayer is given by

Z„r =  S9l...9„ exp [-fiVQv. . . . ,  0*)] exp [ f i ^  2, 0,], (2)

where the first sum runs over the 2N sets of values 0X, . . .  ,0jv; P =  1 /kT,
and is the chemical potential of the gas:

fxw =  kT  In [{p/kT) (h2l27imkT)31*]. (3)

The partition functions for the internal degrees of freedom in the gas phase
and for the vibrations in the adsorbed state have been suppressed, assuming
that the latter is independent of Vr and of the arrangement of the particles
on the surface. In order to stress the analogy of the expression (2) to the
expression for the partition function of an antiferromagnetic Ising spin
system, we replace the variables 0{ by s,- +  where s( can assume the values

We then introduce two long-range order parameters, S and s, defined as

5 =  (2IN) 2< « =  (2IN) 2 i (4)

where d{ =  -f- 1 for the sites of the A-lattice, and S( =  — 1 for the sites of
the B-lattice. These parameters are closely related to the fraction 0  of lattice
sites occupied by adsorbed particles (relative covering) and the quantity 0
defined as the difference of the fractions of occupied sites on the sublattices
A and B. We have the following relations:

0  =  (1 IN) 2, 04 =  *(1 +  S) ; 0 =  (2IN) 2 ( 6t 0, =  s. (5)
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The grand partition function (2) can now be written in the form
Z ,r =  K  2Sg Z(S, s) exp (6)

with
Z(S,s) =  exP [ -  P(v r S<M> sf st -  W S ( V a -  \zVr))\, (7)

where K  is a constant factor, and where 2"  is a sum over all the sets of values
si, . . sn satisfying the relations (4) for given values of 5 and s. The expres­
sion (7) is formally identical with the expression for the partition function at
constant S and s of an antiferromagnetic Ising spin system with a coupling
constant equal to /  =  \  Vr in an external field of magnitude (Va — %zVr)/2ju.
The statistical theory of an Ising spin system given in III can therefore be
easily translated into a theory of the statistical properties of an adsorbed
monolayer, and in particular we can apply the results of the constant coupling,
or quasi-chemical approximation for the spin system to the adsorption case.
This will be carried out in the next section.

§ 3. The constant coupling approximation. In order to introduce the con­
stant coupling approximation for an adsorbed monolayer we express the
partition function Z(S,s) in terms of the effective energy Ve of a pair of neigh­
bouring lattice sites. Applying the general theory developed in I we find

In Z(S3s) =  -  f i  E(S, s, n  d p  +  In g(S, s), (8)

where g(S, s) stands for the expression (11.13) and where the quantity
E(S, s, P), which is the average energy at given values of 5 and s, is given by

F v  Selfl2 AA exP [— Pv ° (0%. Q2)]
* r Sa1a ,exp [-/?F .(01,0a)]

$NVaS, (9)

in which expression the constant term has been omitted. The effective energy
Vt(Qv  02) is of the form

v.{dlt e2) = W A  -  c; e, -  c; 02, (io)
where the coefficients Ci are functions of S, s and ft. C1 is an effective repul­
sion energy, and C2 and C2 are effective energies of adsorption for a site on
the A- and the B-lattice respectively. Just as in the case of an antiferro­
magnetic spin system, one can easily find two relations between the coeffi­
cients in the effective pair energy and S, s and f} so that the partition function
can be calculated if one additional relation is given, for instance, if the
effective repulsion energy Cx is given as a function of S, s and /?. The constant
coupling approximation which, according to III, §§ 2, 3, is equivalent to
the quasi-chemical, or B e t h  e-P e i e r 1 s approximation is obtained by
assuming that Cx is equal to the actual repulsion energy Vr between two
neighbouring particles in the monolayer,

Cx =  Vr. (11)
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Following the argument th a t was used in I II  we can then derive from eqs.
(6) and (8)-(l 1) the equilibrium values of the order parameters S and s and
of the thermodynamic quantities for given values of the pressure p and the
tem perature T. To this end we express these quantities in term s of two
auxiliary quantities,-

u =  exp %P{C'2 +  C"2); v ,=  exp \fi(C'2 — Cl). (12)

The equilibrium values of u and v are then determined by the equations
(III.25) and (III. 26):

y =  uv[(v +  xu)l(u +  xv)]z_1, (13)
y =  (u/v) [(1 xuv)l(uv +  x )y ~ \  (14)

where the quantities x and y which for spin systems are equal to exp (/9ƒ)
and exp (2P/jlB) respectively, are now defined as

* *  exp (|/SFr), (15)

y =  exp fl(Va — \zV r +  /x(0)) =  p(h2/27itn)ali (kT)~6,i exp /5(Fa—\zV  (16)

The appearance of the tem perature dependent term  ^ a) in (16), which is not
suggested by the correspondence of 2/uB and F„ — \zV T, finds its origin in
the occurrence of the factor exp (\f)NS/j,{9)) in (6), i.e. in the fact th a t the
expression (2), or (6), represents a grand partition function. I t  does not
influence the analysis in an essential way, but it is im portant for the inter­
pretation of the results , because it is through this term  th a t the pressure p
enters into the equations. The equations (13) and (14) have two solutions.
For the first one, u and v are given by

y == «[(1 - f  xu)l(u +  x)Y~x, (17)

v =  1. (18)

This is the solution discussed by W a n g 5). I t  corresponds to  the disordered
phase of the monolayer (see below). For the other solution, u can be expressed
in terms of v and x,

* =  (QiQz ±  Q&JKQiQ* T  Q2Qd,
where the following abbreviations have been used:

Q1 =  [(xv — 1) — (x — i>)]-,
Q2 =  [(xv +  1) — (x +  w)]-,
Qs =  [(xv -  1) +  vmz~X) (x -  w)]*,
Qi =  [(xv +  1) +  Vv{* X) (x +  i;)]*.

The value of v is then determined by

_  /  QiQa =b (?2(?4 \  /  QiQi ib Q2Q3 V - 1

QiQ* =F Q2Q ,) \ Q&i =F Q&*)
This solution corresponds to  a phase with sublattice ordering.

(19)

(20)

(21)
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Whereas the first solution exists for all values of x and y, i.e. of T  and ft, the
second solution is possible only if the temperature T  is lower than a certain
critical temperature T c, given by

kTc =  / / In [z/(z -  2)], (22)
and if the pressure ft lies between two limits, ft_ and ft+,

ft- < ft < ft+, (23)
which depend on T ; the first solution is unstable in that case. For ft =  ft±
the two solutions become identical, v =  1 being a double solution of (13) and
(14); hence we can obtain the relation between ft±, or the corresponding
reduced pressures f t \  =  ft± (h2j2nmfl2 F r“5/a, and T  by performing in eq.
(21) the limit v -> 1. We get

f t *  .V± W
where

k T \sl* ( ll - - 2***-1̂ .(24)2x ) \  2(z— \ ) x  )

q [(^2 _  i) ((  ̂_  2)2 x2 -  22)]*. (25)

Fig. 1. The reduced transition pressures and as functions of the reduced temper­
ature T* = AkTjzVr for the quadratic lattice (z = 4) and for V J V r =- 1 andV JV r=2.

The “transition pressures” ft_ and ft+ satisfy the relation
ft-ft+ =  ftl(T), (26)

where ft0(T) is that value of the pressure for which y is equal to 1,
ft0[T) =  (2nmjW)*1* (kT)*1* exp [(\zVT — Va)/kT], (27)
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and which therefore corresponds to the value 0 of the external field in the
case of a spin system. The curve in the p vs T  plane represented by (24), for
a quadratic lattice (z =  4) and for two values of V J V r, is shown in fig. 1.

§ 4. The adsorption isotherm. The adsorption isotherm of the monolayer
can be calculated with the help of eqs. (13) and (14). Making use of the rela­
tions (5) and (III.21)-(III.23), we first express 0  and 0 in terms of u and v:

0  == \(xv  +  x/v +  2u)/(xv +  x/v +  m +  l/u), (28)

0 =  (xv — x/v) I (xv +  x/v +  u -f- 1/m). (29)

Solving u and v from these equations and inserting the resulting expressions
into (13) and (14) we obtain the following equations

/  & +i0  \  /2x20-\-O—x2-\-\xi —4x2(x2— 1)0(1 —0) — (x2—l)02]*\z
P ?’o (J )^ 1_ 6)_ ^ 0^  2*(0 +  £0) )  ’ ( ’

/  0 - ^ 0  \ / 2 ^ 0 - 0 - x 2+ [^ 4- 4 x 2(x2^ - l ) 0 ( l - 0 ) - ( ^ 2- l ) 0 2]iV
t ’^ \ l = 9 + v i \ ------------------------ 2 * (9 -  w ------------------------ • PI)

from which the relation between 0  and p can be derived by the elimination
of 0. (It should be remarked th a t it is necessary to take the positive root in
(30) and (31), because otherwise p would be negative.)

For tem peratures above the critical point and, in the case T  <  T c, for
values of the pressure outside the range (p_, p^) we have, according to (18)
and (29), 0 =  0 so th a t the equations (30) and (31) reduce to

P =  Po(T)
(  0  W * ( 2 0 - l )  +  [ ï2 - 4 ( r 2- l ) 0 ( l - 0 ) ] ‘\ '
\1 -  0/  \  20 /

(32)

For T < T C and p _ < p <  p+, on the other hand, the adsorption isotherm is
represented by eq. (30) or (31), where 0 is a function of 0 , which in principle
can be determined from (30) and (31). Making use of the equations (111.38)
we can find a param etric representation of the relation between 0 and 0 :

0 =  x2{v2 -  1) (w2/'*-1» -  l)/(*2 -  1) {v2z,(z- X) -  1), (33)

© =  «1 ±  QiQ&zQiK** -  1) ( ^ /(*"1) -  I)]- (34)
Fig. 2 shows 0 as a function of 0  for z =  4 and for various values of the
tem perature. Since the value of 0 is not changed by the replacement of 0  by
1 — 0 , the curves are symmetric with respect to the line 0  =  ^. For p <  p_,
p >  p+we have v =  1, 0 =  0 so tha t, according to (30)-(32), 0  is continuous
in the transition points, its value being equal to

0  =  0 ± =  ! [ l  ±  {(z--  2)2x2 -  z2fj{z{x2 -  1)*}], (35)

as can be seen by performing in (34) the limit v -> 1. In  the limit T  -> 0 we
get 0_  == l/z, 0 + =  (z — 1 )/z.
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Concluding we may say that, in contradistinction to the adsorption iso­
therms for temperatures above the critical point, the isotherms for T <  Tc
consist of three parts which cannot be described by one formula. In the
limit of vanishing pressure, we have <9 =  0 =  0, i.e. the surface is empty.
If we then increase the pressure, keeping the temperature constant (T <  Te),
the fraction 0  of the surface covered with adsorbed particles increases
continuously according to (32), no preference being given to sites of the A- or
the B-lattice (0 =  0), until the pressure p =  p_(T) is reached. By then the
number of adsorbed particles has been so far increased that, under the in­
fluence of the mutual repulsion between the particles, the system goes over
into a different phase in which more particles are adsorbed on one sublattice
than on the other. A vanishingly small difference between the adsorption
energies for the A- and the B-lattice is sufficient to determine which one of
the two lattices has the greater occupation, i.e. to determine the sign of 0.
We suppose 0 to be positive. The change of the relative covering 0  of the
surface and of the sublattice ordering 0 with increasing p is now given by
(30), (33) and (34). It can be shown that both 0  and 0 increase with p until the

■T - O

Fig. 2. The sublattice ordering 0 as a function of the relative covering © for z =  4 and
for various values of the temperature.

pressure p =  p0(T) is reached, i.e. until the surface is halfway filled up. As
can easily be seen from fig. 2, 0 increases so rapidly with 0  that the fraction
of occupied sites in the B-lattice, which is equal to 0  — decreases abrupt­
ly with increasing 0, and hence with increasing p, goes through a minimum,
and is still very small for p =  p0 (unless T sa Te), practically all the adsorbed
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particles being located in the other sublattice. For p >  p0 the behaviour of
the system is, in a sense, the symmetric image of the behaviour for p <  pQ,
as can be seen from (30) and (31). At a pressure p =  p' the numbers of empty
sites in the A- and B-lattice are equal to the numbers of occupied sites in the
B- and A-lattice respectively at the pressure p =  p\\p' ■ As a consequence, 0
is a monotonically increasing function of p, whereas 0 decreases for p >  p0.

0.8 -

0.6 -

-02

Fig. 3. The relative covering ® as a function of y = p/po{T) for the quadratic lattice
(z =  4) and various values of the temperature.

At the pressure p =  p+(T), 0 has become equal to zero, and the system goes
over into the initial phase again, in which there is no preferred sublattice.
Thus it appears that, for temperatures below the critical temperature, the
adsorption isotherms show two transition points. In these points, 0  and 0 are
continuous functions of p with a jump in the derivatives. For T >  Tc,
however, no transition occurs. Fig. 3 shows a number of isotherms for the
quadratic lattice (z =  4); 0  has been plotted as a function of y =  p/p0(T)
for various values of the temperature.

§ 5. The heat of adsorption. In this section we shall calculate the differential
heat of adsorption defined as the decrease of the total energy of the gas and
the monolayer when one particle goes over from the gas phase into the
adsorbed phase:

q =  e^ — dE/8(N0). (36)
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In this equation ew is the energy of a single gas particle,
ew =  |  kT,

while E is the average energy of the monolayer given by (9). One can show,
making use of eqs. (III.2), (III. 17) and (III.19)-(III. 22), that, apart from a
constant term, E is equal to

E= ^N zV r{0-(x2-[xi~4*2(x2-l)  0 (l-0 )-(*2-l)  d‘r\i)j2{x2- \) } -N V  a0. (37)
Hence, the quantity q is equal to

q(0) ____»-g_2 g)+ <*»;*».
2 I [x* -  4*2(x2 — 1) 0(1 — 0) — (X2 -

which for the disordered phase reduces to
q(&) =  q{0) -  \zV r { 1 - [*(1 -  20)]/[x2 -  4(*2 -  1) 0(1

(38)

-  0)]*}. (39)
For T < Te, the energy is continuous in the transition points p = p±,
0  =  0 ±, in virtue of the fact that 0 vanishes, but the differential heat of
adsorption shows a discontinuity:

Aq =  lime|e±  q — limete± q =
= 3 z { z - 1) Vr [(z-2)2x2- z 2]i {2{z-2) [(« -2)2x2- { z 2-z + \) }  [x2- 1]}-1. (40)

Fig. 4. The reduced differential heat of adsorption q* as a function of the relative
covering © for z = 4  and various values of the temperature.

For temperatures not to near the critical point, Aq is so large that, for values
of 0  immediately above the value 0_, the heat of adsorption is even larger
than for an empty surface. This is because a small increase of 0  causes a
large increase of the sublattice ordering 0, and thus considerably lowers the
energy. Fig. 4 shows q*(0) = [q(0) — q(0)]/zVr as a function of 0  for
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z =  4 and various values of the temperature; for T = oo we get q* — — 0.
Since 0 is an even function of 0  — 8d2/80 is an odd function of 0  — J and
therefore the q* vs 0  curves are symmetric with respect to the point q* =  — J,
0  =  Since dO2/d0 has the same sign as 1 — 20, as can easily be proved,
the absolute value of

[**(1 -  20) +  002/00]/O4 -  4x2 (x2 — 1) 0(1 — 0) — (x2 — 1) 02]*

is always larger than the absolute value of
*2(1 -  20)/[*4 — 4x2 (x2 — 1) 0(1 -  0)],

so that for all values of 0  the deviation of the q* vs 0  curve from the line
q* =  — 0  is larger for the ordered phase than it would be for the disordered
phase discussed by W a n g 6).

§ 6. Concluding remarks. From the foregoing analysis we may conclude that
if we have a monolayer With repulsive interaction between neighbouring
adsorbed particles in equilibrium with a gas of sufficiently low temperature,
the pressure of which is gradually increased, there will occur two phase trans­
itions in the monolayer, which in principle can be observed experimentally.
At the pressure p = p_ the adsorbed system goes over from the disordered
into the ordered state, and at the pressure p — p+> p -  the reverse takes
place. The adsorption isotherm shows a discontinuity in the derivative at
these points, while the heat of adsorption jumps from a lower to a higher
value. Up to now, however, only very few equilibrium measurements have
been carried out on this kind of monolayers 8), and an example of the above-
mentioned behaviour has not yet been found.

Finally, we remark that, if in the equations of the preceding sections we
perform the limit z -y oo, keeping zVr constant, we obtain the corresponding
equations of the B r a g  g-W i 11 i a m s-F o w 1 e r approximation for the
repulsion case. This approximation can also be obtained directly by replacing
the assumption (11) of constant coupling by the assumption that there is no
effective interaction, i.e. that Cx is equal to zero.
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Chapter  V

THE GROUND STATE
OF AN ANTIFERROMAGNETIC LINEAR CHAIN

§ 1. Introduction. The ground state of a linear chain of spins \  with an
isotropic, antiferromagnetic nearest neighbour coupling has been the subject
of many discussions. In the molecular field theory i) the state of lowest
energy shows a complete antiferromagnetic order, the lattice being divided
into two sublattices with opposite magnetizations. However, H u 11 h é n 2)
has shown in an approximate treatment that for the ground state the proba­
bility of finding a pair of neighbouring spins of opposite sign is much smaller
than the value 1 predicted by the molecular field theory. The rigorous
calculation of the lowest energy by B e t h e 3) and H u 11 h é n 2) also
shows that the exact ground state differs considerably from the completely
ordered state. Finally, it follows from the spin wave theory 4) that at the
absolute zero the antiferromagnetic long-range order vanishes, the two sub­
lattices both having zero magnetization.

On the other hand, it is well-known that for a lattice with antiferro­
magnetic Ising interaction the completely ordered state is the ground state.
However, the Ising interaction is anisotropic, and it is therefore interesting
to examine how large the anisotropy must be in order that the spin system
will have a ground state with non-vanishing antiferromagnetic long-range
order. This investigation will be carried out in the following sections, by
means of a variational method which is a generalization of a procedure intro­
duced by S l a t e r 5) and refined by H u l t h é n 2).

§ 2. The variational problem. Consider a linear lattice of N  spins \  with
the following Hamiltonian:

H  =  S <M> H®, (1)

=  2 /  [(1 — a) (SixSjx +  SivSjy) + . SisSH], (2)
where ƒ  is positive, and where the anisotropy constant« lies between 0 and 1.
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For a =  0 the interaction is isotropic, for a ^ O  the coupling has uniaxial
anisotropy, the most extreme case of which is that of Ising interaction (a= 1).

The eigenfunctions of the operator (1) can be expanded in terms of the spin
product functions !$*> =  js1 . . .  s#>. Since the 2-component of the total spin,
2* Siz, commutes with H, we can restrict our considerations to linear com­
binations of spin product functions with the same value of 2* s(. The problem
of determining the coefficients in this expansion is extremely difficult, but
we can construct an approximate solution for the eigenfunction of the lowest
energy state with a given value of 2* s< by means of a variational method. To
this end we assume the lattice to be divided into two sublattices, and we
classify the spin product functions by three parameters

K  =  2 2 <Si, (3)

k — 2 2,- <5,- s,-, (4)

'?'■ ^  S j j  (5)

which are proportional to the long-range order parameters S and s, and the
short-range order parameter a, introduced in the preceding chapters:

K  =  NS] k =  Ns] x — No. (6)

We then construct a trial function by taking a linear combination of spin
product functions, in which functions with the same values of k and x have
the same coefficient, and we determine the best values of these coefficients
by means of the variational principle.

Let the number of spin product functions |s4> with given K, k and x be
g(K, k, x). Introducing the normalized functions

\K kx> =  g-*(K, k, x) 2 < ™  |s<>, (7)

where the superscript (K , k, x) indicates the restrictive conditions (3) — (5),
we can write the trial function in the form

\Ky — x a(K, k, x) |K k xy. (8)

We have to minimize (K\H\Ky with respect to variations of the a(K, k, x)
under the condition (K\Ky =  1. To this end we first examine how the Hamil­
tonian (1) operates on a spin product function |sÉ> with given values of K, k
and x. In the representation of the spin product functions the non-vanishing
matrix elements of H {2> are given by

<+ +  |H(2) |++> =  <-----|H<2> |------ > =
=  -  <+ -  I# '211+ - > =  — < -  +  I#<2> I -  +> =  U ,  (9)

<+ -  |H'2> I -  +> =  <_ +  |tf(2,| +  _> =  (l _  a) ƒ,

where | +  -|-> etc. are abbreviations for |+ ^ , +^> etc. In the state described
by the spin function in question there are %(N — x) pairs of equal nearest
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neighbour spins ( + +  a n d -----) and $(N +  x) pairs of opposite spins (H—
and — (-)• We conclude that H\Si> is a linear combination of spin product
functions, which, in addition to the original function |s,-> appearing with a
coefficient %(N — x) (£ƒ) +  \{N  +  x) (— \J) =  — \ x j , contains %(N +  x)
spin product functions differing from |s4> by the interchange of two nearest
neighbour spins with opposite signs (and hence, in general, by the values of
k and x), and each one appearing with a coefficient (1 — a) ƒ. The effect of
such an interchange on k and x can be investigated by considering the pair in
question together with its two nearest neighbours, i.e. a configuration of four
consecutive spins. Such a configuration is characterized by the values of the
spin variables si of the four spins and by their position with respect to the
two sublattices, which can be specified by giving the value of one of the d(;
the order of the spins, however, is irrelevant. We can distinguish eight
different configurations with opposite inner spins, which we shall denote by
the signs of the spin variables, omitting the -|’s and using the convention
that the most left-hand symbol represents a spin on the A-lattice:

-)— 1------— k, x k 4, x +  4
-b -b — -f- kr x —> k -b 4, x
— -b — — k, x -> k 4, x
— -{- — -j- k, x —> k ~b 4, x — 4

--------1— f- k, x —>■ k — 4, x -b 4
--------1---- k, x —>■ k — 4, x
-|------ 1— |- k, x -> k — 4, x
+ ---- 1---- k, x -> k — 4, x — 4

It is evident that the interchange of the inner pair of these configurations
changes k and x in the way stated above, whereas K  is left unaltered.
Let fM(Sf) be the fraction of configurations responsible for a transition
k, x k +  <5, x +  A, in the state |Sj> (Ó =  ±  4; A — 0, ±  4). Then

Ua (K, k, x) =  r 1 (K , k, x) n ? M  föA (Si) ( 10)
is the fraction in which these configurations are present in the whole set of
states with given values of K, k and x ; their number, and hence the number
of possible transitions k, x -»■ k +  <5, x +  A, is Ng(K, k, x) faA (K, k, x). After
having performed a certain transition by exchanging the inner spins of one
of these configurations, we can realize the reverse transition with k -\- d,
x -b A k, x by repeating the interchange just once; since each transition
can be made in both directions in this way we must have

Ng(K, k, x) fSA (K , k, x) =  Ng(K, k +  d , x  +  A) f a  (K ,k  +  d,x +  A), (11)

where 6 and A in the index stand for —d a n d —A.
If we let H  operate on |K  k xy we get in the first place a term — \ x j  •

• \K k x) having its origin in the contributions —\xj\s£> of the various
functions H\s^>. The coefficients of the other, modified functions can be
found by counting the marks left behind by the operations which formed
these functions from the original functions |st>. A function |s(> with para-
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meter values K, k -f 4, x +  4, for instance, can be obtained from a function
|s<> with values K, k, x only by the interchange of the inner pair of a
configuration -f- -f- — —, giving -|-------1---- . Since any configuration
H------ 1---- in the new state can be considered as the mark of such an inter­
change and since the number of these configurations is equal to iV/y(s<), the
function |s<> can be formed in N f a ^ )  ways. Its coefficient in the expression
for H\K k x> is equal to the product of this number, the normalizing factor
g~i and the constant (1 — a) / .  In this way we find
H\K kx> =

=  “  l*J\K k x> +  (1 -  a) NJg~i(K, k, x) Xa>A $**-•?-*> f M \ s £ .  (12)

Making use of the fact that the spin product functions, and hence also the
functions |K k *>, form an orthonormal set, and of the equations (10) and
(11), we finally get for the expectation value of the energy in the state |Ky.

<K\H\K> = - U  x\a(K, k, *)|* +

+  (1 — a) N J  a*(K, k, x) FiA(K, k, x) a(K, k +  d, x +  A), (13)

where the “transition coefficients’’ FiA are given by

Fsa{F, k, x) =  \JaA (K , k, x) faA(K, k +  d, x -f- A)]* =
=  \g(K, k, x)/g(K, k + d,x + A ) f  ftA (K, k, x). (14)

By variation of (13) with respect to the a(K, k, x) under the condition
<Ül|üC> --- 1 we get

— iJxa(K, k, x) +  (1 — a) N J  FtA{K, k, x) a(K, k +  d, x +  A) =
= Ea(K,k,x).  (15)

The lowest eigenvalue E = Ei<J) of this set of equations is an approxima­
tion to the lowest eigenvalue of H  for the given value of K. Apart from an
undetermined common factor the corresponding set of coefficients a (K, k, x)
is of the form

a{K, k, x) =  ( -  l)*fc b(K, k, x), (16)

where the b(K, k, x) are real and positive, because otherwise we could obtain
a solution with a lower eigenvalue than E{0K) by replacing the b(K, k, x) by
I k, x) | 6). This can be seen by substituting (16) into (15), dividing the
left- and right-hand member by b(K, k, x) and observing that the second term
in the left-hand member gets a minus sign, in virtue of the fact that the allowed
values of <5 are ±  4, and that therefore (— \)i(k+d}j(—\)ik is equal to —1.

In the limit N ->■ oo the variational problem for E{0K) becomes of a particu­
larly simple form. To show this we put

b(K, k, x) — exp Nca(S, s, a, N), (17)
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where S, s and a are given by (6); co is real, because the b{K, k, x) are positive.
Substituting (16) and (17) into (15) and expanding into powers of 1/2V, we
get, neglecting terms of order 1 /N:

E{0S)/N  = — \Ja  — (1 — a) ƒ FiA(S, s, a) exp [2 d{dmfds) +  2 A {dm I da)], (18)

in which the variables K, k and x have been replaced by S, s and a. Since N
has disappeared from the equation we may conclude that in the limit N  ->■ oo,
m is independent of N :

b{K, ft, x) =  exp Nco(S, s, a). (19)

Now one can easily derive from (15) that b{K, ft, x) (the square of which is the
probability, in the state |Ky, of finding the system with the parameter values
k and x) must have at least one maximum somewhere inside the (ft, x)-
domain 6). Therefore, co has at least one maximum, say for s =  s*, a = a*;
in this maximum we have dm/ds =  0 and doj/da =  0, and hence

EM IN  =  -  \Ja* _  (1 _  «) ƒ FiA (S, s*. a*). (20)

If we minimize 'Ef>. with respect to variations in the values of s* and a* we
find an approximation for the lowest energy level corresponding to the given
value of the long-range order parameter S.

§ 3. The calculation of the transition coefficients. For the calculation of the
transition coefficients F0A we need the probabilities fiA(S, s, a) of finding
certain configurations of four consecutive spins in an arbitrary state |s(>
with given values of S, s and cr {i.e. of K, k and x). These probabilities can be
obtained in the following way: the chance of having a configuration SjS^s,,
is the product of the chance of having an inner pair s3s2 (if for a pair we use
the same convention as for a set of four spins, viz. that the left-hand symbol
represents always a spin on the A-lattice), the chance of having a left-hand
pair SjS2 when it is given that the second spin is s2, and the chance of having
a right-hand pair s3s4 when the third spin is s3. The probability /44 of finding
a configuration -1— |-------- , for instance, is given by

fu =  U  [/++/(/++ +  /-+)] [/-/(/-+ +  /-)']• <21)
The probabilities f++, /+_, /_+ and ƒ__ of finding a + + ,  H— . — +  or -
pair, which are identical to the quantities fv  /0,/2 and /3 respectively, intro­
duced in chapter III, can be expressed easily in terms of the order parameters
S, s and a. We have

f++ =  i(l +  2S — a) ] /+_ =  i( l +  2s +  or); (22)

/ =  | ( l — 2S — <r); /-+ =  i(! — 2s +  a).
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In this way we find (observing that /40 and /j0 are the sum of two configu­
ration probabilities):

/44 =  (1 -  2s +  a) (1 +  2S -  a) (1 -  25 -  <x)/16(l +  S -  s) (1 -  S -  s),

fu =  (1 +  2s +  a) (1 +  25 -  a) (1 -  25 -  <r)/16(l +  S +  s) (1 -  S +  s),

U  =  (1 -  2s +  a)2 (1 -  <r)/8(l +  5 -  s) (1 -  S -  s),

/io =  (1 +  2s +  o-)2 (1 — <t)/8(1 + .5  +  s) (1 — S -T s), (23)

fü =  (1 _  2s +  <t)s/16(1 +  5 -  s) (1 -  5  -  s),

/ïi =  (i +  2s +  <t)3/16(1 +  S +  s) (1 — S +  s),

and hence, according to (14),

^44 =  -Fji =

=  (1 +  2s +  (7) [{(1 +  <r)2 -  4s2}{(1 -  ff)2- 4 S 2}]*/16[(l+S2- s 2)2— 4S2]*,

1*44 =  ^44 — (24)

=  (1 - 2s +  a) [{(1 +  or)2 -  4s2}{(1 -  a)2 -  4S2}]*/16[(1 +  S2 -  s2)2 -  4S2]*,

^ 4 0  =  ^io =  (1 -  o) {(1 +  u)2 -  4s2}/8[(l +  S2 -  s2)2 -  4S2]*.

§ 4. The lowest-energy state. We can now calculate the values of s* and a*
for which the expression (20) for is a minimum, at a given value of S,
and the corresponding value of E^K It is easily seen 6) that the lowest
possible value of E{0S) is reached for S =  0. This energy, E0, which is an
approximation to the ground state of the linear chain, can be obtained by
inserting (24) into (20), taking 5 =  0, and minimizing the expression in the
right-hand member. We get, omitting asterisks,

E0 =  — N J  max r](s, a), (25)
where
V(s, o) =  l o + ( l -  «) [(1 -  CT2) {(1 +  (T)2 -  4s2}* +

+  (1 -  <t){ (1 -I- (T)2 -  4s2}]/4(l -  s2). (26)
To find the maximum of rj(s, a) we put

dr]/ds =  0, (27)

drj/da =  0. (28)

The equation (27) has two solutions:
1) The solution s =  0 for which the two sublattices have equal magnetiza­

tion. According to (28), the corresponding value of a is

a =  K7 +  3a/(l -  a)]* -  (29)
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For this value of s and a, the extremum of rj(s, a) is a maximum only if both

(aV & V o  =  (1 -  «) (1 -  a) (a2 +  2a -  2)
and

(8*»?/3cr2),„o =  -  (1 -  «) (4 +  12<y)

are negative, (d2rj/dsda),=0 being equal to zero. Since we consider only values
of a in the region 0 <  a <  1, a is positive, in virtue of (29), and hence dbi/da2 is
negative. We see, however, that d2rj/ds2 <  0 holds only if (a +  l).a <  3, i.e.
for « <  (24 — 4\/3)/33 =  0.517.

2) For a >  0.517, on the other hand, the position of the maximum of rj is
determined by the second solution of (27), which can be written in the form

a =  i( l +  s)3/a (3 -  s)1/a +  1(1 -  s)*/a (3 +  s)1/a -  1. (30)

By substitution of (30) into (28) we obtain the relation between s and a:

a =  8 {8 +  [(1 -  s2)1/a (9 -  s2)1/a -  (1 -  s2)] •

• [1(1 +  s)3/a (3 -  s)1/a +  1(1 -  s)3/2 (3 +  s)1/a +  2]}-1, (31)

which is represented in fig. 1. For a given value of the anisotropy constant a,

Fig. 1. The long-range order s in th e  ground sta te  as a function of th e  anisotropy
constant a.

the values of s and a are determined by (30) and (31), while the corresponding
value of E0 is given by (25) and (26). The dependence of a and E0 on a, both
for a <  0.517 and * >  0.517 is shovm in fig. 2.

§ 5. Concluding remarks. From the foregoing analysis we may conclude
that in the ground state of a linear lattice of spins 1 with an isotropic, anti­
ferromagnetic coupling between nearest neighbours (« =  0) no antiferro­
magnetic long-range order is present, the magnetization of each of the two
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sublattices being zero. This holds also for a chain with an anisotropic
coupling of the form (1), (2) if the anisotropy constant a is not too large. For
values of a larger than a certain critical value for which our approximative
method gives a =  0.517, long-range order occurs. The sublattice magnetiza-

E /N J

Fig. 2. The antiferromagnetic short-range order parameter a in the ground state and
the energy E 0 as functions of the anisotropy constant a.

tions which have opposite directions increase very rapidly with increasing
anisotropy until finally, when a has reached the value 1 (Ising interaction),
saturation is reached: s =  1. Although the minimum anisotropy required for
long-range order is rather large in this case, one may expect that in two- and
three-dimensional systems this anisotropy is much smaller, if not zero.
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RÉSUMÉ

Le but de cette thèse est d’examiner les propriétés statistiques de quel-
ques systèmes coopératifs. Les premiers trois chapitres sont consacrés a la
discussion des systèmes de spins ferromagnétiques et antiferromagnétiques.
Bienque la théorie du champ moléculaire foumisse une description quali­
tative trés satisfaisante de ces systèmes, il existe un nombre de différences
sensibles entre 1’expérience et la théorie. Puisque cette théorie se base sur
la supposition de 1’indépendance statistique des spins, on peut améliorer
1’approximation en tenant compte des correlations entre les spins. Dans le
premier chapitre nous formulons la théorie statistique d’un système de spins
ferromagnétique k couplage isotrope entre des premiers voisins de telle fa$on
que 1’introduction d’une corrélation entre des spins voisins est trés simple.
La somme d’états du système est exprimée en termes d’une matrice densité
d’une paire des premiers voisins. A 1’aide de cette matrice densité nous intro-
duisons 1’énergie effective He d’une paire de spins, et nous montrons que He
contient deux termes de couplage et un terme représentant un champ effectif
agissant sur les deux spins de la paire. La supposition que les termes de cou­
plage soient zéro conduit a 1’approximation du champ moléculaire. On ob-
tient une autre approximation en supposant que.le couplage effectif est égal
au couplage isotrope réel entre les spins; on peut démontrer que dans la
limite T -> oo cette supposition est justifiée rigoureusement. Cette approxi­
mation ,,de couplage constant” est une généralisation directe de la méthode
quasi-chimique pour un système de spins d’Ising. Les propriétés thermo-
dynamiques du système sont calculées a 1’aide de cette approximation, et des
résultats numériques sont donnés pour plusieurs réseaux. Nous montrons
que la difficulté d’un ,,anti-point de Curie” qui se présente dans la théorie
de P. R. W e i s s ,  est absente dans la susdite théorie.

Dans le deuxième chapitre nous étendons la théorie développée dans le
premier chapitre aux systèmes de spins antiferromagnétiques k couplage
isotrope entre des premiers voisins. Nous discutons le cas d’un champ exté­
rieur parallèle et celui d’un champ perpendiculaire.

L’application de la théorie aux systèmes de spins ferro- et antiferromagné-
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tiques a couplage d’Ising est donnée dans le troisième chapitre. Dans ce cas
1’approximation de couplage constant apparait être équivalente & 1’approxi-
mation quasi-chimique. Nous développons cette approximation en détail
pour un système antiferromagnétique dans un champ extérieur parallèle.

Le quatrième chapitre décrit 1’étude des propriétés d’une couche mono-
moléculaire adsorbée sur une surface, les particules de la couche présentant
une répulsion mutuelle. Dans cette étude on utilise la relation formelle entre
la somme d’états d’un tel système et celle d’un système d’Ising. A 1’aide de
1’approximation de couplage constant les isothermes d’adsorption sont étu-
diées en détail, et la chaleur d’adsorption est calculée.

Le cinquième chapitre discute 1’état fondamental d’un cristal uni-dimen-
sionnel a couplage antiferromagnétique. On obtient une approximation pour
1’énergie de eet état a 1’aide d’une méthode de variation. Contrairement
a la théorie du champ moléculaire on trouve que dans 1’état fondamental
d’une chaine de spins a couplage isotrope il n’y a pas d’ordre a longue dis­
tance. Cependant, un tel ordre apparait si le couplage a une partie aniso-
trope suffisamment grande. La valeur critique de 1’anisotropie est calculée
et la dépendance de quelques quantités en fonction de 1’anisotropie est
examinée.
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SAMENVATTING

In dit proefschrift worden de statistische eigenschappen van enige coöpe­
ratieve systemen onderzocht met behulp van bepaalde benaderingsmetho­
den. De eerste drie hoofdstukken zijn gewijd aan een beschouwing van ferro-
magnetische en antiferromagnetische spinsystemen. Hoewel de eigenschap­
pen van deze systemen kwalitatief goed worden beschreven door de theorie
van het moleculaire veld, is er op een aantal belangrijke punten geen over­
eenstemming tussen experiment en theorie. Daar deze theorie berust op de
veronderstelling, dat de spins statistisch onafhankelijk van elkaar zijn, kan
men een betere benadering ontwikkelen door rekening te houden met het
bestaan van correlaties tussen de verschillende spins. In hoofdstuk I wordt
de statistische theorie van een ferromagnetisch spinsysteem met isotrope
koppeling tussen naaste buren zodanig geformuleerd, dat men op eenvoudige
wijze correlaties tussen naburige spins in rekening kan brengen. Hiertoe
wordt de toestandssom van het spinsysteem uitgedrukt in de dichtheids­
matrix van twee naburige spins. Met behulp van deze paar-dichtheidsmatrix
wordt de effectieve energie H e van een spinpaar ingevoerd; H e blijkt twee
koppelingstermen te bevatten en een term die een effectief veld, werkend op
de twee spins, voorstelt. De veronderstelling, dat de koppelingstermen nul
zijn, blijkt te leiden tot de benadering van het moleculaire veld. Een volgende
benadering wordt verkregen door te veronderstellen, dat de effectieve koppe­
ling gelijk is aan de werkelijke, isotrope koppeling tussen de spins; bewezen
wordt, dat in de limiet I - m »  aan deze veronderstelling streng voldaan is.
Deze „benadering van constante koppeling” vormt een rechtstreekse veralge­
mening van de bekende quasi-chemische benadering voor een Ising-spin-
systeem. Uitgaande van deze benadering van constante koppeling worden
de thermodynamische eigenschappen van het spinsysteem berekend, terwijl
voor een aantal roosters numerieke resultaten gegeven worden. Het blijkt,
dat deze theorie, in tegenstelling tot die van P. R. W e i s s ,  niet het be­
zwaar heeft, het bestaan van een anti-Curiepunt te voorspellen.

In hoofdstuk II wordt de theorie, ontwikkeld in hoofdstuk I, uitgebreid
tot antiferromagnetische spinsystemen met isotrope koppeling tussen naaste

70



buren. Zowel het geval van een evenwijdig als dat van een loodrecht uitwen­
dig veld wordt behandeld. Hier blijkt de moeilijkheid van een anti-Curiepunt
wel op te treden.

De toepassing van de theorie op ferro- en antiferromagnetische spinsyste-
men met Ising-wisselwerking wordt in hoofdstuk III gegeven. In dit geval is
de benadering van constante koppeling equivalent met de quasi-chemische
benadering. De benadering wordt in detail uitgewerkt voor een antiferro-
magnetisch spinsysteem in een evenwijdig uitwendig veld.

In hoofdstuk IV worden de eigenschappen van een monomoleculaire laag
van geadsorbeerde deeltjes met een afstotende potentiaal tussen naburige
deeltjes onderzocht door gebruik te maken van de formele relatie tussen de
toestandssom van een dergelijk systeem en die van een Ising-systeem. Met
behulp van de benadering van constante koppeling worden de adsorptie-
isothermen in detail bestudeerd en de adsorptiewarmte berekend.

Hoofdstuk V behandelt de grondtoestand van een eendimensionaal spin­
systeem met antiferromagnetische koppeling tussen naaste buren. Door mid­
del van een variatiemethode wordt een benadering voor de energie van deze
grondtoestand verkregen. Anders dan in de theorie van het moleculaire
veld vindt men, dat de grondtoestand van een keten van spins met isotrope
koppeling geen antiferromagnetische lange-afstandsorde vertoont. Is de
koppeling echter voldoende sterk anisotroop, dan treedt een dergelijke lange-
afstandsorde wel op. De kritieke waarde van de anisotropie wordt berekend
en de wijze waarop verschillende grootheden van de anisotropie afhangen
wordt onderzocht.
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Op verzoek van de Faculteit der Wis- en Natuurkunde volgt hier een
kort overzicht van mijn academische studie.

In 1942 liet ik mij, na het afleggen van het eindexamen /? aan het Stedelijk
Gymnasium te Leiden, inschrijven aan de Universiteit van Amsterdam voor
de studie in de chemie. Drie maanden later echter moest ik deze door de
bekende oorlogsomstandigheden onderbreken. In 1945 hervatte ik mijn
studie, nu aan de Rijksuniversiteit te Leiden. Na twee jaar scheikunde
gestudeerd te hebben besloot ik mij te gaan voorbereiden op het candidaats-
examen letter A. Dit examen legde ik in juli 1948 af. Tijdens het practische
gedeelte van mijn doctorale studie, van september 1948 tot maart 1949,
was ik werkzaam bij het onderzoek van Dr. J. H. M e i l i n k  over de
transportverschijnselen in vloeibaar helium II. In april 1951 legde ik het
doctoraal examen met hoofdvak theoretische natuurkunde en bijvakken
wiskunde en mechanica af.

Onder leiding van Prof. Dr. H. A. K r a m e r s  hield ik mij daarna bezig
met onderzoekingen op het gebied van de theorie van ferromagnetisme en
antiferromagnetisme, o.a. over de grondtoestand van een antiferromagne-
tische lineaire keten. Hierin kwam een onverwachte keer door het overlijden
van Prof. K r a m e r s  in april 1952. Het wegvallen van zijn inspirerende
leiding betekende ook voor mij een groot verlies. Hoeveel ik, ook naast mijn
directe wetenschappelijke vorming, aan hem te danken heb, kan ieder be­
grijpen, die het voorrecht heeft gehad bij hem te werken, of op andere wijze
de invloed van zijn persoonlijkheid heeft ondergaan.

Het onderzoek werd hierna voortgezet, eerst in nauw overleg met Prof.
Dr. L. J. O o s t e r h o f f, en na de benoeming van Prof. Dr. S. R. d e
G r o o t  als opvolger van Prof. K r a m e r s  onder diens leiding en in
samenwerking met Dr. J. v a n  K r a n e n d o n k .  De resultaten van dit
werk zijn neergelegd in de eerste vier hoofdstukken van dit proefschrift.

Inmiddels was ik in October 1951 in dienst getreden bij het Koninklijke/
Shell-Laboratorium te Amsterdam (N.V. De Bataafsche Petroleum Maat­
schappij). Ik bleef echter in de gelegenheid, mij geheel aan het onderzoek
in Leiden te wijden.
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STELLINGEN

I

Van een spinsysteem met antiferromagnetische Ising-wisselwerking kan
men de susceptibiliteit bij het absolute nulpunt in een richting loodrecht
op de voorkeursrichting streng berekenen. De aldus gevonden waarde is
gelijk aan die van de loodrechte susceptibiliteit van een spinsysteem met
isotrope wisselwerking volgens de spingolftheorie.

II

De ordeparameter, die L i gebruikt om de korte-afstandsorde in een
antiferromagnetisch kristal te beschrijven, is niet de fysische grootheid,
die bij de diffractie van neutronen aan een dergelijk kristal een rol speelt.

Y. Y. L i ,  Phys. Rev. 80 (1950) 457.

III

De verklaring, die A n d e r s o n  geeft voor het falen van de door P. R.
W e i s s  ontwikkelde theorie van het ferromagnetisme, voor temperaturen
ver beneden het Curiepunt, is niet afdoende. Zij toont slechts aan, dat de
theorie in dit temperatuurgebied geen goede benadering is, niet, dat de
gemaakte verwaarlozingen het optreden van een anti-Curiepunt impliceren.

P. W . A n d e r s o n ,  Phys. Rev. 80 (1950) 922.

IV

Bij zijn berekening van de soortelijke warmte van een ferromagnetisch
kristal leidt P. R. W e i s s  een uitdrukking af voor de gemiddelde energie
van een „spin cluster”. Men kan aantonen, dat deze uitdrukking niet de
juiste is.

P . R . W e i s  s, Phys. Rev. 74 (1948) 1493.

Stellingen behorende bij proefschrift P . W . K a s t e l e ijn



V

Men kan de statistische eigenschappen van een spinsysteem met isotrope
wisselwerking tussen naaste buren beschrijven in termen van de effectieve
energie van een systeem bestaande uit slechts enkele spins. Hierbij is een
systeem bestaande uit twee naburige spins te verkiezen boven een systeem
bestaande uit één spin tezamen met al zijn naaste buren.

P. R.  W e i s s ,  Phys. Rev. 74 (1948) 1493.
Hoofdstuk I van dit proefschrift.

VI

De isothermen van een monomoleculaire geadsorbeerde laag met een
afstotende potentiaal tussen naburige deeltjes zullen beneden een zekere
kritieke temperatuur twee knikken vertonen. Deze knikken corresponderen
met overgangen tussen een toestand met en een toestand zonder onder-
rooster-ordening.

Hoofdstuk IV van dit proefschrift.

VII

De opvatting van D i n g l e ,  als zou de z.g. relativistische verjongings­
kuur geen reëel verschijnsel zijn, is onjuist.

H. D i n g l e ,  Nature 177 (1956) 782.

VIII

Bij pogingen om de triplettoestand van de door E v a n s  door middel van
susceptibiliteitsmetingen onderzochte optisch geëxciteerde moleculen met
behulp van paramagnetische resonantie te onderzoeken zal men glasvor­
mende koolwaterstoffen als oplosmiddel dienen te nemen in plaats van het
door E v a n s  gebruikte boorzuurglas.

D. F. E v a n s ,  Nature 176 (1955) 777.

IX

Bij de röntgenografische bepaling van de structuur van fluoreen is het
principieel onjuist, de waterstofatomen mede in rekening te brengen door
gebruik te maken van het verstrooiende vermogen, zoals dat is bepaald door
R o b e r t s o n .

D. M. B u r n s  en J. I b a 11, Proc. roy. Soc. A227
(1955) 200.

J. M. R o b e r t s o n ,  Proc. roy. Soc. A150 (1935) 106.



X

Het is onjuist, bij de beschrijving van de „paradox van Gibbs” te spreken
van een „onaanvaardbare discontinuïteit van oorzaak en gevolg”.

A. L a n d é, Foundations of Quantum Mechanics (Yale
U niversity Press, New Haven, 1955) p. 10-14.

XI

Uit de proeven van S c h n e i d e r  c.s. volgt overtuigend, dat de opvat­
ting, dat de coëxistentiekromme van een gas-vloeistofsysteem een vlakke top
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XII

De resultaten van de metingen van B e u n ,  S t e e n l a n d ,  de  K l e r k
en G o r t e r  over de susceptibiliteit van chroommethylaminealuin in een
transversaal veld stemmen niet overeen met die van de metingen van
H u d s o n  en M c L a n e .  Deze discrepantie kan worden verklaard door
aan te nemen, dat tijdens de metingen van laatstgenoemden de in Leiden
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XIV
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Het bewijs van de bewering van v a n  M e l s e n ,  dat aan de relativi­
teitstheorie de vooronderstelling van het bestaan van een absolute gelijk­
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