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QUTLINE
0 In Nature there are two basic classes of particles: the bosons, which
§ carry an integral spin, and the fermions, with half integral spin. Super-

symmetry is a symmetry between these different kinds of particles. In all
existing theories of fundamental processes there is a complete division
between bosons and fermions. Only supersymmetry is able to break this
partition apd treat both on an equal basis., In the presence of this kind
of symmetry particles with integral and half integral spin are forced to
occur as partners of a common supermultiplet, and are no longer treated
separately. One important implication of supersymmetry is that the infinite
results, which occur in a quantum mechanical formulation of conventional

field theories, are often absent in supersymmetric theories. The reason of

this is that bosons and fermions contribute with opposite signs to these

infinities, and supersymmetry forces these contributions to cancel. In

oy addition the invariance under supersymmetry implies that the theory must be
invariant under translations. Hence if supersymmetry transformations are local
, then the theory must be invariant under local translations or general
cocrdinate transformaetions. This implies the existence of gravitation. The
gauge theory of supersymmetry is therefore called supergravity. The benefits
of supersymmetric theories remain present in supergravity and may be essential
in the construction of a consistent quantum theory of gravity.

The softening of ultraviolet divergencies in the quantum version of super- "
symmetric theories is even more striking if one considers extended supersymmetry,
where one has N independent supersymmetries present. The gauge theory of N
supersymmetries fused with a global internal SO(N) or SU(N) symmetry includes
gravity and is celled extended supergravity. Besides gravitation there are
three other fundemental forces knownm in Nature: the electromagnetic, the
weak and the strong interactions. Gauge thecries of internal symmetries are
very successful to describe these three types of forces. These internal
symmetries can be seen as originating from subgroups of one unifying gauge
group. The gauge theory of this unifyying group combines the three interactions
into one theary. Extended supergravity provides a unique prescription to
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incorporate gravitation in such a theory as well. In a natural way it implies
both the existence of gravitation and the presence of internal symmetries,
which may describe the other fundamental interactions. In this way extended
supergravity would describe all known elementary processes in Nature.

Although extended supergravity theories are uniq,uely determined, they are
rather camplex. The field representations of all extended theories up to
N=8 are known at present. Beyond N=8, supersymmetry requires the existence of
massless particles with spin higher than two., It seems impossible to have a
consistent description of such higher-spin perticles coupled to gravity.
Therefare we restrict ourselves to N & 8 extended supergravity. The existing
farmulations of the N £ 8 theories have the disadvantage that most of them are
baged on fields that directly correspond to physical degrees of freedom. Such
formulations are called “on-shell" and are only relevant within the context of
a given action. This is in contrast to "off-ghell" formulations, which make
no reference to any action at all. In order to find applications of extended
supergravity theories it is important to get acquainted with their off-sghell
formlations and to develop techniques that cen make clear their structure as
a classical field theory. Confarmal symmetry forms an essential ingredient
in studying the off-shell structure of all extended supergravity theories.

The standard conformal symmetries ar> fused with supersymmetry into so-called
superconformal transformations. The gauge theory of these conformal super-
symmetries is called confarmal supergravity and constitutes the backbone of
all supergravity theories. In this thesis we explain the role of conformal
invariance in supergravity. Furthermcre we present the camplete structure
of extended conformal supergravity for N € L.

The cutline of this work is as follows. In chapter 2 we briefly summarize
the essential properties of supersymmetry and supergravity and indicete the
use of confcrmal invariance in supergravity. The idea that the introduction
of additional symmetry transformations can make clear the structure of a field
theory is not reserved to supergravity only. By means of same simple examples
we show in chapter 3 how one can always introduce sdditional gauge trans-
formations in a theory of massive vector fields. Moreover we show how the
gauge invariant farmulation sometimes explains the quantum mechanical proper-
ties of the theory. In chapter I we define the conformal transformations and
sumiarize their main properties. Furthermore we explain how these confermal
transférmations can be used to analyse the structure of gravity. The super-
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symmetric extension of these results is discussed in chapter 5. Here we
describe as an exsmple how N=1 supergravity can be reformulated in & confor-
mally invariant way. We also show thal beyond N=1 the gauge fields of the
superconformal symmetries do not constitute an off-shell field representation
of extended conformal supergravity. Therefore we develop in chapter 6 g
systematic method to construct the off-shell formulation of all extended con~
formal supergravity theories with N £ 4. As an example we use this method to
construct N=1 conformal supergravity. Finally, in chapter T we discuss N=k

conformal supergravity. The references can be found at the end of each chapter.
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CHAPTER IT

SUPERSYMMETRY

1. Introduction

Supersymmetry is a symmetry between fermions and bosons. Since bosons
carry an integral mmber of spin and fermions carry half integral spin, the
generateors corresponding to this kind of symmetry are anticammuting, spinorial
operators. For conventional supersymmetry the generators Q,u are Majorana
(= real) *) spinors of spin 1/2. In a field theory bosons are described by
fields, which carry dimension 1 (in units of mass), whereas fermions are de-
scribed by fields with dimension 3/2. Therefore the generatcrs Q, of super-
symnetry should carry dimension 1/2 to bridge the gap in canonical dimension
of boson and fermion fields. As for any symmetry the commutator (or, as here,
the anticommutator) of two symmetry generators should yield the generators of
ancther symmetry. In this case the anticommutator yields generators with
dimension 1/2 + 1/2 = 1, and the natural candidates for these are the (anti-
hermitean) generators P,
takes the form

W of translations. Indeed, the supersymmetry slgebra

{Qn Gt = +2 2 (", ; (2.1)

with " the Dirac y-matrices.

The explicit farm (2.1} of the supersymmetry algebra lesds immediately to
important consequences. For example, it implies that the Hamiltonian of a
supersymmetric system is expressed by

Hzie = ¢ Q'Q X (2.2)

*)

For notations and conventions see appendix A.
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Consequently, if negative norm states are absent, the energy should be positive
definite:

T ocaqulagrzo . (2.3)

< ylEy >
Furthermore the energy of the ground state should be zero

<olHEjo>=0 . (2.4)

if supersymmetry is realized manifestly, i.e. if the ground state is anni-
hilated by the operators Q:

Q

+
L |0 > = Qlo>=0 . (2.5)

Let us recall that bosons and fermions have an infinite zero-point energy,
which is positive for bosons and negative for fermions. More specifically, in
conventional quantum field theory, a bosonic degree of freedom for a system in
a finite volume yields a vacuum energy

< ojtfo > = % Tu, <olaalo> , (2.6a)
k k kk

where w, = Ko4m® and a.:, 8, are the bosonic creation and annihilation opera-
tor forkea.ch kind of parlt{icllé. On the other hand two fermionic degrees of
freedom far a system in a finite volume are described by a Majorana spinor and
lead to & vacuum energy .

1 U
<oflo>y, =- 3 £ w <ola, a Jo> |, (2.6b)
k,a k k,a ko
withd, , d, (o=1,2) the fermionic creation and annihilation operatars of
k,a k,a
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the two helicity states for the Majorana particle. Because of (2.4) the
bosonic and fermionic zerc-point energies should be equal in absolute size.
Therefore the expressions (2.6a,b) imply that in a supersymmetric realization
the numbers of bosonic and fermionic physical states are equal. This means
that supersymmetric field thecries must be based cn multiplets containing
boscn and fermion fields, which deacribe equal numbers of boson and fermion
atates.

At this point we should add a word of caution. The above counting argument
does only apply to physical states or dynmmic degrees of freedom. It does not
give any infarmation about the fisld degrees of freedom (we shall also use the
name spin degree of freedam), which are described by the fields contained in a
supersymmetry multiplet. In section 5 we shall make it plansible that for the
of f~shell formulations (these we discuss in section 4) also the numbers of
fermionic and bosonic field degrees of freedom esre equal.

Another importsnt consequence of the supersymmetry algebra (2.1) is that
if supersymmetry is realized as a local symmetry, then the theory in question
should be invarient under local tranalations. In other wards, local super-
symmetry requires invarisnce under general coordinate transformaticns and thus
implies gravity. Theories with local supersymmetry are therefore called super-
gravity theories. The smallest supersymmetric extension of the Einstein
theary of gravity is called N=1 Poincar# supergravity and describes two spin-2
and two spin-3/2 dynamic degrees of freedom. In extended supergravity, where
one has N independent supersymmetries present, the underlying multiplets de-
scribe more than 242 (bosonic + fermionic) dynamic degrees of freedam and have
a uare canplicated structure.

In recent years many field theories have been conatructed that are in-
variant under supersymmetry transformations. Such theories have been shown
to exhibit a number of surprising and interesting properties. One of them is
that the ultraviolet divergencies in the quantum corrections to these theories
are much softer than in thearies without supersymmetry. The reason for this
property is related to the fact that boson loops and fermion loops come with
opposite signs, and because of supersymretry this leads in many cases to direct
cancellstions. An example of this pheriomenon is the vanishing of the zero-
point energy in supersymmetric theoriss. Many examples of this softening of
ultraviolet divergencies are known, and have inspired the hope that this pro-
perty will be of crucial importance to construct a consistent quantum theory

10
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of gravity. Another interesting aspect of supersymmetric thearies is that they
often give rise to quite unexpected new invariance properties, such as the
cambined chiral-dual symmetries of field equations in extended supergravity,
the USp(2K) symmetry of massive supermultiplets, and the E‘T invarience in N=8
supergravity. But perhaps the most importent aspect of supersymmetry is that
it provides a unique principle for the wnification of elementary particles and
the fundamental forces in Nature: supersymmetry by definition combines boscns
and fermions, and in its local version it implies the existence of gravitation.
This chapter is organized as follows. In section 2 we consider as a simple
example the Wess-Zumino model, which is based on the smallest supersyretry
multiplet. In section 3 we give the N=1 Poincaré supergrevity theory. This
model descrives the smallest supersymmetric extension of Einstein gravity.
The problem of how to find off-shell formulations of supersymmetric theoiies
is discussed in section 4. Here we give off-shell formuletions of the Wess=-
Zumino model and N=1 Poincaré supergravity. A counting argument concerning
field degrees of freedam is derived in section 5. Finally, in section 6 we

give the motivation for studying conformal invariance in supergravity thearies.

2. The Wess=Zumino model

The Wess-Zumino model describes two spin-0 and twe spin-1/2 dynemic degrees
of freedam. In a field theaory such states can be represented by a complex

scalar field A and & Majorana spinor 'k'i' The Lagrangian for these fields is
given by

- * -
£ o=ama-25F -nAA-Ln @V +ee) , (2.

where m is an arbitrsary mass parameter and the abbreviation c-c+ indicates that
the complsx conjugated term is added. The symbol ':u denotes a differentiation
to the right and to the left: gu = 3'u - 5_“. In (2.7) we have used.the chiral
notation, in which chiral projections of Majorana gpinors are denoted by a dot,
This notation is very useful in extended sunersymmetry, where N chiral spinors
combine into representations of U(N) '). In that case the dot is replaced by

a U(N) index i (i=1..N), vhich uniquely characterizes the representation.

»)

For mare details see appendix B,
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If the positive chiral projection 1/2(1w5)¢§i corresponds to the N represen-
. » .
tation of U(N) we use the (consistent ') notation

i i 1 i i_ =i 1
: Vo= g (g =¥y 3 (%)
. (2.8)
‘ . - 41
r b; = -;'(1-«5)‘9; ¥ = ‘h;i 3 (1—75) .
On the other hand, if 1/2(1+75)¢Mi falls in the N representation we write
i 1 i i =i 1
Vo= 5(1-75) ¥y = Uy -2-( —75
. . (2.9)
i - =i

v = ';"(“*s) Y ;= Wy ';T(”Ys) y

i In the Wess-Zumino model we use the notation given in (2.8) with on the left-

hand side the index i (i=1) replaced by a dot.
The action corresponding to the Lagrangian (2.7) is invariant under the
following set of supersymmetry transformations

Gh =&° »
{2.10)
*
dhe -mA ¢ >

&¢°

where € is a spacetime independent (Majorana) spinor paremeter, which charac~
terizes the supersymmetry transformation.

According to the supersymmetry algebra (2.1) the commutator of two super=-
symmetry transformations must yield a translation. The infinitesimal form of

such a translation

PR L (2.11)

¥)

For more details see appendix B.
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on A (or §) is given by
Wyao !}
GP(E A= + E auA

. (2.12)

Indeed, calculating the commutator of two supersymmetry transformations with
pecameters e, and €, On A we find

- (]
with the translation parameter g* given by
u =g u sxe
£ =egv g *ere . (2.14)

However & calculation of the same commutator on ¢ leads to an additional term,
which is proportional to the Dirac equation for § (by this we mean that this
term vanishes after applying the Dirac equation):

[8g(e ), Sgle)lvr =+ ¥ 0" =3 ¢ (#0" +m0) . (2.15)

Therefore the supersymmetry algebra (2.1) is only realized on field configura-
tions that satisfy the field equations

v" +my =0

(2.16)
@-n2) A=0

For this reason the multiplet (A,Vy) is called an on-shell representation of the
supersymmetry algebra. Notice that the on-shell Wess-Zumino model contains

2 field degrees of freedom for the complex field A and 4 field degrees of free-
don for the Majorana spineor wm.

13
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A disadvantage of an-shell representations is that the transformation rules
and, the commutator algebra sre related to a given action. This hampers appli-
cations of such results in the context of different actions. For instance a

discussion of quantization and of supsrsymmetric counterterms is rather aiffi-
cult in the context of on~shell representations. Pnr that purpose it is con-
venient to use representations of the supersymmetry slgebra, which are not
related to any specific action at all. A central problem in supersymmetry and
supergreavity is to find such representations. We will come back to this point
in section 4, where we shall give an off-shell formulation of the Wess~Zumino
model.

3. N=1 Poincaré supergravity

In this section we discuss N=1 Poincaré gupergravity. This model describes
two spin-2 and two spin-3/2 dynemicz degrees of freedom and is the smallest
supersymmetric extension of the Einstein theory of gravity. The physical states
can be represented by boson and fermion fields respectively. We give the
(nonlinear) transformation rules of these fields under spacetime-dependent
supersymmetry transformations and an action, which is inveriant under these
transformations. Furthermore we calculate the camutator of two (spacetime-
dependent) supersymmetry trensformations on these fields. In analogy to the
Wess-=Zumine model we find that on the boson fields this commutator yields a
{covariant) translation, whereas on the fermion fields the same commutator
leads to sdditicnal terms, which are proportional to the field equations of
the fermion fields. Before giving these results we First briefly review the
theary of ordinary gravity.

In the Einstein-Cartan version of gravitation the gravitational spin~2 state
is represented by a vierbein field e:, with the property theat the metric tensor
is given by

By = €58, . (2.17)

Contraction with a vierbein changes local Lorentz indices a into world indieces p
and vice versa. These indices refer to the transformation character under
local (internal) Lorentz and general coordinate transformations respectively.

1h
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Under these transformations the vierbein field transforms acecording to

Ea,belz»

. (2.18)
!

a A a A, &
B _ +
Geu + K a;\ell + (auf; )e;\

ab are spacetime-dependent parameters, which characterize the

where EA and €
general coordinate and local Lorentz transformations.

An inverse.vierbein field e‘; is defined in the following way:

u b _ b
¢ %y = % :
(2.19)
8 vV _ oV
euea Gu .

Besides the vierbein, the Einstein-Cartan theory is based on a spin~connection
field m:b, vhich is not independent. Tt can be expressed in terms of e: in

. »
the following way ):

ab _ A p C c
w {e) = « ® a (8ueb]“ - B“eb]u) - e[q Sy (aoeep) e . (2.20)

Undexr local Lorentz transformations with parameters %P this field transforms
according to

=3 eab _ mac ecb be Eca

ab
€

1]
o

(2.21)

This transformation character explains the role of the spin-connection field:

it can be used as the gauge field of the local lorentz transformations. The

ab

curvature tensor of w W is defined in the following way:

) The antisymmetrization notation [ ] is explained in appendix A.
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Here we have taken the gravitational coupling constant ¥ equal to one.
field equation of e: corresponding to this Iagrangian reads:

16
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ab _ ab ac  cb
Ruv(m) i N Bl TS

the curvature scalar

A1) = oM LV R8P
Ru(e)} = e, e Rw(w(e))

a8

de "

ee' g e
a

3, (&%)

£ = - e R(ule))

2e(rY -%e: R) = 0

used for the construction of an invariant action.

general coordinate transformations as a scaler,
density one multiplies this scalar with the determinant of the vierhein field

which transforms under general coordinate transformations as

In this way one obtains the following Lagrangian density

B RS S

(2.22)

Thig tensor transforms covariantly under Lorentz transformations and can be
To that end one introduces

(2.23)

which is invariant under local Larentz transformations and transforma under
Tn order to conatruct a

(2.24)

(2.25)

(2.26)

The

(2.27)

-
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keep the spin~connection field as an independent field, because the Lagrangian

where R:' = and R is the curvature scalar. In this formulation one can

is such that the corresponding field eguations yield an algebrailc equation for
w:b in terms of e:, which is exactly given by the defining equation (2.20).
Having thus established the Einstein-Cartan theory, we proceed by dis-
cussing its minimal supersymmetric extension, To that end we introduce an
additional Majorana vector-spiner d":ﬁ to describe the physical spin-3/2 state.

The free Lagrangian for this field is given by

£ gy

2 Y0V, . (2.28)

where we have used the chiral aotation given in (2.8). The corresponding field
equation reads:

(o) _ _uvpo .
Ru =¢ Yua[p"’ol =0 . (2.29)

We note that the spinor R‘(lo) * satisfies the chiral notation given in (2.9},
The Lagrangian is invariant under the following Rarita-Schwinger gauge trans-

formations

qu = 'aue s (2.30)

where £° is a spacetime-dependent spinor parameter, which characterizes the
gauge transformation. Under local Lorentz and general coordinate transformations
lll;l transforms according to

. o Y Ay, .1 ab .
ﬁ"’u +Ea,\wu+(aua )IP)‘-i-EE "ab“’u . (2.31)

In the N=1 Poincaré supergravity model this spin-3/2 field, the gravitino field,
is coupled to the vierbein field of ordinary gravitation in the following way:

17
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£ = - eR(ule,) - "0 §r v D v : (2.32)

Here m:b(e,w) is the following expression in terms of the vierbein and gravi-

tino field:

u:b(e.tb) = mﬁb(e) - 15{ (EW‘; Y[%?] + $'[avu¢t"]) +erer } , 2.33)

Furthermare we have used the Lorentz—covariant derivative

. 1 ab .
npwa=(ap-5m g )Y . (2.34)

The field equations of e: aud \bu corresponding to this Lagrangian read

w_1l._u wee . coe) =
2e(Ra -5e, R) + (e w\)YaDp‘pa. + gice) =0 ,

1 (2.35)
« oL _Hveg o
Ru =2 . € YVD [p‘pa‘] Q0 .

Again one can keep the spin-connection field m:b as an independent field in
the Legrangian, because its carresponding field equation yields an algebraic
& and ‘pll' which is exactly given by (2.33).

u
The action corresponding to (2.32) is invarient under the following set of

expression in terms of e

local supersymmetyry transformations:
& _=. 8
iﬁe‘l ae'y \pu‘ + ¢e* s

(2.36)
s'llu =D s

where D‘l is defined as in (2.34) and &° is & spacetime-dependent parsmeter
characterizing the supersymmetry transformation. These transformation rules
elarify the structure of u:b(e,lb): it is the supersymmetric covariantization

18
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of u:b(e). To show the invariance of the action defined by (2.32) one need

not vary m:b(e.W according to the chain rule, since this variation is always
multiplied by

ST =
a@"b (e:‘l’) =0 H (2'37)
u

where I denotes the action. In this 3/2-order formalism, as it is called, one
only varies the vierbein and gravitino fields that ocowr explicitly in the
action but not the ones, which rezult fram expanding wﬁh(e,w) in terms of e
and ¢. The variation of the gravitine field yields the following term:

WRE =.
- + .
2 € \b Y“Dpl)qe e'c

(2.38)
VP9 e N

v JapE. R (m)+cc'

The commutator part of the y-matrices leads to an expression, which, together

with the vierbein variation of the second term in (2.32), is proportional to
the Bianchi identity

07 [R, M) % (B ¥, +ewen) =0 : (2.39)

The anticommutator part yields:

+3e 809 (2 v u2) Kin(w) + oot

= 2e (Exv,0) (RY ~lel R) +crer . (2.40)

vhich cancels agninst the vierbein variation of the first temm in (2.32).
We finally consider the commutator of two supersymmetry transformations

with spacetimz-dependent parameters g, and £, on the graviton and gravitino
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field. Calculating first this commutator on e: we find

PRI

A A ab i
[GQ(Q‘)’ GQ(EE)] 23 = + Elales + (auE‘. ) eir - w:‘ez |

- Ex(ﬁi‘r%u_ + ¢ecr) , (2.41)

with EA defined in (2.14)., We recognize the first two terms on the right-hand
side as & general coordinate transformation of e:' (cp, q.(2.18)). These termes
are therefore in sccordance with the supersymmetry algebra (2.1). The last two
terms can be identified as field-dependent Lorentz and supersymmetry transfor-
mations with parameters e® = . Ekw:h and €° = = Elw;\ respectively. These
terms are nonlinear modifications of the supersymmetry algebra. Such modifi-
cations are to be expected, since also the algebra of spacetime transformations
changes. For example, two local transliations do in general not commute, while
global translations do. Tne nonlinear terms in (2.41) can be viewed as the
Iorentz and supersymmetry covariantizations of the first two terms. Therefore
by definition the right-hand side of (2.41) is called a covariant translation {

cov Ay, .8 = ~ & Ay 8
See.p () € =+ EKDAeu + (2 8V}

= { tsg.c.‘l’..(gh) + %(" EA“’:b) + GQ(- Ex‘fli) }e: s (2.h2)

where Gg_c. £ &ﬁ and GQ represent general coordinate, locsl Lorentz and super- '
symmetry transformations respectively and the derivative Bu ig covariant with ‘
respect to local Lorentz and supersymmetry transformations. A calculation of

the same commutator on wu leads, in analogy to the Wess-Zumino model, to addi-~

1
tional terms, which are proportional to the field equation of w“ {gee (2.35)): I
i

- = A . 1 - a i
lsq(e,), 6,..%(:;2)14»-‘l 2E DYy - 7§ & LNCH (apo. R, * haup Ra.) !

1 .,A .
+BE {3YAR"I—26A

{
u YR - Qyu (RA - Y,Y'R ) } . (2.43) f
i
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The first term on the right-hand side corresponds to a covariant translation
with parameter E;A, whereas the remaining terms vanish upon use of the gravitino
field equation R"‘ = 0. For this reason the multiplet (e:, \bu) is called an
on-shell supergravity multiplet. In the next section we shall give an off~shell
Tormulation of the N=1 Poinceré supergravity theory. The field degrees of
freedom of the on-shell model are 12 degrees of freedam for \b\:l and 6 degrees

of freedam for e:'. These numbers are obtained as *ollows. The Rarita-Schwinger
field has a priari 16 degrees of freedom, which are reduced to 12 through the
gauge invariance (2.30). Similarly the vierbein field has 16 degrees of free-
dan. (ke gauge freedom implied by (2.18) reduces that number to 6 degrees of
freedom {corresponding to 4 general coordinate transformations and 6 internal
Lorentz transformations).

L. Off-shell formulations

In order to find specific applications of supersymmetric theories and to
scquire an understanding of their dynamical properties, it is an obvious re-
quisite to clerify their structure. An essential element in such a clarifi-
cation is the construction of representations of the supersymmetry algebra in
terms of fields, which do not necessarily satisfy field equations and hence
are not related to a given action. Such representations are called off-shell
representations. So far there exists no fixed procedure to construct these
off-shell representations. In fact most extended supergravity theories are
at present only known on the basis of an on-~skell formulation. The disadvan-
tage of such a formulation has been explained in section 2. In this section
we shall give the off-shell formulations of the Wess~Zumino model and the N=1
Poincaré supergravity theory.

We first reconsider the on-shell Wess-Zumino model discussed in section 2.
In this model the commutator of two supersymmetry transformations on ¥ yields
a translation together with a term, which vanishes upon use of the field equa-
tion of ¢ (see eq. (2.15)). Therefore the supersymmetry algebra (2.1) is only
valid for field configurations that satisfy the field equations (2,16). One
can however envisaege & new variation of y, which circumvents this requirement.
The price one has to pay is that a new field H must be added to the on-shell
model. Mre specifically, the field equation term - % £ (" + my ) in (2.15)
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can be cancelled by the following variation of ¢

&¢' = He s (2.44)
where the variation of H to (Yy* + m,lp.) must be
$H =€ (J9' +my ) . (2.45)

It showld be noted that thia cancellation can only by achieved by the intro-
duction of a complex scalar field. One can now verify that on all fields the
conmtator of two supersymmetry transformations has the form (2.13) independent
of any field equation. or this reason the multinlet (A,¥,H) is cslled an
off-shell multiplet. One r;xa,y wonder whether the presence of the mass parameter
m in the transformation yule of H is necessary. This parameter can be elimi-
nated by redefining H in the following way:

Fe=Hund ) (2.46)

In terms of A, ¢ and F the transformation rules are

SA =gy .
Sy’ = §ae + Fe' . (2.47)
§F =t Jy°

A Legrangian for these fields is given by

-

* - -
£ =A0A -2 39" v + m(AF+c-c*) --;-m (P 'y +cec) +F*F . (2.48)

RIj=s



AT S A

e prmers st Twcos e or ©

An unusual feature is that the scalar field F describes no dynamical degree of
freedom., This field can be eliminated fram the action by means of its field

equation
*
F = -nh (2.49)

without disturbing the invariance of the action. For this reason F is called
an suxiliary field. Its only purpose is to obtain a representation of the
supersymmetry algebra in tems of fields, which are not related to a specific
action, Upon substitution of the field equations (2.16) and {2.49) the off-
ghell multiplet (A,¢,F) reduces to its on-shell version (A,¥).

Having thus explained how one can obtain an ofi'-shell formulation of the
Wess-Zumino model, we proceed by showing how the cn-shell sapergravity multi-
plet (e:, 'Pu) can be extended to such & representation. To that end one must
again introduce additional fields in order to cancel all field equation terms
in the comutater on ¥, (see (2.43)). It appears thei these terms can be can~
celled by a transformation of wu into a complex scalar field F and a vector
field AP_:

.1 R P
8¢ YuFe. + 1Aue 3 :wuﬁe . (2.50)

u 3

where the transformations of F and Aa must be

1,5

6F = 7€ YR .

(2.51)

=-3ic (& 1. -

§ A, =-fie” (Ry -3y, R ) +cuer.

Hexe ‘f(;( = 0 is the supercovariantized field equation of wu:
"ﬁ. =1 c x % "
B e ups v p
.1 e o L ol .

P euvpc Yy { (Dp+1Ap)¢va + 3 yp(qu.ﬁ_hpu) } =0 . (2.52)
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We note that 'n.:the presence of F and A  the conn-:.butmn of mub to the com-

mutator on ¢- :.” given by. (2. h3), “but with D[A“"ul and Ru replaéed by n[ A“’ul
and. ? respectwely. A nontr:wul feature 1s that m the presence or F ana. A
the qmutator algebra (g k1) Eeus’ nonhnear modxf:.ca.tmns d.ependlns on’. theae

,coveriant translation the algebrd conteins an additional

Lurentz trmsrmatxon :

[gleg)s Sqlegll = 8570 ¢ (£) + (e™) (2.53)

gct

with the parameter P given by

N n7) + eeer . (2.54)

ah
& N2, = &,

= 2(#:1 q
In this expression n" stamis for

1" a ‘g (Pe_ + ide") ) (2.55)

After the introduction of F and Aa the commtator of two supersymuetry trans-
farmations has on all fi.elds the form (2.53) independent of any field equation.
Therefore -the multiplet (e Aa.—F) is the off-shell version of the super-

geavity multipiet (e W ¢' ) 'I’he transformation rules of the fields ere

A _ —.
Geu =g ya wu‘i- cct .
anu = (Du + 1Au)e R A ,
(2.56)
§F -‘%‘E. Y.R* s

- WU T S ™
SA, =-fic (Rs. -3 YaY'R.) + g:c-.
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A ILagrangian for these fields is given by

- *
L = _ ¢ R(ule,y)) - VP9 %}Y\,Bp“'a. - % e (F F- Ai) . (2.57)

In analogy to the Wess-Zumino model, the fields F and Aa. describe no dynamical
degrees of freedom. They are auxiliary fields. Upon substitution of their
field equations

F=0, &4 =0 12.58)

and those af e:‘ and q’u’ the off-ghell supergravity multiplet (e::', ‘pu' Ags ")
reduces to its on-ghell version (e:, 'pu) (ep. egq.(2.36)).

A closer study of the off-shell formulations presented in this section
shows that they are based on multiplets of fields describing an equal number
of bosonic and fermionic field degrees of freedm (d.o.f.). This is in con-
trast to the corresponding on-shell multiplets, which contain different numbers.
More specifically the off-shell Wess-Zumino multiplet (A, ¥, F) contains b + %
(fermionic + basonic) field d.o.f. and the off-shell supergravity multiplet
(ei', \bu, As.’ F, contains 12 + 12 field d.o.f..In the next section we shall
show that this e;uality of boscnic and fermionie field degreeé of freedom is
a general property of off-shell formulations. This off-shell counting, as it
is called, plays an important role in the discussion of auxiliary field formu-
lations of supersymmetric theaories.

We finally note that off-shell formulations are often not unique. For
instance there exists another off-shell formulation of the N=1 supergravity
model, which also contains 12 + 12 field degrees of freedem. More specifically,
one can obtain the same cancellation of field equation terms in the commutator
on \bu as before by a transformation of ¥ u into an axial gauge (i.e. having a

gauge inveriance) vector A end an axiel vector B, which is divergence-free:

5An = auA . D.E=0 . (2.59)

25




Here D is the Lorentz~coveriant derivative. This then leads to another off-
shell supergravn.ty multiplet (e . w N A E ) with the same field degrees of
freedom. The transformation rules ot' these fleld.s are

®
P

Sgu=e ¥ q)u.-i-cc‘ »
6¢\I=(Du+mu)a -iy Be )
(2.60)
GE&=-{~}-1 R+ .
SA = - 31’.* Y. Ye R) +cear .
u IR G

These transformations are an invariance of the action corresponding to the
Lagrangi.an

_ HVpo = 2 .
£ =~ e Rlu(e,)) -¢ "’u Y, np ¥y, - he(3Ea - 2A.E). (2.61)

There even exist more off-shell formulations of the N=1 supergravity model.
However, these formulations are non-minimal in the sense that they contain
more than 12 + 12 field degrees of freedom. In extended supergravity the
situation is even worse: many suxilisry fields are needed to close the commu-
tatar algebra without using field equations and meny inequivalent off-shell
formulations do exist.

5. Off-shell counting

As we remarked before, off-shell formulations of supersymmetric theories
are based on rnltiplets of fields describing an equal number of bosonic end
fermionic field degrees of freedam. In this section we show the underlying
idea of this off-shell counting, as it is called., To that end we firast give
a counting argument concerning the field degrees of freedam, which are described
by a massless spin-1 vector field. After that we extend this argument to super-
symmetry multiplets as a whole.
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The Maxwell theory of a massless spin-1 particle is based on a vector
field Au(x). This field describes not 4 but 3 field degrees of freédom only
because of the Maxwell gauge transformations GAu = aul\. One can view Au(x)
as & (reducible) so-called induced representation of the Poincaré algebra of

Iorentz transformations M and translations P:

= = fo, ol
[Muv' \{pc] - M\;p‘sua = Mybyg - Mvasup * “uasvp ) !M[“ St :

= 62
[MW, Pp] 2 P[u‘svlp . (2.62)
{Pul P\,] = 0 .

For more details on induced representations we refer to chapter 4, where we
will consider the theary of induced representations in the context of the con-
formal algebra. Here we only give this as a result. To indicate which re-
presentations re contained in Au(x) it is convenient _1".‘0 go to momexitum space,
and to decompose A into the independent vecors P, = (p,ph), i;u =.(P"I:‘h) and
the two transverse polarization vectors el, i=1,2. Of course p-e1=§-e1=0,

n
but p-p#0. In this decomposition A, can be written as

Au(p) = ai(pz)e'i, + ‘t>(1=2)§u + °(P2)Pu . (2.63)

Each representation of the Poincaré algebra is characterized by the value of
the energy-mamentum squared p2 and the spin s of the corresponding field d.o.f..
If '92=0 the representation is called massless and the spin s contains two heli-
cities. On the cther hand if p2#0 (but fixed) the representation is called
massive and each spin s contains 2s + 1 helicities. In the following we iden-
tify "p2 arbitrary" with a massive representation. Furthermore we call the
representation (p2=m2(o),s) a massive (massless) spin-s representation (or
multiplet) of the Poincafe algebra. More specifically, in (2.63) the campo-
nents a’ carry helicity X 1, whereas b and c correspond to helicity o. Because
of the Maxwell gauge transformations the component ¢ aleng Pu corresponds to

& gauge degree of freedom. We can choose c arbitrary, but by taking c=b we
see explicitly that Au corresponds to a spin-1 object. In an off-ghell for-
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milation A is not subject to a wave equation, but the gauge transfoma.tlon is
left. Therefore the energy-momentum squared p of the camponents s’ and b is
left arbitrary. This means that these field degrees of freedom should forn}
massive representations of the Poincaré algebra. Indeed, the camponents at
and b carrespond to the 3 degrees 6f freedom of & massive spin-1 representa~
tion. On the other hand in an on-ghell formu,:l.a.tion'gﬂ.‘1 is subject to the field
equation

= 2 - -
Oa, -2 23.4=0 or pAl(p)-ppAlp)=0 , (2.6h)
which implies for ai and b
(paai)ei' + (patcx)ﬁu - (lbp-l-l)!?‘1 =0 . (2.65)

From the independence of the vectors eu, p and p we d.educe that b must vanish
and that the value of pe of the remaining ccmponents a (p ) is restricted to
light-like valuegs only. Therefoare in this on-shell formulation the relevant
counting is based on massless representations which implies 2 degrees of free-
dam corresponding to & massless spin-1 maltiplet.

For the same reason a spin-s massless field should at least describe 2s + 1
field degrees of freedam, which should form & massive spin-s multiplet, if we
don't invoke field equations, It is known that for s > 1 this is not yet
sufficient for a Lagrangian description of high-spin fields. We have already
seen an example of thigs. The Einstein-Cartan description of & massless spin-2
particle (see section 3) is based on the vierbein field e:'. This field de-
scribes 6 degrees of freedom, which form & massive spin-2 and spin-0 represen-
tation of the Poincaré algebra.

From the above we see that off-ghell fields have in general more degrees
of freedom than on-shell fields. These degrees of freedom are at least those
of maussive representations, tut possibly combinations thereof. A similar ai-
tuation srises for off-ghell supersymmetry representations. They will be com-
posed of various massive on-shell supersymmetry representations.

We extend the above counting arguments to supersymmetry multiplets as a
whole. To that end we first have to know what the massive and massless
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representstions of the super-Poincaré algebra are. By this we mean the algebra
of Poincaré transformations (Lorentz transformations M and translations P) and
supersymmetry transformations Q, which is given by (2.62) togather with:

- - H
Qs QB} =+ aPu(Y )GB ’
M, Q) = = (@) 0% ’ (2.66)
[Pus QG] =0 .

The representations of this super algebra can be classified in the seme way as
thia is done for the Poincaré algebra. For mare details we refer the resder
to the literature (see references). To indicate which representations are
described by the field camponents of a supersymmetry multiplet it is again
convenient to perform a Fourier transformation on these fields. FEach repre-
sentation is characterized by the value of the energy-momentum squared 132 and
the so~called superspin S. Each superspin S corresponds to a number of integer
and half-integer (ordinary) spins s in such a way that the numbers of integer
and half-integer helicities (or spin d.o.f.) are equal. We have listed same
representations in the table.

spin-s (super)multiplet|N=1 massive representations|N=1 massless representations
dynamic d.o.f. dynamic d.o0.f.

2 (2,3/2,3/2,1) 8+8 (2,3/2) 2+ 2

3/2 (3/2,1,1,1/2) 6+6( (3/2,1) 2+ 2

1 (1,1/2,1/2,0) b+l (1.1/2) 2+2

1/2 (1/2,0,0) 2+2\ (1/2,0,0) 2+2

table. N=1 massive and massless representations of the super-Poincaré algebra.
The numbers between brackets denote the spins contained in each repre-
sentation. Furthermore we have indicated the number of (bosonic + fer-
mionic) dynamic d.o.f. described by the representation.
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We may now use the same counting arguments as before, but now in the context
of a whole supersymmetry multiplet of fields. In an off-shell formulation the
field components of such a multiplet are not subject to generalized wave equa-

DRI SR )

“

tions. Therefore the energy-momentum squared p2 is left arbitrary and all

field degrees of freedom should form massive representations of the super-
Poincaré algebra. On the other hand, if the fields satisfy field equations,
it is possible that the value of Pg is restricted to light-like values p2=0,
ag we have seen hefore. In that case these field components form massless re-
presentations of the super-Poincaré algebra. If an arbitrary mass parameter
m is present the value of p2 can be fixed by pp=m2. Of course, the corres-
ponding fields should then form massive representations. One can now under-
stand why en off-shell multiplet contains an equal number of liosonic and
fermionic field degrees of freedom. This is a direct consequence of the fact
that these field degrees of freedom form massive representations of the super-
Poincaréd algebra, which contain equal numbers of integer and half-integer spin
degrees of freedom.
To clarify the above arguments we conclude this section by giving same
explicit examples. First we consider the Wess-Zumino model. 4n off-shell
formulation of thia model is based on the fields A, F and ¥, which describe
L + k4 field degrees of freedam. The table shows that these fields fall in two
massive spin-1/2 multiplets. The reason that we have two of these multiplets
is that the multiplet (&,,F) is a complex representation. This is not special
for supersymmetry and is related to the fact that the spinor ) is a complex
representation of the Poincaré algebra: in addition to " we have the complex .
conjurate spinor ll). of opposite chirality. A reality condition is given by
the massive Dirac equation, which relates ¢° to ¥ . However this condition :

puts the multiplet on-shell, since by supersymmetry the following equations
are related:

W +mp =0 s

O -w)A =0 , (2.67)
) .

F= -mA
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Therefore the on-shell version of the Wess-Zumino model is based on A and ¢
only. The field equations restrict the value of p2 of these components to
p2=m2 and restrict the & priori 4 degrees of freedam of ¢ to two (the latter
step was not taken in section 2 when we counted the degrees of freedom of V).
This means that A and ¢ form a massive spin-1/2 mltiplet. Another example
is provided by the N=1 supergravity model. The two minimal off-shell formu-
lations (ei‘, wu‘ Aa.’ F) and (ei, '4:“, Au’ Ea,) are both based on 12 + 12
field degrees of freedom. The tahle shows that the field components of the
first multiplet fall in a massive spin-2 and two massive spin-1/2 multiplets,
whereas those of the second one fall in a massive spin-2 and spin-1 multiplet.
On the other hand in the on-shell formulation (eﬁ, lpu) there are 2 + 2 field

degrees of freedom, which form a maessless spin-2 multiplet.

6. Confarmal supersymmetry

Even if we have the possibility of choosing an off-shell formulation of &
supergravity multiplet, there are substantisl complications caused by the non-—
linearities present in invariant actions and transformation rules. These non-
linear modifications, which also occur in ordinary gravity, induce corresponding
modifications in the commutator algebra. We have seen an example of this in
section 4: the canmutetor algebra of the N=1 supergravity multiplet contains
besides a covariant translation an additional Lorentz transformation depending
on the auwxiliary fields F and Aa' In extended supergravity those nonlinear
modifications become more and more camplicated because of the large numbers of
auxiliary fields present in these theories.

Another disadvantage is that there exist different off-shell formulations
of one on-shell supersymmetry multiplet. For instance, we have seen that there
exist two minimal off-ghell formulations of N=1 Poincaré supergravity, which
are inequivalent, whereas there exist non-minimal off-shell formulations as well.

To explain the structure of all these inequivalent off-shell formulations
it is very useful to intnmoduce the idea of conformal supergravity or Weyl multi-
plet. By definition the Weyl multiplet is the smallest irreducible (with respect
to the Poincaré algebra) multiplet, which contains the gravitational spin-2
degree of freedam. In ordinery gravity the vierbein field describes 5 degrees
of freedam, which fall in & massive spin-2 and spin-0 representation of the
Poincaré slgebra. In chapter 4 we shall show how this vierbein field can be
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decompased into its irreducible components by introducing the conformal trans-
formations. In this case the irreducible part containing the spin-2 degree

of freedom ia called the conformal gravity multiplet. In chapter 5 we shall
show how in the same wmy each Poincaré supergravity mltiplet can be decom-
posed into its irreducible components by introducing the superconformal trans-
formations, which are the supersymmetric generalization of the conformal sym-
metries. In this way each off-shell Poincaré supergravity multiplet decomposes
into the Weyl multiplet and a number of additicnal so-called compensating
supermiltiptets. Inequivalent off-shell farmulations of Poincaré supergravity
differ in the choice of compensating multiplets but always contain the Weyl
multiplet, Hence the Weyl multiplet constitutes the backbone of all inequi=-
valent off-gshell formulations. For instance the two minimal 12 + 12 off-ghell
formulations of N=1 Poincaré supergravity both decompose into the 8 + 8 N=1
Weyl multiplet containing the gravitational spin-2 degree of freedem, but they
differ in the 4 + 4 compensating supermultiplets.

By introducing couformal invariance in extended supergravity one also makes
clear the structure of the nonlinear modifications in the transformation rules
and commutatar algebra. The reason of this is that the presence of the confar-
mal symmetries put stringent conditions on these nonlinear modificatins.
Consequently the superconformal invariants for the multiplets have & simpler
farm.

In a superconfcrmal formulation one still keeps the option of discussing
Poincaré supergravity, since this is based on a subcase of the superconformal
symmetry. The transition form superconformal to Poincaré theories is achieved
by meking appropriate gmuge choices in the superconformal formulation thereby
reducing the gauge invariance to those of the super-Poincaré theory. In this
sense the superconformal field representation is gauge equivalent to that of
Poincaré supergravity.

It is the purpose of this thesis to explain how the sbove ideas are applied
in supergravity. As a first step we shell therefare explain in the next chap-
ter how one can always achieve the irreducibility of a multiplet by introducing
additional geuge invariances. More specifically, we shall show in detail how
this can be done for massive vector fields.

32

i

Tt ha b T 3T e

RS S




© g e ee

P ey g

e e

e e g

References

Reviews on supersymmetry and supergravity can be found in

P.Fayet and 8.Ferrara (1977). "Supersymmetry", Phys.Rep. 32, pp. 249-334.

J.Scherk, P.van Nieuwenhuizen and B.Zumino (1978). Lectures in "Recent
develomments in gravitation", Summer Inst. Cargdse, ed. M.Lévy and
S.Deser (Plenum Press, New York, 1979).

P.van Nieuwenhuizen and M.Rotek (1980). Lectures in "Superspace and super=
gravity", Nuffield Workshop Cambridge, ed. S.W.Hawking and M.Roltek
(Cembridge Univ.Press, 1981).

P.van Nieuwenhuizen (1981). "Supergravity", Fhys.Rep. 68, pp. 189-389.

The Wess~Zumino model was first introduced in

J.Wess and B.Zumino (197h). "Supergauge transformations in four dimensions",
Nucl.Phys. B70, pp. 39-50.

The minimal off-shell representations of N=1 supergravity were first derived by

S.Ferrars and P.van Nieuwenhuizen (1978). "The suxiliary fieids of super-
gravity", Phys.lett. T4B, pp. 333-335.

K.S.Stelle and P.CWest {(1978). "Minimal auxiliary fields for supergravity"”,
Phys.Lett. T4B, pp. 330-332.

M.F.Sohnius and P.C.West {1981). "An alternative minimal off-shell version
of N=1 supergrevity", Phys.lLett. 105B, pp. 353-357.

A clessification of all representations of the super~Poincaré algebra can be

found in

D.Z.Freedman (1978). Lectures in "Recent developments in gravitation",
Swmer Inst. Cargése, ed. M.Iévy and S.Deser (Plenum Press, New York,
1979).

33

i $o R T
o 785

[

e s A

5y
ki

R i = SYEND LI L RN P



&

D o N T e P

3 e - -

Pen

L

g

e T

Pt

CHAPTER III

GAUGE EQUIVALENT FORMULATIONS

1. Introduction

In the previous chapter we have argued that the complexity of supergravity
makes it sdvantageous to use superconformally inveriant formulations. The
superconformal symmetries are introduced in order to separate the irreducible
part of a supergravity multiplet containing the spin-2 degree of freedom. This
part is called the Weyl multiplet and constitutes the backbone of all inequi-
valent offeshell formulations of extended Poincaré supergravity theories.

In order to explain how one can always decompose & multiplet into its irre~
ducible components by introducing sdditional geuge inveriances, we show in this
chapter how this can be done for vector fields. A massive vector field Wu
{the Proca field) describes four field degrees of freedam, which farm a massive
spin-1 and spin-0 multiplet. One may introduce gauge invariance to separate
this field into its irreducible components. In this way one cobtains 'a gauge
invariant reformulation of the theory, which is related to a description of a
masgive vector field given by Stueckelberg forty years sgo. On the other hand
a massless vector field Au is already irreducible. This is so becsuse A“ de-
scribes not 4 but 3 field degrees of freedam owing to the Maxwell gsuge trans-
formations SAu = Bul\. These degrees of freedom form a massive spin-1 multiplet.

This chapter is cvganized as follows. In section 2 we explain how the Proca
field may be decamposed into its independent constituents by introducing gauge
invariance. In section 3 we show how the same can be done for massive vector
fields in the adjoint representation of any group G. In particular we discuss
an example with G = SU("). Finally, in section 4 we consider an example with
massive vectar fields in the adjoint representation of SU{2) interacting with
a scalar field p. Furthermore we show under which conditions thig exemple is
related to the usual Brout-Englert-Higgs mechanism.
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2, The Stueckelberg model

In this section we consider a theory of a massive vector field wu-

L2 o LB
L =ath(w)e-2mwﬁ . (3.1)

Here m is an arbitrary mass parameter and Gu“ has the form

G, = auw“ - a\,wu . (3.2)

Because of the presence of the mass term the Iagrangian (3.1) is not invariant
under gauge transformationa of the form qu = BuA. However we may obtain s
reformulation of this Lagrangian, which is gauge invariant. To that end we

introduce a scalaer field ¢(x), which transforms under a gauge transformation
ith an inhamogeneous term

a¢(x) = mA(x) (3.3)

and therefare does not describe a new degree of freedom. Furthermore we intro-
duce a gauge field Ah’ which transforms according to

sa, = auA(x) . (3.4)
Thig field can be used to define a covariant derivative of ¢:
=3 -
D“db “4: mA

" . (3.5)

To avoid new degrees of freedam we may relate the gange field Au to the
massive vector field Wu, which does not transform under the gauge transformation.
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To this end we impose the following gange invariant condition on Au:

1 =a -1 .
Do =A -2 . (3.6)

wu:.-;

This relation between Au and Wu allows us to reformulate the Iagrangian (3.1)
in the following way:

1.2 1 2
£ =. EGH“(A) -3 (Du¢) . (3.7)

This Lagrangian is inveriant under the gauge transformations specified by (3.3)
and (3.h4).

By parfarming the above manipulations we have related the Lagrangians (3.1)
and (3.T) to each other. The first theory is based on a massive vector field
Wu, which descrites four field degrees of freedom. On the other hand the se-
cond farmulation has a gauge invariance and is bagsed on a gauge field Au, vwhich
describes not U btut 3 field degrees of freedom, and a scalar ¢, which describes
one field degree of freedam. The gauge field Au forms & massive spin-1 multi-
plet, whereas ¢ carresponds to a massive spin-0 multiplet. Hence in (3.6) we
have .effectively decamposged Wu into its independent components Au ard ¢. In
this formula we recognize the second term on the right-hand side as a gauge
transformation of Au paranetrized by ¢. This gauge transformation temm is
essential to relate the geuge invariant field Wu to the noninvariant field Au:
it compensates for the gauge transformation of Au such that the right-hand side
of (3.6) is gauge invariant. For this reason the scalar ¢ is called a campen~
sating field. In the next section we shall explain how this procedure of de-
camposing Wu into its independent constituents by introducing a gauge inveriance
and a campensating field mey easily be extended to include massive vector fields
in the adjoint representation of any group G as well. Before doing this we
shall first discuss in this section the relation between the Lagrangians (3.1)
and (3.7) in mare detail,

The equivalence of the Lagrangian (3.7) to the original formulation (3.1)
can be seen by reabsorbing the dependence on ¢ into the definitica of Au
through a ¢-dependent gauge transformation. This is simply a reversion of the
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argument that led to (3.7). Alternatively one could make a choice of gange.

A suitable condition is

() =1 . (3.8)

With thia choice we find

D¢ =-mA = ~mW (3.9)

and the Legrangian (3.T) reduces %o the form (3.1). In this gauge it is easy
to give an interpretation of the particle spectrum of the theory, because the
gauge degree of freedom #(x) is no longer present. The conditien (3.8) is
called the unitary gauge. One easily deduces fram the form of the massive pro-

pagator

kk
+uv

S m
A (W) = (3.10)
w 1{2 + m2

that ite residue vanishes upon contraction with ku. Hence 3 physical degreess
of freedom are propagating corresponding to a massive spin-1 particle.

The reformulation (3.7) was first uged by Stueckelberg in order to improve the
high-energy behaviour of the massive propagator Aw(w) . In the limit for large
momenta this propagator behaves as a constant and therefore leads to divergent
loop diagrams. To obtain a propageator with an improved Yehaviour it is con-
venient to impose in the reformulation (3.T) the Lorentz condition

3A =0 . (3.11)

To calculate the propagators in this gauge we add the following gauge fixing
term to the Lagrangian (3.7):

fix. _ 1 1 2
L = -3 (uauAu - um¢) . (3.12)
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The propagators corresponding te the modified Lagrangian are given by

kuk\!
§ -
uv 2 k k
A () = e By . (3.13)
Uy 2.2 2 a 2
K 4m o ke () K
1
—————————— . .1h
A‘NN) = " - ) (3.14)
Kk + (;]

In the limit & -~ = these propsgators are called the propagators in the Landau
geuge. In the limitfor large momenta the expressions (3.13) and (3.1h) both
behave as -1-5. In the gauge (3.11) one can apply the standard methods of renor-
malization theory. On the other hand this gauge is complicated in that the
fields A and ¢ do not individually hnve a direct physical meening. In parti-
cular the gauge-dependent poles at K = - [ 23 in (3.13) and (3.14) are un-
physical and should cancel cut in any a.ctual calculation of observables. To
cbtain a correct interpretation of the particle spectrum one must calculate the
propagation of Au and ¢ between physical sources. In doing so the gauge-depen-—
dent propagators AW(A) and A(¢) recombine into the gauge-independent magsive
propagator AW(W) in the folluowing way:

Kk X
8, (W) = 8 (R) + —-“?‘i ald) . (3.15)

Therefore only Au and ¢ together represent the three polarizations of a massive
spin-1 state.

An important benefit of a gauge invariant reformulation is that it presents
a convenient way to relate different field representations to each other. For
instance the inequivalent formulations (3.1} and (3.12) can both be viewed as
constructed out of the gauge invariant reformulation (3.7) after imposing :
different geuge choices. Of course, the relation between these inequivalent
formulations can also be made explicit by making field-dependent redefinitioms,
but in the general case these redefinitions can be quite complicated.

One could ask oneself the question whether alsoc the Maxwell theory of a
massless vectar field can be viewed as the gauge invariant refarmulation of a
theary without geauge invariance. If one restricts oneself to work within the
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ﬁ:'a.mework of a local field theory, one cannot impose gauge conditions like the
Lorentz ga.uge 3 ATET0 *)?»~ With this restriction, a formulation without gauge .
invariance does exlst, but such a formula.tlon has no menifest ‘Lorentz- covarience.
A convenient gauge eonclltlon is the light-cone gauge, in which one of the

light=cone coordinates

Q

IS =%5 (a° = a3) (3,16)

is set equal to zero. Here O and 3 label the time and longitudinal directions
respectively. This gauge has been used by Dirac fifty years ago, when dis-
cussing canonical quantization on a iightlike plane. An edvantage of this
gauge is that gauge degrees of freedom are no longer present, but it has the
obvious drawback of losing manifest Lorentz covariance.

3. Massive vector filelds in the adjoint representation of a group G

The procedure cutlined in the previous section cen easily be adjusted to
massive vector fields in the adjoint representation of eny g oup G. In this
section we first indicate how this can be done. We nex’: work out in detail an
example with G = sU(2).

In the general case we consider a theory of massive vector fields W in the

ad joint representation of G (we may think of G as a group of n x n matrices):

-1
V' =
Wr W= VWY . (3.17)

with V a group element of G and wu a Lie algebra valued field. Because cf the

2 . . . . .
presence of a mass term Tr(m Wﬁ) the Lagrangian for such fields is not invariant
under gauge transformations of the form

W+ W= UGx) qu‘1 (x) + (BuU(x))U"1 (x) , (3.18)

*)

See for instance C.Itzykson and J.B.Zuber, Quantum Field Theory, Mciraw-Hill,
1980.
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where U(x) forms for every point in spacetime & group element of G. However we
may obtain a reformulation of the Legrangien, which is invariant under such
transformetions. These local G transformations are not the spacetime-dependent
extenaion of the original rigid transformations (3.17) and act on a different
kind of indices. (Tt means that by taking constant parameters we get a global
G transformation, wﬁich is different from the original one.) Therefare we call
this group of gauge transformations local G to distinguish it from the group
rigid G of global G transformations, which act on Wu according to (3.17). To

obtain this local G invariant reformuiation we introduce, in analogy to the
Stueckelberg model, scalars ¢(x) which form spacetime dependent group elements
of G. Under local G transformations these scalars are multiplied to the left
by a group element U(x) of G:

#(x) + 2'(x) = Ulx)e(x) (local G) (3.19)

and therefore they do not describe new degrees of freedom. Under rigid G trans-
formations they are multiplied to the right by an element Z of G according to

olx) + @' (x) = o(x)z" . (rigia 6) (3.20)

Moreover we introduce Lie algebra valued gauge fields Au of the lecal G trans-—
farmations. The transformation charecter of these gauge fields is given by

(3.18) with Wu replaced by Au' These gauge fields enable us to define a co-
variant derivative of ¢ in the following way:

= - ]
D¢ (au Au)@ . (3.21)

This covariant derivative transforms hamogeneocusly under both local and rigid ¢
transformations if we take the geuge fields Au inert under rigid G:

Du'b > (Dut)' = U(x)(Du‘t) . {local G)

{3.22)
D¢+ (D,8)" = (D ¢) 7! . (rigid g)

ko
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To avoid new degrees of freedom we want to relate the gauge fields Au to
the massive vector fields Wu. However, this is not trivial because of the
different transformation character of these fields under local and rigid G.

An essential role in relating Au to Wu is played by the covariant derivative
of ®. The transformation character of this covariant derivative is given in
(3.22). Out of this derivative we may construct a local G invariant by multi-
plying it with the inverse group element tb"1 of ¢ to the left, The resulting
expression @‘1 Du‘b has the same transformation character es Wu under rigid G
if we identify the group elements V and Z in the transformations (3.17) of wu
and (3.20) of & respectively. Therefore we may relate A to W in the follo-

ving way:

W=t

=1 -1
W Du(b = & Au(b + (au¢ )1 . (3.23)

Substituting this expression into the lagrangian for wu one obtains a reformu-
lated Lagrangian in terms of Au and ¢ which is invariant under both local and
rigid G transfarmations specified by (3.18) (with Wu replaced by Au)’ (3.19) znd
(3.20).

The relation (3.23) may be interpreted in the same way as eq.(3.6) in the
Stueckelberg model. On the one hand the massive vector fields Hu describe LN
field degrees of freedom (N is the dimension of G), which form N massive spin-1
and N massive spin-0 multiplets. On the other hand the gauge fields Au describe
not 4N but 3N field demgrees of freedom owing to their transformsations under
local G. These degrees of freedom form N massive spin-1 multiplets, whereas
the remaining N spin-0 multiplets are represented by the scalars ¢(x). There-
fore eq.(3.23) can be viewed as an effective decampositiun of the fields Wu
into their independent components Au and ®. The second term on the right-hand
side of this equation plays the same role as the (aucb)-term in eq.(3.6). This
term is a gauge transformation with parameter ¢~ of the Au-dependent term in
(3.23). It compensates for the gauge transformations of this Au-term such that
the right-hand side of (3.23) is invariant under local G. Hence the scalars &

play - just as the scalar ¢ in the previcus section - the role of compensating
fields.
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We will now give an explicit example with G=SU(2). We consider a theory of
massive vector fields in the adjoint representation of SU(2) corresponding to
the Lagrangian

L aa*rr(%‘w(m+%m2w§) . (3.2%)

Such vector fields can be written as a linesr combination of the three generators

T; of the Lie algebra of SU(2):

W = wt T, (i=1,2,3) . (3.25)

The generators are antihermitean traceless matrices, which satisfy the commuta-
tion relations

I, 751 = - € 5k T (3.26)

and may be normalized according to

1
Ty Ty) =~ 5 8;, : (3.21)

An explicit representation is provided by the three standard Pauli matrices T,
_i
T.i. = E ‘ri . (3.28)

The tensor GW in (3.24) has the form

Guo =30, - 3N, - W ,W) . (3.29)
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In terms of ;:Iu = (W:1 ,wﬁ,wﬁ) the Lagrangian is given by

L=l - e .30
= - § & 3wl . (3.30)
where the curvature tensor Gu v(ﬁ) has the form
- - - - -
= - R .31
Gw(w) 3 W, - W x W (3.31)

The Legrangian (3.2%) is invariant under rigid SU(2) transformations speci-
fied by (3.17) with V a group element of SU(2), i.e. V is a unitary matrix with
unit determinant. To obtain a local SU(2) invariant reformulation of this La-
grangian we introduce 3 compensating scalars @(x), which form for every point
in spacetime a group element of SU(2). This means that ¢(x) is a unitary matrix
vwith unit determinantand spacetime-dependent matrix elements. Such a matrix

satisfies a nonlinear constraint
2 (x) #(x) = 1L . (3.32)

This is in contrast to the Stueckelberg model, where the compenseting scalar
¢(x) satisfies no constraint at all. At the end of this section we show that
this constraint implies non-polynomial interactions.

Under local and rigid SU(2) transformations the scalars ¢(x) transform
according to (3.19) and (3.20). Wemay introduce gauge fields A of the local
SU{2) transformations as befaore. These gauge fields take values in the Iie
algebra of SU(2). Therefore they are 2x2 antihermitean traceless matrices,
which can be written as

»
]

nof--
oy
a4t

i . (3.33)
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They can he related to the vector fields Wu by eq.(3.23). Substitution of this

relation into the Lagrangian (3.24) leads to a reformulated Lagrangian in terms
of Au and ¢ given by

£ =2 (3628 -3a° (00)7(D2)) : (3.34)

This lagrangian is invariant under local SU{2) transformetions specified by
(3.18) (with A instesd of ¥,)s (3.19) and (3.20).

The equivalence of the reformulation (3.3%) to the original form (3.24) can
be made explicit by making & choice of gauge. A suitable condition is the uni-
tary gauge

exj= 1 (3.35)

After imposing this choice we find

(3.36)

and the Lagrangisn (3.34) directly reduces to the form (3.24),

Besides the
Su(2) geuge transformations the Lagrangian (3.3%) is invariant under a set of

global transformations, which include the ariginal rigid SU(2) transformations.
More specifically these global transformations are given by the original rigid

SU(2) transformation with parameter V together with a special local SU(2) trans-
formation with constant parameter U{x)=W.

These combined global transformations
act an Au and ¢ accarding to
-t
A +A =
u - WA uW

(3.37)
o + o' =W
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Clearly only the special globel transformations characterized by W=V leave the
gauge condition ¢= 1 invariant and hence are also an invariance of the resul-

ting Lagrangian (3.24)., These special global transfarmations are different

pgpera)

fram the original rigid SU(2) transformations. They ere specified by a so- H

called decamposition rule, which holds on Au = W‘1 :

(rigid SU(2)(V) = (rigid su(2))v) @ (local su(2l(u(x) =V) . (3.348)

Here we use a notation, where (rigid SU(2)(V) denoctes a rigid sU(2) transforma-
tion with paremeter V and (local SU(2)U(x)=V) denotes a special local SU(2)
transformation with perameter U(x)=V. A decomposition rule like (3.38) is
typical for theories in which a symmetry has been broken down to a smaller one
by means of a gauge choice. For instance in the standard Weinberg-Salam model
a SU(2) 8@ U(1) gauge symmetry is broken down to a U(1) symmetry. After imposing
the SU(2) gamge condition, the remaining U(1) symmetry is not given by the U(1)
factor in SU(2) ® U{1) but by a combination of this U(1) factar and the U(1)
subgroup of SU(2).

To make the non-polynomial interactions defined by the Lagrangian (3.34)
explicit, we write the scalars &(x), which are 2x2 unitary matrices with unit
determinant, in the following way:

o(x) = a(x) L + = $(x)-7

-

, (3.39)
where the real functions o(x) and $(x) are restricted by the relation

Plx) + 1 Px) = 1 : (3.40)
In terms of o and ¢ the Lagrangian (3.34) reads

£ =-g @ -3a (D2 + 100 : (3.41)
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Here we have defined
D& =D0 1+ —;— Dux"-v’:' . (3.42)

The structure of the SU(2) covariant derivative D'J follows from the transforma=-
tion rules of 0,3 and, Xu under infinitesimal locsl SU(2) transformations:

8¢ = - %E(x)‘z 2
& =-Fu) x § + allx) . (3.43)
&k, = - 8x) x R+ ulx) .

where -c:(x:) are the parameters characterizing these transformations. We now

solve o in terms of 3 and perform the following field redefinition:

$=(T+1_:—;:FE)¢ . (3.41)

The Lagrangian then takes on the following form

o 1.24 1.2
£ ---EGW(A)-am(

1 2
(. ¥) . (3.h5)
(1 +1 1:2)2] v

with the SU(2) covariant derivative Du$ of -)I: given by

Dy =20+ 3Eb - (1 - LK -5 &0 : (3.46)

In this form the non-polynomial interactions are manifest. In the next section
we discuss a set of models, where such interactions are avoided.

46

VIR SRR IR

e b o

i




v .

LTI e et ey e

T

L

B

e emam o BT e 8 IR

4. The Brout-Fnglert~Higgs mechanism

The non-polynamial structure of the massive SU(2) model considered in the
previous section shows the lack of renormalizsbility of this exemple. We stress
that independent of the fact whether this theory is renormaslizable or not one
can always achieve the irreducibility of the massive vector fields Wu by intro-
ducing SU(2) gauge transformations. The reason that the local SU(2) invariant
Lagrangian (3.45) contains non-polynamial terms is that the compensating scalers
&(x) satisfy a nonlinear constraint. In this section we show how such a con-
straint can be avoided by extending the massive SU(2) model to include an addi-
tional scalar field p(x) as well. This field p shall be absorbed into the

definition of ¢ such that the compensating scalars satisfy no constraint anymore.

More specifically, we shall construct a whole set of models describing massive
vector fields Wp in the sdjoint representation of SU(2) and & real scalar field
p, which can be reformulated in a SU(2) gauge invariant way without introducing
non-polynamial terms. Maoreover we shall indicate the subset of these models,

which correspond to renormalizable theories.

We consider the following extension of the massive SU(2) model (cp. (3.24)):

£ sz (Fo (W) + 2P ) + g(6®)(a 007 + VD) (3.47)

Here we have used the same notations as in the previous section. The function
2y . . . . .
g(p) is arbvitrary. We assume that the potential function V(pg) reaches its

minimum for p=pmin' The vector fields W acquire their mass through their

interaction with p. Therefore we requ:.re that the function f(p ) satisfies the
relation

2 2
i‘(':’lnin) n

. (3.48)

-

To separate the vector fields Wu into their irreducible components we may per-
form the same manipulations as in the massive SU(2) model. Using the same de-
finitions the Lagrangian (3.4T) takes on the following geuge equivalent form:

£o=2w (eaa) - 20,0000 + oD (a0 + V(D) . (3.09)
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At this point we have already succeeded in decomposing Wu into the independent

camponents Au and ¢.

The 3 compensating scalars ¢(x), which are present in the Lagrangian (3.49)
satisfy the nonlinear constraint (3.32)., Therefore this Lagrangien would con-
tain non-polynomial terms if p were sbsent. However the presence of this
scalar p enables us to avoid the constraint on ¢. An obvious wey to achieve
this is to redefine ¢(x) in terms of unrestricted fields H(x) according to

H(x) = o(x)e(x) . (3.50)
After this redefinition o is identified as the norm of H:
H+(x)H(x) = pa(x) 1 (3.51)

and in this way a constraint of the form H+H =1 is avoided. The general form

of the matrices H is given by

- l _—D-.—D-
H(x) = 3 (Ho + iHet)

BT TR (3.52)

f

noj—

:\.H.I - Ha HO - 1H3
A su(2) covariant derivative of H is given by

DH=(3 --é—K “T)H . (3.53)

In terms of these unrestricted fields the Lagrangian (3.49) takes on the fallo=
wing form:

L8
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L s £( 3<'n>) .
L =x<g5 (A)> -4k < (p H) (D H) >
2 IV T ] 0\
. 1_<H)H>
P =<H H> 2
+ 1 { 2 — +é*g( %<n*n>)}{<n*(nun)>+<H(Dun)*>}
<H H> <H' B>

1 t L

+V( Z<HE>) . (3.5%)

Here the trace of the matrix HTH is denoted by <H1.H>9.nd. the same for all other
2x2 matrices. The gauge equivalence of this Lagrangian to its originel form
(3.47) can be made explicit by imposing the unitary gauge

Hx) = olx) 1. . (3.55)

Substituting this condition into (3.53) we find

1, o
2 -ZpP W
DH=@L -Fe W

" (3.56)

and (3.5%) reduces to the form (3.47). In this way we have reformulated a whole
set of models describing massive vector and scalar fields in & gauge invariant
wey without introducing non-polynomial temms.

In the formulation {3.54) we may now apply the standard methods of renor-
malization theory to investigate which restrictions must be imposed on the
functions £, g and V in order to obtain a renormalizable theory. This subset
of renormalizable models is characterized by the property that the corresponding
Lagrangian has no coupling constants with negative dimensions. Here the dimen-
sion of the Lagrangian is equal to four, while each derivative is counted as &
dimension 1 objeet. This implies that the dimension of Au is equal to one. If
we aldo take the dimension of H equal to one, the functions f, g and V are
restricted to the form

£{ <H1'H>) =a + B<H+H> ,
g(<H'H>) =y . (3.57)
v{<a'g>) = s<u gD+ e<ulyg>2 s
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where o, B, Y, § and € are constant perameters. Because of (3.48) these para-

meters are restricted by the relation

8d _ 2

1
2
In this restricted form the mechanism of gsuge equivalent formulations (for

non~sbelian groups) has first been'used by Brout, Englert and Higgs in order
to prove the renormalizability of this subset of models.

5. Conclusions

By means of some simple exsmples we have sha'm how one can elways achieve
the irreducibility of massive vector fields by introducing additional gauge
transformations. In the gauge invarient reformlation one still keeps the
option of discussing a theory of massive vector fields since one can always
remove the gauge invariances by imposing a number of gauge conditions. 1In
this way one constructs theories within the context of a higher symmetry which
are gauge equivalent to thearies with less symmetry.

For magsive vector fields in the adjoint representation of a non-gbelian
group G the gauge invariant reformulation contains non-polymomial terms.
Such terms can be avoided by introducing additional scalar fields into the
model. Once these terms are gbsent one may apply the standard methods of
renormalization theory and investigate which restrictions must be imposed to
cbtain a rencrmalizable model. In this thesis we shall use gauge equivalent
formulations only within the context of classical field representations. We
shall not bother us about the gquantum properties of the thecry.
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CHAPTER IV

CONFORMAL SYMMETRY

1. Introduction

In order to apply the ideas presented in the previous chapter to massless

spin-2 fields it is necessary to introduce conformal gauge transformations.

The gravitational spin-~2 state is represented by a metric tensor field gw(x).

This tensor transforms under an infinitesimal general coordinate transformation

(g.cot.)

&+ @) = - ) R

with paremeters E"(x), according to

"

8g.c.te gp\)(x) 5,',\,(11) - g, (x)

(3,681)8,,(x) + (3,8, () + 9,8 (x)

Using the definition of the Christoffel symbols

p 1 po
T =58 (aug°“+ag

uv vWou ~ ausuu)

it is easy to rewrite this transfarmation in the following way:

6g.t:.t‘.. v = DuEv + DvEu ’

where Eu g WE“ and the coveriant derivative is given by

3 - 1P
u'v I-IE\’ I‘I-I\JEID

(=}
vy
"

(4.1)

(L.2)

(4.3)

(b.4)

(4.5)
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The general coordinate transformations (4.4) are of the same type as the Maxwell
gauge transformations GAu=BuA. Owing to these transformations the symmetric
tensor g, does not describe 10 but (10-4)=6 field degrees of freedem, which
form a messive spin-2 and spin-O representation of the Poincaré algebra. In
the confarmally inveriant reformulstion v is replaced by a redefined field
(gu v)c, which transforms under an additional gauge transformation with para-

meter o(x) accarding to
g% (x) = o(x)el, (x) : (4.6)

Therefore (gw)c describes (10-h=1)=5 field degrees of freedom only, corres-
ponding to a massive spin-2 representation of the Poinceré algebra.

Before showing explicitly how one may reformulate the theory of gravity in
a conformally invariant way, we consider in the first part of this chapter the
conformal transfarmations in a more general context. Ve recsll that in special
relativity & particle is described by a point moving along a world line

u

xu'—-xu('r) . Here x' is a local coordinate system and T is the proper time, which

is defined by (we use the Pauli metric GWEdiag(+,+,+,+)):

2 _ u o,
at< = suv dx’ dx . (4.7)

Under a general coordinate transformation (4.1) we have d'r'2=61"vdx'udx‘v, where
Glll\) is obtained fram (4.2) by replacing &y by suv' Covarisnce implies d.T'2=d'l‘2.

There exists a subclass of general coordinate transformations, which leaves the

form of the proper time invariant, i.e.:

s(suv) =8, -8, = . (%.8)

|
o

That happens to be the case for the Poincaré spacetime transformations

W_ 4 u v

x'"=x -a +Lu\’x . (4.9)
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where a' is a constant four vector and L is a Lorentz rotation mstrix. One may
investigate whether the Poincaré transformations can be extended to a larger
group of spacetime transformations, which leave the form of the "proper time"

e=0 (massless particles) invarient. It appears

ato#0 (massive particles) or ar
that for massless particles this is indeed possible, 1In that case equation
(4.8), which is satisfied by Poincaré transformations only, may be replaced by

the weaker condition

a(aw) = (0(x)-1)6w . (L.10)

vhere o(x) is an srbitrary function of the coordinates. This is equivalent to
the requirement that Gu , transforms accarding to (4.6). (me easily verifies
that the transformations characterized by (4.10) leave only "angles" invariant.
Therefore they are referred to as conformal transformations and the coarresponding
group is called the conformal group. In this way cne can view conformal in-
variance as the highest degree of spacetime symmetry that a thecry without a
mass parameter (or more precisely without a dimensionful parsmeter) can have.
This chopter is organized as follows. In section 2 we derive the explicit
form of the conformal transformations and discuss same of its properties. In
section 3 we use the technique of induced representations to construct repre-
sentaltions of the conformal algebra. The coupling of matter fields to confor-
mal gravity is discussed in section k. In section 5 we show in detiil how one
may introduce conformal invariance in the Einstein-Cartan version of gravitetion.
Finally, in section 6 we give the maximel set of constraints, which may be im-
posed on the conformal curvatures. To keep everything as general as possible
we work in this chapter in d spacetime dimensions.

2. The conformal algebra

Any general coordinate transformation in a d-dimensional spece that satis-
fies (L4.8)(with GW replaced by the metric tensor gw(x)) is called an isometry.
For an infinitesimal transformation (4.1) this equation is equivalent to the
requirement that (ef. eq.(h.2) and (b.k))

Gg.c.t. gw(x) = Dugv(x) + D\,Eu(x) =0. (k,11)

sk
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Hence an infinitesimal isametry leaves the metric locally, i.e. in a point, in-
veriant. Any vector field E,u(x) that satisfies (4.11) is called & Killing

vector associated with the metric &, v(x). The problem of determining sll infi-
nitesimal iscmetries of & given metric is related to the problem of detemining
all Killing vectors associated with that metriec. To see, what the maximm num-
ber of independent solutions of {4.11) is, we recall that the commutator of two

covariant derivatives is given by
(Db -DD) = R Jk&; {k.12)
Wv vu'Tp uvp A ? )
with R‘pr the Riemann curvature tensor, which satisfies the Bianchi identity

R + R + R =0 . (4.13)

By combining (4.12) and (%.13), we find that any vector field Eu(x) must satisfy
the relation

(DuD“ - DvDu)Ep + (DpDu - Dqu)e;v + (1)\,1)p - DpDv)Eu =0 . (4.1%)
Faor a Killing vector, (4.11) and (k.1k) give

(DuDv - DvDu)Ep + DpDuE\) =0 (k.15)
and thﬁs {4.12) pecames

_ A
DD, =~ Rvp 52 . . (%,16)

This equation implies that, given E;u and Du‘,‘v at same point X, we can determine

the second derivative of Eu &t X. Furthermore we can find successively higher
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derivatives of E.'u at X by taking derivatives of eq.(4.16). The function Eu(x)
can then be constructed as a Taylor series in (x-X) within some finite neigh-
borhood, of X. Therefore the Killing vector Eu(x) of a givenmetric is uniquely
specified by the values of E (X) and D E (X) at any particular point X. Because
there are d independent q_uantz.tleb Eu(}t) and — L d,(d-1) independent qua.ntltles
;HE“(XZ) (recall eq.(%.11})), a d~dimensional spa.c.e can have &t most — d(da+1)
independent Killing vectors.

In d-dimensional Minkowski space we can choose Cartesian coordinates with

vanishing Christoffel symbols. In that case eq.(l.11) reduces to
= . b,
Expanding E;u(x.) as & power series in x,

= (o) (1) (2)
Eu(x) -Auo +Auv x, t Auvp XX, S (4.18)

with A‘(lo), A‘(ll), .« constant parameters, we find

(o) (1) -
Al.l =0

arbitrary, (uv) s

(4.19)

whereas the remaining parameters are zero. Hence we are left with d parameters

£, = A o) and -1- d(d-1) parameters So =" AE:‘\)’] » which characterize the
l d.(d.+1) Pomcare transformations :
Eu(x) = Eu - €%y . (%.20)

We now consider equation (4.6) (or (k.10) with G‘N replaced by gw(x)),
which is the defining equetion of the conformel transformations in a d-dimensio-
nal space. This equation is clearly less restrictive than eq.(%4.11), For in-
finitesimal transformations x -+ x! we have ingtead of (L.11):

Gg.c.t.gw(x) = DuEv(x) + D\,Eu(x) = {g(x) ~1) gw(x) . (L.21)
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with o(x) given in (4.6). This equation immediately implies that
= . 4,22
DE, *DE -5 guv(g oo )= o0 (4.22)

To see, how many independent solutions this equation can have, we substitute
(4.22) into (h.1h)

(nunu - D“Du)gp + DpDuEv =—(§ D = spvnu - auvnp)n-a (h.23)

1
d “puv
and thus for infinitesimal conformal transformations {(4.12) becomes

= A 1
DDDHE\) - Ru\)p El * d(

Souly = SpuPy - auvnp)n-s . (h.24)
This equation implies that in order to construct £ (x) in some neighborhood of
a point X as a Taylor series in x-X we need to know the value of E s D E and
D,D.E at X. Because there are d independent quantities & x), 3 d(d—1 )+1
1nd.epend.ent. quantities D E (X) (recall (h4.22)) and d mdepend.ent quantities
D D. E(X), = d—d.lmensmna.l space can have at most 1 (d.+1)(d+2) independent con-
formal transformations.

In d-dimensional Minkowskl space (4.22) reduces to

1 =
B(UEV) -a‘Guva‘E =0 {4.25)
Substituting the expansion (4.18) we find
(1) _1 (.
Muv) =@ Subop” = © ’
Al Ly a2 g . (4.26)

(wo)o = T S acp

A3) 1 a(3)

(uv)pa d uu TR0 =0 » ete. *
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The first two equaetions can be solved in the following way

(1) (1) .1 (1
A A[u\xl a uvApa
(%.27)

() 1 (2) (2)
Mve * { 2 8 (vhoop) = Suptoon } '

whereas the remaining equations give more restrictions on the parameters A(n)
(n > 3) then the independent components contained in each A M) Therefore we

have
AT T CR ) (4.28)
1)U R *
and we are left wrbh d 1(>a.rameters 1 ‘(!o), %d(d-” pe(:.remeters €1v = ﬁ\),] .
1) 1_,(2)
= 1 A = —_— A
one parameter € = + a Moo and d parameters eu 26. ppu® They correspond

to translations, lorentz rotations, dilatations and special conformal trans-
formations respectively. The corresponding most general solution of (h.25) is
given by

A L i 5
Eu(x) E“ € vy tex + zxue.x e X . {4.29)

We denote the generators of these infinitesimal conformal transformations
by Pu (translations), Mu v (lorentz transformations), D {(dilatations) and I{u
(special conformal transformstions). They obey the following commutation re-
lations between each other:

B Mool = u[“["az} .
[Muv’ Po] R TR Y *
[Muv’ lcp] =2 K800 : (.30)
[Pu, k] =2 (GWD - MW) s
(e,D =P and (k,,0=-x ,
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while the remaining commutators are zero. The conformal algebra (k.30) is iso-
mcrphic to the S0{d,2) algebra. In tems of the generators L, of so(d,2) the
correspondence is given by:

M =1L s D =1

11\ . a+2,d+1 )
(4,31)
Pu = Lu.d+2 u.dﬂ : Ku = Lu.d+2 - Lu.d+1 *

By projecting the finite linear 50(d,2) transformations in (d+2)-dimensional
space onto d-dimensional Minkowski space one arrives at the following nonlineer
realization of the group S0(d,2) in 4 spacetime dimensions:

L Lu“x“ - bt + sz) (+ <M + cuxz) R (4.32)

xl

where b is a constant perameter, a' end c¢" are constant d-vectors and L is &
Lorentz rotation matrix. The function t(x) is given by

(x) =1 +2¢cx - cax2 . (4.33)

For infinitesimal parameters (%.32) is equivalent to (4.29).
Now we have derived the explicit form (L4.29) of the conformal symmetries,

cur next task is to define what we mean by a confarmal transformation on a field.

This will be done in the next section.

3. Representations of the conformal algebra

y Consider a field ¢, (x),where @ stands for a collection of internal indices
(i.e. they do not refer to general coordinate transformations). A conformal
transformation

x' = &x (h.Bh)
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specified by (4.32), with g an element of the conformal group G, can be repre-
sented by & transformetion matrix T{g) acting on %(x) in the following way:

(T(g)0), (x) = by (&sx)g(a™'x) : (4.35)
Using the group properties of the representation matrices Tg):

(T(g,)T(8,)0), (x) = (T(g85)e ) (x) Vv By:8EG , (4.36)
one can shovw that the matrices hus(g,x) must satisfy the following relations:

iy (81853%)= By (B1ax)h, g (E08] %) ¥ 818,60 (4.37)
The stability subgroup R(G of x=0 is defined by

x=0+gx=0 V g€K . (%.38)

The relations (%.37) imply that the matrices hy 3(8 ,0), which act on internal
indices only, are restricted by

B, g(8185:0) = b, (81,008, o(8,0) ¥V &a8,€H . (4.39)

Consequently these matrices constitute a representation of H in the internal
index space ¢, (0). From (%.29) and (4.38) we derive that the algebra of H is
isamorphic to the algebra Janerated by the conformal operators M,D and K. We

denote the generators of H by E" v A and x u They satisfy <the same commutation

relations as the conformal generators Mu D and Ku given in (4.30). One can

\,’
show that the x-space is isomorphic to the coset space G/H.
The theary of induced representations gives & prescription how ta extend

every representation of ¥ on ¢a(0) to a representation of G on ¢u (x). For this
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purpose we define for every spacetime point x a translation a{x) such that
a(x)0=x Vx . (4.%0)

In asddition we choose the basis {al in index space in such a way that spacetime
translations do not act on internal indices, i.e. hqs(u(x),x) = GuB' This im-
plies that under translations P the transformed field (T(z)¢) (x) is given by

(2(g)6) (x) = (exp 5'By0) (%) = exp(£)3,) ¢, (x) : (b.h1)

Given a representation (£,4,€) of H on ¢(0) a representation (P,M,D,K) of G on
¢(x) is given by

(T(8)#) (%) = hglalx)™ gale™'x),0) #,(e7'x) : (4.k2)

For translations P this formule reduces to the form (4.41). We note that
a(x) " 'ga(a™x) is an element of H:

ﬂ(x)-1gu(g_1x) 0= a(x)” g g e = alx) " 'x

in
o
.

(4.43)

One can easily verify by using (4.39) that the functions hua(g,x) defined by
(4.42) satisfy the relations (4.37), i.e. (4.42) defines a representation of
G on ¢(x).-

Taking the following representation for «(x)

a{x) = exp(- x}‘Px) , (4.hb)

where Pu now indicates a representation of the translation generatars in x-space

A — - - . s
(g Pxxu z - Eu), we can calculate the group elements a(x) 1gm(g 1x) for infini-
tesimal transformations g. Using the Baker-Campbell-Hausdcrff formula
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1
exp(ui‘l‘i)-exp(ﬂj'l‘j) = exp { o T, + ej'rj +3 “iBj[Ti'Tj]
1 1
+ '=1E2 u.iujBk [Ti’[TJ.’TkIl + 12 GiBjBk [[TiaTj] .Tk]

+ repeated commutators of the T's } (L.4s5)

and the commutation velstions (4.30) we find

1

= 1
exp(x;‘PA)exp( 3 epu\lpu)exp - (::n - epaxq)Pp = exp( 3 EpuMpo) ’
exp(kal)exp(:D)exp - (xp + r:xp)Pp = exp(eD) s
(4.46)
exp(xxPA)exp(euKu)exp - (xp + 2 e.x - epxe)Pp =
= exp(e K, + 2c.20 + 2€[p"o]“pu) s

up to terms of arder eﬁq, 52 and eﬁ respectively. Substituting these results

into (k.42) we deduce the following transformation rules (we amit internal in-

dices):
spblx) = eh, #(x) ,
dyd(x) = 15 ew(xuav - xvau) #(x) + Gz(ew)tb(x) ’
(4.47)
Spé(x) = e(x,3,) #(x) + §,(e) ¢(x) .

6K¢(x) = e¥(- xaau + 2xuxxax) ¢(x) + (GA(EeAxA) + Gz(he[uxvl) * 5K(-2£u))¢(x).

Here EA’ € € and €, are congtant paremeters, which characterize an infinitesi-~
mal P, ¥, D and K transformation respectively. In (4.47) we use a notation,

_ A _ 1 - -
where 6P¢(x) =E thb(x), &Mo(x) =3 epc\dpdt#(x), 6D¢(x) = eDdp(x), 6K¢(x) z :ul(udi(x)
and the same for 62. § A and GK . For later convenience we have made the redefi-
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nition u * - —;—nu in (4,47). We note that the general form of (4.4T) is a

confarmal transformation in x-space accompanied by a rotation in internal H~
space.

Consider a matter field ¢(x) transforming according to (4.47). Then the
derivative 2 uqs(x) of ¢(x) transforms under a conformal transformation as:

85, 8(x)) = s in (4.4T) + 3 £'(x)(338(x)) . (4.48)

were £'(x) is the paremeter of a conformal transformation (see (4.29)). The
last term on the r.h.s. of (4.48) represents a rotation in the tangent space
to x. We denote vectqars in this space by greek indices u,v,.... They are

called world indices. To construct a derivative, which transforms according to

(4.47) we need a field that is able to convert world indices into internal H

indices and vice versa. This leads to the introduction of the inverse d-bein

field e}lﬂ}(x), where {H} denotes a collection of internal H indices, which
determine the transformation character of e‘{IH} under H. Under a conformal
transformation e‘{ln} transforms as:

8 ety (x) = as in (.47) - 3,6%(x) e?ﬁ}(x) , (4.49)

with g%(x) given by (4.29). Using this transformation one can verify thet the

derivative
3{E}¢(X) = e?H}(x)Buﬂx) (k.50)
transforms according to (4.47). A d-bein field e‘{l“}(x) is defined through the
relations
u {1} - {H}
e{G}(x)Eu (x) - G{G‘} ]
(k.51)
{H} v R
e, (x)e{n}(x) =5, .
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Under a conformal transformation e‘u transforms acecording to

GGeiH}(x) =gs in (4.47) + aug)'(x)egm(x) . {k.52)

We now fix the d-bein field uniquely by the requirement that under a con-
formal transformation the derivative 3 {H}f#(x) rotates in internmal H-s)ace in
the same way as au¢(x) deoes in the tangent space to x, This is equivalent to
the requirement that the d-bein field is inverient under a conformal trans-

formation:

5 ol

G N (JC) = 0 . (h053)

This condition has a unigue solution given by
{u} a
ey (x) > &8 . (b.51)

where 6': is assigned to the following representation of H:

a . abb _ .8
SHGu € Gu eau

. (%.55)
Here we use a notation where Latin indices a,b,...{a,b=1...d4) denote vectars in
internal H-space.

Now we have derived the transformation character of a field under conformal
transformations and defined a sultable derivative, we are able to construct in-
variant actions. We will do this for matter fields, which carry spin 0, -15 and
1. These spins are specified by the transformation of the fields under internal
Lorentz transfomations. More specifically, we have

spin 0 : scalar field ¢(x) , & = wep ,
.1 . . 1
spin 5 ¢ spinor field bix) , Sy¥ =5 EqpTap? * VEY (4.56)

spin 1 : vector field Aa(x) » SyA Eplp * VEA, .
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It is convenieuv to take ¢, ¥ and AB inert under internal k transformations.
The transformations under internal dilatations are characterized by the Weyl }
weight w. The derivatives aa¢, aatp and a[&Abl = Fa.b again transform as in-
duced representations of G. However they form representations (I, 4, k) of H
which differ from the representations formed by the original matter fields.
Uaing the transformation properties of 6‘; and ¢, Y, A, one can verify that under
internal H transfarmations the derivatives transform according to

GH(ae:ﬂ = aabab¢ * (u-l-!)aa&«b - V€a¢ .
Sy 9) = e d b+ '5 €oqleq@gh) + (W+1)Ed ¥ = e b =€ 0 ¥ , (4.57)
GH(Fab) = 2 [&QFcbl + (w+1 )eFa.b - (w-1 )E[aAb] .

With the aid of (4.57) one can calculate the transformations of the d'Alember-
tian Q¢ = 3&c\&¢, the Dirac operator ¥y = Ya'd al[) on § and the squared of Fah

Y

under internal H. They are given by

§(08) = (we2)elp + (d-2-2w)eaaa¢ s
S#¥) = Te o @b+ Gerdedy + (Fa - 5o Wy . (k.58)
GH(F:b) = 'e(w+1)e1='ib - 2(w=1)F e A

Fram these transformations one deduces that the actions defined by the following
Lagranglans are invariant under conformal transformations:

£(4) = &¢BH  with wle) = %(d-e) ,
Ly = 8Ty witn w(y) = xa-1) . (h59)
£(a)= GFib with  w(A) = 1 ana ash .

Here & is the determinant of the matrix 63‘:

§ = det a: . 8,(8) = - aes . (4.60)
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If we only consider the G invariance of the above actions (and not the internal
H invariance) we can tske 6=1 (note that this is consistent with &;(8)=0). From
now on we will therefore omit this § in the action, The last equation in (4.59)
tells us that the Maxwell action is invariant in d=h dimensions only. The Weyl
weight of the photon gauge fileld Auaaa'uAa is zero. This is consistent with the
Maxwell geuge transformations 6,4 B.Au=auA’ which cammute with internal dilatations:

(s, (e, Gm(l\)lnu =0 . (4.61)

k. Matter and conformal gravity

In order to construct an action for matter fields, which is inveriant under
conformal transformations with spacetime-dependent parameters, we first have to
extend the group G of rigid conformal transformations to a group of local trans-—
formations. Teking spacetime;dependent parameters in the rigid transformation
rules (4.32) of the coordinates x , it is no longer meaningful to distinguish
translations, Loarentz transformations, dilatations and special conformal trans-
formations. Local translastions automatically include all these transformations.
Hence the local version of {%.32) iz given by general coordinate transformations
(G.c.T.)

2 > M) = 2 - EY(x) . (L.62)

with E“(x) an arbitrary function of the coordinates. Since G.C.T. do not expli-
citly contain Lorentz transformations, dilatations and special conformal trans-
formations it is now not possible to accompany these transformations, when
acting on a field, with internal H transformations. Hence we have to separate-
ly extend the rigid H rotations to spacetime-dependent H transformations. This
means that the intrinsic coupling of coordinate transformations and internal H
transformations in the rigid transfoarmation rules (%.47) iz no longer present
in the spacetime-dependent version of the conformal symmetries. The local
vergion of (4.4T) is given by

s¢lx) = El(x)a,@(x) + (8,e* 0+ 8,(e(x)) + 8 (*GN)e(x) (4.63)
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where Ex(x) parametrizes a local translation and eab(x), e(x), £2(x) are arbi-
trary functions of the coordinates, which characterize the local internal H
transformetions. Fram (4.63) we deduce that the lacal version of the group G
of global transformations is given by:

G -+ (@.C.T. 8 H)

global : (4.64)

local

Consequently we have to use different kinds of indices for the G.C.T. and H
symmetries. In analogy to the previous section we denote the camponents of
space and time by greek indices u, Vy.... These indices are called world indi
ces. On the other hand tensors in internal H~space are denoted by Latin indi-
ces 8, by.... Such indices are called local H indices.

A next step in the construction of a locally invariant action is the defi-
nition of a suitable covariant derivative for the matter fields. It is straight-
forward to define a derivative which is covariant with respect to H. For that
purpose we introduce gauge fields m:b {spin connection field), bu (dilatation
field) and f:' {corformal boost field) for Lorentz rotations, dilatations and
conformal boosts respectively and define:

D (x) = 2 ¢(x) - (8,(u2%) + 8,(b ) + & (£2)}0(x) : (4.65)

As in conventional gauge theories the transformations of these gauge fields

follow from the structure constants of H. They are given by

ab _ ab

Gﬂmu = Due »

GHbu =9 pA'D ’ (4.66)
a

Sﬂfu

b _ b a
D A2 + &8 4 r
itk e fu ADu

b a . . s
vhere e? 2 AD and AK are spacetime-dependent parameters chearacterizing the

Lorentz rotations, dilatations and conformal boosts respectively and Du is co-

variant with respect to Lorentz transformations only. Under general coordinate
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transformations the gauge fields transform as & covariant vector Xu:

_ A A
ag.c.t.xu =te (x)akxu * aug (x))CA . (%.67)

The derivative D§¢ is not yet fully covarient in the sense that its varia-
tion under & general coordinate transformation contains derivatives of the
parameters Eu(x):

60,5000 = + 8001, (006) +2 £'(x)(ofe) : (4.68)

To get rid of the second term on the r.h.s. of (4.68) we introduce the following
spacetime-dependent version of the inverse d~bein field 62:

(85) g1 cpa1 ™ (CaEN)100m2 , (4-69)
with
8 e"(x) = ap b(x) * ADeu(X) ’
(k.70)
$g.c.t.8 u(x) = +E (x)a u(x) -9, u(")e (x) ’

This inverse d-bein field eZ(x) enables us to define a fully covariant derivative
in the following way:

Doo(x) = e‘;(x)n;%(x) ) (4.71)

Under genersl coordinate transformations this derivative transforms as a general
matter field:

8. 1;_(D ) = + EMx)a A(D 4») . (4.72)
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Tt variation under loesl H transformations follows from the variations of ez
and ¢ under local H. A d-bein field e:(x) is defined through the relastions:

eplxlel(x) = & . s
73

: a v = g§Y

¢ e (x)e (x) = & .

As an example we give the covariant devivatives of matter fields, ¢, ¢ and
‘A‘a' which carry spin 0, -%'a,nd. 1 respectively. Under local H transformstions
these fields transform according to (4.56) with e and €ab replaced by spacetime-
dependent parameters AD(x) and €, (x). The covariant derivatives D:¢, D:\IJ and

e - ot . . .
D [a.Ab] E Fa,b of these fields are given by:

e, _ 1
Datb = ea.(au - w‘bu)tb .
; p%p = e'(d - 1%  _ wb )y (4.74)
¢ 8, a'u 2u ab u 3 *
(o]

]
|

u "
ab e[a(au = wbu)Ab] A PATRY che -

Under local H transformations the derivatives transform according to:

5.D5% = e Dot * (w+1)eD:¢ .
5,050 = e Dy + %ec 2%ea(DS0) + (et )eDSy . (4.75)

¢ _ c e
Sfep = 2 S[a.chb] + (wﬂ)EFa.b :

These local H variations are not the spacetime-dependent version of the rigid

transformation rules(h.57). The reason of this is thet in constructing a geuge

theary of (G.C.T. 8 H)loc ay We have lost any information about the rigid con-
formal subgroup Ggloba.l we started with. In fact many other rigid subgroups of

{¢.c.7. @ H)loce.l lead to the same geuge theory. The missing terms in (4.75),
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which are present in (4.57), are internal x transformetions. These rigid inter-
nal ¢ transformations follow fram the third and fourth term on the r.h.s. of
the last equation in (4.4T). These two terms originate fram (4.46) and the
following commutator, which is not present in the algebra of H:

[zc“, Pv] = e(swn -MW) . (h.,76)

The same internal « transformations can be generated on the r.h.s. of (4.75) by

the Tollowing variations of bu and m:'b:

ab _ [a. bl
wau s 2 AK u )
(b.77)
- aa
eccbu = I\Keu s

vwhich are in accordance to the sbove camutator. Taking into account these
additional transformations the r.h.s. of (L4.75) is given by the spacetime-
dependent version of (4.57). In this way we are able to define & flat space-
time limit, which is invariant under the rigid conformal transformations speci-
fied by (4.47). There is & unique ground state field configuration (e ,m ,b
f ) which is inveriant under these rigid transfarmations. Tt is glven by

a =& . .B8b_ = 2 =
&u(x)—ﬁu 3w, =b =f =0 . (4.78)

Combining equations (4.66), (L4.70) and (4.7T) we find that the transformation

rules of the gauge fields e:,mab,b and f under local H are given by

‘SHeu = e:B‘be‘:'1 - ADei s
6Hm:b = Dueab + 2 AE{a‘eﬁl ’
S, =AM+ Aged . ' (h.19)
GHr:' = DJ\; + e"'bf}’1 + ADf: .

T0
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It is now straightforward to construct locally inveriant actions for ¢, ¢
and A . With the aid of (%.75) and (%.7T7) one can verify that the conformal
4'Alembertian El°¢ DB'CD:¢ of ¢ is given by

sl

e, _ .M e, _ .8bye &
0% = ea{ (au - (W41 )bu)Da¢ w, Db«t +wru¢ } . (%.80)

n

The transformations of Dcct, the Dirac operator !‘cw E ya'Dglp on ¥ and the squared
of F:b are given by the r.h.s. of (4,58) with aab, e and € replaced by the
spacetime~dependent parameters ea'b(x), AD(x) and A;(x). From this we deduce
that the actions defined by the following Lagrengians are invariant under G.C.T.
and local H transformations:

£(4) = e with w(4) = 3 (a-2) .
L (p) « e W% with w(y) = %(d-ﬂ . {%.81)
£ (Aa_) « g (F:b)2 with w(Aa) = 1 and d=h .

Here e is the determinant of the d-bein field e:(x):

e £ det e:' . (k.82)
In the flat spacetime limit (4.T8) the actions defined by (%.81) reduce to those
given by (4.59). As we expect, the above Weyl weights of ¢, Y and Aa. are equal

to the flat spacetime values given by (4.53). In analogy to (4.59) the Maxwell
action in (4.81) is igvariant in d=l dimensions only.

5. The Poincaré gauge

Now we have established the main properties of the conformal symmetries, we
are able to show explicitly how the d-bein field can be decamposed into its

irreducible coamponents by means of these symmetries. We consider Einstein gra-

T

sk B

Tt

e

e



vity in 4 dimensions:

L = - e Rlw(e)) . (4.83)

Here R{w(e)) is the standard curvature scalar,
section (2.3).

For our notations we refer to
The action defined by (4.83) is invariant under general coor-

. . b
dinate transformstions and internal local Lorentz rotations zSe;" = ea'beu. How=

ever, invariance of this action under internal (finite) dilatations of the form

e:' - (ea)‘ = exp(wAD)e:‘ (k.84)

requires w to be zera. To obtain invariance under such scale transformations

we introduce a compensating scalar ¢$(x), which transforms under dilatations
according to

#(x) > $1(x) = exp( L (22N =) . (1.85)

To construct a covariant derivative of ¢ we introduce a gauge field bu:

Gbu = auAD . (4.86)

We next express the scale invariant d-bein field e® into a redefined d-bein field

(e:)c, which does transform under the local dilatations (4.84) {we choose w=-1):

u eu ] (h-e’{)

(tai)c + (e:“)c' = exp(- l\D)(eﬁ')c . (L.88)

The right-hand side of (4.87) is invariant under dilstations, because the scale
transformation of ¢ compensates for the scale transformation of (e:)c.

In terms
of (e::')c the Lagrangian (4.83) is given by (we omit the index o):
L= 2 d-1 2
e % Rlule)) + 2e &L (2 )2 . (1.89)
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This Lagrangian can be rewritten (up to a total derivative) in a scale covariant
way:

£ = - et®Rlule,b)) - 2e S 40, - L av, - wy L (ed)) (o, - § (@200

(a-2)
(4.90)
with

m:'b(e.b) = m:b(e) + 2b[a'e3]

(4.91)

This expression is invariant under local scale transformations specified by
(4.85), (4.86) and (4.88).

The new degrees of freedam described by the dilatation gauge field ‘bu can
be eliminated by introducing a symmetry under shift transformations:

K
bu -+ bu + l\u . (b.92)

This is equivalent to the statement that (%.90) is independent of b,. One can
verify that under these shifts R(w(e,b)) treansforms according to

R(a(e,b)) + R(u(e,b)) + (a-1)D Ay

> (4.93)

with D, a Lorentz-covariant derivative. Hence R(w(e,b)) can be identified with
the trace of the gauge field f: of ¢k transformations:

R(w(e,b)) = (d-1)fl)‘ . (4.94)

After maing this identification the Lagrangian (4.90) is given by:

£=-2 (g:; ¢ { (aa. - % b, - ub,ba.)D:.d’ +-1'§ (d-z)f:b } ’ (4.95)
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with D ¢ defined in (4.Th). The expression between curled brackets is exactly
the conformal d'Alembertian of ¢ defined in eq.(%.80)(taken with w= 1 (d-2))

Therefore we can write (4.95) as:
= {a=1)
1[: = - 2e (d. 2) ‘ﬂ:] ¢ . (h'96)

The action defined by this lagrangian is invariant under general coordinate
transformations and local H transformations, i.e. Lorentz rotations, dilatations
and special conformal transformations. Hence we have succeeded in reformulating
Binstein gravity in 4 dimensions in a conformally invariant way. The d-bein
field (e:‘)c prresent in this reformulation describes 5 field degrees of freedom,
which form & messive spin-2 representation of the Poincaré group. This field
is called the conformal gravity multiplet (or conformal d-bein field).

The gauge equivalence of the Lagrangisn (4.96) to the criginal formulation
{4.83) can be made explicit by imposing a consistent set of gauge conditions.
To break the invariance under k transformations one may set the dilatation
geuge Tield bu equal to zero, whereas the invariance under dilatations can be
broken by adjusting ¢ to a constant. The Poincaré gsuge is thus defined by:

b =0 , ¢=1 . (4.97)

After imposing these conditions the Lagrangian (L4.96) reduces straightforwardly
to the form (4.83).

6. Conventional constraints

In the previous section we constructed a conformally invariant theory in
which the Lorentz gange field w:b could be expressed in terms of derivatives of
the d-bein field e: and the dilatation gauge field b, as given in (4.91) (see
also (2.20)). This expression is the solution of the following conformal cur-
vature constraint:

Rﬂ'\’(P) z D[ue:] =0 . (k.98)
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Here the derivative D‘J is covariant with respect to Lorentz rotations and dila-
tations. In addition the trace of the conformal boost genge field f: could be
related to e” and bu as indicated in (4.9%). One can verify that this expression

u
for fll is the solution of the conformal curvature constraint
W v _ab _
€ Cp FuyM) =0 , (%.99)

with g0 (M) given by
uv
ab - ab ac cb [a_b]
RW(M) 3001 T 9Ly - 2Fey) . (4.100)

In this gection we discuss these curvature constraints in a more systematic way
in the context of confarmal gravity viewed as the gauge theory of the conformal
algebra S0(d,2). This approach of conformal invariance is slightly different
from the one presented in section 4 and enables us to discuss the above con-
straints in a more transparent way.

The explicit farm of the conformal curvatures follows from the structure
constants of the 50(d,2) algebra (see eq.(4.30)) and is given by

REU(P) = D[uez'] R
R TRt % RS
(L.101)
R, (D) = by - f?ue: R
R‘:U(K) = D[uff;] .

These expressions transform covariantly under the gauge field transformation
rules (%.79) and the P gauge transformations of the S0(d,2) algebra:
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a _ 8,

GPeu = DHEP H

‘spmih <2 g%,“f;’] . (4.102)
- a.a

8pb, Ept,

They satisfy the following Bianchi identities:

(a.%c) (DR (B) + R~ (M) =R, (D)S])

=0 .
(a%c) (Daabcde(m) 2 R'&%(P)rz +2 Rib(l{)ﬁz) 30 .
(4,103)
(@R (D) -&E (@)Y« RS (K)) =0
{abe) B-Rbc ab c ab »
(a%c) (DaR%c(K) + Ra.b(D)fi + Ra.bde(u)fi) =0 s

where (a.%c) denotes the cyclic sum over Lorentz indices a,b and c. Besides the

80(a,2) gauge symmetries ali gauge fields transform as.covarisnt vectors under
general coardinate transformations.
In gauging the S0(d,2) transformations one is led to introduce

3 (a+1)(a+2)x(d-1) field degrees of freedam, which are described by the gauge

fields e:, m:b, bu and f:‘. To convert a gauge thaory of 80(d,2) into a gauge

theory of spacetime transformations we want to express the P gauge transforma-

tions into general cocrdinate transformetions and the remaining S0(d,2) symme-
tries, after which we end up with a gauge theory of the type considered in

section 4. More specifically, we want to meke the following truncation:

G.C.T. &8 50{da,2) +G.C.T. 8 H

where H is the subalgebra of M,D and K transformations. A convenient way to

achleve such & truncation is by imposing a set of so-called conventional con-

straints on the 80(d,2) curvatures. To explain the underlying idea we rewrite
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a general coordinate transformation on (-':u in the following way:

e wea = [UUNRSISORI L Y - et e e - -

e Wi

B

A8 ;.
& )e z + Elaxez’ +(3uE Jey ,

g c.t. (4.105)
= £'R2 (B) + (6p(Ehed) + 8y (M) + 8 (570,00}
or N
:‘f‘é_t.(ax)eﬁ = EXR?\'“(P) * GE(Elei)e: . (k.106)
vwhere GE- oot denotes a general cocrdinate transformation, which is covariant

with respect to Lorentz rotations and dilatations. We call this & covariant
translation. Equation (4.106) shows that after imposing the curvature constraint
R (P)=0 the P gauge transformations on e: are 1o longer independent and became
J.d.entlca.l to covariant translations. Furthermore the gauge field m ab is no
longer independent and can be expressed in terms of e:' and b . The tra.nsforma-

tion of this field under H remains the same since thP constraint R (P)-O is
invariant under H. This constraint eliminates gd (d 1) field d.egrees of free-
doms :b is dependent (!d.(d.-1) field d.o0.f.) and eu describes not d(d-1) but
3d(d-1) field d.o.f. owing to its transformation under Lorentz gauge transfor- i
mationg. ;

It turns out that in order to obtain the same truncation on the remaining '
gauge fields one needs to impose an additional curvature constraint:

ab v o_
RW(M)eb =0 . (4.107)

This constraint is an extension of (4.99). After imposing (4.107) the gauge
field f: is no longer independent and can be expressed in terms of derivatives

of e: and bu according to

a

- 2 t 1 ] 1
£y = a5y (Rua(M) e eﬁ'ﬂ M) . (k.108)

b v . o . .
Here R‘ 'R‘a' ey R‘=Rl"a'e§ and the prime indicates that in the corresponding ex-

press:.ons fﬁ is set equal to zero. The trace of (4.108) yields equation (4.9%).
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The dependent gauge field f transforms under H as befoye, because the constraint
{4.10T) is invariant under H. This constraint eliminates d. field degrees of
freedam: f.‘ is dependent (d(d~1) field d.o.f.), bu describes no d.o.f. at all
om,ng to 1ts transformation under K ((d-1) field d.o.f.) and eu describes not

3 dala-1) but 3 (@+1)(d-2) field d.o.f. because of its trensformation under di-
latations.

The constrainta (4.98) and (4.107) are called conventional because they
both enable us to express algebraically some of the gauge fields in terms of the
others., Furthermore they both preserve all H transformations but not the P
gymmetries. After imposing the constraints these P transformations are identical
to coveriant translations. In this way the gauge theory of 50(d,2) reduces to
a gauge theory of spacetime transformations in which the P gauge field e:’ can he
identified as the d-bein field. The conventional constraints form a consistent
truncation of the gauge group G.C.T. ® S0(d,2), which bringa us back to the
formulation presented in section b based on the gauge group G.C.T. 8 H.

&nother effect of the conventional constraints is that they achieve a maxi..
mal irreducibility of the gange field configuration (e:, mz‘b, bu’ f:'). In the
presence of these constraints the number of field degrees of freedom described
by the gauge fields is reduced fram 3 {d+1)(d+2)x(d-1) to 3 (a+1)(a+2)x{a-1) -

3 da(d-d) -a® = 3 (a+1)(d-2). These field degrees of freedom are entirely
described by the d-bein field e?l gnd form a massive spin-2 representation of the
Poincaré group. Indeed massive spin-2 states have 3} (d+1)(a-2) helicity com-
ponents in d dimensions.

We conclude this section by showing how the sbave irreducibvility is achieved
in terms of the conformal curvatures. Substituiion of the conventional con~
straints into the Bianchi identities (%.103) leads to further curvature restric-

tions:
Rab(D) = Q .
(k.109)
[ _ ec
Re.b(K) = (d-3) D, Rop (M) .

These equations show that R(M) is the only independent curvature. The a prieri
2 . . .

(3 a(a~1))° components of this curvature are restricted to 3(d+°')(a@-2) indepen-

dent ones by the following algebraic and differential identities:
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() = Ry ) . (Faar)(a-1)(a-2))

Ruv, e

Ri,anl ) =0 . (25 Aa-1)(@-2)(a-3))

R, (e, =0 . (Falas) (4.110)
DD (gReg) M) =0 v (3 (ar)(as1)(a-3))

plp R P00 = 0 ¢ (s @) (a-1)(a=h))

We have indicated the number of independent constraints between brackets, These
identities follow from cambining the Bianchi identities with the conventional

constraints.
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CHAPTER V

CONFORMAL SUPERSYMMETRY

1. Introduction

In this chepter we show how one can decompose the N=1 supergravity multiplet
(ez‘, wp, Aa, F) into its irreducible pieces by introducing the superconformal
transformations. These transformations are the supersymmetric generalization
of the conformal symmetries. In chapter 2 we have shown that the multiplet
(ez', ‘pu’ Aa.’ F) describes 12412 field degrees of freedem, which form a massive
spin-2 and two massive spin-1/2 representations of the super-Poincaré algebra
(cf. section (2.5)). In the superconformally invariant formulation the fields

ei, q’u’ and Aa are related to redefined fields ez' s+ ¥ and Au s+ wWhich trans-

u
form under additional gauge transformations:
Gea‘=DEa+eabeb-Aea’
n n n Du '
§ ¢ =De* ~vyn -—Ay o2in Ly (5.1)
u u 2 pu " F o) :
=3 .
54 wa(n)

Here the parameters Ea', Ea'b

. l\D, AU(1)’ €' and n° characterize covariant trans-
lations, Lorentz rotations, dilatations, chiral U(1) trensformations, supersymme-
try transformations and a new kind of supersymmetry transformations, called S
supersymmetry, respectively. Owing to toese gauge transformations the multiplet
(eﬁ, ‘p;‘x’ Aa.) describes precisely 8+8 field degrees of freedom, which form a
massive spin-2 representation of the super-Poincaré algebra. This multiplet is
called the N=1 conformal supergravity or Weyl multiplet and constitutes the
backhone of all inequivalent off-ghell formulations of N=1 Poincerg supergravity.
The remaining U+h field degrees of freedom form a chiral multiplet. We shall
see that this multiplet is the supersymmetric generalization of the secalar ¢ in

the previous chapter (cf.eq.(4.87)) and plays the role of a compensating super-
multiplet.

e e e .
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Although we have not restricted ourselves in the previous chapter to any
particular spacetime dimension d, we will consider in this thesis (extended)
supersymmetry in d=k dimensions only. Of course one can consider an implemen-
tation of the sbave ideams in the context of supergravity in higher dimensions.
The fact that one supersymmetry generator § in d>h dimensions reduces to more
supersymmetry generé.tors Qi(i>1) in d=l dimensions indicates that there is a
relationship between N=1 supersymmetry in d>Y uimensions and N>1 supersymmetry
in d=4 dimensions. In particular the limit N=8 in d=k dimensions corresponds
to N=1 in d=11 dimensions. Recently the superconformasl ideas have been applied
in d=10 dimensions. It was shown that reduction of the N=1, d=10 conformal
supergravity multiplet to four dimensions leads to the N=h, d=l Weyl multiplet.
For more details asbout this see the references at the end of this chapter.

The outline of this chapter is as follows. In section 2 we derive the expli-
cit form of the rigid superconformel transformations. In section 3 we consider
the problem of constructing field representations of the superconformal algebra.
In section 4 we construct the gauge theory of the superconformal algebra and
sddress ta the problem of how to find the Weyl multiplets for extended supersym-
metry. In pavticular we give a counting argument, which praves that the gauge
fields of the superconformal symmetries do not form for N>1 a complete field
representation of confarmal supergravity. Hence one needs additionsal matter
fields. In the next chapter we will develop & systematic method to find these
matter fields. The coupling of matter supermultiplets to conformal supergravity
is discussed in section 5. Having thus established the main properties of the
superconfarmal transformations, we finally show in section 6 how one can decom-
pose the N=1 supergravity multiplet (ea' Ulu . Aa.’ F) into its irreducible sub-

us
multiplets by introducing these transformations.

2. The superconformal algebra

In the previous chapter we have defined the conformal transformations as the
subset of general coordinaste transformations that leave the traceless part of
the metric tensor gw(x) locally invariant (cf.eqs.(4.21) and (%.22}):

sg.c.t.suv(x) = (0(1)-—1)gu“(x) - D(IJE\)) - %gu“gpanpsu =0 . (5.2)
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The explicit solution of the above equation for flat Minkowski space is given
in eq.(%4.29).

In the same way one can define conformal supersymmetry transformations as
the subset of local supersymmetry transformations that leave the gamma-traceless
part of the gravitino field w"l(x) locally invariant, i.e,

Sval®) = M)y, ¥y (x) ; (5-3)

where A(x) is an arbitrary function of the coordinates x. In a space with
metric tensor gw(x)=e:'(x)e:'(x) the gravitino field transforms under local §
transformations according to

- % ma'bcab)e'(X) s (5.4)

5Q¢‘1(x) =|ﬂ'ue'(x) = (s X

]

ab

where the spin connection field mu is related to the Christoffel symbols I‘:’N

as follows:
Poo 8y P
Thv (Duev)ea . (5.5)

In this expression D, denctes a supercovariant derivetive. Substitution of (5.h4)
inte (5.3) leads to the following defining equation for the conformal super~-
symmetries:

.o .
6115 _EYuJE =0 . (5.6)

In the definition of the covariant derivativeq‘ given in (5.4) we have not con-
sidered terms, which are proportional to Yue' or ¢'. We note that in (5.6) a
yue' term would drop out, vhile an €' term does not lead to inconsistencies.

Of course, the comrutator of two supersymmetry transformations should al-
ways yield another symmeiry of the theory in question. In the general case the
spacetime part of this commutator is given by

[E;(x)e .50l + e )z, . (5.7)
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wi.th
g x) = Eé(x)v"€1 (x) + cre- . (5.8)

2 .
and EA parsmetrizes & general cocrdinate transformation. In a thecry with

Here e; and e! are the parameters of two local supersymmetry transformations
global - .«oformal invariance the parameters §A should describve a conformal
tranaformation. Hence they must satisfy the differential identity given in
(5.2). Substituting (5.8) into this identity leads to a differential constraint
on the spinor parsmeters e€°(x). One can verify that this constraint is equi-
valent to equation (5.6). This shows that the definitions of conformsl trans-
formations (see (5.2)) and conformal supersymmetries (see (5.6)) are consistent
wi*h the supersymmetry algebra.

In flat Minkowski space we can choose Cartesian coordinates with venishing
Christoffel symbols. In that case eq.(5.6) reduces to

(3, - f e (x) =0 : (5.9)

Expanding €°(x) as & power series in Jr.u

. _ (o). (1). (2).
e'(x) = ¢ v, TR e TR . (5.10)
. (o). _(1). . .
with e * Eu s +.. constant spinor parameters, we find
e(q)' arbitrary, e‘(l”' = %Yuﬂ(”' , (5.11)

whereas the remaining parameters are zero. Hence a rigid conformal supersymmetry

is characterized by two constant spinor parameters e'=e(°)'

and n'=%- £\1)' .

The paremeter £’ corresponds to ordinary ar Q supersymmetry, while the parameter
n° describes s different kind of supersymmetry, called special or S supersymmetry.
We note that for € and n' we use the chiral notation given in (2.8) and (2.9)
respectively. In terms of ¢° and n° the most general solution of (5.9) is given

by

e'(x) =e" + #a° . (5.12)
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Substitution of (5.12) into (5.8) shows that the spacetime part of a [EéQ.,E{Q_],
[E‘Q‘,H'S 1 and a [Hés_,ﬁ;s_l canmutator yields a P, (M+#D) and K transformation
respectively. For instance the commutator of two S transformations with para-
meters n1' and, né yields g special conformal transformation with perameter

ea‘ S - r-\éyan1 + e (cf.eq.(h.29))=

(%) = - ﬁé frydn, + ere

- - - _ 2
= (- Rgrpny, +cre )(Ex)‘xp x ‘Sxp) . (5.13)

To close the algebra of conformal supersymmetries one needs to include addi-
tional internal transformations as well. More specifically, to close the {Q,S]
camutator one needs an internal chiral U(1) transformation. In extended super-
symetry, where we have N independent § and X independent S supersymmetries
present, this U{1) transformation generalizes %o a chiral U(N)} transformation
(except for the case N=b where SU(Y4) is sufficient). These internal symmetries
can be derived by u:ing the Jacobi identities, which the superconformal genera-
tors must satisfy. In this way one finds the supersymmetric generalization of
the conformal algebra SO(h,E):SU(2,2) given in (b4,30). This superalgebra is de-
noted by SU(2,2|N). Below we give the nonvanishing (anti)commtators of
su{2,2{N). The conformal subalgebra is given by (4.30), while the following
(anti)commutators enter in its supersymmetric extension:

{Qi,QBJ.} - - E(Pc)us‘% o tslsgd = 2(K0) g8 ,

{Si,QBJ.} = (2DC + 2(GWC)MW + AC)&BGZZ + 4 B?;ZC&B ,

[P,85 1 = -(vQ) 0 R O .

(8] =- (@8 o st = (o 9 \

gt 1 =-1gt to,st1 =+1¢ o
* a 2 "a * *“a 2 "a ?

agll =-(g-ned L tash =kl ,

[Bi."Q: ] =- alj‘qi + % aéqﬁ, [Bé,s:: 1 =- alafsi + % 63.'51(: .

[Bi:,Bl; ] =- S‘EBi + 513}5‘ .
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The generators Q; and Sz satisfy

Here A is the U(1) and Bg the SU(N) generator.
In (5.14) we have

the chiral notations given in (2.9) and (2.8) respectively,
used a shorthand notation to denote chiral projections of Dirac matrices, e.g.

(rag 3 (50 ¥l lgg » (log = (5 0 =vgd)gy (5.15)

and the same for all other matrices. The superconformal generastars satisfy ge-
As an example we prov the (Q,Q,S) Jacobi identi-

neralized Jacobi identities.
ties:

[3y52{Qg5080H + 15041Q,5100, 1 + [Qg, (8,0, 1

Q S5 4 (ai + 8))

= 20%%1..6 + a(uwc)YB(c Q)ulaa 6%;%3
= - 12 c[&BqY!i;§ + (ai * Bj) = {5.16)
and
iqi.{qu,s“n + 185,000,001 + [g5utst,aln
(5.17)

- k 1 ki _

In (5.16) and (5.1T) we have used the following identities, which follow froam

the campleteness relation given in (A.15):

(°qu) (o v )m. = cY MR- C'Bqn
(5.18)

k
2 C‘?BQu .

il

K
(Yuc) gB(YuQ)Y

Now we have defined the superconformal algebra we will consider in the next
section what the rigid transformation rules of a multiplet of fields under these

symmetries are. In particular we will give an explicit example for N=1.
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3. Representations of the superconformal algebra .

To construct field representations of the superconformal algebra one can

BUTRT: S

again apply the method of induced representations., In section (L.3) we have
shown hg- the conformal group can be represented on functions ¢u(x) . Here

{x u}w.-e the coardinates of the coset space SU(2,2)/H, where H is the stability
subgroup of x, =0 (cf.eq.(h.38)). The index o in ¢ (x) denotes an internsl H
ipdex. In the x-~space the P transformations act as translations X, + x, - Eu'
In the superconfarmal case these results generalize as follows. From the expli~
cit farm of the superconformal algebra (see (5.14)) we deduce that if M \,,D K =0
and P #0 when acting on a fixed point we also must have A B.,S =0 and Q #0 for
the same point. This leads to the definition of a coset space SU(E 2|N)/H
where H represents the algebra generated by the operators ¥ v'D K 1A, B and S
This coset space can be parsmetrized by cammuting coordinates xu o.nd a.nt:.ccmmu-
ting variables e:. In this way we obtain a so-called superspace. The super-
conformal transformations can be represented as coordinate transformations in
this superspace. The H transformations form the stability subgroup of

(xu.e;)=0, whereas the P and Q transformations correspond to translations:

-1
b - + (e . tcee’
W TR gy ( Y904 e*)

. . . (5.19)
e: ~o. ¢ .

The form (5.19) of the P and Q transfarmations depend on the parametrization
1
(xu,e d) of the superspace. Another useful parametrization is the following one:

(2,00) = (x, +8ivp,02) , (5.20)

vwhere z, is & complex spacetime parameter. In terms of these coordinates the
P and Q transformations take the following fovm:

Z +z =k +EE.Yei

'] u H i'u ’ ;

i g (5.21) i
1 1

8, *0, - €, .
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A field ¢h(x. 8) (the index h denoctes an internal H index) defined over the
supercpace (x 8 0‘) is called & superfield. Assuming that ¢ (x =0, 6 -O) trans-
farms accarding to an irreducible representation of H one can esta.bllsh a for-
mula similar to (k.42), which defines a representation of SU(2,2|N) on zbh(x,a).
Such a formula enables one to calculate the global superconformal transformation
rules of ¢h(x,6). In snalogy to section (%.3) the P and Q trensformations do
not affect the internal index h. In the parametrization (5.19) the generators
of these transformations are given by the following differential operators acting

on the superfield:

i_ i _ 3

Q = 3 - (yua)q T . Pu = 5 ’ 5,22)
ai L H

Q. === (y8) . .

a1 aa; ou.ap

Using these expressions one can verify the {Q,Q} anticommutator:

taba .} ={ 2 - (r )} - (1 @)y }
a? VB 135‘ . o Bxu ! 35.] B3 ax
ol B
= - Q(YuC)as ai 3 2(Pc) . {5.23)

Of cowrse we can also use the parametrization (5,20). In that case we define
superfields thh(z,e). On these superfields the P and @ generators are represen-

ted in the following way:

di_ 8 A9 3
Q== 2('Yu9)q e AT .
39 . i "}
1;1 (5.24)
Q' . =—r .
ol 5
o

The Q' generators (5.24) are related to the Q generators (5.22) by means of a

similarity transformation:
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i_ i
Q', = exp(#)q, exp(-U) s
(5.25)
Qg = exp('l'U)Qmi exp(-U) ’
with the operataor U acting on a superfield given by
U PR -e.'iY e -g-- . (5-26)
- wiax
i
This operator relates the parametrizations (xu,e:) and (zu.e';):
=1
. =2 . '2
(exp U)xu =x, +T Y05 " (5.27)

An important difference with the purely conformal case is that a scalar
superfield ¢(x,0) does not define an irreducible representation of SU(2,2|N).
Explicitly, cne can impose an invariant constraint

Di'#(x.a‘) = ( %— + (vua)i 5-?;;) ¢(x,0) =0 (5.28)

i

and find nontrivial sclutions. To solve this equation it is convenient to use
the parametrization (zu.e :). In that case the constraint is given by

(exp(+0)0" exp(-0))(exp(+0)4(x.8)) = 0 Vx . (5.29)
or

2 4(z0) = 0 vz : (5.30)

aai

This equation is solved by any superfield ¢+, which doza not explicitly depend
ong,. Such a superfield is called & left-handed chiral superfield. The com-
plex conjugate of ¢+ is precisely a right-handed chiral superfield, satisfying

py¢xa) = (5 v (g 5 ) ra) =0 (5.31)
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or

: 3 =, ¥
- q—.-¢ (z ’6) =0 . (5'32)
B> H

R e 7 g -

Hence a right-hand,ed' chiral superfield ¢ depends only on 8" through the space=

time parameter Z, Up to now there exists no fixed procedure to find the con-

straints for a general superfield ¢h(x 0.

The finite number of components occurring in the Taylor expansion of a
superfield ¢h(x,6) to the anticommting verisbles 6; are ordinary fields defined
over x-gpace only. They form the field components of a whole multiplet of bose
and fermi fields, which under @ supersymmetry are transformed into each other.
In this theais we will not follow the superfield approach but rather work in
. terms of the field components of the supermultiplet. As an example we give the
' field components of a N=1 left-handed chiral superfield:

¢7(2,,87) = A(z) + 879 (2) + 580 °F(2) : (5.33)
This superfield can be re-expressed in terms of functions of " by means of

¢+(zu,8 ") = exp(-t)¢ (x40 ") . (5.3%)
The Q transformation of ¢+(zu, g) is given by

6t (7,0 0 = (E'Q! + 5" )8™ (2 0)

— e ._a_ -~ .. _3.‘_ + . :
= (s 5 -2¢& v} azu) 3 (zu,e ) . (5.35)

Substituting the expansion (5.33) we find for the field components:

8A(z) +8 "6y (z) + 56 ‘9" 6F (z)

+ ‘e
5Q¢ (zn,ﬂ )
(5.36)

E9(z) + T (2FAlz)e +F(z)e’) + 38028 Jy"C2)).



Taking zu=2xu in (5.36) we derive the following transformation rules for the
chiral miltiplet:

SA(x) = ey (x) ’
§0'(x) = ¥alx)e + Kx)e® ’ (5.31)
oF(x) =€ #¥*(x) . ﬂ

We now give the H transformations of this chiral superfield without praof.
These transformations can be derived in analogy to the pure conformal case.
For more details we refer to the references at the end of this chapter. The
M,D and K transformations of the field components of ¢+ are the same as in
(L.47), i.e. the rigid spacetime transformations are accompanied by internal
Z,A ar ¢ transformations. In the gcme way we find that a global s transformation

or, equivalently, & Q transformation with spacetime-dependent parameter
e (x)=fn" (cf.eq.(5.12)) in superspace is accampanied by an internal S transfor-
mation:

8 ()87 ,07) = (8 () =) + 65 N O (5.38)

We now give the internal H transformations of ¢+(z,9") (in the context of field
campcnents we mean by internal that these transformations do not act on x).

Note that these are not the complete transformations. The full 4,D and X trans-
formations are defined in eq.(4.4T) (we only give the internal I,A,x part of
these transformations), while the complete s transformation is given in eq.(5.38).
The internal H transformations read as follows:

+ . 1 = 3 + .
Spb (2.9°) =( 2 %ar’ %ab a_a——) ¢ (z07) ’ ,
gotmen)  =(va v 1ag L) otiae) |
A ! AD 2°D 28 * d ’ :
567(z0°) =0 . (5.39)
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s 8% (z0%) = ((@00) 7, 2=+ 297 0°) 4¥(2207) .

29"
+ . 1. 3 . = 2\ * .
6“(1)¢ (z,8°) = ( - é'lwﬂuh) + i :.AU“)S 36‘) d (z,0") .

Here we have given the chiral superfield a Weyl weight w. It follows from the
full superconformal algebra, that the chiral weight c of ¢+ is related to w a3
given in the last equation of (5.39),

Substituting the expansion (5.33) into (5.39) and taking 7,%2%, Ve find that
the Q and internal H transformations of the field components (A,¢",F) of the
N=1 chiral multiplet are given by:

- i
SA = T H A = A

]

6" = FAc_+Fe + 2uan_ + (w1/2)A50" - -;-(w - -g-)j_l\

.1 .
wt)? ¥ 2 fapan?
(5.%0)

3
iy

EIV - 2= 97+ (IE - 3 (w=3)iky

It is instructive to verify that the ccmmutator of two rigid superconformal
transformations on (A,¢°,F) coincides with the superconformal algebra (5.14).
In particular the comutator of two Q or s transformations and of a § and s
transformation are given by the following expressions:

[8g(e,)a8(el= 8(E")
[sgleda8 (il = 8,(e) + 8,(c™™) + &y ) (Ayeqy) , (5.41)

[64(ny)s8 (ny)1= & (%)

with the parameters on the r.h.s. of {5.41) given by
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g = 'e'éyu5:1 + cc* .

€ = =-g8'n + arect ’

e® = 428'0"®  + ceet s (5.42)
= <2ic" + gC*

AU(1) 2ie n cec t

a o _ = B e

€ = - oYy + cre .

In arder to construct an action far (A,9°,F), which is invariant under gle-
bal superconformal transformations, we define a d'Alembertian DAEB“B&A of A and
a Dirac operatar arw‘sy“aaw' on ¢ as in section (4.3). The vierbein field 63
ocourring in these definitions transforms under the internal H transformations
according to (4.55) such that G: is invariant under rigid superconformal trans=-
formations. Using these definitions one can verify that for w=1 the action
corresponding to the following Lagrangisn is invariant under all superconformal
transformations:

L= Ata-137y +F%F . (5.43)

nj—

In section 5 we will construct an extension of this action, which is invariant
under local superconformal transfarmations. This action describes the coupling
of a chiral matter multiplet with N=1 conformal supergravity. Before doing this
we first discuss in the next section the gauge theory of the superconformal al-
gebra.

4. Gauge theory of the superconformal algebra

In order to gauge the SU(2,2|N) symmetries we introduce the conformsl gauge
fields e:‘,M3h,bu,f:' (see chapter L) and gauge fields xp;.q::.v:j (i=1..N) and A,
for the Q,S,SU(N) and U(1) transformations respectively. These gauge fields

. 2 . _ .
describe (U5+3N") + (2UN) (bosonic + fermionic) field degrees of freedam. The
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bosonic degrees (..r freedom are described by the gauge fields e, (12), a'b(‘lB),

'D 3, £ a(12), (3(N -1)) and %(3) {except for N=k where A‘. is B.'bsent)

‘I‘he i‘em:,onlc degrees of freedom are described by the gauge Fields l{J 1(12N) and
¢ 1(12N)., We have listed the generators of SU (2,2[N) with their correspondmg

geuge Tields in table 1.

superconformal gauge symmetries gauge fields
translations P e: 12
Lorentz rotations M mﬁb 18
dilatation D by, 3
conformal boosts K I‘f,' 12
supersymmetries Q \Pz] 12N
special supersymmetrics S ¢:{ 12N
chiral SU(N) B Vs 3(x%-1)
chiral U(1) A A 3

table 1. Generators snd corresponding gauge fields of the superconformal group.
The numbers in the right column denote the field degrees of freedom
represented by the gauge fields. The U{1) symetry is absert in the
case of N=h,

The transformations of the superconformal gauge fields follow from the
structure constants of the superconformal algebra. The transformations under
Q and S supersymmetry, dilatations, conformal boosts, P and chiral U(1) transfor-
mations are given below; the assignments with respect to the remaining symmetries
follow directly from the index structure of the fields:
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In (5.44) the spmors w and e

-21\[ el 4 (-2 B0

a ~-i_a a
- . + gec*
ADeu + (e7y wul cect) + DugP

8 bl ah + o g0
K u ¢ui Ewu

88 =i =i cne) o
auAD + AKeu + (€ by~ YNy toete )

a a =i a .
DuAK+ADfu+(2“Y¢IJi+°°)

D et h-N

1 i i
n -7 M - -1

i 1 i 1 .a i 1 ,a 1
DN *3 AD¢u “E e t3 AKYawu *

e Tin, -8t ¢

(2:‘.Eid>u -Elwn +cc)+aAU(1)

ns +cc)+2€

a.a
ngu

i

=k 7k o
e¢k-wunk)-hc

lag b]

(u-N) N)

(1)"’

satisi‘y the chiral notation given

whereas for ¢ and n° We use the chiral notation given in (2.9).

D, are covar 1m\t with respect to M,D and (8) U(N) transformations.

the chiral charge of q: and ¢ vanishes for N=b,

a hermitian con.]uga.t:.on .

(5.44)

in (2.8),
The derivatives
Notice that

The abbreviation h'c: denotes

From the transformations (5.44) it is straightfarward to define the
sU(2,2|N) curvature tensors. They are given by:

Rﬁv(P)

ab
u\’(

R (M)

R (D)

Rﬁv(K)
R;“(Q)

R;“(s)

a -1 _a
Dptul = Vi Y Vi

20 _ acch {a bl
R Tt I LN B N

a & -1 .

Pvt = TRy ~ by *cter)
- -1 &
=Dy fy) = 4 Fp,r%

v]i

i i
Prbui = Yt

1
D[u¢VI * [u a‘pv]

=1 ab
+ a(wlua

¢\)] i

+ C'C')

(5.45)
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Here the derivative D is covariant with respect to Lorentz rotations and dila-
tations., The expressions (5.45) are the superconfaormal extension of the pure con-
formal curvatures given in (4.101). They transform covariantly under the gauge
field transformation rules (5.44). In addition they satisfy Bianchi identities
which we do not list here.

We now proceed in analogy to the treatment of the gauge theory of the con-
formal algebra, which was discussed in section (4.6). To achieve a maximal
irreducibility of the superconformal gauge field configuration we impose a
maximal set of conventional constraints on the superconformal curvetures. In-
spection of the explicit form of these curvatures shows that R(P), R(M), R(D)

and R{(Q) contain terms proportional to a connection field, multiplied by a vier-

bein field. Hence these connections, mi’b, f:' and ¢:‘1, can be expressed in terms

of other fields by imposing curvature constraints. For this purpose the follo-
wing set of constraints suffices:

a -

RW(P) =0 ’

R 00)ey = 0 : (5.46)
u i -

Y RL_“(Q) =0 .

At first sight it seems that one can also restrict R(D), but in the presence of
the first constraint of (5.46) one can show that R(D) is no longer independent
by virtue of an SU(2,2|N) Bianchi identity. The notation R(M) indicates that
we have included certain modifications which are required for supercovariance.
We explain this below.

As we have mentioned above the constraints (5.46) determine the gauge fields
» T2 and 4> in terms of the other fields. Since (5.46) is invariant under

M,D,K and (SU(N) transformations the corresponding transformations of WP, f: and

ma.b

u
i, . . .
¢u implied by the SU(2,2|N) algebra remain unaffected. However, the constraints
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are not inveriant under @ and S supersymmetry, and therefore the @ and S trans-
formations of mi‘b, f: and d’xl; change by extra tems proportional to the covariant
curvatures. As an example we show how one can determine the extra term in the

Q transformation of m:b by requiring invariance of the constraint R(P)=0:

_ E8uge_&a b,add b
%q uv(P) h GQ eRuv(P - (8 [ ) v
= (E%R (@) + ever) - (auf)®ed) = 0 : (5.47)

Here Ggauge denotes the variation of R(P) according to the SU(2,2|N) algebra,
while the seceond term denotes the variastion of R(P) owing to the extra term
(Gma.b)s.d.d in the Q transformation of m:b. Fran (5.47) we deduce that this temm
is g:wen by

~i _ab
) (

(5w = 28 YR Q); + cue . (5.48)

Becanse of these new variations the covariant curvatures far M,K and S require
extra terms which do not follow from the SU(2,2|N) structure. The presence of
these modifications, which we refrain from giving explicitly, is indicated by
using the notation R(M), ®(S) and R(K). We should mention that the detailed
form of the conventional cunstraints is not crucial, as long as they fully re-
strict the gage fields in question. As it turns out @ supersymmetry is necessa-
rily affected by the presence of the constraints, but for N=1 and 2 it is possi-
ble to construct a set of S invariant constraints. One can obtain an S invariant
constraint on R(M) by adding a term Rua(A) to this equation.

The expressions for mab, f: and dst, which follow from (5.46), can novw be

u
given. The results are expressed by

wlebb) = wile,y) + 2n 2 b] .
£ =1 (‘ﬁﬁ'(M) -g e RIOND) (5.49)
¢‘il "%( ey " 3’YU )R' H(Q).
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The notation R'(M) indicates that we have cmitted the f -dependent term that
accurs in R(M), while R'(Q) indicates that we have cm.tted the ¢u-dependent term.
When combined with the constraints (5.46) the SU(2,2|N) Bianchi identities
lead to further relations among the superconfoarmal curvatures, As it turns out
the only independent bosonic curvatures are ﬁ(M), which satisfies the same iden-
tities (L4.110) as the pure conformal curvature R(M), and R(V), R(A), which sa-

tisfy the following Bianchi identities:

) (v)1 DR (A) =0 . (5.50)
(abe) Pa"ba (abc)a'nbc

Here (abe) indicates a cyclic permutation of the indices a,b and ¢ and Da. is a
supercovariant derivative. The only independent fermionic curvature is R(Q)

because R(S) satisfies

R;i(s) =¥ R;.i(Q) s
. (5.51)
+i
i\ab(s) =0 .
Here we use the notation
¢.+1 Ai 1
S = @y 2L, Bls . | (5.52)

The a priori 2LN components of R(Q) are restricted to 8N independent ones by the

following identities:

.
Ra.:(Q) =0 .
(5.53)
a.b a.b(Q) =0 .

Although we have now achieved a maximsl irreducibility of the superconformal
gauge field configuration the sbove procedure does not guarantee that for general
N the superconformal gsuge fields constitute a complete field representation of
the superconfarmal algebra. The following counting argument proves that for N#1
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this is indeed not the case. The constraints (5.46) eliminate 40+16N (bosonie
+ fermionic) field degrees of freedom. Hence after imposing these constraints
we are left with (‘5+3N2)+8N (ar (5+3N2-3)+8N for N=4) field degrees of freedom.
The bosonic degrees of freedom are described by the independent gauge fields
eﬁ'(s), Vi.(3§l‘l2—1 ))and Au(3). while the femionic degrees of freedam are de-
scribed by w:(BN). From the Bianchi identities, which are satisfied by the
curvatures carresponding to these gauge fields (see eqs.(4.110), (5.50) and
(5.53)) we deduce that the gauge field degrees of freedam form one massive

%1 for N=4) magsive spin-1 represen-

spin-2, 2N massive spin-3/2 and Ne (ar X
tations of the Poincaré algebra. In table 2 we have indicated these represen-—
tations together with the spins, which are contained in & massive spin-2 repre-
sentation of the super-Poincaré slgebra for N=t,..,4., From this table we imme-

diately see that only for N=1 the

spin s N=1 =2 N=3 N=», gauge fields
2 1 1 1 1 1
3/2 2 L 6 8 2N
1 1 6 15 o7 N (or N°-1 far N=b)
1/2 i 20 48
0 1 1h 42

table 2. Massive spin-2 representations of the super-Poincaré algebra. The num-
bers in the centre column denote the spins contained in each represen-
tation. The numbers in the right column indicate the massive spin

states, which are described by the superconformal genge fields.

superconformal gauge fields form a massive spin-2 representation of the super-
Poincaré algebra. For N>1 additional matter fields must be added to the gauge
fields in order to cbtain such a massive spin-2 representation. Hence only N=1
conformal supergravity is based on the gauge fields presented in this section,
whereas for higher N the thecry is still incomplete. In the next chapter we shall
develop a systematic method to construct complete field representations of the
superconformal algebras with N <L,
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5. Matter and conformal supergravity

In this section we consider the coupling of a matter chiral multiplet with ;
N=1 confarmal supergravity and construct an action far the chiral multiplet,
] which is invariant under local superconformal transformations. Before doing
; this we first discuss the ¥=1 Weyl multiplet.
In the presence of the conventional constraints (5.46) (for N=1) the only

e R

independent superconformal gauge fields are (e:, ﬂ-';j, Au’ bu)' These fields de-

scribe 8+8 field degrees of freedom, which form a massive spin-2 representation
of the super-Poincaré algebra (cf. table 2 in section 4). Their transformation
rules are given in eq.(5.4k4). Here we give some of these transformations:

) Ge: = E'Yahl-'u‘ + ete" .

8k, =D " ~ v .

(5.54)

o, = (2i€79, - 2iin +etet) +3 Ay, .
b = (e b, =¥ ete) + 3 A .

The expressions of the dependent gauge fields m:'b

s f:' and ¢l; are given in
eq.{5.49). Their @ and S transformations do not coincide with the transforma-
tions implied by the SU(2,2|1) algebra given in (5.44). Because the constraints
(5.46) are not invariant under Q and S supersymmetry the & and S transformations
of m:b, i‘: and ¢"J change by extra terms propartional tc the covariant curvatures.
In eq.(5.47) we have shown how one can derive these extra terms in the transfor-

mations. Explicitly, these terms are given by

(Gmib)add = 2 E-YuRab(Q). + c.co R
(s£)%%% = - 2 8'0™PR (@) + 2 (@700 +eer (5.55)
]
add _ 3. 1 . f
(6¢u) =3i (trabwr]J -3 Yuoab)Rab(A)e . ;
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: The superconformal theory that we have now defined is the gauge theary of
the superconformal transformations. The algebra no longer coincides campletely
with the SU(2,2|1) algebtra, because we have imposed a mumber of constraints,

é:
{“ Since the independent gauge fields describe 8+8 field degrees of freedoam, which
é~ form a massive spin-2 supermultiplet, we expect that in analogy to the pure
f conformal, case (cf. section (4.6)) the commtator of two Q transformations yields
E a superconformally covariant translation instead of a P gauge treansformation,
é while the remaining commutators still coincide with corresponding ones of the
é, SU(2_,2[1) algebra. We give the most relevant commtators below:
) IGQ(+:1), Gq(ea)) = (Eéyat:h + c'c‘)Da s
‘ [8o0e), 8g(nll = 8,(a,) + 8,0e2%) + &, .( )
¥ Q€ s AY'D gt u(nby(1) . (5.56)
W
s B
: The parameters on the right-hand side of (5.56) are given by
s Ea:b =2 E-oabn + gt .

Ay(r) = - 2len +ete ,

a8 = o B e

g 2ngY'my *cre '

=k
e

The (spacetime-dependent) parameters of the internal A, £, U(1) transformations
have the same value as the {constant) paremeters of the rigid D M,U(1) trans-
formations which result from the cammutator of two global supersymmetries on the
field components of the chiral multiplet (see eq.(5.42)). The k parameter differs
from the K parameter by a factor -2. This is a consequence of the redefinition
K, * - 1/2 < which we made after eq.(4.4T).

In coupling the chiral multiplet to N=1 conformal supergravity, the rigid
transformation rules (5.40) will get nonlinear modifications. These modifications
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are basically of the same structure as the nonlinearities present in conventional
gravity theories. To find these nonlinear terms we impose the comutator alge-
bra (5.56), (5.57) on the field components A, ¥* and F of the chiral multiplet.
This is done by induction. One first calculates the commutator of two super-
symmetry transformations on the basis of the linearized results but with space-
time-dependent parameters. To realize the cammtator algebra (5.56), (5.57)
requires the addition of terms of second order in the fields to the transfor-
mation rules. One then repeats the calculation on the basis of these new
transformation rules. This in turn will introduce terms of higher order in the
fields in the transformation rules etc.. In the general case this iterative
procedure can be rather complicated if many nonlinear terms are consistent with
superconformal invariance, because usually all possible terms do indeed appear.
For the N=1 chiral multiplet the resulting nonlinear Q and S transformation
rules are rather simple:

88 =gy’ s
sy = ﬁcAe. + Fe' + 2wAn . (5.58)
6F =& B%" - 2(w=1)7 ¢* .

The supercovariant derivative D: in (5.58) is defined by

D:‘b(x) = et(x) {8“¢(x) - (Gz(u:h) . GA(hu) . 5K(f:)
(5.59)
* 851y (8,) + 8(w) + 85(62)) ¢(x) } _

Inserting the transformations of A and ¢° inte (5.59) we find that the superco-
variant derivatives D:A and D:tb' are given by:

c -~ _H i -
DA = ea(aup. - wbuA + 5 wAuA - vputb ) s
. . . 10D . .
Dg\b z e:(auw - Euuc(e.ll'.b)qbclh - (v + %)buw (5.60)

1 3, . c .
+3 (w - 2) 1Au|p -¥ Atbu_ - qu - zwmu_) .
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We conclude this section with the construction of an action for the chiral
multiplet (5.58), which is invariant under local superconformal transformations.

For this purpose we use the following results, which one can easily verify:

(1) T™wo chiral multiplets (31, w;, E‘1) and (AE, ¥as Fa) with Weyl weights w,
and, v, respectively can be multiplied in the following way to yield again a
chiral multiplet with Weyl weight LR

(s ¥3s Fq) 8 (Ags ¥3s Fp) = (Aghys Agly + Agbps AfFy + AFF, = Bby)
(5.61)

(2) A locally superconformal invariant action Tor a chiral multiplet (A, ¥°, F)
with Weyl weight w=3 is defined by the follawing Lagrangisn:

=L 5 My 4 o5 cor
L=35(F+ DR D 2\1’“_0““%‘!\) +ete . (5.62)

Using these results it is streightforward to construct an invariant action for
a chiral multiplet (A, ¢°, F) with Weyl weight w=1. The F component of such &
chiral multiplet is inert under S supersymmetry (see eq.(5.58)). Therefare F*
defines again a chiral multiplet, which is called the kinetic chiral multiplet.
Its conponents are given by '

(8 ¥, B = (57, %, OO (5.63)

and transform according to (5.58) with weight w=2. The explicit form of the
superconformal d'Alembertian 0% = DacD:A follows fram the superconformal trans-
formations of the derivative D:A (see (5.50) for w=1):

8(DGA) = E'DGY" - F'v,¥" + 2 (00A) - & Mg(1)(DgA) + € DeA - Aph . (5.64)

Application of a second derivative now gives according to (5.59):

Dc___u{ _ i e, _ ab.c By TonCut w T ut
A=el (au 2'bu+2Au)DaA w DA+ £A~TFD b MR A (5.65)
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We now maltiply s w=1 chiral multiplet with its associated kinetic chiral multi-
plet according to (5.61), viz.

i * * * * -
(A ', F) @ (A, 97, Y510 = (", %+ By, A+ FF - §9%) .
(5.66)
This defines a chiral multiplet with w=3 from which one can directly construct

a superconformally invariant by means of (5.62). The Lagrangian takes the form

x -
£ = % (A0 - 15 w‘ﬁ“w. + FF)

- * - *
S @ W+ F )+ 27 0 b AF) +eet (5.67)

The action defined by this Lagrangian is the superconformal extension of the
action given in (%.96), which describes the coupling of & scalar field to con-
formal gravity.

6. Decomposition of N=1 Poincaré supergravity

We are now able to show explicitly how one can decompose the N=1 Poincaré
superéravity mltiplet (e‘al'. "';1’ Aa.‘ F) into its irreducible pieces by introduecing
the superconformal transformations, To this end we apply the same procedure
described in section (L4.5), where we have decomposed the d-bein field ez' into
its irreducible components by means of the conformal transformations.

We consider the N=1 Poincaré multiplet (e:, “’ﬁ’ A F). The § transforma-
tions of the field components are given in eq.(2.56), while a Lagrangisn for
these fields is given in eq.(2.57). The action defined by this Lagrangian is
invariant under genersl coordinate transformations, local Q supersymmetry trans-
formations and local internal Lorentz rotations, bubt not under local internal
dilatations, special conformal transformations, U{1) chiral rotations and S
supersymmetry transformations. To obtain invariance under these transformations
we introduce a compensating chiral multiplet (A, 9", F) (we choose the weight
w=1). The field componenta of this multiplet do transform under the full super-
conformal group. To construct covariant derivatives we introduce the N=1 Weyl
miltiplet (e:, "’;'1' Au, bu). The field components of this multiplet are the gauge
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fields of the superconformal transformations, The Q and S transformations of

the chiral multiplet are given in eq,(5.58), while the Q and S transformations "

of the Weyl componerts are given in eq.(5.54). ,
We now express the field components of the Poincaré multiplet (e:, w‘;, Aa.’ ‘

F) in terms of the field components of the chiral multiplet (A, ¢', F) and the

Weyl multiplet (e:,I \b“l, Au, bu):

(e = ('n)/3e2 ’
(“‘;})P = a2 vord A'Vee:vraw_ ’
(Aa)P a -13;:: (a"a) 3/2(AIJ f:ﬁ‘vaw_) . erer ' (5.68)
(;F =-3 a2t _

The r.h.s. of (5.68) is uniquely determined by the requirement that it is inva-
riant under local internsl dilatations, U{1) chiral rotations and S supersymme-
try transformations. The field components of (A, ¢°, F) occur such that they
compensate for the transformations of (e:’, lbl'!, Au’ bu)' The overall maltipli-
cative factors on the r.h.s. of (5.68) are chosen such that the @ transformations
of the expressions on the right-hand side are equal to the Q transformations of
the Poincaré fields on the left-hand side modulo a field-dependent Larentz
transformation:

x_ - *_1.
sg(e') = sg(A"’aA ter) + ag(eab = a~172y 1e'cab|b' +erer) . (5.69)

By substituting the redefinitions (5.68) into the Lagrangian £F for the
Poincaré multiplet (see eq.(2.57)) we cbtain a Lagrangian in terms of (A, ¥°, F)
and (eu. \la Ail’ b, )}, which is invariant under the full superconformel group.
This Lagrang:.an is proportmnal to the Lagrangian L' given in eq.(5.67), which .
describes the coupling of the chiral multiplet with the N=1 Weyl multiplet.
Explicitly, ve have:

sP +=3 nsc . (5.70) !
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As an example we show how one obtains the AUA term in £5 . Using eq.(%.8%) we
immediately see that the Einstein term in .CP yields the following contribution:

- *
3e(Bu(A*A)1/2)2 = 3 e(a™) 1(A*3uA + M A )2 . (5.71)
In addition the Ai term in .L'P leads to the following contribution:
- % e{A*A)“‘(A*’auA - A uA"’)"’ . (5.72)
4dding (5.71) and (5.72) we obtain for the A"0A term
*
- 3eAlh . (5.73)

which is in accordance to eq.(5.70) (see also eq.(5.67)).

We have now succeeded in rewriting N=1 Poincaré supergravity in a super-
conformally inveriant way. In this procedure we have decomposed the N=1 Poincaré
mzl'tiplgt (ei, \P;, Aa’ F) into its irreducible submultiplets (eﬁ', “p;n’ Au, bu)
and (A, V7, F), which describe 848 and M+h Pfield degrees of freedam respectively.
The conformal fields form a massive spin-2 representation of the super~Poincaré
algebra, while the chiral fields form two massive spin-1/2 representatious.

The gauge equivalence of the Lagrangian -3.£SC to the original formulation
.CP cen be made explicit by imposing a consistent set of gauge conditions. To
break the invariance under K and D transformations we impose the Poincarg gauge
conditions b ;=0 and lal=1 (cf.eq.(h. 97)) The invarisnce under U(1) and 8 trans-
formations 5‘:‘e broken by adjusting A /A to a constant and by taking. the spinor
¥® equal to zero. The super-Poincaré gapge is thus defined by:

b, =0, A=1, ¢ =0 . ' (5.7%4)

After imposing these conditions (5.68) becomes

(e‘:)P =<t (A"I)P= %Au ,
P . - (5.75)
(wu) =¥, s (P =-3F
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and the Lagrangian -3£sc directly reduces to the form .L'P.

In the presence of the super-Poincaré gauge the decomposition rule (5.69) is
no longer valid (note that the second term on the r.h.s. of (5.69) vanishes in
this gauge). Instead we have a decomposition rule in analogy to eq.(3.38),

vhich reads as follows:

*

Sle") = 8gle’) + 8ln" = - 3 _

(5.76)

The second term on the right-hand side of {5.76) is added to keep y° zero after
a Q transformation, while the third term is added to keep b equal to zero after
such a transformation. As an example we show how the Q transformatlon of ( lp )P
ig obtained from the superconformal transformations of wu

[}
1}

se(et ) (wa)® = 6o(eT) vy + 8gln® = -2 Fe + §he) yy

(o, +1(a)F) € —%Yu((F)Pe' + i(pfe’ . (5.

The derivative Du is covariant with respect to Lorentz transformations only.
The transformation (5.77) is examctly the Q transformation of (lb"l)P given in
(2.55) and (2.56). We note that the § transformations of the Poincaré fields
are much mare complicated than the §Q transformations of the superconformal and
chiral fields. This is one of the advantages of working within the supercon-
formal context. To keep all transformation rules as transparent as possible

we shall therefore always postpone the super-Poincaré gauge until the very end.
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CHAPTER VI

el b

ROV,

THE SUPERCURRENT

1. Intrcduction

In the preceding chapter we have shown that for N > 1 the gauge fields of
the superconformal symmetries do not constitute a field representation of con-
formal supergravity. In section (5.4) we have proven that these superconformal
gauge fields do not form for N > 1 a massive spin-2 representation of the super-
Peincaré algebra. Therefore only N = 1 confrmal supergravity can be described
in terms of these gauge fields, whereas for N > ! additional matter fields are
required to form complete field representations. In this chapter we develop a
systematic method to construct these field representations for N 5 k.

In this method we consider the coupling of matier to the superconformal
gauge fields. To describe the lowest-order coupling we expand the superconformal

gauge fields about their flat spacetime values. By doing so we can distinguish
(o)

matte
gavge fields. This term denotes the matter Lagrangian in flat space. The next-

in the Lagrengian & part £ - which is independent of the superconformal :

order part £(1), which is linear in the superconformal gauge fields, defines the
currents: each gauge field in £(1) couples to & current. Using the explieit
form of these currents one can construct successive supersymmetry variations

of them and find the complete so-called multiplet of currents (or supercurrent)

for any given theory. The known currents form a part of the field components
of this current multiplet. To obtain iovariance of the gauge field x current
coupling termsin £(1) we are forced to associate to each remaining component of
the current multiplet a corresponding matter field in the Weyl multiplet. The
starting point in the method is the construction of the current multiplet. By
using invariance of the gauge field x current coupling terms we can then derive !
the linearized transformation rules of all field components (i.e. gauge fields
and matter fields) of the Weyl multiplet.

In four dimensions matter multiplets do not exist for N > 4, The reason for
this is that if N > U4 the multiplet must contain a spin-3/2 field. This field

transforms under Rarita-Schwinger gauge transformations according to qu= aue.
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Hence in the coupling to supergravity wu will transform linearly to the vierbein
field and therefore has to be identified with the gravitino field. Consegquently
the natural limit of the consiruction procedure is the N = 4 Weyl multiplet. To
illustrate the method we reconstruct the N = 1 Weyl multiplet. In the next
chapter we present the complete structure of the N = 4 Weyl multiplet,

This chapter is organized as follows. In section 2 we explain the method
by means of = simple example. In the presence of conventional constraints the
superconformal gauge fields are not mutually independent. In section 3 we show
that the independent gauge fields couple to modified currents, which satisfy
additional algebraic constraints, We will illustrate this by giving three
examples. Fipnallv. in section 4 we apply the method to rederive the N = 1 Weyl

wultiplet,

2, The Yang-Mills current

To explain the ideas outlined in the introduction we consider N Msjorana
. . > . . .
matter spinor fields ¢ = (w1,.., wN), which transform according to a representation

of same r-dimensional Lie group G:

Sy (x) = (A% T )i ¥ (), i, 5= (1,.., M) (6.1)
[T, 3,) = &, T, : 8, by ¢ = (1...,r)

Here A% are the r spacetime-dependent parsmeters of the (infinitesimal) G trans-
formation. A Lagrangian for $, which is invariant under global G transformations

is given by
_c(o) 1 - > - 1 —i j 6
matter -~ 3 V¥ W E-3 gijw By s (6.2)

where gij is & symmetric invariant metric in the representation considered. i.e.

(A'T)kigkj * (A'T)kjgki =0 . (6.3)
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When -the A® necome spacetime-dependent, the Lagrangian (6.2) is no longer

invariant:
560 2 13 4% Gy T ¥ (6.4)
“hmatter ~ 2 ‘' U ) '

B

P
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g(o)

In the Noether procedure this term is cancelled by adding s term 3(1) to Lo tter

e

§ which is linear in the gauge field Vu of the G transformations. This gauge
i field takes values in the Lie algebra g of G:
i In addition, its transformation rule under local G transformations contains an
' inhomogeneous: term: J
v :g;
y a a 2
. . 6.
: SV, = 3 A (6.6) L{
’ This enables us to cancel the variation (5.4) by means of the following term: !
1)_.,8 (1% - 8, §
. .C( = . TV . . i
% Yy 3oy T 0 2 VT, (6.7) ;
This term defines the Noether currents Jua. {a=1,..,1): s/
13
Tia =2 PY, Ty v . (6.8)

If the matter fields 'q? gatisfy the free field equations 3y = 0, the variation
of 'cmztter‘"mismes up to a total derivative. This implies that up to the order
considered also the variation of the VSJna term must vanish up to a total derivative.

From this we deduce that the Noether currents J na¥e conserved:

B it e T e L = A
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Using the explicit expression (6.8) one can verify that this is indeed the case.
Because of the transformation of the Noether currents Jua. the Lagrangian

. plo) a
£= 'cma.tter + vuJua (6.10)

is not invariant under the local G transformationsspecified by (6.1) and (6.6),

We now show how the variation caused by the transformation of Jua- can be cancelled
by adding linear terms to the transformation rule of VS . To that end we first
calculate the G transformation of Jua using the explicit expression (6.8) of Jua
in terms of the matter fields $ This yields the following result:

- 1 oZ . > 13 -+
83 o= 5 (ATY) WRARE RACH ATY)
FEACTORE. R A . (6.11)

The variation of the V:Jua term caused by (6.11) must be cancelled by a corres-
ponding transformation of V:', because no other terms in the Lagrangian contribute

to this order. Hence we have:
e (v® (£5 AP ) +(sv®)T 3 = 0 (6.12)
N "Tab ue [TRANSTE: § * *
This enables us to calculate the linear terms in the transformation of Vﬁ:
lin & _ & .b,c
§ vu = fbcvul\ . (6.13)

In the presence of these terms the gauge fields Vf: form & representation of
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the Lie algebra g of G:
(s(r,) ,8(ap)1 vy = 8(Ag) VI ) (6.14)

with

3 “he'2n . (6.15)

To derive the linearized transformation rules of the extended Weyl multi-
plets we can apply the same procedure as outlined above. To that end we consider
a matter theory, which is invariant under rigid superconformal transformations.
We first construct the energty'-momentum tensor Gu v which is the Noether current
of translations. Since the matter fields satisfy their free field equations,
it suffices to start from an on-shell formulation of the matter theory considered.
We next spply in analogy to eq. (6.11) successive supersymmetry transformations
of ew. This leads t¢ the remaining Noether currents of the superconformal
symmetries. For N * 1 these Noether currents do not constitute a complete multi-
plet under supersymmetry. This follows from the counting argument given in
section (5.4), which is again applicable since the gauge fields and their
corresponding currents contain the same numbers of degrees of freedom. However,
in this case it is easy to find the missing components. Namely, one can obtain
them by constructing successive variations of the known currents, up to the
point where one encounters only derivatives of bilinears that have been found
before. This will occur after at most LN supersymmetry -wvariations, because
of the anticommuting nature of the supersymmetry generators. We note that,
although the matter fields are on~shell, the multiplet of currents is a genuine
off-shell multiplet. We have already mentioned in the introduction that the
remeining components of the current multiplet couple to the matter fields of
the Weyl multiplet.

We now proceed in analogy to the example above. Once the linear transfor-
mation rules of the full current multiplet are known, one can f£ind the linear

transformation rules of all field components (i.e. gauge fields snd matter fields)
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of the Weyl multiplet by requiring invariance of the gauge field x current
coupling terms (cf. eq. (6.12)). From these linear transformations one can
derive the complete nonlinear transformation rules and corresponding super-
conformal algebra by means of an iterative procedure. We will describe this
procedure in section L.

3. Improved currents

To obtain a maximal irreducibility of the superconformal gauge fields we
have imposed the conventional constraints on the superconformal curvatures
(aee section (5.4)). In the presence of these constraints the superconformal
gauge fields are not mutually independent. When we consider the coupling of
matter to these gauge fields we can only define the currents, which couple to
the independent gauge fields. In this section we show that these currents are
wodifications of the currents, which couple to the same gauge fields in the
absence of conventional constraints. They differ by so-called improvement
terms. These terms are generated by the dependence of the remaining gauge
fields on the independent ones. The modified currents satisfy additional
algebraic constraints, which are generated by the improvement terms. Such modi-
fied currents are called improved currents. Successive supersymmetry transfor-
mations of these improved currents lead to the current multiplet, which is
relevant for the construction of the (extended) Weyl multiplets.

To explain the above ideas we give three examples of matter coupled to
gravitational gauge fields both in the absence and in the presence of conventional
constraints. The first example describes the coupling of a matter spinor field
to Einstein gravity in d dimensions. The second example concerns the coupling
of a complex scalar field to conformal gravity in d dimensions. In the last

example we consider the coupling of a chiral multiplet to N = 1 conformal super-
gravity.

Example 1

Consider a Majorana matter spinor field ¢ coupled to Einstein gravity in
d dimensions:
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_ 1 U =en- __1 c + oo
£=-eeFr, (a0, ) v e

Here ei and mﬁb are the gravitational gauge fields (see section (2.3))in the
absence of conventional constraints. This means that e: and w: are independent.

The gamma matrices Pu in 4 dimensions are defined by the relation

I‘uru + r“ru =2 aw (u,v= 1..4) . (6.17)

i i B4 = rr . Th
For these matrices we use the notation Pu“ P[uF“] and Puvp P[u vio e

expression between brackets in (6.16) is the Lorentz-covariant de¥ivative Du'
To describe the lowest-order coupling between ¥° and eﬁ R mub we expand the

gravitational gauge fields about their flat spacetime values ei(x)= 63 and
mﬁb(x)= 0 (see eq. (4.78)). We define

& .8 U B
e, = ssu + hau » &, B aa hue_ . (6.18}

Substitution of (6.18) into (6.16) leads in lowest order to (up to a total deri-

vative):

L=- “5?'# + he.u (% E'ruaaw_ + cige) + m:b (%—E'I‘ufa’bw- + c-ct)

N —

- pfo) ab gab
- nmatter * haueua “ % . (6.19)

In (6.19) we have omitted terms, which vanish upon use of the free Dirac equation
#Y°= 0. The currents eua and é?’are called the energy-momentum tensor and the

internal Lorentz current respectively.

In the previous section we have shown how the inhomogeneous terms in the trans-
vhich couple

formations of the gauge fields lead to constraints on the currents,
to these gauge fields. One can find these inhomogenecus terms by substituting

(6.18) into (2.18) and using (2.21):
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(i) @general ccordinate transformations : 6h, = 3 & ,
(6.20)

. b ab
{ii) internal spin rotations % : qua = 8ua , 8 =¢ .

Using the conjectured invariance of the full action under general coordinate
transformations and internal Lorentz rotations we find in analogy to eq. (6.9),
that if the matter field ¢ satisfies the free field equation g¢'= 0, the
following identity must hold:

b abhy _.aby _
jd x {(aue;a + eau)aua + <aue )Su }zo0 . (6.21)

Since the parameters €,p and a are arbitrary eq. (6.21) leads to the following

. b
constraints on eua and Sa

(1) 38 =0 » (general coordinate transformations)
(6.22)
oledl_

(ii) ausib . (internal Lorentz rotations I)

We note that to derive (6.22) we did not use the explicit form of ;Ziter
For another matter theory invariant under the symmetries (6.20) we would obtain
the same result. One can verify the constraints (6.22) for our example by sub-
stituting the expressions for 6 and S ab in terms of ¢ given in (6.19).

From (6.22) we deduce that the current S is not conserved. However, we

can define a modified current S' , which is conserved. Namely, by combining
the above idertities we find

(i) ausﬁaba au(Sﬁb - eu[auﬁﬂ)= 0. (Lorentz transformations M) (6.23)

The modified current Sﬁab corresponds to the flat-spacetime Lorentz *ransfor-

mations M, which have been defined in chapter b (see eq. (4.4T)). The inhomogeneous
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terms in the M transformations of h_ = and mz,b (taken with spacetime-dependent
parameters) are given by:

(i1 )* Lorentz tranaformations M: Shy = E)u(-s;ab xb) * oS -(aueab)xb ’

Substituting these transformations into the variation of the gauge field x current
coupling terms (ef. eq. (6.21)) we indeed obtain the conserved curr:nt g18b,

We now reconsider the invariance of the acticn defined by (6.16) in the
presence of the conventional constraint

a - a abb _
Ruv (P):’élll i " Yu & ° 0 . (6.25)

From this constraint we can solve the Lorentz gauge field ma.b in terms of

derivatives of the d- bein field according to (2.20). Substituting the expansion
(6.18) into (2.20) leads in lowest order to

mﬁb(h) z auh[“ 1, Japbly a0l ] (6.26)

Consequently, instead of two currents eua and S:'b, we only have one current, which
is & modification of eua:

= (Q) [abl [ vl ol b
£ _£matter * h&ueua + (3uh abl , glaolu a[a.hu ]) S:

= n(Q)

N - e .
Batter ha.u(eua * 3, sam 2aAs[u'A] 8‘) + total derivative

(o) imp N
nmatter * h&ueua + total derivative

. (6.27)
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The modified current eizp differs from§@ o BY so-called improvement terms which

are generated by the d:pendence of mih on eﬁ. Improvement terms are conserved
because of their form: they can generally be written as the divergence of an anti-
symmetric tensor. That this is the case follows from the curl structure present
in the explicit solution {6.26) for the dependent gauge field mﬁb. )

Owing to the presence of the improvement terms the modified gurrent eimp
satisfies an additional algebraic constraint. For this reason G:ZP is called
an improved current. To derive this con§traint we consider the variation of the
gauge field x current coupling term haueizp under one of the symmetries (6.20).
In analogy to eq. (6.9) we find:

L imp _
I a'x (aue;a + eau) eua =0 . (6.28)

From this we deduce the following differential and algebraic constraint on

elmp:
ua
imp _ . .
aueua =0 , {general coordinate transformations)
. . {6.29)
gtiP - giiP . {internal Lorentz rotations I)
ua au

In deriving (6.29) we have implicitly assumed that the transformations (6.20)
have not been affected by the presence of the conventional constraints. One

can easily verify that this is the case. The construction of the modified
current eizp, vwhich satisfies the conditions above is thus intrinsically related
to the possibility for choosing & conventional constraint.

In order to derive (6.29) we did not use the explicit form of LLZzter. of
course we can verify the constraints (6.29) for this example. Using the explicit
expressions ofeu and SEP in terms of Y’ given in (6.19) we find for the improved
energy-momentum tensor Btﬁp (see eq. (6.27)):

119

PPN

R

O S P



e ey

T Pt g

P R

i

T NPT S (Vg ot e om0

sy

P

“eare.

sy e e

-3
*]
=
!
@)=

BA (E'I‘amw.) + et
(6.30)

1 =
[y + Qe
3 P(paa)w. e-c
It is obvious thatthis expression satisfies the identities given in (6.29).

Example 2
In this example we consider a complex scalar field A (with Weyl weight

w(a) = % {a-2)) coupled to conformal gravity in d dimensions:

£ = en'm®n

= an¥ 1 1 1 a
=eh” {(8, -5 ab—uy 4, ) (3, -5 (a-2) b)) &+ 5 (a-2) £ A} (6.31)

The corformal d'Alembertian is defined in chapter 4 (cf. eq. (4.80)}). To describe

the lowsst-order coupling between 4 .and (eﬁ', mib, b, fa‘) we expand the confermal

gauge ficlds about the flat spacetime configurstion (4.78). Using definition
(6.18) we find in lowest order (up to a total derivative):

hY
= ¢lol abgab RS '
£ matter © a.ueua N Pyt buTu quu ’ (6.32)

with the currents 6 _, Sa'b, T and U® given by
ua’ " u u

* *
8 = (3A) (3,A) - A0 34 ,
*
g8 = _sLagt (st y) ,
H H
- (6.33)
= _ 1 ) _ *
T, 54 A ‘§UA (3,4 )A ,
a _1 a*x
Uu =3 (d-2)5uA A .

120

v



B

Ir (6.33) we have omitted terms, which vanish upon use of the free Klein-Gordon
equation OA = 0. The free matter term L;:gter = A"OA has been discussed in
chapter 4 (cf. eq. (4.59)).

In the absence of conventional constraints the conformal gauge fields are
mutually independent. Together they describe % (d+1) (a+2) % (d~1) field degrees
of frecdom (ef. section {4.6)). The inhomogeneous terms in the transformations
of these fields are given by eq. (6.20), together with (ef. eq. (4.79)):

(iii), internal dilatations & : Sbu = auAD, Ghau = - ﬁa“AD )
{6.34)
. . a a ab fa, b1 .
t . = = , &b = .
(iv) internal conformal hoosts « Gfu auAK, dmu 2 Ay 6u abu AKM

Substituting these transformations into the variation of the gauge field x current
coupling terms (cf. eq. (6.21)), we find the constraints (6.22) and the following

ones:
(iii) auTu + euu =0 » (internal dilatations A)

(6.35)
(iv) auui -2 Siu-Ta =0 . (internal conformal boosts «)
To derive these constraints we did not use the explicit form of rig%ter' One

can verify them for this example by substituting the explicit expressions of the
conformal currents in terms of A given in (6.33).

In analogy to the previous example we can find the conserved currents S&ab,

Tﬁ and Uﬁa corresponding to flat spacetime M, D and K transformations respectively

by combining the relations (6.22) and {6.35). For Sﬁab we find the same result
(6.23) as before, while TL and U&a are given by:

iii)t 3. T' = 9 +8 X
(iii) " (Tu e )

I =0 . (dilatations D) (6.36)

ab

(iv)? auu]'f = 2 (U: -28°7 x - Tuxs' * e (% %268 _ 330y = 5.

{conformal boosts K)
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One can derive these currents immediately by using the inhomogeneous terms in the

M, D and K transformations (taken with spacetime-dependent parameters) of
(hau’ m:b, hu, f:). These transformations have been defined in eq. (4.47). For

the M transformations the inhamogeneous terms sre given in eq. (6.24). while for
D and K we have:

B

(iii)e dilatations D : Ghau (aue )xa . Gbu = aue .

(6.37)

. ) . P _
(iv) conformal boosts K aha.u (aueb) (2 X % = 8 ), Gbu 2(aueb) X,

Gma'bw-h(ae[a xb] ,5f3=-2ae"" .
U u R

In the presence of the conventional constraints (4.98) and (4.1CT) the
ronformal gauge fields describe % (a+1) {a-2) field degrees of freedom, which
form a massive spin-2 representation of the Poincaré algebra. In this case the
only independent gauge fields are the d~beia field e:' and the dilaton field bu.
Since the remaining gauge fields are in lowest order given by {(these expressions
can be found by substituting definition (6.18) into eqs. (4.97) and (4.108)):

w2 (n,0) 2 0 nl®l o gloPluy plagtl o yleg B

f.‘ (h,b) = (d T a“u Oh o) - 2 (6.38)

la(uha)l-axa(uh)‘a)
1 a a
=y Gu (DhM - ap aahpc)} + auh .

We only have two currents, which are modifications of eua and Tu:

£=£(0) +h 0 +o2 b) %0 4+ + £ a
o, (n,p) " bu'l‘u fu (h,b) UlJ

matter au ua
= .B(o) . -
matter T hau {eua * a)‘Sa,u)\ EBXS [u,Ala
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1 ~ c -3 3 c
T a2 ((‘Sapap % 611 (pac)aa) Up + (O t’sp(u"sa)c p (c‘sp)a)up

1 ap a
P R - +28 -9 U
(a-1) (‘saun aaau) Uop R b (Ta u " u)

+ total derivative

[H]

o) iy 3P Ly i L iotel derivative . (6.39)
matter ap ua [T

Because bu is the only field in £, which transforms under internal K transforma-
tions, we immedistely deduce from the invariance of £ under these trensformations
that Timp is identically zero, i.e. bu decouples from the matter field A. Indeed,
using the second relation of (6.35) we find

™ o p o+ 2 g5 ¢?
& a u H

ul
(@]

. (6.40}

To derive the constraints on 8'°F we consider the variation of the gauge field

x current coupling term haue;zp under one of the symmetries (6.20) and (6.34).

In analogy to eq. (6.28) we find:
x (a6 +e -6 ) 6™ =g (6.41)
ula au ay D' ua ° )

From this we deduce the following differential and algebraic constraints on

g1mP,
Ha
imp _ . .
auepa =0 » (general coordinate transformations)
G:EP = e;?p » (internal Lorentz rotations &) (6.42)
i.my . . .
Ginp =0 . (internal dilatations A)

Hence the current e;zp is an improved current, which satisfies additional elgebraic
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constraints compared to 9 et Owing to these constraints the a priori d2 com-
ponents of ep TP are restricted to l (a+1)(d-2) independent ones, which is the
same number as the independent components described by the d-bein field e*.

In order to derive (6.42) we 4id not use the explicit form of £;azter We
can verify the constraints (6.42) for this example. Using the explicit expres-
ab
S mp
enersy-momentum tensor 6 (see eq. (6.39)):

sion of ® and U* in terms of A given in (6.33) we find for the improved

i * *
imp _ \ A
euu (BuA D] (BUA) A auav A

*
+ 29, (6 Aau]A)+

A X

[

* * (a=2) ]
2 (a(uA ) (av) 4) - sw (apA ) (BpA) * 5 (@) (0 sw- a“au)(A A).

(6.43)

It is easy %o see that this expression satisfies the identities given in (6.42).

Example 3

As a last example we consider the coupling of a (on-shell) N = 1 chiral multi-
plet (A,9") to the N = 1 superconformal gauge fields in four dimensions. The
action which desceribes this coupling is given in eq. (5.67). Substituting the

expansion (6.18) into this expression we find in lowest order:

=_c(°) ab_ab a
< matter * au ua + mu Su + b T + 2 Uu Aua.u (6.b4)

+ (ﬁ;J; + ELGL +crer)

. ab 8 . . .
with the currents (eua, Su . Tu, Uu’ 2 Ju’ Gu) given by
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® e (auA Jo A) - A% A+ 3 (v +ee ) >
ab _ a0l 1 Gy o8P e b
s, --auA(a a) + u("‘Yu" ¢_+cc) . \
* * i
= - 2 o
'ru (auA A - 2 A( uA) ) :
u? = s%* , (6.45)
u u
_ 1 . ke 1 -.
a.u-alAauA-'Elll)Yll)_ N
. 1 x R 1 ke
= - - - 3
Jo =3 (A7) vt -z AT i
L L
Gu =-3 A Yuw .

In (6.45) we have omitted terms which vanish upon use of the free field equations
A =0 and #'= 0. The free matter term

(o) x

. 1.
LS =y 1% (6.46)

has been discussed before (see eq. (5.43) with F = 0). b
Of course N = 1 conformal supergravity is only defined in the presence of the

conventional constraints (5.46). Nevertheless it is instructive to first consider

the currents (6.45) in the absence of these constraints. Again these currents

satisfy differential constraints which follow from the inhomogeneous terms in

+the transformation rules of the superconformal gauge fields. These inhomogenecus

terms are given by (6.20), (6.34) and

(v) Q supersymmetry : 64){1 = Bue' ’

(vi) internal S supersymmetry : Gq:'; = aun' . Gq;; =—Yun' , (6.47)
11 i U : = .

(vii) chiral U(1) symmetry GAu auAU(1)

They lead to the identities (6.22), (6.35), together with

PR YV S

(v) 'auJ“1 =0 » (@ supersymmetry)
(vi 3‘1(};l - YuJ;l =9 s (internal S supersymmetry) (6.48) ;

]
=]

(vii) auau . (chiral U(1) symmetry)

B XS
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By combining these constraints one can derive the currents corresponding to the
flat-spacetime transfo:mations. This leads to the definitions (6.23), (6.36)
and the next one:

1
(vi)" auaa 29, (G; S J;) = 0,(rigid s supersymmetry) (6.49)

This definition is consistent with the inhomogeneocus terms in the rigid s super-
gymmetry transformations of ¢; and ¢;, taken with spacetime-dependent parameter,
(ef. eq. (5.38)):

n
-
@
=
.
o
[
<
n
o
=
.

(vi)' rigid s supersymmetry : 6¢; . (6.50)

In the presence of the convintional constraints (5.46) the only independent
superconformal gauge fields are (e:, w;, Au, bu). Since the remaining gauge
fields are in lowest order given by eqs. (6.38) and

. -1 1 - .
o.(0) = 5 (Fo¥y = 3 VWa) ¥(a¥ 'y R (6.51)

we only have four independent currents, which are modifications of eua’ Tu’ au
and J°:
u

(o) ab ab a a
L=
Latter * b, 8a * 0, (h,v) s, *DB T+ T (n,b) u,

*he + (;p"JJLl + ¢; (w) G& + c-ge)

= (o) im lm im
=L D Jeimp ‘o imp
matter haueua Auau + ( teter) + buTu : (6.52)

In analogy to the second example the gauge field b decouples from the theory,

i.e. Tlmp z 0. In addition we have aumP =a. The modlfled current J'mP
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given by:

mp g L] -2 2.G° 6.
I Ju *5 (ypum 3 cmyp) A , (6.53)

while the expression for etﬁ? is given in eq. (6,39),

Ta derive the consgtraints on the improved currents (G:ZP, J;lmp

consider the variation of the gauge field x current coupling terms in (6.52).
We thus find the restrictions (6.42), (6.48) {vii) and

a we
> 8,)

aqu.limp =0 , (Q supersymmetry) (6.54)

YuJﬁlmp = Q . (internal S supersymmetry)

Owing to these conditions the currents (Gizp, J;imp, au) describe 8 + 8 field
degrees of freedom which couple to the 8 + 8 independent gauge fields (es’%‘
Au)'

Substituting the expressions §6.h5) of the Noether currents into the defini-
tions of the improved currents (S:I:p, J;mp, a.p) (see eqs. (6.39) snd (6.53))

we find that these currents are given by

imp _ * * 1 *
o, =2 (a(uA ) (BV)A) - suv(apA ) (apA) +5 (@ S0 ~ auav) (A78)
1z ¥

IR L

Jimp * . .k * .

N = (#4°) YO+ 30,0, (A7¢") . (6.55)

1, e 1 . o=
au —élAauA—Elleu\b. o

One can verify that they indeed satisfy the identities given in eqs. (6.42),
(6.48) (vii) and (6.54), viz.
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imp - J.imp =0
380 0 s 3,7 ,
imp = gimp mp _
ew ew . YuJu 0 s (6.56)
imp = 3 =0 .
% 0 : uu

4., The N =1, 4 = 4 supercurrent

In order to illustrate the ideas presented in the previous sections we re-
construct the N = 1 Weyl multiplet. In the next chapter we will apply the same
procedure to derive the complete structure of the N = b Weyl multiplet.

The starting point is the construction of the N = 1, 4 = 4 multiplet of
(improved) currents (or supercurrent) corresponding to the coupling of a (on-
shell) N = 1 chiral multiplet (A,4") to the N = 1 superconformal gauge fields
(e:', wll’ Au). To derive the field components ?f this current multiplet we first
consider the improved energy-momentum tensor Siﬂp (see eq. (6.55)). This current

corresponds to the translation invariance of the free matter term given in (6.46)

and is & bilinear in the field components of the chiral multiplet (see eq. (6.55)).

We next apply a supersymmetry trangformation on eigp. In calculating this
transformation we always use the field equationsOA = 0 and #¢° = 0 of A and ¢’
respectively. The transformation of eiﬂp leads to another field component of the
current multiplet, namely the (improved) supersymmetry current J;. In his turn

a supersymmetry transformstion of J; again leads to a new field component of the
current multiplet, namely the chiral U(1) current 2, (see eq. (6.55)). Finally,
a transformation of 8, only leads back to J'. This means that at this point we
have found the complete N = 1, d =.h supercurrent. This could already be guessed

from the fact that the currents (etﬂp, Jﬁlmp, au) describe 8 + 8 field degrees
of freedom. We now give the transformation rules of the current multiplet.

imp = _ o «imp 4 Gege
GB‘N £ U(HABXJ\)) ceC s
im im . 1
wu *= Yxeuxp et (Ypaux -3 uuAYp) al&p . ’ (6.57)

3. =...imp
= . = + sQe
Gau G 1€ Ju cec

e B s o ik T

s e i e A
2 e Tl
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From the N = 1, 4 = 4 supercurrent (eiﬂp, J;lmp, au) one can derive a cor-

responding multiplet of fields (haw w;, Au) by requiring invariance of the gauge
field * current coupling terms:

e (00« 5y gy + ce) +am) L (658)

The transformation rules of (hau’ ¢;: Au) are given by

fh,, = (E'Y(awu)' *+ cret- trace) + D6+ ©an = Saup ,
- 1 . . 3 x .- - '- L]
Suy = (=3 (n g = p S ) gy et R AR v~ trace) + 3"~y s
(6.59)
e = 1 o1 .
S8, = (E logy -3voy) iy =iy velree) vk, »

where the parameters e°, Eu’ N, € AD and Au(l) characteriveiQ, g.c.t,

and internal S, Z, A and U(1) tranzzormations respectively. All inhcmogeneous
terms in the transformations (6.59) are in correspondence to the constraints
(6.56) on the improved currents. The § transformations in (6.59) are determined
up to field-dependent gauge transformations. By applying such transformations

we can bring the Q traasformations in the following equivalent form:

s = =t + ane
ha.u € Ya.lpu. ere

mﬁb (h) o, + g ia)e’ , (6.60)

=
Nt —

A =21i¢€" ¢ (V) +cet

with m:b (n} and ¢&(w) defined in eq. (6.26) and (6.51) respectively.

The derivation of the complete nonlinear transformations proceeds by induction.
This procedure resembles the method deseribed in chapter 5 (see after eq. (5.57))
to calculate the nonlinear transformation rules of matter fields which are
coupled to supergravity. We now briefly describe this iterative procedure. We

first replace in the linearized transformation rules (6.60) hau everywhere by e:.
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We then assign Weyl and chiral weights to all fields in the multiplet. After
choosing the standard Weyl weight w =-1 for ei (we must take ¢ = Q for the

chiral weight of ei) all other weights are determined by the [§,D] and [Q,A]
commutators. We then make the gauge field bu explicit in the covariant derivatives.
The transformations of bu are determined up to field-dependent K transformations.
We choose them to concide with the S U (2,2|1) transformation rules given in eq.
(5.44):

§b, = ("¢, -Wn +erer)d Ay + A . (6.61)

W
We next covariantize all derivatives with respect to internal %, x and S trans-
formations by introducing the gauge fields wﬁb, fi and ¢;. These gauge fields
are not independent. They are completely determined by the conventional constraint:
which also fix their transformation rules (cf. section (5.5)). We now calculate
the commutator algebra on the basis of the linearized transformation rules, but
with spacetime-dependent parameters and ordinary derivatives replaced by covariant
derivatives., We then impose this algebra on all field components. This requires
the addition of terms of second order in the fields to the transformation rules.
One now repeats the calculation on the basis of the new transformation rules.
This may lead to terms of higher order in the fields in the transformation rules
ete..

In the next chapter we apply this procedure to calculate the complete non-
linear transformation rules of the N = 4 Weyl multiplet. For N = 1 the results
are rather simple. We find that the complete nonlinear transformations of (ei,
w;, Au) are given by eq. (5.54). These transformstions are just the covarianti-

zations of the linearized transformations rules (6.60).
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CHAPTER VII

EXTENDED CONFORMAL SUPERGRAVITY

1. Introduction

In this chapter we study extended conformal supergravity with N £ L, We
take the limit N = 4, because this is the natural limit for the construction
procedure described in the previous chapter (cf. section (6.1.)). Presently
these exists no method to construct conformal supergravity for N > b, There
are indications that drvastic changes take place beyond N = 4 {see the references
at the end of this chapter).

The first step in the construction of extended conformal supergravity is to
find the multiplet of currents. In this chapter we present the irreducible
N =154, d = b multiplet of currents, which contains the gravitational spin-2
degree of freedcm. This supercurrent contains all corresponding d = 4 super-
currents for lower N. Once the supercurrent is known, it is straightforward
to derive the linearized transformation rules of N = 4 conformal supergravity.

These linearized *~sults can be extended to the full theory by means of iteration.

To present the complete nonlinear transformationsand corresponding algebra it
is advantageous to use a formulation which exhibits the highest possible degree
of invariance. Therefore we first construct a new version of N = 4 conformal
supergravity which is manifestly symmetric under an extra local U(1) and rigid
SU(1,1) group. In this formulation the complete nonlinear results are obtained
af‘ter a finite number of iterations. We thus find the superconformal transforma-
tions and the corresponding algebrs which are given in the text.

This chapter is organized as follows. We present the N = U4 multiplet of
currents in section 2. Here we also give the linearized transformation rules of
the N = I Weyl multiplet. The formulation with an axtra local U(1) and rigid

8U (1,1) invarisnce is discussed in section 3, while the full nonlinear trans-

formations are given in section 4. Finally, in section 5 we give our conclusions.
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2, The N = h a= 1& supercurrent

To constmet the largest gravxtat;onal multiplet of currents, we consider

an (on-shell) N = & superaymetnc matter theory. The only- knowﬁ candidate for
this is the supersymmetric Yang-Mills theory, and for our purpgse the abelian
versmn suffices. It iz based on a gauge field V s & quartet of Majorana sp:.nors

tp s+ for which we use the chiral notation given in (2 8) and a Lorentz scalar ¢"'J, antie-

symmetric in the SU (4) indices i, j and subject to an SU (L)=covariant reality
constraint:

LY * - =
0= ogy) =g et S R)

The field strength corresponding to Vu is denoted by Fuv( = auV“ -3 vvu)’ and
we define (anti~) selfdwal components by

A |
Ry ez (Fy F o . (1.2)

The fields transform under four independent supersymmetries with parameters
et according to:

&v g Yulpi + QeQe s
- - 1
GFU\' - ei ’Q‘u“q) ;]
) ) . (71.3)
S =g F et -21i 3 ¢1‘]:j s
Mij = 2le[iwj] i e‘jkl EY .

These tranaformations are an invariance of the action corresponding to the fol-
lowing Lagrangian:
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1 i 1y ol
MAEE L EFEEECRASNCK Y : (7.%)

Furthermore the action defined by (7.%) is invariant under translations and
chiral Sy {4) transformations, Note that the transformations (T7.3) do not allow
for an extra chiral U(1) invariance: the transformation of V“ implies that the
chiral weights of e" and b, are opposite, whereas the transformation of ¢ij im~-
plies that thase of € and wj are opposite. From this we deduce that all chiral
weights are zero, i.e. there is no_chiral U(1) invariance present., The commutator
of two Q transformations on (Yu, ¢l, ¢ij) yields a general coordinate transfor-
mation with parameter gh= 2 E?Yueai +ctce,

The improved Noether currents of translations, supersymmetry and chiral SU {4)
transformations can be constructed in the standard way (see chapter 6). The

explicit expressions are given by

imp _ _ +o- _siow 13y (q .
O v b Fafoy = ¥ Y(uav)"”i+ Guv (apqb ) ‘Bp”'ij)
_ ij _1 _ ij
2 (3u¢ ) (3u¢ij) 3 (a Guv apav) (¢ “’ij) s }
. _— (7.5) j
mp _ L . b | 4 . J ,
Jui aF yunpi + 21 ¢ijau“’ +3i "uxax (¢ijlp ) ,
i ik i 1 .-k
Vg T @ gu(pkj MR Tl TR U ’

where the SU (4) current v;j is antihermitean and traceless. In {7.5) we have

omitted terms, which vanish upon use of the free field equations
AF =0 , =0 , O¢9=o0 (7.6)

of Vu’ v* and ¢lJ respectively.Using these field equations one can verify that
the Noether currents (7.5) satisfy the following differential and algebraic

identities:
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imp _ imp _
aueuv 0 ? auJui 0 ?
imp  _ gimp imp _ .
O SO, Y =0 : (7.7
imp _ i
g = dyr, =0
u 0 ? nuj

We immediately deduce from (7.7) that the Noether currents (eitp, Ji?P, v:j)
do not constitute a massive spin-2 representation of the super~-Poincaré algebra.
More specifically, they describe 50 + 32 (besonie + fermionic) field degrees of
freedom, whereas a N = L massive spin-2 representation deserives 128 + 128 dynemic
degrees of freedom (see table 2 in chapter 5). Therefore 78 + 96 components are
still missing. To derive the additional quantities, which are needed to describe
these degrees of freedom we apply successive Q transformations on the Noether cur-
rents (T.5), always using the free field equations(T.6). We thus-find that the

remaining components of the supercurrent are given by:

o =(F,, »  (2)
oy - +

A, =0 F ¥ . (16)

ei,j = 4’]-_4"3- N (20)

e . - . . (7.8)
w0 =T o) w2 ¢tr . (36)

ij _ 1 _ijmn

Ee =3¢ (6 ¥ * O¥) - (80)

ij _ ,id 1 4ligil  mn

i = ¢ 0 5 kST ¢ ey, - (20)

vhere the number between brackets denotes the number of independent components.
In this vay we find thu' besides the Noether currents (7.5) the supercurrent

contains a complex scalar ¢, a symmetric scalar €4 a0 antigymmetric tensor
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{ooth in Lorentz and SU (4) indices) t‘ b’ which is antiselfdual in the indices

a,b, a scalar dkl in the 20-dimensional real representation of Sy (4), and two ,

spinors '\1 and Ek'] the latter in a complex 20-dimensional SU (4) representation.
ne easily verifies that the Noether currents (7.5) together with the quantities
17.8) indeed describe 128 + 128 field degrees of freedom.

The supersymmetry transformations of the currents (7.5) and the quantities
{7.8) are as follows:

e =2 Eiﬁxi s
8A, =ceg, + ie-kek -a t.kﬁek ’
Seg; =R E(hg) * 31 ey (s ERENS ,
ste)  =-3 e P o I -2 glig !
+ % i eijklEnﬁ Sab Enkl s
Gﬁi'j 3 i ei,]mn q'tkmen +% i el‘]mnemk €y
- % i y-v[ik j]+—g- i Hd.iil el - (trace) ’ (7.9)
sald = % i E[kgi —2— 6%11{2 I;n']} + hee- s
5ol = o2* g (03 T+ e ,
. . w
GJ;‘?’ = —yvé"s? g, -2 (Ypuu)\ - %u ulYp) a;\"l,:i €
- (Ua.buux * % quuab) 1klma)\ }a% : ?
dv'ij = - JlmP + -E- 61 & J:I;:P + % i Ekau)\a)\gli;j - hec* .

From the multiplet of currents (7.9) one can derive a corresponding multiplet

of fields by requiring invariance of the gauge field x current coupling terms:
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L imp , i h] i3 gk imp
Id % {h vew Vis Vai D &5t (quLll Cc
(7.10)
=1 ij lJ =ij, k o
+ A Ki tE eiJ Tab 1;a,b ij * % Elj * crer)l

Here we use the obviocus notation in which every component of the current multi-
plet couples to a corresponding field. In table 1 we have listed some details
about these fields. Their transformations are given by:

¢ = g, .
6h; = 28Ce + Eijea ST gL .
iy = 2T = 2 E N :
st = el b] - 3 Vol () + % ot L Mg go
Gxié = -u-Tij 3 & = % G[ic-Tj]l f €
-2 "'R[}i (v) &3 -%s[i cs'RJ'j_] (v) (7.11)
lalmaEkl El ,
N LT | +us{; gl + hrc: ,
6hEm = g LANIRICILE .
Gwi = 2 (Buei - % mﬁb(h) %n . Vij ej) - geptd €5
svps = Ee )+ B vl - b el F () - nee
Here Ri vi (v) = auvw - a\)vllJ is the field strength of vi, and o® P (n) i

defined in eq. (6.26). The lowest-order expression ¢ (¢) is given by
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=3 ap! Pa¥y) ' (7.12)

In this chapter our conventions for the transformations of the superconformal gauge
fields (and corresponding algebra) slightly differ from the ones in chapter 5
(ef. eq. (5.4k4}).

In principle it is now straightforward to derive the complete nonlinear trans-
formation rules and the corresponding superconformal algebra. For this purpose
one can apply the iterative procedure, which is described in section (6.4). Choosing
for e” the standard weights w = =1 (Weyl weight) and ¢ = 0 (chiral weight) we
find ‘il‘or the weights of the other fields the values given in table 1. If one now
proceeds with the iterative procedure described in section (6.4), one

I

N e mm e e = mmm - R Tl e e IR - - -
Field | Type Restrictions SU (%) w e
(o4 ‘boson complex ¢} -2
: 1 3
n fermion Yshs=hs b 2 -3
Ei‘ii' hoson ij:EJi,igomplex 1 10 1 -1
7 19! poson T 3=-T -z J 6 1 -1
ab 1a.‘l: ab
¢ 1J
=€ = T
i fermion : ab‘]' cg‘] 1‘]— i 20 3 -
x33= 0
ij ij -1 ijmn q
0™, | voson DM =yc Eklqup L3l 20 2 0
1i,.kL F_ i
Dpy =07 550 = D s
i _ _di - oid
Dijkl D™ = D s
. D kj— 0
eu boson vierbein 1 -1 0
wi fermion lP wi' gravitino L - A
u Y5¥u U 2 2
1 J
v©. b = = :
i oson ul (v f vu 15 0 0
Vpl- 0; SU (4) geuge field
bu boson dilatational gauge field 1 0 0

e et 3 eE mm e e s e e s e w

table 1. Fields of N = b conformal supergravity. We have indicated the various
algebraic restrictions onthe fields, their representation assignments,

and Weyl and chiral weight factors.
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recognizes after a few steps that the scalar field C (see eq. (7.11)) occurs
in a non~Ppolynomial fashion in the Q-transformetion rules. This is possible
because C is inert under internal dilatations A. Therefore one can expect that

the complete transformation rules contain a priori arbitrary functions of ICIE. 1

However, it appears that these functions have & remarkable systematic structure.
The linearized transformations (7.11) are known to be consistent with a rigid
chiral U(1) symmetry, and it turns out that the nonlinear Q transformations
contain precisely such a U(1) transformation with a field-dependent coefficient
as a uniform component. Furthermore, all derivatives are augmented by C*guc terms
in such a way that this quantity can be interpreted as s new gauge field that
makes the derivative cavariant with respect to local U(1) transformations. These
facts can be viewed as an indication that the theory can be reformulated in a
form which is manifestly symmetric under local chiral U(1) transformations.
It turns out that this reformulation also has & rigid SU (1,1) invariance. More
specifically, it appears that the scalar C in the original formulation occurs
as a parametrization of the coset space SU(1,1)/U(1), It has been known for
some: time that SU (1,1) invariance plays a role in Poincaré supergravity (see
the references at the end of this chapter), but this symmetry was never linked
to the superconformel sector of the theory.

Before giving in section 4 the explicit construction of the full theory with
a manifest rigid sU (1,1) and local U(1) invariance, we first review in the
next section some properties of SU (1,1) and its coset decomposition inta
8U (1,1)/U(1) ard U(1). Furthermore we indicate how the relation between the
reformulated theory and the original formulation in terms of a complex scalar
C can be made explicit by imposing a gauge condition that breaks the local

U(1) end rigid SU (1,1) invariance.

3. Rigid sU (1,1) and local U(1) invariance

By definition SU (1,1) (2 80 (2,1))is the group of complex 2x2 matrices
with unit determinant that leave the metric n = diag (+1, -1) invariant. There-
fore elements U of SU (1,1) satisfy (to compare we also give the corresponding
more known relation for SU (2) (= 80 (3)) :
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UTnU=n R (su (1,1))
(7.13) :

usu =8 or UU = R i (sU (2))

. . ~ g T . .
Here & ig the SU (2) invariant metric § 3 diag (+1, +1) and U is the hermitean
conjugate of U, An arbitrary element of the group SU (1,1) can be written as
(again we give the corresponding expression for SU{2), of. section {3.3)):

_ * . * * = o =
u=Je, ¢% with €0 - 80, 3 0R = ,(8U (1,1)) (7.14)
e, @]
_ * s * o
U= fe, ¢ with ee, + 050, = 1 .(su (2)) (7.15)

P ¢g1l,

In (7.14) we use a notation for the doublet- ¢, in which the metric n raises i

and lowers indices according to

*

o - aB .k _ x.
¢ =0 (a0) = (o], - o)) c(1.16)

One can verify that both the Sy {1,1) transformations (T7.14) and the SU (2)

transformations (7.15) leave the two-~index Levi-Civita tensor €aB invariant:
ey = ¢ . (7.7)

Here UT is the trangpose of U.

We recall that each group elementof SU (2) can be written as the exponent
i. (i = 1,2,3)
2 '3 B
(1‘i are the standard Pauli matrices, cf. eq. (3.28)) in the following way: i

of & linear combination of the three SU (2) generators Ti =

1ho
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us=fe, - ¢E = exp-% aT ) (7.18)
by O
with & = (q1, s u3) defined by
¢, = cos (%'a) + 1 sin (% o) G3 s o = u? + ug + qg .
(7.19)
¢, = sin (F ) (i, - &) S

This is not true for SU (1,1). The generators of the Lie algebra su(1,1) of
8U (1,1) are given by:

=1 =1 =i
T, =3 T s T,=5T, s Ta=5Tg . (7.20)

Exponentiation of these generators gives:

) *
exp % (u.1'r1 *oagr, + i a3T3) = o, 0, . (7.21)
E 3
¢2 ¢1
with ¢1 and ¢2 given by
_ 1 A I 2.2, 2 2
¢, = cosh (2 a) + 1 sinh (2 a) &, » @ Sa ta, - ags
(1.22)
= o 1 P PR PO
¢, = sinh (2 a) (a1 + 1 aa) s & =i (i =1,2,3).

a

This does not lead to all possible group elements. For instance, the matrix

U={- coshp sinh p » P X0 (7.23)

sinh p -~ cosh p
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is an element of SU (1,1), but it is not possible to write it in the form (7.21),
(7.22), because (7.22) implies that (451 + ¢"1‘) > -1,
The vector space of the noncompact Lie algebra su (1,1) decomposes quite

naturally into two vector subspaces:
su (1,1) = u (1) @ (su (1,1) mod u (1)) R (7.24)

where u (1) is the maximal compact Lie subalgebra generated by the compact

generator '1‘3 = % T4 and {su (1,1) mod u (1)) is the vector subspace consisting
. s ) 1
of the remaining generators ‘I‘1 = % T, and '1‘2 = 7 Too both noncompact. The

decomposition (T.2h) of the Lie algebra su (1,1) has the following counterpart
in the Lie group SU {1,1):

sU {(1,1) =U (1) . su {1,1)/u (1) . (7.25)

-

The left coset 5U (1,1)/U (1) is defined as the set of group elements cq, s e

€SU (1,1) with the property that
U(‘)'co+U(1)'c1+...=SU(1,1) (7.26)

and, furthermore, no element gESU (1,1) is contained more than once in the sum
on the left. In other words, the ci are chosen in such a way that every group
element g€SU (1,1) can be written uniquely as the product of an element h€U (1)
with an element ¢ in the left caset SU (1,1)/U0 (1):

g =he hel (1), ee8U (1,1)/U (1) . (7.27)

A natural choice for the coset representatives is given by

= 1 - * 2 * _
U=expy(at +a,5,) = [0 °, s ¥ -0 0, =1, (7.28)
¢ O
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with ¢, (is real and 21) and ¢, given by

©
|

= cosh (% a) s G E + q.g N (7.29)
(i =

[
Q)
n

. 1 -~ s A
@2 sinh (-2" 0.) (G.I + 1 0-2) 3

On the other hand the general form of an element of the U(1) subgroup of guU (1,1)

is given by:

U= exp 5 Aty =} exp (5 A) o . (7.30)
] exp (—-Z- i)

Hence each group element U of SU (1,1) can be written as the product of an
element in y (1)with an element in the coset SU{1,1)/U (1), which both can be
written into the exponential form. For instance, the group element U given in

eg. (T7.23) can be written as
U = exp (i1\'13) © eXp (-pt,) . (7.31)

Because of the constraint ¢%a = 1, a general SU (1,1) doublet ‘bu describes
3 field degrees of freedom. Now assume that ¢ transforms both under rigid SU (1,1)

transformations and local chiral U (1) transformations according to

(u(e))

= 5 u(e) . (rigia su (1,1))
8 (7.32)
o = exp (-iA) L . (local U (1))

with S an element of SU (1,1) and U (&) the matrix given in (7.14). The extra
local U (1) invariance allows us to remove one further degree of freedom by &
choice of gauge. For instance, one may impose the following gauge condition
(notice that we always have |¢‘1| > 1)

w"; = e, . (7.33)
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In that case ¢ describes 2 field degrees of freedom. After imposing the gauge
choice (7.33) ¢ corresponds to arepresentation of the coget space SU (1,1)/U (1)
(see eq. (T7.28)). 0Guch a coset representative can be parametrized, modulo local
U (1) gauge transformations, in terms of a singe complex variable. A possible

parametrization consistent with (T7.33) is

6 = — (1,) R EL : (7.34)
Y- e»?

The variable C = ¢2/¢1 is called the projective coordinate of the coset gpace
su (1,1)/u ().

After imposing the gauge condition (7.33) both the local U (1) and rigid
SU (1,1) invariance are broken and we are left with a rigid U (1) symmetry.
This symmetry consists of the previous local U (1)(see eq. (7.32)) but now
restricted to spacetime-independent transformations, combined with the U (1) sub-
group of SU (1,1) (see eq. (T7.30)) in such a way that (7.33) remains unaffected.
This is specified by the following decomposition rule (cf. eg. (3.38)):

2 (Local y (1)) (A(x) = A (1)) s (7.35)

where we have used the same notation as in eq. (3.38). In (7.35) (rigiauy (1))

represents the U (1) subgroup of sy (1,1). Under this group ¢ transforms accor-

ding to
(0 (¢)) = exp (Baeg) U (9) (7.36)
or
o) = exp (20) 0, . (vigiau (1) (7.37)
%, = exp () o, ,

with the matrix U (¢) defined in eq. (7.14). Applying the decomposition rule
(7.35) we find that the complex scalar field C transforms under the new chiral
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u (1) transformations with a weight factor ¢ = -2 (cf. table 1):
1 . . T
C = exp (=2 iAU (])) c . {{rigiau (1))) (7.38)

In the context of N = 4 conformal supergravity the gauge condition (7.33)
also leads to a decomposition rule for the  transformations. After imposing
this condition the new Q transformastions are given by the previocus Q transfor-
mations augmented with a field-dependent local U(1) transformation. This explains
the U (1) component in the nonlinear transformation rules, which we mentioned
at the end of the previous section. In the next section we give the explicit
form of this decomposition rule and present the construetion of the full N = 4
conformal. supergravity theory with a manifest rigid SU (1,1) and local U (1)
invariance.

W, Transformations of N = 4 conformal supergravity

Assuming that the field ¢in the linearized transformation rules (7.11) cor-
responds to a parametrization of the coset space SU (1,1)/U (1) some of the
transformations of N = 4 conformal supergravity take a unique form. Modulo
-an overall factor the only supersymmetry variation of an SU (1,1) doublet Qa
that is consistent with SU (1,1), chiral U (1) x SU (4) and dilatational in-
variance is of the form

- =i B8 o _ = ,i aB
s, =-¢ A €a? . 80" =EA e ¢B . (7.39)

Imposing the gauge condition (7.33) this result is indeed consistent with the
linearized transformation of C given in (7.11), where C is defined by (7.34).

To preserve the gauge condition the supersymmetry transformations are uniformiy
modified by the addition of a A-dependent local U(1) transformation. To determine
this field-dependent parameter we use that before imposing (7.33) the Q and

local U (1) transformations-of (¢1 - Q?) are given by
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® =i, ¥ = 3 s *
8 (¢1 - ¢1) =€ Ai@a eiA ¢2 iA (¢1 * @1) . (7.%0)

After imposing the gauge condition (¢1 - ¢:) = 0 the first two terms on the
right-hand side of (7.40) cancel against the third term for a special value of
the parameter A. This is specified by the following decomposition rule:

Q (ei) =q (ei) 8 (local U (1))(A(x) = % i (EiAi) C+ce). (7.41)

Here Q (ei) and Q‘ (ei) denote a Q-supersymmetry transformation with parameter

e’ before and after imposing the gauge condition respectively. The second term
on the right-hand side of (7.41) explains the previously mentioned U (1) compo-
nent in the nonlinear transformation rules.

Besides the transformation of C itself the only place where this field occurs
in the linearized transformation rules is the transformation of Ai. In the for-
malation with rigid SU (1,1) and local U (1) invariance this field transforms
according to

k1l j

= aB J .
GAi 2 ¢ ¢u¢¢ssi + Eije + Eijklo e ) (7.42)

where we have used the covariant bilinear expression

i

af 1-
£ 2.2,%, - 3 WA, . (7.43)

Do =B
o a B

In lowest order the transformation (T.42) reduces to the form given in (7.11).
The gauge field for the local U (1) transformations is not an independent
field. It is only defined modulo U (1) invariant terms. One definition is

= L aud 1. 7
a =gzi¢ ae +pi R YA . (7.44)
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which contains a term C"‘guc in lowest order. This explains the C*guc terms in
the nonlinear transformation rules, which we mentioned at the end of section 2. .
Using eqs. (T7.32), (7.39) and (7.42) one can verify that this gauge field has ;
the following variations:

Sy (1% T b ’
(7.45)
I P aB i1, =1 ]
GQ &, -3i eiYue %E ‘bBA ty i A T,¢ Ei.i
1. 1 .pkld _ 1. pla, _ cdzka - i o
+y i ei.iklx 1o T e y i (B*y 1\j 651\ Y Ak) By ¥y * ctet,
GS a.!_. =9 .

The formulation with explicit rigid SU (1,1) and local U (1) invariance
offers important advantages because it restricts the nonlinearities that may
occur in the full transformation rules. Clearly the rigid SU (1,1) invariance
prevents non-polvnomial modifications, since all invariants constructed from

? are equal toconstants. In terms of other fields such modifications were al-
ready excluded because of positive Weyl weights (some of the gauge fields have
negative or zero Weyl weight but their presence is already restricted by cor-
responding gauge invariasnces). Of course, we should include derivatives on &
as well, but Da‘b has positive Weyl weight (w = 1). Hence the completion of the
algebra and transformation rules will require only a few iterations. Indeed,
application of the iterative procedure described in section (6.4) leads to the
following Q-supersymmetry transformations:

- _ =i 8

GQQQ = a-c Aieua‘l’ 3
=, 08 i okl

GQAi 2 ¢“ﬁ<bsei + Ei.:]e + eijklo i s
e n = _ 5 <k mn _F Az ak = = ,k

N
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i o _guptd - A1 N _1 i
SqXk o-T ﬁqk 2o k(V)E 5 € lmﬁEkLEm
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a (1 ElJln)-(!:!le

Ll Ela, 18,
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1
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1[1 ,J] ijlm af
e 0BTy

1,]1mn ) _Y A
padl)

DAJ])

Akya. b

1 ijlm - n o, B
= € Am {5 € (Ek.nA + 2 eqstb P Ak) (7.46)

n g 5B
(ElnA + 2 EGB° Pe Al)}

ij =1
- O. )
T Yaf [kA Ya.Al]
+ 1 5[17&3] A" 'KkAm -

ij o _ ) glig,dl
6QDkl L e Exkl + €

w

¢ 1 gllmgpy 4 2 08
3 P o

+ Ell {Eyaxilx‘ﬂ Ya.Am

1 -J] 2
[k l]m = 3

+ al‘]mnEPTabkl (2T
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1 guplil 3
+ 50T [7{ YA].]

(traces) »

A L T

) MBAmEj] B4 oo r™hp 1ohe)
af dl
-he @uﬁ¢Bc-TklA

LR Btb]?ﬁtbAJ]KU A}

A T ) + (n.c.; traceless) ,

+
abnp m a.bmnAp

e



i _ i qpid - ,]kl— A |
GQ\bp = 2$ue - g T ACE €. wuk ) . ;‘
1 -1
= — . * .
GQbu 2 € ¢lll c'e H

- - i 1 1 - ;
= . - . -~ =R N !
anuj & ¢uj teE Tu¥j ~ 2 B € kmn® lpu 6 tF:,]YuAk :

1 . 1 o P
to e S T T Y3 St Y ® pema
- —11; elklpejmnp EmYa.q’ukAlYa.An (h.c.; traceless) .

558, = 0 ,
5h; = 0 .
SsBi5™ 2 (i) : 5
GST;%— -3 S I .
Gsxij= ourtin + 2 6[1 ‘L"]]l - % 1*”'“’Ekln (7.47)
- -:;Tikvahlivanj] + 172 8 [; (T\lYB_AlYan‘i] - Klvah'j] vanl) R
csnlii= 0 ,
GSeua‘ 0 3
6541‘1‘ = - Yuﬂl » A
Gsbu = %"_’i“i * cec . |
-( 1 Wy - )} 6§$l:nk) - h.c. .

In (7.46) and (7.47) the derivatives Du are covariant with respect to the super-
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conformal and local U(1) symmetries. The curvatures R (Q) and R (V) are the
fully covariant curvatures of wt and th respectively. Their explicit form is

W F e mad

given in the original paper (see the references at the end of this chapter).
In that paper one can also find the Q and § transformations of the dependent

gauge fields WP fﬁ; ¢: and of some covariant curvatures as well as many other

s
details sbout ; s 4 conformal supergravity.

In deriving the transformations (T.46) and (7.47) we have used the conven-
tional constraints (5.46) for the fully covariant curvetures R (P), R (M) and
R (Q). These curvatures are an extension of the sU (2,2|4) curvatures R (P),

R (M), R (Q) (see the original paper and confer eq. {5.45)):

8 a -—

Ry (p) - Ry (P) =0 :

~ab . ab = .= gl 7 .pid

R, (M) - Ry (M) = - Yiui¥v 1R (Q) + VyiTapbyy * o R (7.148)

< i i _ ij 1 _ijkl ,
o (R =B Q) = - 0™y by + 5 o700 b ' ;

The first term on the right-hand side of the second equation of (7.48) corres-
ponds to the extra term in the transformation of mib in the presence of the con=~
ventional constraints. This term has been discussed in section (5.4) (ef. eq.
{5.48)). The other terms correspond to the matter field-dependent modifications
in the transformations of wa'b and w‘il.

We finally present the commutator of twe Q transformations, and of a Q and
an § transformation. These commutators have modifications in the form of field-
dependent symmetry transformations, The results are given by

[8g (e1), 8 (ep) = 65%0 o (&%) + 6, (%) + 8y (c3) + 65 (nP)

i (7.49)
+ GSU (4) (A:) + 6U (1) (a) + GK (Ala{') 3

cov

with & g.c.t. & covariant translation (see section (4.6)),and with the parameters
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of the transformations on the right-hand side of (T7.49) equal to

g“ =2 E? yugai + CeCe ?
ab _ —1. J o
€ =he €2 Ta.b:.J +oeee ?
ai = J.Jkl z
3 ©1x® 21 3 ?
i _ =k 1.1 1=k ij idlm |
n —-2&:12l-e(eayaeﬁ*-h.c.)(Yaxk + M. em¥al1)
1 =i
-z (S - ‘53927 £y ¥ Been) X
x v, (B -2 EGB%NBAJ) * ";' € kl-lk €014
2zl dl
+SE 21(EA+2€ @MA) .
Ai.' = Eik e Ere® 4 —~ (e Y € . + hec.) I-\iY
J klmj 271 2¥a® 13 * aAk
1 =k i
- % (E2Yae1k +e¢ct) K Ya.Aj
-1 (Eiy €., + h.c.) T\ky - (h.c.; traceless) ’
b Yola™1j a.Ak thre
J Ik,
A 2 (EEY& 13 + h.c.) (R YohA; - 858 Ya.Ak) .
& _2-< 37‘ 8 - ij
Ne =3 SpiNSiBapy (V) + 3 Eg4¢ 13 D, Ten
_l- i _abed 1 5d - vas
3 Eai Vi e (Dc¢ Dd.q’u -3 (R Ych.Aj - grae))
E T, v% 7K 4 e,
+eeiaTjkYu‘1‘ e1+cc .

Furthermore we have

(7.50)

[5g (&) » g ()] = 6 (p) + 6, (c*) + 85 (n3) + 8y (y(A3) + 5 (ag)

(7.51)
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with the following transformation parameters:

Ay =~ aie + geCo s
ab--ancabel+c'c' .
i = - —-i l i"k - (7'52)
Aj 2 ¢ ni + 3 6je Ny h.c. ’
i _ 1 ijk
Na T "kYa.e;jYa.Al ?
a 1= ij
= — -T + CQ» .
AK 3 n;o Yaea

5. Qutlook

In this chapter we have presented conformal supergrevity theories for
K < 4. The complete nonlinear transformation rules and the corresponding com-
mutator algebra of the superconformal gauge transformations were constructed
for N = 4. This was done in a formulation with rigid SU (1,1) and local
U (1) invariance.

The next step in this program is the construction of the corresponding
Poincard supergravity theories. To carry out this program requires knowledge
of a variety of superconformal multiplets, which can be used to provide the
necessary compensating fields when coupled to conformal supergravity. For N = 1
and N = 2 such a procedure has been applied successfully and in that context
the N = 1 and N = 2 Weyl multiplets have been very useful in clarifying the
off-shell structure of N = 1 and N = 2 Poincaré supergravity.

For N = 4 not much is known sbout off-shell representations of »igid super-
symmetry and therefore the compensating mechanism has not been applied in this
case. For instance, there exists no off-shell version of the N = 4 supersymmetric
Yaag-Mills theory which we have considered in section 2 to construct the N = 4,
d = b supercurrent. W. Siegel and M. RoSek have given the following counting
argument that for the N = 4 super Yaag-Mills theory the auxiliary field problem
cannot have a solution within any previously known framework. On the one side

the number ng of fermionic field components of an off-shell Yang-Mills multiplet
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without central charge must be an integral multiple of the number of fermionic
field compenents of the smallest off-shell supecsymmetry representation, which
has dimensionality 128 + 128 (see the table in section (5.4)).Thus, we have
e = an\128 (n integer)s On the other hand the physical Bose fields Au and ¢Y
of the Yang-Mills multiplet have an even number of SU (4)indices. Since the super-
symmetry generators Qi have one spinor and one SU (4) index, all Fermi fields
are spinors with an odd number of SU (4) indices. AlLl SU (k) tensors with an
odd number of SU (&) indices contain an integral multiple of four components.
Hence each Fermi spinor field has an integral multiple of 4 x 4 = 16 components.
Since all spinor auxiliary fields occur in pairs (one as the Lagrange multiplier
for the other), the total Fermi dimensionality np of the off-ashell representation
ig thus determined modulo 2 x 16 = 32 by the total dimensionality & = 16 of the
physical Fermi fields wi of the Yaag-Mills multiplet, i.e. np = 16 mod 32, The
compatibility of the first snd second condition on the total dimensionality ng
of off-shell Fermi components thus gives the restrietion 128 = 16 mod 32, which
is clearly not comnsistent.

One way to circumvent this counting argument is by allowing the introduction
of central charges. These are Losonic operators 7+ (antisymmetric in the indices
i and j) which occur in a modification of the super-Poincaré algebra (2.66).
This modification has the form

i 3, _ o
{QQ, QB} =ZCq s (7.53)

while the Zij commute with all other elements of the algebra. In (7.53) we have
used the same (chiral) notations as in eq. (5.14). However, the presence of
the central charge operators restricts the stiructure of the internal symmetry
group. Por instance, there exists an off-shell formulation of the super Yang-
Mills theory with central charge, but it has only an invariance with respect to
the Sp (4) subgroup of SU (4). In addition, one cemnot extend the super-Poincard
algebra with central charge to include conformal transformations as well. There~
fore multiplets with central charge do not fit in with the compensating mechanism
that we want to apply.

One can give the following arguments (see the references at the end of this
chapter) which suggest that a possible set of compensating field multiplets for
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N = L4 Poipcaré supergravity is six N = 4 (abelian) Yang-Mills multiplets. The
field content of six (on-shell) Yang-Mills multiplets iS given in the table be-
low, where wehave taken the six to be a 6 of SU (4). . In this table we have

also listed the field content of N = 4 (on-shell) Poir_xc:'aré supergravity and the
Weyl multiplet. We see that the Yang-Mills vec'('.m-s‘ll,:‘J ave the only physical
fields of Poincaré supergravity not already contained in the Weyl multiplet. The
Yang-Mills scalar ¢ and spinors pt may be used to compensate for dilatetions and
8 supers;_n!nnetry?_while ¢3Z mey be used to compensate for SU (4). The remeining
fields w;‘]and ¢;1 are guxiliary and of the right structure to act as Lagrange
mltipliers for

e ws e o owm rm o wa MM Em R em Em W A ER W e Em W M B W e mm et AR e e Em W e e e e e

spin | N = & Poincaré | N = 4 Weyl 6 *N = 4 Maxwell

2 e: (1) e: (1)
i i

32w, (4] v, ()
ij i ij (go ij

oA (6) vy (15, T (67) A (8)

/2| ot () Ay (8, X (20) vt ), v (20)

0 fe (1) ¢ (1), o}d (20), E;5(10) | ¢ (1), ¢§ (15), ¢d (20)

- en e Em wWm em MR o W R e e ee Em mm SR M R e W R W  mR Em me em . Er e R W e Em e e we = e

table 2. Field content of the N = 4 {(on-shell) Péincaré supergravity, Weyl and
six (on-shell) Maxwell multiplets. The numbers between brackets denote
the SU (4) representation assignments of the fields.

the high dimension auxiliary fields xi‘i and Dlt‘i in the Weyl multiplet. Hence,
coupling the N = L Weyl multip:!.et t9 six Maxwell multiplets and fixing the
superconformal gauges ¢ = 1, wl = ¢3 =b " = 0, should give N = 4 Poincaré super-
gravity with the missing suxiliary fields being those of the compensating multi-
Plets. Giving that this is so, the full off-shell structure of N = 4 Poincaré
supergravity will have to await the resolution of the auxiliary field problem

for the N = L Yang-Mills theory.

e g, s s -
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An alternative way to study the auxiliary field problem is by leaving 4 = U
dimensions and by considering supergravity models in as high & dimension as
possible., The motivation is that by studying supergravity in another context
than the familiar four-dimensional one we may learn something about the way in
which Poincaré supergravity can be realized in four dimensions. Recently we
have considered an implementation of the superconformal ideas presented in this
thesis in the context of supergravity in ten dimensions (this corresponds to
N =k in four dimensions).

The linearized transformation rules of the N = 1, d = 10 Weyl multiplet can
be found from an analysis of the d = 10 Maxwell supercurrent. This supercurrent
is reducible; it contains a submultiplet of 128 + 128 components, whereas the
remaining degrees of freedom form a constrained scalar (chiral) superfield. In
the nonabelian case the scalar superfield part of the current is unconstrained.
The 128 + 128 current submultiplet is associated with the fields of conformal
supergravity, because it is the smallest off-shell multiplet that contains the
energy-momentum tensor. However, a nontrivial aspect is that the decomposition
of the 4 = 10 supercurrent into'its two submultiplets is realized in & nonlocal
way. As a conseguence the linear transformation rules of the d = 10 Weyl multi-
plet contain ncnlocal terms. One car avoid the nonlocal character of the trana-

formations by introducing new fields which are: subject to differential constraints.

Hence these fields do not represent new degrees of freedom. However, the presence

of the differential constraints presents an otstacle for a straightforward appli-
cation of the compensating mechanism.

In a recent paper (see the references at the end of this chapter) we have

shown that it is in principle straightforward to avoid the differential constraints

by introducing new degrees of freedom. After ignoring the constraints one adds
new Tields in the transformation laws of the superconformal fields whose varia-
tions are then required to reestablish the closure of the superconformal algebra.
Subsequently the results may be completed by iteration. It is not Obvious that
auch a program will be successful for the full nonlinear theory, although there
are no conceivable problems at the linearized level. A crucial point is, that
the original commutation relations of the superconformal algebra will be modified
by terms that contain the new fields.

In order to avoid the differential constraintsone must at least add a scalar
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multiplet to the Weyl multiplet. This is called the minimel field representation.
We have investigated some nonlinear aspects of this minimal field representation.
We find a number of ponlinear modifications associatedyith the scalar submultipet,
and at this stage a completion along these lines seems perfectly possible. These
results are in fact relevant for the off-shell formulation of linearized 4 = 10
Poincaré supergravity, which has been obtained recently by P. Howe, H. Nicolsi and
A. Van Proeyen (H, N. V.E.).

Using & scalar multiplet of Lagrange multipliers it is possible to construct
a superconformally invariant action for the minimal field representation, After
imposing the appropriate superconformal gauge conditions one obtains a Poincaré
supergravity action with its auxiliary fields. We expect the results to coincide
with those of (X, N, V.P,).This is confirmedbya calculation of some of the new
terms in the action, which has many of the same ingredients although the supercon-
formal scheme leads to a different arrangement of terms.
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APPENDIX A. NOTATIONS AND CONVENTIONS

In this appendix we collect the notations and conventions used throughout

the text. When we consider global Lorentz invariance, we denote vectors by the
indices U, Vs... Or &, by... and spinors by the indices «, 8,.... Both run from

1 to 4 in four-dimensional spacetime. We use the Pauli metric

Suv s diag. (+,+,+,+) . (a.1)

with imaginary time compenents of four-vectors:

K, = (K, &) = (K, i ko) . (A.2)

Hence there is no need for distingunishing upper and lower indices. In all cases

repeated indices imply a summation, unless explicitly stated otherwise. The
four~dimensional Levi~Civita tensor is defined by

€po = H1 » (uvpo) = even permutation of (1234)
=1 » (uvpo) = odd permutation of (123k) (A.3)
0 . otherwise

This tensor satisfies the relations

Eu|\,|p|c‘.| = u'\)'p'd"
HVpO uvpo ’

Euv'p'a' - vip'g!
rvodg Voo *

giplet o = 21 6?7 (A.4)
uvpg ' Tpa ’ .

] 1
AN Caps = 3! 5g ,
uvpo

€ = H

€ vpa ht s
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where G:pp '* are the standard permutation symbols:

[ 03 3 1 1 1 [}
s“;q" = sg sga cg 8 ete, ) (a.5)

When we discuss local Lorentz invariance, we use the indices u,v,.. to

denote world indices, whereas a, b, .. denote local Lorentz indices. Vierbeins

M
a

and vice versa. World tensors with upper and lower indices are related by a

e: and inverse vierbeins e convert world indices into loeal Lorentz indices

contraction with the metric tensor
_ & 3

in the following way:

\Y

£, = 8t . (A.7)

I

The summation convention for world indices implies a contraction over &y

We now discuss gamma matrices in four dimensions. We will do this in the
context of global Lorentz invariance. When considering the local case the Dirac
algebra remains unchanged when one defines all elements with local Lorentz indices.
The four-dimensional Dirac algebra is defined by

Tt Yy = 2 Sw . (A.8)

Here the Y, are fowr 4 x b hermitean matrices:

.l- _ .
Al . (7A.9)

One can construct explicit representations by taking tensor products of the
standard Pauli mutrices T, (L = 1,2,3):
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Y1=T1Q1 ?

Y2=r3ﬁt3 :
(a.10)
Y3=I3QI1 2
Yll:‘raa n ]
with
01 Q-1 {10
'l‘1=l(1 0),12=(i0)and 1:3-(0“1) . (A.11)

This representationis called the Majorana representation. From the gamma matrices

we define the following quantities:

= t .
Ys Y]Y2Y3Yh 3 Ts Y5 s
(A.12)
o =t (v.x, -y, ot =0
w & YTy v'H > Tav uv
In the Majorana representation Y5 is given by
Y5 = - T3 87, . (A.13)
The set of sixteen 4 x 4 matrices
Pa = vys 210, 8 vy, Yg) (A.14)
is complete and gsatisfies the relations
rp =Ty >
2
PA = 1 ’
(a.15)
Tr (rArB) =l S4B s

(Tplag (Tplys = ¥ Sys8, :
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Using these relations cne easily verifies that an arbitrary b x 4 matrix X can

be expanded in terms of the I, according to

X = § T (Xr,) T, C (A6)
We define a charge conjugation matrix C by

c“yuc = - y‘ﬁ . (A7)

Here the gupersecript T denotes transposition. The following symmetry relations
hold:

Car5C, YSYI-IC are antisymmetric ’
(a.18)
yuc, auvc are gymmefric .
The matrix C has the following form in the Majorana representation (A-10):

c=-~t, 21 . (A.19)

The four-dimensional representation space of the Dirac algebra is called

gpinor space. The elements of this space, the spinors, are denoted by 'pa {a=1..4).

In quantum field theory ¥ (x) represents a field with spin 1/2. For consistency
such fields have to be anticommuting, i.e.:

=l

bobg ==¥gh, . (A.20)
The Pauli conjugate ¥ of a spinor is defined by

- +

V=Y, . (a.21)
A Majorana spinor iz defined by the relation

v=0C@r . (a.22)
In the Majorana representation this is just a reality condition:

b= (r,a0) (,ad) 4" =" . (4.23)
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The completeness relation (A.16) may be used to expand the product of two spinors:

el 4T _2F
b¥p = -y Wby oYYy = 200,00,

= Vorgr ¥qYsy, + ¥orgh vl

(A.24)

This is called the Fierz rearrangement formula. Using a chiral decomposition

of the spinors

=l l _‘ ="
] 2(1+y5)|p +2(1 ys)m-w ty >

ToF3 0y ) +T5 0 -5 +§ :

one can derive an alternative form of the Fierz rearrangement formula:

_— 1=, 1
T L U P S AN B X I R
1 ¥2 2 Yo% Yo VO, Y% T 2 s ’

We denote commutators and anticommutators by

[Ty» Ty = Tyfg = T, .
{FA, rB} = FAFB + I‘BI‘A s

and have the following conveniions on symmetrization:
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Pialg =2 Uplp - T

pla)
=1
I‘(AI‘B) =3 (1"ArB + rBrA) ’ (A.28)

s - - -
I‘[AI‘BI‘CI EB!(I‘AI'BI‘C + I‘CI‘AI‘B + rBrcrA Talale I‘AI‘CI‘B I‘CI‘BI‘A) ete. .

We finally give some useful identities: N

0. }=¢ y
L AL

ruaoyel = Y8y = Wby :
| = - 1 sp0
{qu’qoo} =2 Suvpo’s T 2 S '
- {p; ol ; :
[aw,apol =k %[y Gu] . (A.29) )
Yoy = -2, s
Yy = 0 ’
“w%e%uv = %a ,
i
v = "EeuupaadeS .
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APPENDIX B. THE CHIRAL NOTATION

In this appendix we explain the chiral notation, which we use throughout
this thesis for spinors which combine inte representations of (S)U(N) (we con-
sider SU(N) in this appendix).

By definition SU(N) is the group of complex N x N matrices with unit deter-
minant that leave the metric & = diag (+,+,..,+) invariant. There are (N2—1)
independent matrices that satisfy this requirement. The Lie algebra su(n) of
SU(N) consists of a1l N x N antihermitean traceless matrices, For a N-compunent
vector we use the following notation:

Vs (vi)* . (i = 1..N) (B.1)

In this section V* and Vi transform according to
syt = Aljva s (N representation)

(B.2)
§v; = AiJV. » (N representation)

where A is a N x N antihermitean traceless matrix parameter that characterizes
the infinitesimal SU(N) transformation:
RN S T T S
(A 5) = A= A%, A= 0 . (8.3)

Once can verify the invariance of the metric 53 (i,j = i..N) under such trans-
formations:

s(e%) = al sE o a Xt o pl, 4 pt=
(65 = Al gl v afiel < al st (B.4)

In addition, one can verify that the bilinear vlwi (i = 1..X) is a scalar:

iy _ i i
S(V'W,) = A kvkwi + Ai"v W =0 X (B.5)

. e eee -
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For N MaJorana spinors wM’ with the property that the chiral projections
(1 + ys) v> transform under SU(N) as V' in (B.2), we use the following

notablons.
i i
‘p=2(1+Y5)"’M b
_T (B.6)
1 1
v EC () = §<1-v5)wm -

X
In the Majorana representation (A.10) the second definition reduces to b; = (u*) .

For the Pauli conjugate spinors we use the notations.

=i _ =11
(B.7)
-
wizlpM2<1-Y5) .
This notation is consistent with (B.6) in the sense that
(%) = v; . (B.8)

If the chiral projezctions %-(1 + 75) ¢§ transform under SU(N) as vy in (B.2)
we use instead of (B.6) and (B.T) the definitions:

vt (- vg) uy : (.9)
o
b 200N =3 (eyg) vy :
and
-‘I‘iE‘pM2(1+Y5) .

If no confusion is possible we often drop the index M of a Majorana spinor.

For N = 1 the above still applies, but with SU(N) replaced by U(1). In
that case we denote the index i (i=1) by a dot. If no confusion is possible
we gometimes omit this dot in the text, but not in the formulae.
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Mle tot nu toe bekende deeltjes in de natwur laten zich onderverdelen in
twee klassen: deeltjes met heeltallige en deeltjes met halftallige spin. De
eerste heten bosonen, terwijl de lsatste fermionen gencemd worden. Supersymme-
trie is de enige symmetrie die in staat is deze opsplitsing in bosonen en fer-
mionen te doarbreken. In de aanwezigheid van deze symmetrie kemen bosonen en
fermionen voor als gelijkwaardige partners van een gemeenscheppelijk multiplet
en dienen in hun onderlinge samenhang bestudeerd te worden.

Een belangrijk gevolg van supersymmetrie is dat de oneindige resultaten, die
optreden bij de berekening van quantum mechanische carrecties, vask afwezig zijn
in theorie€n met svpersymmetrie. Supersymmetrie heef't tevens tot gevolg dat de
betreffende theorie invariant is onder translaties. Daarom moet een thearie
die invarient is onder ruimte en tijd afhankelijke supersymmetrie transformaties,
ook invariant zijn onder ruimte en tijd afhankelijke translaties, d.wv.z. algemene
codrdinaten transformatiss. Dit betekent dat een dergelijke theorie een beschrij-
ving van de zwaartekracht inhowdt. We noemen dit soort thearieé€n supergravitatie.
De bijzondere eigenschappen van supersymmetrie blijven in supergravitatie behouden.
Men hoopt dat deze eigenschappen zZullen leiden tot een consistente beschrijving
van de quantumtheorie van de gravitatie. Een dergelijke beschrijving is tot nu
toe niet mogelijk gebleken vanwege de eerder genoemde oneindige resultaten.

Naast de zwaartekracht kamen nog drie andere fundamentele wisselwerkingen in
de natwar voor: de elektromagnetische, de zwakke en de sterke wisselwerking.

Het blijkt dat deze drie wisselwerkingen bijzonder goed beschreven kunnen warden
met behulp van zogeheten ijktheoirieé&n. Dit zijn theorie&n, die als uitgangspunt
de aanwezigheid van een bepaalde interne symmetrie vooronderstellen. Met intern
bedoelen we hier dat deze symmetrie&n geen betrekking hebben op de ruimte en tijd.
¥en kan deze interne symmetrie&n opvatten als afkomstig zijnde van é&n grote in-
terne symmetrie. De ijktheorie van deze interne symmetrie geeft een gelinificeerde
beschrijving van bovengenoemde drie wisselwerkingen.

Het blijkt dat de aanwezigheid van meerdere onafhankelijke supersymmetrieén
ap unieke wijze de invariantie onder een bepealde interne symmetrie tot gevolg
heeft. Een ijktheorie van dergelijke onafhankelijke supersymmetrie&n heet uit-
gebreide supergravitatie. De multipletten van uitgebreide supergravitatie be-

vatten zowel ijkvelden (van ruimte en tijd en interne symmetrie&n) als materie
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velden. Op deze manier zou uitgebreide supergravitatie een geiinificeerde be-
achrijving kunnen geven van de elementaire deeltjes en hun onderlinge fundamen-
tele wisselwerkingen,

De structuur van witgebreide supergravitatie theorieén ligt in principe vast.
2ij is echter vri) ingewikkeld. In het bijzonder hebben de tot nu toe bestaande
formileringen het nadeel dat zij alleen consistent zijn onder gebruikmaking van
de bewegingsvergelijkingen voor de velden. Deze beperking staat een mantal prak-
tische toepassingen in de weg. In dit proefschrift worden tecnnieken ontwikkeld
die de structuur kunnen verhelderen van formuleringen die deze beperking niet
hebben. Dergelijke formuleringen heten "off-shell". De onderliggende gedachte
is om door het inveeren van extra symmetrieén de thecrie op te delen in een aan-
tal onderdelen om deze vervolgens afzonderlijk te bestuderen., Deze extra sym-
metrieén zijn de conforme (super)symmetrie&n die in hoofdstuk IV en V van dit
proefachrift besproken worden.

Het construeren van een "off-shell" onderdeel van de thecrie blijkt in som-
mige gevallen al zeer moeilijk :: zijn. TIn het tweede gedeelte van dit proef-
schrift wordt een me.hode ontwikkeld, waarmede men voor een aantal theorie€n het
"off-shell" stuk dat het graviton bevat, kan construeren. Dit is het deeltje
dat de zwaartekrachts wisselwerking overbrengt. In het laatste hoofistuk wordt
deze methode tcegepast om het graviton gedeelte te construeren ven een thearie
die invariant is onder vier onafhankelijke supersymmetrie&n. Tot nu toe is het
niet mogelijk gebleken am een formulering van de overige onderdelen van deze
theorie te geven zonder bewegingsvergelijkingen te gebruiken. Recentelijk
heeft men wel vooruitgang geboekt bij het construeren van "“off-shell" formule-
ringen van supergravitatie in hogere dimensies.

Een deel van het in dit proefschrift beschreven onderzoek is gepubliceerd in

Nucl.Phys.B. Mevr.A.v.d.Werf-v.d.V1list verleende assistentie bij de verzarging
van het manuseript.
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De voor het eerst door Bauer opgemerkte dimensionele gelijkheid tussen
spinor representaties van orthogonale groepen en representaties van
symplectische groepen kan niet zonder meer gebruikt worden bij het bepalen
van het Kronecker produkt van tensor en spinor representaties van speciale-

orthogonale groepen in even dimensies.

F.L. Bauer, Math.Ann., Bd. 128 (1954) 228.

De kinematica van de verdamping uit een vast natrium oppervlak ken niet
beschreven worden door een model dat gebaseerd is op een directe overgang

tussen de vaste en de gasvormige phase.

Een antisymmetrisch tensor-ijkveld Au“ kan op consistente wijze gekoppeld
worden aan een foton Au’ indien men de Maxwell transformatie GAu = 8uA,
SAu“ = 0 uitbreidt tot GAu = euA, GAuv = gA (auAV"avAu)’ wasrbij g

een koppelingsconstante is die de dimensie van een inverse massa heeft.

E. Bergshoeff, M. de Roo, B. de Wit en P. van Nieuwenhuizen, Nucl.Phys.
B195 (1982) 97.

H. Nicolai en P.K. Townsend, Phys.Lett. 98B (1981) 257.

Het multiplet van stromen dat behoort bij de koppeling van een supersymme-
trisch Maxwell systeem aan supergravitatie in tien dimensies, is reduci-
bel. Het bevat een irreducibel submultiplet van 128 + 128 componenten,
terwijl de overige vrijheidsgraden een chiraal scalair superveld vormen

dat aan een beperkende voorwaarde voldoet.

E. Bergshoeff en M. de Roo, Phys.Lett. 112B (1982) 53.
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Een "off-shell" formulering van Poincaré supergravitatie in tien dimensies
in termen waarvan men een invariante actie kan construeren, moet geba-
seerd zijn op een multiplet dat naast de superconforme velden op zijn

minst een scalair submultiplet bevat.

E. Bergshoeff, M. de Roo en B. de Wit, Nucl.Phys. B217 (1983) 489.

De bewering van Marvin en Toigo dat het capillaire golfmodel voor de

grenslaag vloeistof-gas niet geschikt is om lichtexperimenten hieraan te
verklaren, is ongegrond.

AM. Marvin en F. Toigo, Fhys.Rev. A26 (1982) 2927.

Bij de berekeningen van de demping van het vierde geluid in vlceibaar
helium door Kaganov et al. wordt een aantal veronderstellingen gemaskt die
niet alle noodzakelijk zijn en niet alle verantwoord kunnen worden.

B.N. Esel'son, M.I. Kaganov, E.Ya. Rudavskil en I.A. Serbin, Sov.Phys.
Usp. 17, 2 (1974) 215,

Zie ook: A. Hartoog, nroefschrift Leiden 1979.

Het is aan twijfel onderhevig dat de lange relaxatietijden die aoptreden
bij soortelijke-warmte metingen aan TTF-AuS,C,(CF3), beneden 3K uitslui-

tend veroorzaakt worden door de intrinsieke eigenschappen van deze verbin-
ding.

' J.A. Northby, F.J.A.M. Greidanus,

W.J. Huiskamp, L.J. de Jongh,
" 1.8. Jacobs en L.V. Interrante,

J.Appl.Phys. 53 (1982) 8032,
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9. De conclusie van Rosenberg et al. dat de door adrenaline geInduceerde
aggregatie van trombocyten bij maligne hyperthermie gevoelige pati&nten

normaal zow zijn, is onjuist.

H. Rosenberg, C. Fisher, §. Reed en P. Addonizio, Anesthesiology 55
(1981) 621,

E.A. Bergshoeff Leiden, 18 mei 1983
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