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CHAPTER I

OUTLINE

*••:

• * • •

•V,

In Nature there are two taaie classes of particles; the bosons, which

carry an integral spin, and the fermions, with half integral spin. Super-

symmetry is a symmetry between these different kinds of particles. In all

existing theories of fundamental processes there is a complete division

between bosons and fermions. Only super symmetry is able to break this

partition and treat both on an equal basis. In the presence of this kind

of symmetry particles with integral and half integral spin are forced to

occur as partners of a common supermultiplet, and are no longer treated

separately. One important implication of supersymmetry is that the infinite

results, which occur in a quantum mechanical formulation of conventional

field theories, are often absent in supersymmetric theories. The reason of

this is that bosons and fermions contribute with opposite signs to these

infinities, and supersymmetry forces these contributions to cancel. In

addition the invariance under supersymmetry implies that the theory must be

invariant under translations. Hence if supersymmetry transformations are local

then the theory must be invariant under local translations or general

coordinate transformations. This implies the existence of gravitation. The

gauge theory of superaymmetry is therefore called supergravity. The benefits

of supersymmetric theories remain present in supergravity and may be essential

in the construction of a consistent quantum theory of gravity.

The softening of ultraviolet divergencies in the quantum version of super-

symmetric theories is even more striking if one considers extended supersymmetry,

where one has N independent supersymmetries present. The gauge theory of N

supersymmetries fused with a global internal SO(N) or SU(N) symmetry includes

gravity and is called extended supergravity. Besides gravitation there are

three other fundamental forces known in Nature: the electromagnetic, the

weak and the strong interactions. Gauge theories of internal symmetries are

very successful to describe these three types of forces. These internal

symmetries can be seen as originating from subgroups of one unifying gauge

group. The gauge theory of this unifying group combines the three interactions

into one theory. Extended supergravity provides a unique prescription to



incorporate gravitation in such a theory as well. In a natural way it implies

both the existence of gravitation and the presence of internal symmetries,

which may describe the other fundamental interactions. In this way extended

supergravity would describe all known elementary processes in Nature.

Although extended supergravity theories are uniquely determined, they are

rather complex. The field representations of all extended theories up to

N*8 are known at present. Beyond N«8, supersymmetry requires the existence of

massless particles with spin higher than two, It seems impossible to have a

consistent description of such higher-spin particles coupled to gravity,

Therefore we restrict ourselves to N 4 8 extended supergravity. The existing

formulations of the N 1 8 theories have the disadvantage that most of them are

based on fields that directly correspond to physical degrees of freedom. Such

formulations are called "on-shell" and are only relevant within the context of

a given action. This is in contrast to "off-shell" formulations, which make

no reference to any action at all. In order to find applications of extended

supergravity theories it is important to get acquainted with their off-shell

formulations and to develop techniques that can make clear their structure as

a classical field theory. Conformal symmetry forms an essential ingredient

in studying the of f-shell structure of all extended supergravity theories.

The standard conformal symmetries ars fused with supersymmetry into so-called

superconformal transformations. The gauge theory of these conformal super-

symmetries is called conformal supergravity and constitutes the backbone of

all supergravity theories. In this thesis we explain the role of conformal

invariance in supergravity. Furthermore we present the aomplete structure

of extended conformal supergravity for N 1 k.

The outline of this work is as follows. In chapter 2 we briefly summarize

the essential properties of supersymmetry and supergravity and indicate the

use of conformal invariance in supergravity. The idea that the introduction

of additional symmetry transformations can make clear the structure of a field

theory is not reserved to aupergravity only. By means of some simple examples

we show in chapter 3 how one can always introduce additional gauge trans-

formations in a theory of maasive vector fields. Moreover we show how the

gauge invariant formulation sometimes explains the quantum mechanical proper-

ties of the theory. In chapter k we define the conformal transformations and

summarize their main properties. Furthermore we explain how these conformal

transformations can be used to analyse the structure of gravity. The super-



symmetrie extension of these results is discussed, in chapter 5 • Here we
describe as an example how N=1 supergravity can be reformulated in a confor-
mally invariant way. We also show that beyond N«1 the gauge fields of the
auperconfonnal symmetries do not constitute an off-shell f ield representation
of extended conforraal supergravity. Therefore we develop in chapter 6 a
systematic method to construct the off-shell formulation of a l l extended con-
formal supergravity theories with N £ k. As an example we use this method to
construct N=1 conformal supergravity. Finally, in chapter 7 we discuBs N=1t
conformal supergravity. The references can be found at the end of each chapter.
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CHAPTER I I

SUPERSYMMETRY

1 . In-taf o d u e t i o n

Supersymmetry i s a symmetry be tween f e rmions and b o s o n s . S ince bosons

carry an integral number of spin and fermions carry half integral spin, the
generators corresponding to this kind of symmetry are anticommuting, spinorial
operators. For conventional aupersymmetry the generators Qa are Majorana
(= real) spinors of spin 1/2, In a field theory bosons are described by
f ie lds , which, carry dimension 1 (in units of mass), whereas fermions are de-
scribed by fields with dimension 3/2. Therefore the generators Qa of super-
symmetry should carry dimension 1/2 to bridge the gap in canonical dimension
of boson and fermion fields. As for any symmetry the commutator (or, as here,
the anticcmmutator) of two symmetry generators should yield the generators of
another symmetry. In this case the anticommutator yields generators with
dimension 1/2 + 1/2 = 1, and the natural candidates for these are the (anti-
hermitean) generators P of translations. Indeed, the 3upersymmetry algebra
takes the form

with Y the Dirac Y-matrices.
The explicit form (2.1) of the supersymmetry algebra leads immediately to

important consequences. For example, i t implies that the Hamiltonian of a
3upersymmetric system is expressed by

(2.2)

For notations and conventions see appendix A.



Consequently» if negative norm states are absent, the energy should be positive

definite:

i > > 0 . (2.3)

Furthermore the energy of the ground state should be zero

< O|H|O > = o , (2.U)

if supersynmetry is realized manifestly, i.e. if the ground state is anni-

hilated by the operators Q:

> =, Q^|O > = 0 . (2.5)

Let us recall that bosons and fermions have an infinite zero-point energy,

which is positive for bosons and negative for fermions. More specifically, in

conventional quantum field theory, a bosonio degree of freedom for a system in

a finite volume yields a vacuum energy

0|H|0 > = \ £ « + < 0|a a*|o > , (2.6a)
k k k k

where (u = /kc-ha and a . a_̂  are the bosonic creation and annihilation opera-
tor for each kind of part icle. On the other hand two fermionic degrees of
freedom for a system in a finite volume are described by a Majorana spinor and
lead to a vacuum energy

< 0|H|0 > = - 2 J Ü)^< 0|d+ d^ |0 > , (2.6b)
k,a k k,a k,a

with d_̂  , d+ (a=1,2) the fermionic creation and annihilation operators of
k,a k,a



the two helicity atatea for the Majorana particle. Because of (2,1») the

boaonic and fermionic zero-point energies should be equal in absolute size.

Therefore the expressions (2,6a.,T5) imply that in a superaymmetric realization

the numbers of bosonio and fermionic physical states are equal- This means

that auperaymmetric field theories must be based on multiplets containing

boaon and fermion fields, which describe equal numbers of boson and fermion

states.

At this point we should add a word of caution. The above counting argument

does only apply to physical states or dynamic degrees of freedcm. It does not

give any information about the field degrees of freedom (we shall also use the

name spin degree of freedom), which are described by the fields contained in a

aupersymmatry multiplet. In section 5 we shall make it plausible that for the

off-shell formulations (these we discuss in section k) also the numbers of

fermionic and bosonic field degrees of freedcm are equal.

Mother important consequence of the auperaymmetry algebra (2.1) is that

I if auperaymmetry ia realized as a local symmetry, then the theory in question

j should be invariant under local translations. In other words, local super-

' symmetry requires invaxiance under general coordinate transformations and thus

. implies gravity» Theories with local supersymnetry are therefore called super-

gravity theories. The smallest supersymmetric extension of the Einstein

theory of gravity is called N=1 Poincaré supergravity and describes two spin-2

and two spin-3/2 dynamic degrees of freedcm. In extended supergravity, where

i one has N independent superaymmetriea present, the underlying multiplets de-

scribe more than 2+2 (bosonic + fermionic) dynamic degrees of freedom and have

a uare complicated structure.

In recent years many field theories have been constructed that are in-

variant under supersymmetry transformations. Such theories have been shown

to exhibit a number of surprising and interesting properties. One of them is

that the ultraviolet divergencies in the quantum corrections to these theories

are much softer than in theories without supersymmetry. The reason for this

property is related to the fact that boson loops and fermion loops come with

opposite signs, and because of supersymftetry this leads in many cases to direct

cancellations. An example of this phenomenon is the vanishing of the zero-

point energy in superaymmetric theories. Many examples of this softening of

; ultraviolet divergencies are known, and have inspired the hope that this pro-

| perty will be of crucial importance to construct a consistent quantum theory

I
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of gravity. Another interesting aspect of supersymmetric theories is that they
often give rise to quite unexpected new invariance properties» such as the
combined chiral-dual symmetries of field equations in extended supergravity,
the USp(2N) symmetry of massive supermultiplets, and the E^ invariance in N=8
supergravity. But perhaps the most important aspect of supersymmetry i s that
i t provides a unique principle for the unification of elementary particles and
the fundamental forces in Nature: super symmetry by definition ccrabines bosons
and fermions, and in i t s local version i t implies the existence of gravitation.

This chapter i s organized as follows. In section 2 we consider as a simple
example the Wess-Zumino model, which i s based on the smallest supersyrvitry
multiplet. In section 3 we give the N=1 Poineare supergravity theory. This
model describes the smallest supersymmetric extension of Einstain gravity.
The problem of how to find off-shell formulations of supersymmetric theories
i s discussed in section U. Here we give off-shell formulations of the Wess-
Zumino model and N=1 Poincarê supergravity. A counting argument concerning
field degrees of freedom is derived in section 5. Finally, in section 6 we
give the motivation for studying conformal invariance in supergravity theories.

2. The Wess-Zumino model

The Wess-Zumino model describes two spin-0 and two spin-1/2 dynamic degrees

of freedom. In a field theory such states can be represented by a complex

scalar field A and a Majorana spinor i|^. The Lagrangian for these fields is

given by

= A*DA - \ *'?i|i -m2A*A - l m (ififi1 + e - e ) , (2.T)

where m is an arbitrary mass parameter and the abbreviation c-c indicates that

the canpic-jc conjugated term is added. The symbol 3 denotes a differentiation

to the right and to the left: 3 = t - t . In (2.7) we have used the chiral

notation, in which chiral projections of Majorana spinors are denoted by a dot.

This notation is very useful in extended suyersymmetry, where N chiral spinors

combine into representations of U(N) . In that case the dot is replaced by

a u(N) index i (i=1..N), which uniquely characterizes the representation.

For mare details see appendix B.

11



If the positive chiral projection 1/2(i+y5)^ corresponds to the N represen-

tation of U(N) we use the (consistent ) notation

(2.8)

On the other hana, if 1/2(1+Y_)I||J falls in the N representation we write

(2.9)

In the Weas-Zamino model we use the notation given in (2.8) with on the left-

hand side the index i (i=i) replaced by a dot.

The action corresponding to the Lagrangian (2.7) is invariant under the

following set of supersymmetry transformations

(2 .10)

<Si|f* ~ JfA e - m A* e* ,

where e i s a spacetime independent (Majorana) spinor parameter, which charac-
terizes the supersymmetry transformation.

According to the supersynmetry algebra (2.1) the commutator of two super-
symmetry transformations must yield a translation. The infinitesimal form of
such a translation

(2.11)

For more details see appendix B.

12



on A (or i|i) is given by

O _ I E ) A = + E o A • \c.m\eL)

P u

Indeed, calculating the commutator of two supersymmetry transformations with

parameters e1 and Eg on A we find

with the t rans la t ion parameter £ given by

SU = è* YU en + c-c- . (2.1U)

•'•i
However a calculation of the same commutator on <p leads to an additional term,
which is proportional to the Dirac equation for i|> (by this we mean that this •
term vanishes after applying the Dirac eiuation):

- ~ t (*•" ***) • (2.15)

Therefore the supersymmetry algebra (2.1) is only realized on field configura-
tions that satisfy the field equations

Jty' + mt|i « 0 ,

(2.16)
(D - m2) A * 0

For this reason the multiplet (A.ij») i s called an on-shell representation of the I

3upersyametry algebra. Notice that the on-shell Wess-Zumino model contains \
2 field degrees of freedom for the complex field A and k field degrees of free- «
dom for the Majorana spinor t|»,,. 'J

\

13



A disadvantage of on-shell representations is that the transformation rules

and. the conawtator algebra are related to a given action. This hampers appli-

cations of such results in the context of different actions. For instance a

discussion of quantization and of supsrsymmetric counterteims is rather diffi-

cult in the context of on-shell representations. For that purpose it is con-

venient to use representations of the super symmetry algebra, which are not

related to any specific action at all. A central problem in supersyometry and

aupergravity is to find such representations. We will come back to this point

in section h, where we shall give an off-shell formulation of the Vfess-Zumino

model.

3. N=1 Poincarë supergravity

In this section we discuss N=1 Poincare aupergravity. This model describes

two spin-2 and two spin-3/2 dynamic degrees of freedom and is the smallest

supersymmetric extension of the Einstein theory of gravity. The physical states

can be represented by boson and fermion fields respectively. We give the

(nonlinear) transformation rules of these fields under spacetime-dependent

supersymmetry transformations and an action, which is invariant under these

transformations. Furthermore we calculate the conmutator of two [spacetime-

dependent) supersymmetry transformations on these fields. In analogy to the

Wess-Zumino model we find that on the boson fields this commutator yields a

(covariant) translation, whereas on the fermion fields the same commutator

leads to additional terms, which are proportional to the field equations of

the feimion fields. Before giving these results we first briefly review the

theory of ordinary gravity.

In the Einstein-Cartan version of gravitation the gravitational spin-2 state

is represented by a vierbein field e a, with the property that the metric tensor

is given by

e ae a
(2.17)

Contraction with a vierbein changes local Lorentz indices a into world indices p
and vice versa. These indices refer to the transformation character under
local (internal) Lorentz and general coordinate transformations respectively.



t

Under these transformations the vierbein field transforms according to ',

where E and e a are spacetime-dependent parameters, which characterize the

general coordinate and local Lorenta transformations.

An inverse.Tierbein field eW is defined in the following way:

u b „b
e e - o ,
a P a »

(2.19)
eu ea " y

Besides the vierbeiu, the Einstein-Cartan theory is based on a spin-connection
field u , which i s not independent. I t can be expressed in terms of e in
the following way :

Under local Lorentz transformations with parameters e this field transforms
according to

. ab - ab ac cb , bc ca
V u U u

= \ ^ . (2.21)

This transformation character explains the role of the spin-connection field: |

i t can be used as the gauge field of the local Lorentz transformations. The 1
curvature tensor of <u* is defined in the following way: 1

| -- _ _ y
F. The antisymmetrization notation [ ] i s explained in appendix A. \
t \

ï j
i

:. 15 ;



which transforms under general coordinate transformations as

«. = e el 6 . J

(2.25)

- e R(u(e)) . (2.26)

Here we have taken the gravitational coupling constant K equal to one. The
field equation of e corresponding to this Lagrangian reads:

2 e ( Ra " 2 e a R )

This tensor transforms covariantly under Lorentz transformations and can be

used for t.he construction of an invariant action. To that end one introduces

the curvature scalar

(2.23)

which is invariant under local Lorentz transformations and transforms under

general coordinate transformations as a scalar. In order to construct a

density one multiplies this scalar vith the determinant of the vierbein fieM

e = dst e a , (2.2U) \

5

In this way one obtains the following Lagrangian density i

16



where Ra - ev Rat and R is the curvature scalar. In this formulation one ran *w o uv 4
keep the spin-connection field as an independent field, because the Lagrangian '•'

is such that the corresponding field equations yield an algebraic equation for ",

w in terms of e a, which is exactly given by the defining equation (2.20). \

Having thus established the Einstein-Cartan theory, we proceed by dis- ,

cussing its minimal supersymmetric extension. To that end we introduce an ;
Vf

additional Majorana vector-spinor <|> to descrih

The free Lagrangian for this field is given by

Vf
additional Majorana vector-spinor <|> to describe the physical spin-3/2 state.

t ' Y 3 t , (2.28)

where we have used the chiral notation given in (2.8). The corresponding field

equation reads:

We note that the spinor R satisfies the chiral notation given in (2.9).

The Lagrangian is invariant under the following Rarita-Schwinger gauge trans-

formations

( 2 - 3 0 )

where e" is a spacetime-dependent spinor parameter, which characterizes the

gauge transformation. Under local Lorentz and general coordinate transformations

iji* transforms according to

In the N=1 Poincarê supergravity model this spin-3/2 field, the gravitino field, it

is coupled to the vierbein field of ordinary gravitation in the following way: I

17



-f
tino field;

(2.32)

Here Ö» (e,i|») i s the following expression in terms of the vierbein and gravi-

c -e . >• ( 2 ' 3 3 )

Furthermore we have used the Lorentz-covariant derivative

Va • (|p - i "fo*> •; • {2-3k)

The f ie ld equations of e a and i|i corresponding to this Lagrangian read

(2.35)

Again one can keep the spin-connection field ua as an independent field in
the Lagrangian, because i ts corresponding field equation yields an algebraic
expression in terms of ea and \p , which i s exactly given by (2.33).

The action corresponding to (2.32) i s invariant under the following set of
local siipersjnnmetry transformations:

- i e^ R) + (cU V p 0 %f^^ * e-c-) = 0

fiea » ë'

(2.36)

j where D is defined as in (2.31*) and e" is a spacetime-dependent parameter
I characterizing the super symmetry transformation. These transformation rules
| clarify the structure of u» (e,\|i): i t i s the super symmetric covariantization

18



of w ^ C e ) . To shov the invariance of the action defined by (2.32) one need j

not vary oi (e»«f») accoirding to the chain rule, since this variation is always |

multiplied by i

ï ^ r (e.*) H 0 , (2.37)

f.' where I denotes the action. !n this 3/2-order formalism» as it is called, one

i only varies the vierfcein and gravitino fields that occur explicitly in the

;: action hut not the ones, which result from expanding w* (e,t|>) in terms of e

;: and <|». The variation of the gravitino field yields the following term:

(2.38)

The commutator part of the Y-matrices leads to an expression, which, together ||

with the vierhein variation of the second term in (2.32), is proportional to

the Bianchi identity

V } 0 • (2-39)

The anticofflmutator part yields:

-2e (êYc*') (Rj -^eja) + e-e- , (2.U0)

which cancels against the vierfcein variation of the first term in (2.32).

We finally consider the commutator of two supersymmetry transformations

I with spscetims-dependent parameters e and s„ on the graviton and gravitino

I
I

19



field. Calculating first this commutator on e we find

+ o-c) , (2.

with ? defined in (2.1H). We recognize the f i rs t two terms on the right-hand
side as a general coordinate transformation of e a (cp, eq.. (2.18)). These terms
are therefore in accordance with the supersymmetry algebra (2.1), The last two
terms can be identified as field-dependent Lorentz and supersymmetry transfor-
mations with parameters e a = - £ «a and e" = - 5 ij»* respectively. These
terms are nonlinear modifications of the supersymmetry algebra. Such modifi-
cations are to be expected, since also the algebra of spacetime transformations
changes. For example, two local translations do in general not commute, while
global translations do. Tne nonlinear terms in (2.M) can be viewed as the
Lorentz and supersyrametry covariantizations of the f i r s t two terms. Therefore
by definition the right-hand side of (2.U1) is called a covariant translation

•; -+ *\<+(a/K
g.c . t ^ * %L^' ̂ X ^ + V " ?X*X) } ep » (2-1*2)

where 5 Q ^ , 4^ and 5Q represent general coordinate, local Lorentz and super-
symmetry transformations respectively and the derivative D is covariant with
respect to local Lorentz and supersymmetry transformations. A calculation of
the same commutator on i|> leads, in analogy to the Wess-Zumino model, to addi-
tional terms, which are proportional to the field eq.ua.tion of i|i (see (2.35)):

(V

20



; The f i r s t term on the right-hand side corresponds to a co-variant translation
t with parameter £ , whereas the remaining terms vanish upon use of the gravitino

• field equation R' * 0. For this reason the multiplet (e*, i|i ) i s called an
I on-shell supergravity multiplet. In the next section we shall give an off-shell
( formulation of the N=1 Foinearé supergravity theory. The field degrees of
I" freedom of the on-shell model are 12 degrees of freedom for \\> and 6 degrees
Is O

|, of freedom for e . These numbers are obtained as ̂ allows. The Rarita-Schwmger

'• field has a priori 16 degrees of freedom, which are reduced to 12 through the

'- gauge invariance (2.30), Similarly the vierbein field has 16 degrees of free-

;. dom. Ike gauge freedom implied by (2.18) reduces that number to 6 degrees of

)• freedom (corresponding to h general coordinate transformations and 6 internal

1 Lorenta transformations).

h. Off-shell formulations

In order to find specific applications of supersymmetric theories and to

acquire an understanding of their dynamical properties, it ia an obvious re-

quisite to clarify their structure. An essential element in such a clarifi-

cation ia the construction of representations of the supersymmetry algebra in

terms of fields, which do not necessarily satisfy field equations and hence

are not related to a given action. Such representations are called off-shell

representations. So far there exists no fixed procedure to construct these

off-shell representations. In fact most extended supergravity theories are

at present only known on the basis of an on-shell formulation. The disadvan-

tage of such a formulation has been explained in section 2. In this section

we shall give the off-shell formulations of the Wess-Zumino model and the N=1

Poincari supergravity theory.

We first reconsider the on-shell We3s-Zumino model discussed in section 2.

In this model the commutator of two super symmetry transformations on <|» yields

a translation together with a term, which vanishes upon use of the field equa-

tion of i|» (see eq.. (2.15)). Therefore the supersymmetry algebra (2.1) is only

valid for field configurations that satisfy the field equations (2.16). One

can however envisage a new variation of 4*, which circumvents this requirement.

The price one has to pay is that a new field H must be added to the on-shell

model, tore specifically, the field equation term - •= t (jfifr" + mtfi ) in (2.15)

21



can be cancelled by the following variation of i|>

<$** = He* , (2.MO

where the variation of H to W + ™\> ) nuat be

«H = ê « • ' + m* ) . (2.U5)

It should be noted that this cancellation can only by achieved by the intro-

duction of a complex scalar field. One can now verify that on all fields the

commutator of two supersyminetry transformations has the form (2.13) independent

of any field equation, '/or this reason the multiplet (A,t|i,H) is called an

of f-shell multiplet. One may wonder whether the presence of the mass parameter

m in the transformation rule of H is necessary. This parameter can be elimi-

nated by redefining H in the following way:

H - mA* . (2.U6)

In terms of A, * and F the transformation rules are

5A = ë > '

S<|i* • JfAe + Fe" , (2.UT)

«F = S ^ f

A Lagrangian for these fields is given by

£ » A DA - s" ?"?• + m(AP+c*oO - i m (J*i|i'+e*c') + F F . (2.U8)

22



An unusual feature is that the scalar field F describes no dynamical degree of

freedom, This field can be eliminated from the action by means of its field

equation

F = - mA* (2.U9)

without disturbing the invariance of the action. For this reason F is called
an auxiliary field. I t s only purpose i s to obtain a representation of the
supersymmetry algebra in tenns of f ie lds , which are not related to a specific
action. Upon substitution of the field eqiiationc (2.16) and (2.1*9) the off-
shell multiplet (A»t|f,F) reduces to i t s on-shell version (A»t|O .

Having thus explained how one can obtain an off-shell formulation of the
Wess-Zumino model, we proceed by showing how the cn-shell anpergravity multi-
plet (e , ip ) can be extended to such a representation. To that end one must
again introduce additional fields in order to cancel a l l field equation terms
in the commutator on é (see (2.1*3)). I t appears that these terms can be can-
celled by a transformation of i|i into a complex scalar field F and a vector

field A£:

J V \ + * V ' " 3 iY»Ae' * (2<5O)

where the transformations of F and A must be
9»

6F = | ëVR*
(2.51)

Here R" = 0 is the supercovariantized field equation of t|i :

R' = — c Y D *"

i V*; + 3
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We inote that in the presence, of F snd Aft the ponteibation ^J?u__*5 ^ c a a -

mutatorfln <|TisI given by;(2,l»3),but w i t h B ^ y ] Md ^ replaced by

fund ^ ' respectively.::^ nontrivial feature is that in the presence of F and Aft

the camautator algebra (2,Vi) gets nonlinear modifications depending on.these

fields. Beaides ^ coyariant translation the algebra sontaias "anladditional

Lorentz transformation;

with the parametex1 e given by

aa* TU - So <r" n;) + c-c , (2.5U)
.*.
t
I In this expression n* stands for

S

f n' a T (Fe + iAV) . (2.55)

't. After the introduction of F and A the commutator of two super symmetry trans-

• formations has on a l l fields the form (2.53) independent of any field equation.

5 Therefore the multiplet (e^,-i | i ,A a ,F) is the off-shell version of thejsuper-

l gravi ty mult iplet (e , * ) • 5toe transformation ru les of the f ie lds are

V'
(2.56)

J



A Lagrangian for these fields is given by

(2.57)

In analogy to the Wess-Zumino model, the fields P and A describe no dynamical

degrees of freedom. They are auxiliary fields. Upon substitution of their

field equations

F - 0 (2.58)

and those of e* and * , the off-shell supergravity multiplet (e*, I|I , A , P)

reduces to its on-shell version (e , tf» ) (cp. eq.(2.36)).

A closer study of the off-shell formulations presented in this section

shows that they are based on multiplets of fields describing an equal number

of bosonic and fermionic field degrees of freedom (d.o.f.). This is in con-

trast tö the corresponding on-shell multiplets, which contain different numbers.

More specifically the off-shell Wess-Zumino multiplet (A, \|J, P) contains h + k

(fermionic + basonic) field d.o.f. and the off-shell supergravity multiplet

(e , i|i , A , Fj contains 12 + 12 field d.o.f ..In the next section we shall

sbov that this e.juality of bosonic and feimionic field degrees of freedom is

a general property of öff-shell formulations. This off-shell counting, as it

is called, plays an important role in the discussion of auxiliary field formu-

lations of supersymmetric theories.

We finally note that off-shell formulations are often not unique. For

instance there exists another off-shell formulation of the N=1 supergravity

model, which also contains 12+12 field degrees of freedom. More specifically,,

one can obtain the same cancellation of field equation terms in the commutator

on ijî  as before by a transformation of i|i into an axial gauge (i.e. having a

gauge invariance) vector A end an axial vector E , which is divergence-free:

6A 3 A
U D.E (2.59)



Here D i s the Lorentz-covariant derivative. This then leads to another off-
shell supergravity multiplet (e\ * , A ,̂ Eft) with the same field degrees of
freedom. The transformation rules of these fields are

Se*

(2.60)

ÖE = - T- i ë* R + c«c-a 4 a.

These transformations are an invariance of the action corresponding to the

Lagrangian

- 2A.B). (2.61)

There evea exist more of f-shell formulations of the N=1 supergravity model.

However» these formulations are non-minimal in the sense that they contain

more than 12 + 12 field degrees of freedom. In extended supergravity the

situation is even vorse: many auxiliary fields are needed to close the commu-

tator algebra without using field equations and many i.nequivalent off-shell

formulations do exist.

5. Off-shell counting

As we remarked before, of f-shell formulations of supersymmetric theories

are based on ftnltiplets of fields describing an equal number of bosonic and

fermionic field degrees of freedom. In this section we show the underlying

idea of this off-shell counting, as it is called. To that end we first give

a counting argument concerning the field degrees of freedom, which are described

by a massless spin-1 vector field. After that we extend this argument to super-

symmetry multiplets as a whole.



The Maxwell theory of a massless spin-1 particle is based on a vector
field A (x). This field describes not h but 3 field degrees of freedom only
because of the Maxwell gauge transformations SA = 3 A, One can view A (x)
as a (reducible) so-called induced representation of the Poincaré algebra of
Lorentz transformations M and translations P;

[M , M ] = M 6 - M S - M S + M 5 = lM, 'P« n"' ,
* UV* pa vp MO w va va pp wo \>p [v ul

• ( 2 - 6 2 )

For more details on induced representations we refer to chapter k, where we

will consider the theory of induced representations in the context of the con-

formal algebra. Here we only give this as a result. To indicate which re-

presentations re contained in A (x) it is convenient to go to momentum space,

and to decompose A into the independent vecors p = (p.p^s p = (p.-Pjj) and

the two transverse polarization vectors et\ i=1,2. Of course p»e1=p»e1=0,

but p<pVo. In this decomposition A can be written as

AW(P) = a
i(p2)ej + b C p 2 ) ^ + c(p2)py . (2.63)

Each representation of the Poincare algebra i s characterized by the value of
2

the energy-momentum squared p and the spin s of the corresponding field d.o.f..
2

If p =0 the representation is called massless and the spin s contains two he l i -
c i t i e s . On the other hand if p /0 (but fixed) the representation is called

massive and each spin s contains 2s + 1 hel ic i t ies . In the following we iden-
2

t i fy "p arbitrary" with a massive representation. Furthermore we call the
? p

representation (p =m (o),s) a massive (massless) spin-s representation (or
multiplet) of the Poincare algebra. More specifically, in (2.63) the compo-
nents a carry helici ty t 1, whereas b and c correspond to helicity o. Because
of the Maxwell gauge transformations the component c along p corresponds to
a gauge degree of freedom. We can choose c arbitrary, but by taking c=b we
see explicitly that A corresponds to a spin-1 object. In an off-shell for-
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i

mulation A is not subject to a wave equation, but the gauge transformation is
U 2 i •

left. Therefore the energy-momentum squared p of the components a and b is

left arbitrary. This means that these field, degrees of freedom should form

massive representations of the Poincare algebra. Indeed, the components a

and b correspond to the 3 degrees of freedom of a massive spin-1 representa-

tion. On the other hand in an on-shell formulation A is subject to the field

equation

= 0 or p2Ap(p) - pHp.A(p) = 0 , (2.6U)

which implies for a1 and b

j + (p2b)pw - (bp.p)pu = 0 . (2.65)

From the independence of the vectors e , p and p we deduce that b must vanish
2 i 2

and that the value of p of the remaining components a (p ) i s restricted to
light-l ike values only. Therefore in this on-shell formulation the relevant
counting is based on massless representations which implies 2 degrees of free-
dom corresponding to a massless spin-1 multiplet.

For the same reason a spin-s massless field Should at least describe 2s + 1
field degrees of freedom, which should form a massive spin-s multiplet, if we
don't invoke field equations. I t i s known that far s > 1 this is not yet
sufficient far a Lagrangian description of high-spin f ie lds . We have already
seen an example of t h i s . The Einstein-Cartan description of a massless spin-2
particle (see section 3) is based on the vierbein field e a . This field de-
scribes 6 degrees of freedom, which form a massive spin-2 and spin-0 represen-
tation of the Poincaré algebra.

From the above we see that off-shell fields have in general mare degrees
of freedom than on-shell fields. These degrees of freedom are at least those
of massive representations, but possibly combinations thereof. A similar s i -
tuation arises for off-shell supersymmetry representations. They will be com-
posed of various massive on-shell supersymmetry representations.

We extend the above counting arguments to supersymmetry multiplets as a
whole. To that end we f i r s t have to know what the massive and massless



representations of the super-Poincare algebra are. By this we mean the algebra

of Poinearé transformations (Lorentz transformations V. and translations P) and

supersymmetry transformations Q, which ia given by (2.62) together with:

o ) (2.66)

= o

The representations of this super algebra can be classified in the same way as

this ia done fear the Poincarê algebra. For more details we refer the reader

to the literature (see references). To indicate which representations are

described by the field components of a supersynmetry multiplet it is again

convenient to perform a Fourier transformation on these fields. Each repre-
2

sentation is characterized by the value of the energy-mementum squared p and

the so-called superspin S. Each superspin S corresponds to a number of integer

and half-integer (ordinary) spins s in such a way that the numbers of integer

and half-integer helicities (or spin d.o.f.) are equal. We have listed sane

representations in the table.

spin-s (super)multiplet

2

3/2

1

1/2

N=1 massive representations

dynamic d.o.f.

(2,3/2,3/2,1)

(3/2,1,1,1/2)

(1,1/2,1/2,0)

(1/2,0,0)

8 + 8

6 + 6

k + h

2 + 2

N=1 massless representations

dynamic d.o.f.

(2,3/2)

(3/2,1)

(1,1/2)

(1/2,0,0)

2

2

2

2

+ 2

+ 2

+ 2

+ 2

table. N=1 massive and massless representations of the super-Poincarê algebra.

The numbers between brackets denote the spins contained in each repre-

sentation. Furthermore we have indicated the number of (bosonic + fer-

mionic) dynamic d.o.f. described by tha representation.
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We may now use the sane counting arguments as before, but now in the context
of a whole supersymmetry multiplet of f ields. In an off-shell formulation the

field components of such a multiplet are not subject to generalized wave equa-
2

t ions . Therefore the energy-momentum squared p is left arbitrary and a l l
field degrees of freedom should form massive representations of the super-

Poincaré algebra. On the other hand, i f the fields satisfy field equations,
2 2

i t is possible that the value of p i s restricted to l ight-l ike values p =0,
as we have seen before. In that case these field, conponents form massless r e -
presentations of the super-Poincaré" algebra. If an arbitrary mass parameter

2 ? 2
m i s present the value of p can be fixed by p =a, . Of course, the corres-
ponding fields should then form massive representations. One can now under-
stand why an of f-shell multiplet contains an equal number of liosonic end
fermionic field degrees of freedom. This is a direct consequence of the fact
that these field degrees of freedom form massive representations of the super-
Poincara algebra, which contain equal numbers of integer and half-integer spin
degrees of freedom.

To clarify the above arguments we conclude this section by giving some
explicit examples. First we consider the Wess-Zumino model. An off-shell
formulation of this model is based on the fields A, F and if), which describe
k + k field degrees of freedom. The table shows that these fields fa l l in two
massive spin-1/2 multiplets. The reason that we have two of these multiplets
i s that the multiplet (A,i|i,F) is a complex representation. This is not special
for supersymmetry and is related to the fact that the spinor f i s a complex
representation of the Poincaré algebra: in addition to i|>* we have the complex
conjucate spinor i|i of opposite chiral i ty. A real i ty condition is given by
the massive Dirac equation, which relates i|i' to i|i . However this condition
puts the multiplet on-shell, since by supersymmetry the following equations
are related:

( D - m 2 ) A = 0 , (2.6T)

F • - mA
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Therefore the on-shell version of the Wess-Zumino model is based on A and t|/
2

only. The field equations restr ic t the value of p of these components to
p2=m and res t r ic t the a priori k degrees of freedom of ifi to two (the latter
step was not taken in section 2 when we counted the degrees of freedom of iji).
This means that A and t)i form a massive spin-1 /2 multiplet. Another example
is provided by the N=sl supergravity model. The two minimal of f-shell formu-
lations (e a , <|», A , F) and [Q* * , A , E ) are both based on 12 + 12

u ]x a H H H ft

field degrees of freedom. The table shows that the field components of the
f i r s t multiplet f a l l in a massive spin-2 and two massive spin-1/2 multiplets,
whereas those of the second one fal l in a massive spin-2 and spin-1 raultiplet.
On the other hand in the on-shell formulation (e*, <|i ) there are 2 + 2 field
degrees of freedom, which form a massless spin-2 multiplet.

6. Conformal super symmetry

Even if we have the possibility of choosing an off-shell formulation of e
supergravity multiplet, there are substantial complications caused by the non-
lineari t ies present in invariant actions and transformation rules . These non-
linear modifications, which also occur in ordinary gravity, induce corresponding
modifications in the commutator algebra. We have seen an example of this in
section U: the commutator algebra of the N=1 supergravity multiplet contains
besides a covariant translation an additional Lorentz transformation depending
on the auxiliary fields F and A_. In extended supergravity those nonlinear
modifications become more and more complicated because of the large numbers of
auxiliary fields present in these theories.

Another disadvantage is that there exist different off-shell formulations
of one on-shell supersymmetry multiplet. Por instance, we have seen that there
exist two minimal off-shell formulations of N=1 Poincarê supergravity, which
are inequivalent, whereas there exist non-minimal off-shell formulations as well.

To explain the structure of a l l these inequivalent off-shell formulations
i t i s very useful t o introduce the idea of conformal supergravity or Weyl multi-
p le t . By definition the *?eyl multiplet is the smallest irreducible (with respect
to the Poincarê algebra) multiplet, which contains the gravitational spin-2
degree of freedom. In ordinary gravity the vierbein field describes 6 degrees
of freedom, which f a l l in a massive spin-2 and spin-0 representation of the
Poincarê algebra. In chapter h we shall show how this vierbein field can be
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I
decomposed into i ts irreducible components by introducing the conformal trans- J

c formations. In this ease the irreducible part containing the spin-2 degree |

Ï of freedom is called the conformal gravity multiplet. In chapter 5 we shall i

I show how in the same way each Poincare supergravity multiplet can be decom- 1

I posed into i t s irreducible components by introducing the superconformal trans- •;

• formations, which are the supersymmetric generalisation of the conforraal sym-

; metriea. In this way each of f-shell Poincarê supergravity multiplet decomposes

j into the Weyl multiplet and a number of additional so-called compensating

• supermultiplets. Inequivalent off-shell formulations of Poincare supergravity

j differ in the choice of compensating multiplets but always contain the Weyl

) multiplet. Hence the Weyl multiplet constitutes the backbone of a l l inequi-

' valent off-shell formulations. For instance the two minimal 12 + 12 off-shell

formulations of H=1 Poincare supergravity both decompose into the 8 + 8 N=1

! Weyl multiplet containing the gravitational spin-2 degree of freedom, but they

i differ in the k + U compensating supermultiplets.

I By introducing coaforaal invariance in extended supergravity one also makes

• clear the structure of the nonlinear modifications in the transformation rules
j:: •

| and commutator algebra. The reason of this is that the presence of the confar-

..;' mal symmetries put stringent conditions on these nonlinear modifications.

i- Consequently the superconformal invariants far the multiplets have a simpler

form.

1 In a superconfcrmal formulation one still keeps the option of discussing

v Poincare supergravity, since this is based on a subcase of the superconformal

;.;'• symmetry. The transition form superconformal to Poincare theories is achieved

; by making appropriate gauge choices in the superconformal formulation thereby

{ reducing the gauge invariance to those of the super-Poincarl theory. In this
1 sense the superconformal field representation is gauge equivalent to that of

Poincare supergravity.

It is the purpose of this thesis to explain how the above ideas are applied

; in supergravity. As a first step we shall therefore explain in the next chap-

ter how one can always achieve the irreducibility of a multiplet by introducing

additional gauge invariances. More specifically, we shall show in detail how

this can be done for massive vector fields.
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CHAPTER I I I -}

GAUGE EGpIVAIiBNT FORMULATIONS

1, Introduction

In the previous chapter we have argued that the complexity of supergravity
makes i t advantageous to use superconformally invariant formulations. The
super canformal symmetries are introduced in order to separate the irreducible
part of a supergravity multiplet containing the spin-2 degree of freedom. This
part is called the Weyl multiplet and constitutes the backbone of a l l inequi-
valent off-shell formulations of extended Poincaré supergravity theories.

In order to explain how one can always decompose a multiplet into i t s i r r e -
ducible components by introducing additional gauge invariances, we show in this
chapter how this can be done for vector f ields. A massive vector field W
(the Broca field) describes four field degrees of freedom, which form a massive
apin-1 and spin-0 multiplet. One may introduce gauge invariance to separate
th i s field into i t s irreducible components. In this way one obtains 'a gauge
invariant reformulation of the theory, which i s related to a description of a
massive vector field given by Stueckelberg forty years ago. On the other hand
a massless vector field A is already irreducible. This i s so because A de-
scribes not U but 3 field degrees of freedom owing to the Maxwell gauge trans-
formations SA - B^A. These degrees of freedom form a massive spin-1 multiplet.

This chapter i s organized as follows. In section 2 we explain how the Proca
field may be decomposed into i t s independent constituents by introducing gauge
invariance. In section 3 we show how the same can be done for massive vector
fields in the adjoint representation of any group G. In particular we discuss
an example with G = SU(°). Finally, in section h we consider an example with
massive vector fields in the adjoint representation of SU(2) interacting with
a scalar field p. Furthermore we show under which conditions this example i s
related to the usual Brout-Englert-Higgs mechanism.



2. The Stueckelberg model

In this section we consider a theory of a massive vector field W :

Here m is an arbitrary mass parameter and G has the form

G = 3 W - a w . (3.2)

Because of the presence of the mass term the lagrangian (3.1) is not invariant

under gauge transformations of the form <5W = 3 A. However we may obtain a

reformulation of this Lagrangian, which is gauge invariant. To that end we

introduce a scalar field $(x)> which transforms under a gauge transformation

with an inhcmogeneaus term

5+(x) = mJV(x) (3.3)

and therefore does not describe a new degree of freedom. Furthermore we intro-
duce a gauge field A , which transforms according to

(3 A)

This field can be used to define a covariant derivative of $:

V B V "^u • (3-5)

To avoid new degrees of freedom we may relate the gauge field A to the
massive vector field W , which does not transform under the gauge transformation.
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To this end we impose the following gauge invariant condition on A :

W a - - D * » A - — 3 * • (3.6)
W m v* w m u

This relation between A and W allows us to reformulate the Lagrangian (3.1)

in the following way:

£ a - K » ( A ) - ? (V ) 2 • (3-7)

This Lagrangian is invariant under the gauge transformations specified by (3.3)

and (3.U).

By performing the above manipulations we have related the Lagrangians (3.1)

and (3.7) to each other. The first theory is based on a massive vector field

W , which describes four field degrees of freedom. On the other hand the se-

cond formulation has a gauge invariance and is based on a gauge field A , which

describes not k but 3 field degrees of freedom, and a scalar <J>, which describes

one field degree of freedom. The gauge field A forms a massive spin-1 multi-

ple t, whereas <fr corresponds to a massive spin-0 multiplet. Hence in (3.6) we

have effectively deconposed W into its independent components A and <f>. In

this formula we recognize the second term on the right-hand side as a gauge

transformation of A parametrized by $. This gauge transformation term is

essential to relate the gauge invariant field W to the noninvariant field A :

it compensates for the gauge transformation of A such that the right-hand side

of (3.6) is gauge invariant. For this reason the scalar $ is called a compen-

sating field. In the next section we shall explain how this procedure of de-

composing W into its independent constituents by introducing a gauge invariance

and a compensating field may easily be extended to include massive vector fields

in the adjoint representation of any group G as well. Before doing this we

shall first discuss in this section the relation between the Lagrangians (3.1)

and (3.?) in more detail.

The equivalence of the Lagrangian (3.7) to the original formulation (3.1)

can be seen by reabsorbing the dependence on 4> into the definition of A

through a ̂ -dependent gauge transformation. This is simply a reversion of the



argument that led to (3.7) . Alternatively one could make a choice of gauge.

A suitable condition i s

+(x) • 1 . (3.8)

With this choice we find

(3.9)

and the Lsgrangian (3.T) reduces to the form (3.1). In this gauge i t is easy
to give an interpretation of the particle spectrum of the theory, because the
gauge degree of freedom <|>(x) is no longer present. The condition (3.8) is
called the unitary gauge. One easily deduces from the form of the massive pro-
pagator

JL + m

that i t s residue vanishes upon contraction with k . Hence 3 physical degreas
of freedom are propagating corresponding to a massive spin-1 part icle.

The reformulation (3.7) was f i r s t used by Stueckelberg in order to improve the
high-energy behaviour of the massive propagator A (W). In the limit for large
momenta this propagator behaves as a constant and therefore leads to divergent
loop diagrams. To obtain a propagator with an improved behaviour i t is con-
venient to impose in the reformulation (3.7) the Lorentz condition

V S . " 0 • (3>11)

To calculate the propagators in this gauge we add the following gauge fixing
term to the Lagrangian (3.7):

(3.12)
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The propagators corresponding to the modified Lagrangian are given by

In the limit a •* ™ these propagators are called the propagators in the Landau
esage. In the limit for large momenta the expressions (3.13) and (3.1*0 both
behave as 2—, In the gauge (3.11) one can apply the standard methods of renor-
malization theory. On the other hand this gauge is complicated in that the
fields A and $ do not individually have a direct physical meaning. In par t i -
cular the gauge-dependent poles at k s ~ ( 7T ) in (3.13) and (3.1*0 are un-
physical and should cancel out in any actual calculation of observaties. To
obtain a correct interpretation of the particle spectrum one must calculate the
propagation of A and <fr between physical sources. In doing so the gauge-depen-

dent propagators A (A) and A($) recombine into the gauge-independent massive
propagator A

UV(W) in the following way:

V,(V)-A (A) +-«g*a(*) . (3.15)
m

Therefore only A and <fr together represent the three polarizations of a massive
spin-1 state.

An important benefit of a gauge invariant reformulation is that i t presents
a convenient way to relate different field representations to each other. For
instance the inequivalent formulations (3.1) and (3.12) can both be viewed as
constructed out of the gauge invariant reformulation (3.7) after imposing
different gauge choices. Of course, the relation between these inequivalent
formulations can also be made explicit by making field-dependent rede f ini t ions,
but in the general case these redefinitions can be quite complicated.

One could ask oneself the question whether also the Maxwell theory of a
massless vector field can be viewed as the gauge invariant reformulation of a
theory without gauge invariance. If one restr ic ts oneself to work within the
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framework of a local field theory, one cannot impose gauge conditions like the

Lorentz gauge 3 .A = 0 '. With this restriction, a formulation without gauge ^

invariance does exist, t>ut such a formulation has no manifest Lorentzcovariance.

A convenient gauge condition is the light-cone gauge, in which one of the-

light-cone coordinates

(3,16)

i s set equal to zero. Here 0 and 3 label the time and longitudinal directions

respectively. This gauge has been used by Dirac fifty years ago, when dis-

cussing canonical quantization on a iightlike plane. An advantage of this

gauge is that gauge degrees of freedom are no longer present, but i t has the

obvious drawback of losing manifest Lorentz covariance.

3. Massive vector fields in the adjoint representation of a group G

The procedure outlined in the previous section can easily be adjusted to

massive vector fields in the adjoint representation of any gioup G. In this

section we first indicate how this can be done. We next work out in detail an

example with G = Sll(2).

In the general case we consider a theory of massive vector fields W in the

adjoint representation of G (we may think of G as a group of n x n matrices):

Wu

I

with V a group element of G and W a Lie algebra valued field. Because cf the
2 2

presence of a mass term Tr(m W ) the Lagrangian for such fields is not invariant

under gauge transformations of the form

Wu * w i =U(x) wu
u~1(x) + OpU(x))u"

1(x) , (3.18)

See for instance C.Itzykson and J.B.Zuber, Quantum Field Theory, McGraw-Hill,

1980.
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where U(x) forms for every point in spacetime & group element of G. However we

may obtain a reformulation of the Lagrangian, which is invariant under such

transformations. These local G transformations are not the spacetime-dependent

extension of the original rigid transformations (3.17) and act on a different

kind of indices, (It means that by taking constant parameters we get a global

G transformation, which is different from the original one.) Therefore we call

this group of gauge transformations local G to distinguish it from the group

rigid G of global G transformations, which act on W according to (3.17)- To

obtain this local G invariant reformulation we introduce, in analogy to the

Stueekelberg model, scalars *(x) which form spacetime dependent group elements

of G. Under local G transformations these scalars are multiplied to the left

by a group element U(x) of G:

*(x) •*• *'(x) = U(x)*(x) (local G) (3.19)

and therefore they do not describe new degrees of freedom. Under rigid G trans-

formations they are multiplied to the right by an element Z of G according to

*(x) + ••(*)= *(x)Z"1 . (rigid G) (3.20)

Moreover we introduce Lie algebra valued gauge fields A of the local G trans-

formations. The transformation character of these gauge fields is given by

(3.18) with W replaced by A . These gauge fields enable us to define a co-

variant derivative of * in the following way:

This covariant derivative transforms hanogeneously under both local and rigid G

transformations if we take the gauge fields A inert under rigid G:

V * %*>' • U(x)(Dy*) , (local G)

V
(3.22)



To avoid new degrees of freedom we want to relate the gauge fields A to

the massive vector fields W . However, this is not trivial because of the

different transformation character of these fields under local and rigid G.

An essential role in relating A to W is played by the covariant derivative

of $• The transformation character of this covariant derivative is given in

(3.22), Out of this derivative we may construct a local G invariant by multi-

plying it with the inverse group element *" of * to the left. The resulting

expression • D * has the same transformation character aa W under rigid G

if we identify the group elements V and Z in the transformations (3.17) of W

and (3.20) of $ respectively. Therefore we may relate A to W in the follo-

wing way:

(3.23)

Substituting this expression into the Lagrangian for W one obtains a reformu-

lated Lagrangian in terms of A and * which is invariant under both local and

rigid G transformations specified by (3.18) (with W replaced by A ), (3.19) ̂

(3.20).

The relation (3.23) may be interpreted in the same way as eq.(3.6) in the

Stueckelberg model. On the one hand the massive vector fields W describe kïï

field degrees of freedom (N is the dimension of G), which form N massive spin-1

and N massive spin-0 multiplets. On the other hand the gauge fields A describe

not U'S but 3H field degrees of freedom owing to their transformations under

local G. These degrees of freedom form N massive spin-1 multiplets, whereas

the raaaining N spin-0 multiplets are represented by the scalars *(x). There-

fore eq.(3.23) can be viewed as an effective decomposition of the fields W

into their independent components A and *. The second term on the right-hand

side of this equation plays the same role as the (3 ó)-term in eq.(3.6). This

term xs a gauge transformation with parameter * of the A -dependent term in

(3.23). It compensates for the gauge transformations of this A -term such that

the right-hand side of (3.23) is invariant under local G. Hence the scalars *

play - just as the scalar $ in the previous section - the role of compensating

fields.



We will now give an explicit example with G=SU(2). We consider a theory of

massive vector fields in the adjoint representation of SU(2) corresponding to

the Lagrangian

•£ s 2 Tr ( -r G2 (W) + ̂  m 2 W 2 ) . (3.2U)

Such vector fields can be written as a linear combination of the three generators

T. of the Lie algebra of SU(2):

Wu s K Ti (i=U2,3) . (3.25)

The generators are antihermitean traceless matrices, which satisfy the commuta-
tion relations

- eijk \ ( 3 ' 2 6 )

and may be normalized according to

- - ^ « j j . (3.27)

An explicit representation is provided by the three standard Pauli matrices T. :

\ =|̂ i . (3.28)

The tensor G in (;!.2U) has the form



In terns of Ŵ  =» (W .̂W .̂V )̂ the Lagrangian i s given by

where the curvature tensor G V00 has the form

The Lagrangian (3.2**) is invariant under rigid SU(2) transformations speci-
fied "by (3.1T) with V a group element of SU(2), i . e . V is a unitary matrix with
unit determinant. To obtain a local SU(2) invariant reformulation of this La-
grangian we introduce 3 compensating saalars *(x), which form for every point
in spacetime a group element of SU(2). This means that *(x) is a unitary matrix
with unit determinant and spacetime-dependent matrix elements. Such a matrix
satisfies a nonlinear constraint

(x) *(x) = % . (3.32)

This is in contrast to the Stueckelberg model, where the compensating scalar

<Kx) satisfies no constraint at all. At the end of this section we show that

this constraint implies non-polynomial interactions.

Under local and rigid SU(2) transformations the scalars *(x) transform

according to (3.19) and (3.20). We may introduce gauge fields A of the local

SU(2) transformations as before. These gauge fields take values in the Lie

algebra of SU(2). Therefore they are 2x2 antihermitean traceless matrices,

which can be written as

(3.33)



They can tie related to the vector fields W by eq..(3.23). Substitution of this

relation into the Lagrangian (3.2H) leads to a reformulated Lagrangian in terms

of A and * given by

£ = 2 Tr ( |oJv(A) - | a 2 (D,*)1"^*)) . (3.3»0

This lagrangian is invariant under local SU(2) transformations specified by

(3-18) (with A instead of Wy), (3.19) and (3.20).

The equivalence of the reformulation (3.3*0 to the original form (3.2U) can

be made explicit by making a choice of gauge. A suitable condition is the uni-

tary gauge

*(x) = i> . (3.35)

After imposing this choice we find

and the Lagrangian (3.3U) directly reduces to the form (3.2U). Besides the

SU(2) gauge transformations the Lagrangian (3.3*0 is invariant under a set of

global transformations, which include the original rigid SU(2) transformations.

More specifically these global transformations are given by the original rigid

StJ(2) transformation with parameter V together with a special local SU(2) trans-

formation with constant parameter U(x)=W. These combined global transformations

act on A and * according to

(3.37)
w*V~1

kk



Clearly only the special global transformations characterized by W=V leave the
gauge condition $= % invariant and hence are also an invariance of the resul-
ting Lageangian (3.2*0. These special global transformations are different
from the original rigid SU(2) transformations. They are specified by a so-
called deccmposition ru le , which holds on A ~ W :

(rigid SU(2))'(V) = (rigid SU(2))(7) 8 (local SU(2))(U(x) = V) . (3.38)

Here we use a notation, where (rigid SU(2))(V) denotes a rigid SU(2) transforma-

tion with parameter V and (local SU(2))(U(x)=V) denotes a special local SU(2)

transformation with parameter U(x)=V. A decomposition rule like (3.38) is

typical for theories in which a symmetry has been broken down to a smaller one

by means of a gauge choice. For instance in the standard Weinberg-Salam model

a SU(2) 8 U(1) gauge symmetry is broken down to a U(1) symmetry. After imposing

the SU(2) gauge condition, the remaining U(1) symmetry is not given by the U(1)

factor in SU(2) 8 U(1) but by a combination of this U(1) factor and the U(1)

subgroup of SU(2).

To make the non-polynomial interactions defined by the Lagrangian (3.3U)

explicit, we write the sealers *(x), which are 2x2 unitary matrices with unit

determinant, in the following way:

l + fï(x).T , (3.39)

where the real functions a(x) and $(x) are restricted by the relation

a2(x)

In terms of o and | the Lagrangian (3.3U) reads



Here ve have defined

The structure of the SU(2) covariant derivative D follows from the transforma-

tion rules of a,$ and A under infinitesimal local SU(2) transformations:

i»(x) x % + ou(x) , (3.U3)

5A

where u(x) are the parsnieters characterizing these transformations. We now

solve a in terms of $ and perform the following field redefinition:

The Lagrangian then takes on the following form

;\

with the SU(2) covariant derivative D ^ of ̂ » given by

In this form the non-polynomial interactions are manifest. In the next section

we discuss a set of models, where such interactions are avoided.



k. The Brout-Englert-Higgs mechanism

The non-polyncmial structure of the massive SU(2) model considered in the

previous section shows the lack of renormalizability of this example. We stress

that independent of the fact whether this theory is renormalizable or not one

can always achieve the irreducibility of the massive vector fields W by intro-

ducing SU(2) gauge transformations. The reason that the local SU(2) invariant

Lagrangian (3,1*?) contains non-polynomial terms is that the compensating scalars

$(x) satisfy a nonlinear constraint. In this section we show how such a con-

straint can he avoided toy extending the massive SU(2) model to include an addi-

tional scalar field p(x) as well. This field p shall he absorbed into the

definition of * such that the compensating scalars satisfy no constraint anymore.

More specifically, we shall construct a whole set of models describing massive

vector fields W in the adjoint representation of SU(2) and a real scalar field

p» which can be reformulated in a SU(2) gauge invariant way without introducing

non-polynonial terms. Moreover we shall indicate the subset of these models,

which correspond to renormalizable theories.

We consider the following extension of the massive SU(2) model (cp. (3.2U)):

= 2 Tr { £oj;v(W) + f(p
2)W2 ) + g(p2)Ovp)

2 + V(p2) . (3.UT)

Here we have used the same notations as in the previous section. The function

g(p ) is arbitrary. We assume that the potential function V(p2) reaches its

minimum for P=Pm^n- The vector fields W acquire their mass through their

interaction with p. Therefore we require that the function f(p2) satisfies the

relation

f ( p m i n ) = l K • (3.U8)

To separate the vector fields W into their irreducible components we may per-

form the same manipulations as in the massive SU(2) model. Using the same de-

finitions the Lagrangian (3.U?) takes on the following gauge equivalent form:

£ = 2 Tr ( |G 2
V(A) - f(p

2)(DM*)
+(D •)) + gtp2)(app)

2 + V(p2) . (3.U°)



At this point we have already succeeded in decomposing W into the independent

components A and <j>.

The 3 compensating scalars $(x)t which are present in the Lagrangian (3.^9)

satisfy the nonlinear constraint (3.32). Therefore this Lagrangian would con-

tain non-polynomial terms if p were absent. However the presence of this

scalar p enables us to avoid the constraint on *. An obvious way to achieve

this is to redefine *(x) in terms of unrestricted fields H(x) according to

H(x) = p(x)*(x) . (3.50)

After this redefinition p is identified as the norm of H:

H+(x)H(x) = p2(x) \ (3.51)

and in this way a constraint of the form H H = H is avoided. The general form

of the matrices H is given by

H(x) = i (HQ

i / H o + i H3 i H 1 + H
2 \

8 1 * 1 - « 2 H o - i H
3 )

A SU(2) covariant derivative of H is given by

(3.52)

= ( 3 U " 2 V T ) H * ( 3 ' 5 3 )

In terms of these unrestricted fields the Lagrangian (3.^9) takes on the follo-
wing form:

U8



f( i

+ 1 g( l
<HfH> 8 2

C3.5U)

Here the trace of the matrix H H is denoted by<H H>and the same for all other

2x2 matrices. The gauge equivalence of this Lagrangian to its original form

(3.UT) can be made explicit by imposing the unitary gauge

H(xO * P(X) 1. . (3.55)

Substituting this condition into (3.53) we find

- f P Wu-t (3.56)

and (3.5*0 reduces to the form (3.^7). In this way we have reformulated a whole
set of models describing massive vector and scalar fields in a gauge invariant
way without introducing non-polynomial terms.

In the formulation (3.5*0 we may now apply the standard methods of renor-
malization theory to investigate which restrictions must be imposed on the
functions f, g and V in order to obtain a renormalizable theory. This subset
of renormalizable models is characterized by the property that the corresponding
Lagrangian has no coupling constants with negative dimensions. Here the dimen-
sion of the Lagrangian i s equal to four» while each derivative i s counted as a
dimension 1 object. This implies that the dimension of A is equal to one. If
we also take the dimension of H equal to one, the functions f, g and V are
restricted to the form

f ( < H + H » = a + g<H+H>

g(<H + H» * Y , (3.5?)
V(<H+H>) = «<H+H>+ E < H + H > 2



where a» B» Y» 5 and e are constant parameters. Because of (3.^8) these para-

meters are restricted by the relation

a - £& = - m 2 . (3.58)

In this restricted form the mechanism of gauge equivalent formulations (for

noa-aoelian groups) has f i r s t been used by Brout» Englert and Higgs in order

to prove the renoraalizability of this subset of models.

5, Conclusions

By means of sane simple examples ve have sham how one can always achieve
the irredueibility of massive vector fields by introducing additional gauge
transformations. In the gauge invariant reformulation one s t i l l keeps the
option of discussing a theory of massive vector fields since one can always
remove the gauge invariances by imposing a number of gauge conditions. In
this way one constructs theories within the context of a higher symmeti-y which
are gauge equivalent to theories with less symmetry.

Par massive vector fields in the adjoint representation of a non-abelian
group G the gauge invariant reformulation contains non-polynomial terms.
Such terms can be avoided by introducing additional scalar fields into the
model. Once these terms are absent one may apply the standard methods of
renarmalization theory and investigate which restrictions must be imposed to
obtain a renormalizable model. In this thesis we shall use gauge equivalent
formulations only within the context of classical field representations. We
shall not bother us about the quantum properties of the theory.
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CHAPTER IV

CQHFQSMM» SÏMMETRÏ

1. Introduction

In order to apply the ideas presented in the previous chapter to massless

spin-2 fields i t is necessary to introduce conformal gauge transformations,

ïïhe gravitational spin-2 state is represented by a metric tensor field g (x).

This tensor transforms under an infinitesimal general coordinate transformation

(g.e.t.)

x u - UM)' «x11 - Cu(x) , (U.I)

with parameters E (x), according to

Using the definition of the Christoffel symbols

i t is easy to rewrite this transformation in the following way:

fig.c.t.

where E = g E and the covariant derivative is given by



The general coordinate transformations (UA) are of the same type as the Maxwell

gauge transformations 6A =3 A. Owing to these transformations the symmetric

tensor ĝ  does not describe 10 but (1Q-U)=6 field degrees of freedom, which

form a massive spin-2 and spin-0 representation of the Poincare algebra. In

the conformally invariant reformulation g ^ is replaced by a redefined field

(g )°» which transforms

te meter u(x) according to

\ (g )°» which transforms under an additional gauge transformation with para-
e

Therefore (guy)C describes (1O-U-1)=5 field degrees of freedom only, corres-
ponding to a massive spin-2 representation of the Poincare algebra.

Before showing explicitly how one may reformulate the theory of gravity in
a conformally invariant way, we consider in the f i rs t part of this chapter the
conformal transformations in a more general context. We recall that in special
re la t iv i ty a particle i s described by a point moving along a world line
x =x ( T ) . Here x is a local coordinate system and T is the proper time, which
is defined by (we use the Pauli metric 6 =diag(+,+,+,+)):

dx2 = 6 dxP dxV . (U.7)

Under a general coordinate transformation (U.1) we have d-r' =6' dx1 dx1 , where

6' i s obtained from (U.2) by replacing g by 6 . Covarisnce implies d i ' =dx .

There exists a subclass of general coordinate transformations, which leaves the

form of the proper time invariant, i . e . :

V =~

That happens to be the case for the Poincare spacetime transformations
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where aV is a constant four vector and L is a Lorentz rotation matrix. One may

investigate whether the Poincare transformations can be extended to a larger

group of spacetime transformations, which leave the form of the "proper time"

dT tQ (massive particles) or dt =0 (massless particles) invariant. It appears

that for massless particles this is indeed possible. In that case equation

(U.8)? which is satisfied by Poincsrê transformations only, may be replaced by

the weaker condition

where a(x) is an arbitrary function of the coordinates. This is equivalent to

the requirement that 6 transforms according to (U.6). One easily verifies

that the transformations characterized by (U.10) leave only "angles" invariant.

Therefore they are referred to as conformal transformations and the corresponding

group is called the eonformal group. In this way one can view conformal in-

variance as the highest degree of spacetime symmetry that a theory without a

mass parameter (or more precisely without a dimensionful parameter) can have.

This chapter is organized as follows. In section 2 we derive the explicit

form of the conformal transformations and discuss some of its properties. In

section 3 we use the technique of induced representations to construct repre-

sentations of the conformal algebra. The coupling of matter fields to confor-

mal gravity is discussed in section h. In section 5 we show in detail how one

may introduce conformal invariance in the Einstein-Cartan version of gravitation.

Finally, in section 6 we give the maximal set of constraints, which may be im-

posed on the conformal curvatures. To keep everything as general as possible

we work in this chapter in d spacetime dimensions.

2. The conformal algebra

Any general coordinate transformation in a d-dimensional space that satis-

fies (k.8)(with 6 replaced by the metric tensor g v(x)) is called an isometry.

For an infinitesimal transformation (U.1) this equation is equivalent to the

requirement that (cf. eq,. (U.2) and (h.k))

6g.c.t. «uv(x) = Vv(x> + W x ) - ° • <>M1>



Hence an infinitesimal iscmetry leaves the metric locally, i.e. in a point, in-

variant. Any vector field, £ (x) that satisfies (1».11) is called a Killing

vector associated with the metric g (x). The problem of determining all infi-

nitesimal iscsnetries of a given metric is related to the problem of determining

all Killing vectors associated with that metric. To see, what the maximum num-

ber of independent solutions of (U.11) is, we recall that the commutator of two

covariant derivatives is given by

with B the Riemann curvature tensor, which satisfies the Bianchi identity

? + R + Ruvp puv vpv

By combining (U.12) and (U.13), we find that any vector field £ (x) must satisfy

the relation

For a Killing vector, (U.I 1) and (U.1U) give

and thus C+.12) becaues

This equation implies that, given E and D £ at some point X, we can detemine

the second derivative of E at X. Furthermore we can find successively higher
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derivatives of 5 at X by taking derivatives of eq,.(U,i6). The function Sp(x)
can then be constructed as a Taylor series in (x-X) within some fini te neigh-
borhood of X. Therefore the Killing vector 5u(x) of a given metric is uniquely
specified by the values of ?UCX) and D E (X) at any particular point X. Because

there are d independent quantities £ (X) and ^ d ( d - l ) independent quantities
P . 1

P £ (X) (recall eq,,(H.1i)), a d-dimensional space can have at most g-d(d+1)
independent Killing vectors.

In d-dimensional Minkowski space we can choose Cartesian coordinates with
vanishing Christoffel symbols. In that case eq..(U.11) reduces to

Expanding C„(x) as a power series in x

with Ay , %«»•*• constant parameters, we find

AJO) arbitrary, A ^ } = 0 , (U.19)

whereas the remaining parameters are aero. Hence we are left with d parameters
5 = A and ^ d(d-1) parameters e a - A | , , which characterize the

d(d+i) Poincaré transformations:

We now consider equation (k,6) (or (^.10) with 6 replaced by g (x)),
which i s the defining equation of the conformal transformations in a d-dimensio-
nal space. This equation is clearly less restr ict ive than eq.(U.11). Por in-
finitesimal transformations x •+ x' we have instead of (U.11):
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with a(x) given in (U.6). This equation immediately implies that

To see» how many independent solutions this equation can have, we substitute

(U.22) into (U.lU)

and thus for infinitesimal conformal transformations {U. 12) becomes

D D S = - R V + - k « D -6 D -S D)D>£ . (U.2U)p v. \) uvp SX d py v pv u uv p

This equation implies that in order to construct 5 (x) in same neighborhood of

a point X as a Taylor series in x-X we need to know the value of C , D ? and
j u y v

D D,€ a t X. Because the re are d independent quan t i t i e s 5U(X), T d ( d - l ) t 1

independent quant i t ies DEV(X) ( r eca l l (^.22)) and d independent quan t i t i es

D D.5(X), a d-dimensional space can have a t most — (d+i)(d+2) independent con-

formal t ransformations.

In d-dimensional Minkowski space (U.22) reduces t o

Subs t i tu t ing the expansion (U.18) we find

A — — 6 A O
(yv) " d yv pp *

d "uv"aap - " * ^ ' 2 6 )

, (3) 1 . . ( 3 ) _ n

(yv)pa "d V t r p a ~ ° • e t c #



The f i r s t two equations can be solved in the following way

\,vp

(H.2T)

2d \ 2 6n(vAaap) " V o o w ƒ '

whereas the remaining equations give more restr ict ions on the parameters A n

(n > 3) than the independent components contained in each A . Therefore we

have

( n > 3 )

and we are left with d parameters E = A , — d(d-i) parameters e = - A , , ,
1 ( 1 ) 1 ( 2 ) "lv'

one parameter e = + — Av ' and d parameters e = + ÖTAV ' They correspond
to translations, Loreniz rotationsa dilatations and special conformal trans-
formations respectively. The corresponding most general solution of (^.25) is
given by

Exu

We denote the generators of these infinitesimal conformal transformations
by p

u (translations), M, (Lorentz transformations), D (dilatations) and K
(special conformal transformations). They obey the following commutation r e -
lations between each other:

> V
' V

tMUv'V S

and [Ky , D] = -
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while the remaining commutators are 2ero. The conformal algebra (U.30) is iso»

morphic to the S0(a,2) algebra. In teims of the generators 1 ^ of SO(d,2) the

correspondence is given by:

(U.31)

PU = Lu,d+2 + Ly,d+1 • S = Ly,d+2 ~ Lp,d+1

By projecting the finite linear S0(d,2) transformations in (d+2)-dimensional

space onto d-dimensional Minkowski space one arrives at the following nonlinear

realization of the group SO(d»2) in d spacetime dimensions!

( U > 3 2 )

u u
where b i s a constant parameter, a and c are constant d-vectors and L is a
Lorentz rotation matrix. The function T(X) i s given by

T(X) a 1 + 2 C«X - c2x2 . (U.33)

For infinitesimal parameters (U.32) is equivalent to (U.29).

Now we have derived the explicit form (U.29) of the conformal symmetries,

our next task is to define what we mean by a conformal transformation on a field.

This will be done in the next section.

3. Representations of the conformal algebra

./ Consider a field ^(x).where <* stands for a collection of internal indices
( i . e . they do not refer to general coordinate transformations)- A conformal
transformation

(U.3U)
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specified by (U.32), with g an element of the conformal group G, can be repre-

sented by a transformation matrix T(g) acting on <L(x) in the following way:

I Using the group properties of the representation matrices T(g):

one can show that the matrices ha6(g,x) must satisfy the following relations:

The stability subgroup HCG of x=0 is defined by

x =0 + gx • 0 V g€H • ('t.38)

The relations (H.3T) imply that the matrices h ~(g,0), which act on internal

indices only, are restr icted by

(U.39)

Consequently these matrices constitute a representation of H in the internal

index space «^(O). From (k.29) and (U.38) we derive that the algebra of H is

isomorphic to the algebra generated by the conformal operators M,D and K. We

denote the generators of H by Z > A and K . They satisfy the same commutation

relations as the conformal generators M , D and K given in (U.30). One can

show that the x-space is iscmorphic to the coset space G/H.

The theory of induced representations gives a prescription how to extend

every representation of H on ̂ (o) to a representation of G on <|> (x). For this
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'l

purpose we define for every spaaetime point x a translation a(x) such that

<x(x)Q = x V x . (k.kQ)

In addition we choose the basis {a} in index space in such a way that spacetime

translations do not act on internal indices, i.e. h (a(x),x) • S „. This im-

plies that under translations P the transformed field (T(gH)o(x) is given by

= (exp

Given a representation (£,A,K) of H on $(0) a representation (P,M,D,K) of G on

$(x) is given by

(T(g)+)a(x) 3 hae(a(xr
1 go(g~1x),0) *e(g"

1x) . (U.U2)

For translations P this formula reduces to the form (U.Ui). We note that

a(x)™ go(g" x) is an element of H:

)" 1 g g~1x = a(x)"1x = 0

One can easily verify by using (̂ .39) that the functions h „(g.x) defined by

(U,U2) satisfy the relations (U.37), i.e. (U.U2) defines a representation of

G on $(x). •

Taking the following representation for a(x)

a(x) = exp{-XjP.) , (h.kk)

where P now indicates a representation of the translation generators in x-space i
A 't 4 '

(S P^xu = - 5 ), we can calculate the group elements a(x)~ ga(g~ x) for infini- !

tesimal transformations g. Using the Baker-Caapbell-Hausdorff formula ]
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f

i.T ).exp(B.T.) = exp \ o.T. + B,T. + £ «

!
' 1 t

e + repeated cconautatora of the T'a r

i-
I and the commutation relat ions (U.30) we find

exp(xxPx)exp(eD)exp - (x + «p)Pp • exp(eD) »

(U.W)

- (xp + axpc.x - epx2)Pp =

* 2e.ri) + 2eIpxo]Mp(j)

>

G U ( -

Here ^x» e » e and e are constant parameters, which characterize an inf in i tes i

mal P, M, D and K transformation respectively. In (U.U?) we use a notation,

where öp*(x) H eXPx*(x), ^ ( x ) H 1 e
p a « p ^ ( x ) , S^Hx) 5 ED*(X) , fiR+(x) = ^ • (

and the same for 6_, 6. and 6 . For later convenience we have made the redefi-

2 2 2 '
up to terms of order e , c and e respectively. Substituting these results i

into (U.l»2) we deduce the following transformation rules (we omit internal in-

dices) :



k

nition K + - | K in (U,U7). We note that the general form of (h.k'j) is a
eonformal transformation in x-spaee accompanied by a rotation in internal H-
space.

Consider a matter field i)>(x) transforming according to (,k,kj)- Then the
derivative 3 $(x) of <|>(x) transforms under a conformal transformation as:

a S i n

; (x) is the parameter of a conformal transformation (see (U.29)). The

s. last term on the r.h.s. of (U.U8) represents a rotation in the tangent space

to x. We denote vectors in this space by greek indices w»v,.... They are

called world indices. To construct a derivative, which transforms, according to

(U.Vf) we need a field that is able to convert world indices into internal H

indices and vice versa. This leads to the introduction of the inverse d-bein

field eV_-,(x), where {H} denotes a collection of internal H indices, which

determine the transformation character of eV„, under H. Under a conformal

transformation eïTll transforms as:

as in ( U A 7 ) " 3A c H ( x ) e{H} ( x )

with SW(x) given by (U.29). Using this transformation one can verify that the
derivative

(U.50)

transforms according to (U.U7). A d-bein field e (x) is defined through the
relations



f TTl

Under a eonformal transformation é* transforms according to

? 5 „ e { H l ( x ) = a s i n ( k M ) + 3 e X ( x 5

r

t

jt We now fix the d-bein field uniquely by the requirement that under a con-

J formal transformation the derivative <*{H}'Kx) rotates in internal H-s.iace in

!'' the same way as a <t>(x) does in the tangent space to x. This is equivalent to

; the requirement that the d-toein field is invariant under a conformal trans-
; formation:

: This condition has a unique solution given by
i

where $ is assigned to the following representation of H:

Here we use a notation where Latin indices a ,b , . . .(a,b=1...d) denote vectors in

internal H-space.

Now we have derived the transformation character of a field under conformal

transformations and defined a suitable derivative, we are able to construct in-

variant actions. We will do this for matter fields, which carry spin 0, -x and

1. These spins are specified by the transformation of the fields under internal

Lorentz transformations. More specifically, we have

spin 0 : scalar field <Hx) > S-jfr = WEI(I ,
\ 1

spin £ : spinor field i|)(x) , 5H* s g e
ab°ab

1'1 + ve^ » C»«56)
I spin 1 : vector field Aft(x) , 6 ^ = EabAb + w c A a * <
F i
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It is convenient to take $, ty and A inert under internal K transfoimations.

The transformations under internal dilatations are characterized by the Weyl

weight w. The derivatives a ^ , 3 ^ and 3raAbi =
 F
ab again transform as in-

duced representations of G. However they form representations (E, A, K ) of H

which differ from the representations formed by the original matter fields.

Using the transformation properties of $j) and <t>, i|>, A one can verify that under

internal H transformations the derivatives transform according to

a

With the aid of (U.5T) one can calculate the transformations of the d'Alember-

tian 0$ = 3 a $, the Birac operator Jty = Y ^ *l> on $ and the squared of F .

under internal H. They are given by

6 (Of.) = (w+2)d3{. + (d-2-2w)e 3 <(. ,6
XX

From these transformations one deduces that the actions defined by the following

Lagrangians are invariant under conformal transformations:

£ ($) = 6 40» with v(<fi) = ̂ (

•C (•) - &*W with w(#) = J(d-1) , (U.59)

(Aa) « Ö F a b with w(Aa) - 1 and

Here 6 is the determinant of the matrix 6a
:

6 H det 6* , fiH(6) = - de6 . (l,.6o)
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If we only consider the G invarianee of the above actions (and not the internal
K invarisnce) ve can take 5=1 (note that th i s i s consistent with 6„(6)=0). From
ROW on we will therefore omit this 6 in the action, The las t equation in (U.59)
t e l l s us that the Maxwell action i s invariant in d,=U dimensions only. The Weyl
weight of the photon gauge field A «fi*uAa Is zero. This i s consistent with the
Maxwell gauge transformations ^„A =3 A* which coasnute with internal dilatations;

U, Matter and eonformal gravity

In order to construct an action for matter fields» which i s invariant under
conformal transformations with spacetime-dependent parameters, we f i r s t have to
extend the group G of r igid conformal transformations to a group of local trans-
formations. Talcing spacetime-dependent parameters in the r igid transformation
rules (**.32) of the coordinates x , i t i s no longer meaningful to distinguish
translations, Lorentz transformations, dilatations and special conformal trans-
formations. Local translations automatically include a l l these transformations.
Hence the local version of ('t.32) is given by general coordinate transformations
(G.C.T.)

xw + (xu)« =xw - 5M(x) , (U.62)

with 5 (x) an arbitrary function of the coordinates. Since G.C.T. do not expli-

citly contain Lorentz transformations, dilatations and special conformal trans-

formations it is now not possible to accompany these transformations, when

acting on a field, with internal H transformations. Hence we have to separate-

ly extend the rigid H rotations to spacetime-dependent H transformations. This

means that the intrinsic coupling of coordinate transformations and internal H

transformations in the rigid transformation rules (H.l*7) is no longer present

in the spacetime-dependent version of the conformal symmetries. The local

version of (U.^T) is given by

5*(x) * e*(x)3x*(x) + (6E(e
ab(x))+ «A(e(x)) + 6(c(e

a(x)))+(x) , (



where £X(x) parametrizes a local translation and e a (x), e(x), ea(x) are arbi-
trary functions of the coordinates, which characterize the local internal H
transformations. From (U.63) we deduce that the local version of the group G
of global transformations i s given by:

global
H )

loc*l

Consequently we have to use different kinds of indices for the G.C.T. and H

symmetries. In analogy to the previous section we denote the components of

space and time by greek indices y, v,.... These indices are called world indi-

ces. On the other hand tensors in internal H-space are denoted by Latin indi-

ces a, b Such indices are called local H indices.

A next step in the construction of a locally invariant action is the defi-

nition of a suitable covariant derivative for the matter fields. It is straight-

forward to define a derivative which is covariant with respect to H. For that

purpose we introduce gauge fields to (spin connection field), b (dilatation

field) and f** (conformal boost field) for Lorentz rotations, dilatations and

conformalboosts respectively and define:

6, (fa))*(x) (U.65)

As in conventional gauge theories the transformations of these gauge fields

follow from the structure constants of H. They are given by

6tI(iH

• aA (k.66)

V D v

where e , ^ and A^ are spacetime-dependent parameters characterizing the

Lorentz rotations, dilatations and conformal boosts respectively and D is co-

variant with respect to Lorentz transformations only. Under general coordinate



transformations the gauge fields transform as a cavariant vector X :

} The derivative D t is not yet fully covariant in the sense that its varia-

' tion under a general coordinate transformation contains derivatives of the
f

parameters 5 (x):

D* = + 5X(x)a(D^) + a EA(x)(D?*) (U.68)

To get rid of the second texm on the r.h.s. of (U.68) we introduce the following

spacetime-dependent version of the inverse d-bein field 5 :

with

(«1.69)

(U.70)
"g.c.t.

This inverse d-toein field e^(x) enables us to define a fully covariant derivative
in the following way:

Under general coordinate transformations this derivative transforms as a general
matter f ield:
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I t s variation under local H transformations follows from the variations of e
and $ under local H. A d-bein field e*(x) i s defined through the relat ions:

.£<*>•;<*> *

V 8,

As an example we give the covariant derivatives of matter f ie lds , $, ty and
A , which carry spin 0, :r and 1 respectively. Under local H transformations
these fields transform according to (U.56) with E and e replaced by spacetime-

r» r»

dependent parameters A^Cx) and e . (x). The covariant derivatives D 4, D i|< and
U ELD ft &

DCr A., = Fc, of these fields are given by:

ab eU ( 3U ~ WbU)Fab = eU ( 3U ~ WbU)Ab] -

Under local H transformations the derivatives transform according to :

a* = EabDb*

!• - *eA* + Kd^d^a^ + (w+1 )eDal"

, = 2 s r FC
vl + (W+1)GF°ab lac cb] ab

These local H variations are not the spacetime-dependent version of the rigid
transformation rules(U.57). The reason of this is that in constructing a gauge
theory of (G.C.T. 8 H ) l o c a l we have lost any information about the rigid con-
formal subgroup G g l ö b a l we started with. In fact many other rigid subgroups of
(G.C.T. 8 H) l Q c a l lead to the same gauge theory. The missing terms in (4.75).
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which are present in (U.57), are internal K transformations. These rigid inter-
nal K transformations follow from the third and fourth term on the r . h , s . of
the las t equation in (^.Vf). These two terms originate from (U.l>6) and the
following cfflsmutator, which i s not present in the algebra of H:

IV

The same internal K transformations can be generated on the r . h . s . of (1*.75) by

the following variations of b and w :

V?
vs. s (U.77)

which Tare in accordance to the above commutator. Taking into account these
additional transformations the r . h . s . of (U.75) is given by the spacetime-
dependent version of (U.57)- In this way we are able to define a flat space-
time l imit , which is invariant under the r igid conformal transformations speci-
fied by (H.Vf). There i s a unique ground state field configuration (ea ,ua ,b ,

A.

f ) which is invariant under these rigid transformations. It is given by

Combining equations (U.66), (U.70) and (U.77) we find that the transformation
rules of the gauge fields e * . ^ . b and fa under local H are given by

•rf
<•>•«>

= D Aa + e a b f b + A f
U K U D y
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I t i s now straightforward to construct locally invariant actions for <f>, <|i

A . With the aid of (U.75) and (U.77) o

d'Alembertian ^% 5 DaCDjf> o f "f1 i s given by
c

and A . With the aid of (U.75) and (U.77) one can verify that the conformal

(3 - (w+1)b )DC((. - i / V * +wfa$ 1 . (It.80)

The transformationo of 0°$, the Dirac operator $°ty = Y8D°'(' on iji and the squared
of Pc, are given by the r . h . s . of (U.58) with e a , E and e a replaced hy the
spacetime-dependent parameters e a (x), AQ(X) and A^(x). From this we deduce
that the actions defined by the following Lagrangians are invariant under O.C.T.
and local H transformations:

with v«>) = |- (d-2)

W • e ${1^ with w(t) - |-{d-i) , (U.81)

(AJ « e (FC. ) 2 with w(AJ = 1 and d=U

St £LQ 8L

Here e is the determinant of the d-fcein field ea(x):

e s det e a . (U.82)

In the flat spacetime limit (̂ .78) the actions defined by (U.81) reduce to those

given by (U.59). As we expect, the above Weyl weights of $, i|> and A are equal
£1

to the flat spacetime values given by (H.59). In analogy to (U.59) the Maxwell

action in (̂ .81) is invariant in d=U dimensions only.

5. The Poincaré gauge

Now we have established the main properties of the conforaial symmetries, we

are able to show explicitly how the d-bein field can be decanposed into its

irreducible components by means of these symmetries. We consider Einstein gra-
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vity in d dimensions: i

i
JE = - e R(us(e)) . (U.B3) !

Here R(w(e)) is the standard curvature scalar. For our notations we refer to

section (2.3). The action defined by (H.83) is invariant under general coor-

dinate tranaformationa and internal local Lorentz rotations 6e = e e . How-

ever, invariance of this action under internal (finite) dilatations of the form

eJ-MeJ)' =exp(wAD)e
a (U.8J.)

requires w to be zero. To obtain invariance under such scale transformations
we introduce a compensating scalar <t>(x), which transforms under dilatations
according to

*(x) + *'{x) » exp( |(d-2UD)s•'<) . (U.85)

To construct a covariant derivative of <t> we introduce a gauge field b :

(U.86)

We next express the scale invariant d-bein field e a into a redefined d-bein field

(e ) , which does transform under the local dilatations (U'.8U) (we choose w=-1):

ej = *d"2 (ea)G , (U.8T)

(e^)c -v (ea)c' = exp(- AD)(e
a)° . (U.88)

The right-hand side of (U.87) is invariant under dilatations, because the scale
transformation of 41 compensates for the scale transformation of ( e a ) c . In terms
of ( e a ) c the Lagrangian (U.83) is given by (we emit the index c ) :

£ = - e *2 R(u(e» + 2
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This Lagrangian can be rewritten (up to a total derivative) in a scale covariant

way;

- 2e

with

(Mo)

» * (e,b) = « (MO

This expression is invariant under local scale transformations specified by

(U.85), (U.86) and (U.88).

The new degrees of freedom described by the dilatation gauge field b can

be eliminated by introducing a symmetry under shift transfoimations:

Kb * b +
U V V

This is equivalent to the statement that (U.90) is independent of b . One can

verify that under these shifts R(w(e,b)) transforms according to

R(w(e,b)) -»• R(u(e,b)) (U.93)

with D a Lorentx-covariant derivative. Hence R((u(e,b)) can be identified with
the trace of the gauge field f of K transformations:

R(<»(e,b)) = (d-i)f,

After making this identification the Lagrangian (U.90) is given by:
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with Dc<f> defined in (U.7U). The expression between curled brackets is exactly

the conforraal d'Alembertian of (j> defined in eq..(U.8o)(taken with w= ^ (d-2)).

Therefore we can write (^.95) as:

JC = - 2 e

The action defined by this Lagrangian is invariant under general coordinate

transformations and local H transformations, i.e. Larentz rotations, dilatations

and special conformal transformations. Hence we have succeeded in reformulating

Einstein gravity in d dimensions in a conformally invariant way. The d-bein

field, (e a) c present in this reformulation describes 5 field degrees of freedom,

which form a massive spin-2 representation of the Poincaré group. This field

is called the conformal gravity multiplet (or conformal d-bein field).

The gauge equivalence of the Lagrangi&n (U.96) to the original formulation

(U.83) can be made explicit by imposing a consistent set of gauge conditions.

To break the invariance under K transformations one may set the dilatation

gauge field b equal to zero, whereas the invariance under dilatations can be

broken by adjusting <|> to a constant. The Poincaré gauge is thus defined by:

b u - 0 . • » 1 . (U.97)

After imposing these conditions the Lagrangian (U.96) reduces straightforwardly

to the form (U.83).

6. Conventional constraints

In the previous section we constructed a conformally invariant theory in

which the Lorentz gauge field w could be expressed in terms of derivatives of

the d-bein field e* and the dilatation gauge fieldb as given in ('t.91) (see

also (2.20)). This expression is the solution of the following conformal cur-

vature constraint:



Here the derivative D is covariant with respect to Lorentz rotations and dila-
: ta t ions. In addition the trace of the conforaal boost gauge field f could be
''• related to e a and b as indicated in (U.pU). One can verify that this expression

X U U
i for f. i s the solution of the conformal curvature constraint
(' A

k e a ^ RuvM - 0 , (k.99)

; with Ra^(M) given by

In this section we discuss these curvature constraints in a more systematic way

in the context of conformal gravity viewed as the gauge theory of the conformal

algebra S0(d,2). This approach of conformal invariance is slightly different

from the one presented in section U and enables us to discuss the above con-

straints in a more transparent way.

The explicit form of the eonforaal curvatures follows from the structure

constants of the S0(d,2) algebra (see eq..(U.3O)) and is given by

ab ac cb -_[a b]
v] - % M -2f[uevl

(If.101)
V M ) V v ] % M 2f[uevl

Vvl -

These expressions transform covariantly under the gauge field transformation

rules (U.79) and the P gauge transformations of the S0(d,2) algebra:
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They satisfy the following Bianchi identities:

- 0

(»t.103)

= 0

(Jo)

where # £ \ denotes the cyclic sum over Lorentz indices a,b and c. Besides the

S0(d,2) gauge symmetries all gauge fields transform ascovariant vectors under

general coordinate transformations.

In gauging the S0(d,2) transformations one is led to introduce

s (d+i)(d+S)x(d-1) field degrees' of freedom, which are described by the gauge

fields e*, u* , b and fa. To convert a gauge theory of S0(d,2) into a gauge

theory of spacetime transformations we want to express the P gauge transforma-

tions into general coordinate transformations and the remaining S0(d,2) symme-

tries, after which we end up with a gauge theory of the type considered in

section k. More specifically, we want to make the following truncation:

G.C.T. 8 S0(d,2) +G.C.T. 8 H , (

where H is the subalgebra of M,D and K transformations. A convenient way to

achieve such a truncation is by imposing a set of so-called conventional con-

straints on the S0(d,2) curvatures. To explain the underlying idea we rewrite
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a general coordinate transformation on eu in the following way:

(U.105)

I
t or

( M o 6 )

GOV* •
where 6 . denotes a general coordinate transformation, which is covenantg.c. t . °
with respect to Lorenta rotations and dilatations. We call this a covariant

translation. Equation (U.1o6) shows that after imposing the curvature constraint

R (P)=0 the P gauge transformations on e are uo longer independent and becane

identical to covariant translations. Furthermore the gauge field u is no

longer independent and can be expressed in terms of e and b . The transforma-

tion of this field under H remains the same since the constraint Ra (P)=0 is

invariant under H. This constraint eliminates Id (d-1) field degrees of free-

dom; taa is dependent (Jd(d-1) field d.o.f.) and ea describes not d(d-i) but

Jd(d-i) field d.o.f. owing to i ts transformation under Lorentz gauge transfor-

mations .

I t turns out that in order to obtain the same truncation on the remaining

gauge fields one needs to impose an additional curvature constraint:

O M ) e b = ° ' (U'107)

This constraint is an extension of (U.99). After imposing (U.ICff) the gauge

field f is no longer independent and can be expressed in terms of derivatives

of e and b according to

Here R^ =R' e^, R'=R' e & and the prime indicates that in the corresponding ex-

pressions f is set equal to zero. The trace of (U.108) yields equation (U.9U).
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The dependent gauge field fa transforms under H as beforet because the constraint
(U.107) i s invariant under H- This constraint eliminates d__ field degrees of
freedom fa i s dependent (d(d-1) field d .o . f , ) , b describes no d.o.f. at a l l

a.
owing to i t s transformation under K ((d^l) f ield d.o.f .) and e describes not
I d(d-1) but 1 (d+i)(d-2) field d.Q.f. because of i t s transformation under di-

latations .
The constraints (k.9Q) and (U.IQ7) are called conventional because they

both enable us to express algebraically some of the gauge fields in terms of the
others. Furthermore they both preserve a l l H transformations but not the P
symmetries • After imposing the constraints these P transformations are identical
to covariant translations. In this way the gauge theory of S0(d,2) reduces to
a gauge theory of spacetime transformations in which the P gauge field e can be
identified as the d-bein field. The conventional constraints form a consistent
truncation of the gauge group G.C.T. 8 S0(d,2), which brings us back to the
formulation presented in section U based on the gauge group G.C.T. 8 H.

toother effect of the conventional constraints i s that they achieve a maxi"
mal irreducibility of the gauge field configuration (e% 01* , b , f*). In the
presence of these constraints the number of field degrees of freedom described
by the gauge fields i s reduced from I (d+i)(d+2)x(d-i) to 2 (d+1)(d+2)x(d-1) -
5 d (d-1) - d - I (d+i)(d-2). These field degrees of freedom are entirely
described by the d-bein field e* end form a massive spin-2 representation of the
Poincarê group. Indeed massive spin-2 states have \ (d+i)(d-2) helicity com-
ponents in d dimensions.

We conclude this section by showing how the above irreducibility is achieved
in terms of the conformal curvatures. Substitution of the conventional con-
straints into the Bianchi identities (4.103) leads to further curvature res t r ic-
tions :

Rab(D) - 0

e*.109)

(4-3) D R . " "

These equations show that R(M) is the only independent curvature. The a priori

(5 d(d-i)) components of this curvature are restricted to i(d-»*)(d-2) indepen-

dent ones by the following algebraic and differential identities:
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= o

= 0

Me have indicated the number of independent constraints between bracjkets. These

identit ies follow from combining the Bianchi identities with the conventional

constraints.
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CHAPTER V

CONPOEMAL SUPERSBMETRY

1. Introduction

In this chapter we show how one can decompose the N=1 supergravity multiplet
(e a , i|) , A , P) into i t s irreducible pieces by introducing the superconformal
transformations. These transformations are the super symmetric generalization
of the conformal symmetries. In chapter 2 we have shown that the multiplet

(e a , t|> * A , F) describes 12+12 field degrees of freedom, which form a massivey v a
spin-2 and two massive spin-1/2 representations of the super-Poincarê algebra
(cf, section (2.5)). In the superconformally invariant formulation the fields
e a , i|i , and A are related to redefined fields e a , 4> and A , which trans-
form under additional gauge transformations:

aa
2u va * - v a

\ =Vu(D

(5.1)

Here the parameters 5 , e , iV_, ^TT(I\»
 e* SCi^ T1* characterize covariant trans-

lat ions, Lorentz rotations, dilatations, chiral U(1) transformations, supersymme-
try transformations and a new kind of supersymmetry transformations, called S
super symmetry, respectively. Owing to tiiese gauge transformations the multiplet
(e , i|>', A&) describes precisely 8+8 field degrees of freedom, which form a
massive spin-2 representation of the super-Poincare algebra. This multiplet is
called the N=«1 conformal supergravity or Weyl multiplet and constitutes the
backbone of a l l inequivalent off-shell formulations of N=1 Poincarê supergravity.
The remaining U+U field degrees of freedom form a chiral multiplet. We shall
see that this multiplet i s the super symmetric generalization of the scalar $ in
the previous chapter (cf.eq..(U.87)) and plays the role of a compensating super-
multiplet.
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Although we have not restricted ourselves in the previous chapter to any

particular spacetime dimension d, we will consider in this thesis (extended)

supersymoetry in d=U dimensions only. Of course one can consider an implemen-

tation of the above ideas in the context of supergravity in higher dimensions.

The fact that one supersymmetry generator Q in d>U dimensions reduces to more

supersyametry generators Ql(i>1) in d,=k dimensions indicates that there is a

relationship between N«1 supersyametry in d>U ̂ intensions and N>1 supersymmetry

in dai* dimensions. In particular the limit N^S in 6,~k dimensions corresponds

to H=l in d=il dimensions. Recently the supereonformal ideas have been applied

in d=10 dimensions. It was shown that reduction of the N=1, d=10 conformal

supergravity multiplet to four dimensions leads to the N=U, i-k Weyl multiplet.

For more details about this 3ee the references at the end of this chapter.

The outline of lias chapter is as follows. In section 2 we derive the expli-

cit form of the rigid superconformal transformations. In section 3 we consider

the problem, of constructing field representations of the superconformal algebra.

In section U we construct the gauge theory of the superconfonnal algebra and

address to the problem of how to find the Weyl multiplets for extended supersym-

metry. In particular we give a counting argument, which proves that the gauge

fields of the superconformal symmetries do not form for N>1 a complete field

representation of conformal supergravity. Hence one needs additional matter

fields. In the next chapter we will develop a systematic method to find these

matter fields. The coupling of matter supermultiplets to conformal supergravity

is discussed in section 5« Having thus established the main properties of the

superconformal transformations, we finally show in section 6 how one can decom-

pose the N=1 supergravity multiplet (ê ",* , A , F) into its irreducible sub-

multiplets by introducing these transformations.

2. The superconformal algebra

In the previous chapter we have defined the conformal transformations as the

subset of general coordinate transformations that leave the braceless part of

the metric tensor g„v(x) locally invariant (cf.eqs.(^.2i) and (h.22)):

6g.c.t.sUv
(x) * (°M-i\vM - D(lA>) - j- e u v e

P V 0
 s ° ' (5'2)
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The explicit solution of the above equation for flat Minkowski space is given

in eq..(U,29).

In the same way one can define Gonformal supersymmetry transformations as

the subset of local supersymmetry transformations that leave the gamma-traceless

part of the gravitino field i(i'(x) locally invariant, i . e .

( 5 - 3 )

where X(x) is an arbitrary function of the coordinates x. In a space with

metric tensor g (x)=e (x)e (

transformations according to

metric tensor g (x)=ea(x)ea(x) the gravitino field transforms under local Q

2

where the spin connection field w is related to the Christoffel symbols r

as follows:

C^vX • (5-5)

In this expression D denotes a supercovariant derivative. Substitution of (5.*0

into (5-3) leads to the following defining equation for the conformal super-

symmetries :

In the definition of the covariant derivative jS, given in (5.U) we have not con-

sidered tenns, which are proportional to Y e* or E*. We note that in (5.6) a

y e " term would drop out, vhile an e" term does not lead to inconsistencies.

Of course, the commutator of two supersymmetry transformations should al-

ways yield another symmetry of the theory in question. In the general case the

spacetime part of this ccmmutator is given by

[ë'txï^.ëgU)»^] + 6X(x)Px , (5.7)
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with

?X(x) - GICXJY^, (X) + c-c- . (5-8)

Here e" and e* are the parameters of two local supersyinmetry transformations

and Cx parametrises a seneral coordinate transformation. In a theory with

global „afonaal invariance the parameters g. should describe a eonformal

transformation. Hence they must satisfy the differential identity given in

(5.2). Substituting (5-8) into this identity leads to a differential constraint

on the spinor parameters e"(x). One can verify that this constraint is equi-

valent to equation (5.6). This shows that the definitions of conformal trans-

formations (see (5.2)) and conformal supersymmetries (see (5.6)) are consistent

with the supersymmetry algebra.

In flat Minkovski space we can choose Cartesian coordinates with vanishing

Christoffel symbols. In that case eq,. (5.6) reduces to

l w = 0 • (5#9)

Expanding e *(x) as a power series in x

( 5 J 0 )

with E » e , . . . constant spinor parameters, we find

e(o)- arbitrary, ^ " - J T / 0 " , (5-11)

whereas the remaining parameters are zero. Hence a rigid conformal supersymmetry
is characterized by two constant spinor parameters e.'=e^0'" and n*=r- i .
The parameter e' corresponds to ordinary or Q supersymmetry, while the parameter
n' describes a different kind of supersymmetry, called special or S supersymmetry.
We note that for e" and n' we use the chiral notation given in (2.8) and (2.9)
respectively. In terms of e* and n' the most general solution of (5.9) is given

e'Oc) - e " +tfn- . (5 .12)
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Substitution of (5.12) into (5.8) shows that the spacetime part of a [E„Q^,E'Q ] ,

[S'Q »n'S I and, a [nAS tn'S ] commutator yields a P, (M+D) and K transformation

respectively. For instance the commutator of two S transformations with para-

meters nC sad no yields a special conformal transformation with parameter
a \

Q < c >

(5.13)

To close the algetoa of conformal supersymmetries one needs to include addi-
tional internal transfonnations as well. More speeifically> to close the [Q,S] |
conuautator one needs an internal chiralU(i) transformation. In extended super-
symmetry» where we have N independent Q and N independent S supersymmetries
present, th is U(1) transfoimation generalizes to a chiral U(N) transformation !
(except for the case N=U where SU(U) i s sufficient). These internal symmetries ;l
can be derived by u.jing the Jacobi identi t ies, which the superconformal genera-
tors must satisfy. In this way one finds the super symmetric generalization of :

the conformal algebra S0(Jf,2)=SU(2,2) given in (U.30). This superalgébra is de-
noted by S U ( 2 , 2 | N ) . Below we give the nanvanishing (anti)ccmmutators of
S U ( 2 , 2 | H ) , The conformal subalgebra is given by (U.30), while the following
(anti)cctnmutators enter in i t s supersymmetric extension:

»
(5.1U)
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Here A is the U(1) and B* the SU(N) generator. The generators Q* and S* satisfy

the chiral notations given in (2«9) and (2.8) respectively. In (5.1*0 we have

a shorthand notation to denote chiral projections of Dirac matrices, e.g.

and the same for all other matrices. The superconformal generators satisfy ge

neralized Jaeobi identities. As an example we prov the (Q,Q,S) Jaoobi identi-

t ies;

$ + ls^Q«i« V 1 +1

- 12 C ^ ^ , ^ + ( c t i * W) = 0 (5.16)

and

In (5.16) and (5-17) we have used the following identities, which follow from

the completeness relation given in (A.15):

(5.18)

Now we hare defined the superconforaal algebra we will consider in the next

section what the rigid transformation rules of a multiplet of fields under these

symmetries are. In particular we will give an explicit example for N=1.
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3. Reiareseiatations of the superconformal algebra

To construct field, representations of the superconformal algebra one can

again apply the method of induced representations. In section (U.3) we have

shown he,- the conformal group can be represented on functions <t>a(x). Here

{x }aK'e the coordinates of the coset space SU(2,2)/H, where H is the stability

subgroup of x =0 (of ,eq,.(U.38)). The index a in <fra(x) denotes an internal H

index. In the x-space the P transformations act as translations x •+ x - E .
\\ \A \A

In the superconfonaal case these results generalize as follows. From the expli-

cit form of the superconformal algebra (see (5.11*)) we deduce that if MyV,D,K =0

and F /0 when acting on a fixed point we also must have A.B^S^O and Q^O for

the same point. This leads to the definition of a coset space SU(2,2|N)/H,

where H represents the algebra generated by the operators M ,D,K »A,B* and S1.

This coset space can be parametrized by caamuting coordinates x and anticemmu-

ting variables Ö*. In this way we obtain a so-called superspace. The auper-

conformal transformations can be represented as coordinate transformations in

this superspace. The H transformations form the stability subgroup of

(x ,8 )=Q, whereas the P and Q transformations correspond to translations:

(5 .19)
9 1 - 8 1 - e x

a a a

The form (5.19) of the P and Q transformations depend on the parametrization

(x ,Ba) of the superspace. Another useful parametrization is the following one:

( v e i } s ( xy + s iVi' ei ) • (5-20)

where z^ i s a complex spacetime parameter. In terms of these coordinates the
P and Q transformations take the following fern:

(5.21)
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A field ^.(xjö) (the index a denotes an internal H index) defined over the

supercpace (x ,9*) is called a superfield. Assigning that ^j/*^0» 8a=°) trans~

forms according to an irreducible representation of H one can establish a for-

mula similar to (*v.H2), which defines a representation of SU(2,2| N) on $ (x,o).

Such a formula enables one to calculate the global superconformal transformation

rules of $. (x,6). In analogy to section (.k.3) the P and Q transformations do

not affect the internal index h. In the parametrization (5.19) the generators

of these transformations are given by the following differential operators acting

on the superfield:

•'•->

Using these expressions one can verify the {Q, Q} anticommutator:

Of course we can also use the parametrization (5.20). In that case we define

superfields ^ (z ,9 ) . On these superfields the P and Q generators are represen-

ted in the following way:

Q'1 « ~ 2(v 8')1 - i - p = J L

The Q' generators (5.2U) are related to the Q generators (5.22) by means of a

similarity transformation:

88



Q1* = exp(-KJ)(£ exp(-U)
• (5.25)
• q^ = exp(-«j)Qai exp(-U) ,

j! with the operator U acting on a superfield given by
r
!

This operator relates the parametrizations (x
u*8~) a n d (z »6o)s

(exp U)xy * xv + ff^Oi = s,j - (5-2T)

- Aa important difference with the purely conforaal case is that a scalar

auperfield 4>(x,e) does not define an irreducible representation of SU(2,2|N).

V Explicitly, one can impose an invariant constraint

D^Cx.e) a f — + (r.e)1 a ~ ) *(x,e) = o (5.28)

and find nontririal solutions. To solve this equation it is convenient to use

the parametrization (z,.»8^)' In that case the constraint is given by

(exp(-HJ)D1 exp(-U))(exp(-HJ)«(x,9)) = 0 Vx . (5.29)

or

(5.30)

This equation is solved by any superfield <fr » which doss not explicitly depend

onSi. Such a superfield is called & left-handed chiral superfield. The com-

plex conjugate of 4 is precisely a right-handed chiral superfield, satisfying

j (V ). ̂  ) •(«* ) = 0 (5.31)
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or

3 Ö 1 w '

= o . (5.32)

Hence a right-handed ehiral superfield $~ depends only one1 through the space-
time parameter z . Up to now there exists no fixed procedure to find the con-
straints for a general superfield <|>h(x,e).

The finite number of components occurring in the Taylor expansion of a
superfield K(x»9) to the anticconuting variables e1 are ordinary fields defined
over x-space only. They form the field components of a whole multiplet of bose
and ferai fields» which vinder Q supersymmetry are transformed into each other.
In this thesis we will not follow the superfield approach but rather work in
terms of the field components of the supeimultiplet. As an example we give the
field components of a K»1 left-handed chiral superfield:

<f> (Zy.B*) = A(z) + 8'<Ji'(z) +^ë"e 'F(z) . (5.33)

Tnis superfield can be re-expressed in terms of functions of xV by means of

* + ( z . e - ) = exp(-U)$+(x,8') . (5.3I*)

The Q transformation of <b (z , 6f) is given by

.. _ (5.35)
36 '

Substituting the expansion (5.33) we find for the field components:

(5.36)

= €>'(z) +ë*(2?A(z)e
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Taking z ~2K in (5.36) we derive the following transformation rules for the

Chiral multiplet:

6A(x) • ë>*(x)

M ^ , (5.37)

<SF(x) » ê Sty*(x)

We now give the H transformations of this chiral superfield without proof.

These transformations can he derived in analogy to the pure conformal case.

For more details we refer to the references at the end of this chapter. The

M,D and K transformations of the field components of $ are the same as in

(U.Vf), i.e. the rigid spacetime transformations are accompanied by internal

2,A or K transformations. In the SfVie way we find that a global s transformation

or, equivalently, a Q transformation with spacetime-dependent parameter

e*(x)=rfn* (cf .eq..(5,12)) in superspace is accompanied by an internal S transfor-

mation:

(5.38)

We now give the internal H transformations of $ (z,0") (in the context of field

components we mean by internal that these transformations do not act on x ) .

Note that these are not the complete transformations. The full M,D and K trans-

formations are defined in eq..(U,U7) (we only give the internal E,A,K part of

these transformations), while the complete s transformation is given in eq,.(5*38).

The internal H transformations read as follows:

38

= 0 , (5.39)
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((ï*e*) ri. — + 2wn e") *+U»9'

Here we have given the chiral auperfield a Weyl veight w. It follows from the

full supercc-nformal algebra, that the chiral weight o of ̂ is related to w as

given in the last equation of (5.39)•

Substituting the expansion (5.33) into (5.39) and taking z u
a2x we find that

the Q and internal H transformations of the field components (A,iJ/*»F) of the

N^1 ohiral usultiplet are given by;

5A » ê"t|>* + >A ti

6iji" * ?"Ae + Pe *

6P = ê ïNi' - 2 ( \

It is instructive to verify that the commutator of two rigid superconformal

transformations on (A,t'.F) coincides with the superconformal algebra (5.1U).

In particular the commutator of two Q or s transformations and of a Q and s

transformation are given by the following expressions:

[6Q(e),«s(n)l

= 6K(ea)

with the parameters on the r.h.s. of (5.U1) given by
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+ cc

(5.1*2)

c # e "

e a

In order to construct an action for (A,i|»*,F), which is invariant under glo-

aAbal superconforBsal transformations, we define a d'Alerabertian DK3*3 A of A and
aa Dirac operator ^*aYa3 "I1" on I ' as in section (k.3). The vierbein field s!

occurring in these definitions transforms under the internal H transformations
according to (U.55) such that 8a i s invariant under rigid superconformal trans-
formations. Using these definitions one can verify that for w=1 the action
corresponding to the following Lagrangian is invariant under a l l superconfonaal
transformations:

£ « A*DA - j 5 ' jf f + F*F . (5.U3)

In section 5 we will construct an extension of this action, which is invariant

under local super conformal transformations. This action describes the coupling

of a chiral matter multiplet with N=1 conformal supergravity. Before doing this

we first discuss in the next section the gauge theory of the superconformal al-

gebra.

.̂ Gauge theory of the superconformal alpebra

In order to gauge the SU(2,2|N) symmetries we introduce the conformal gauge

fields ea,ti)ab,bu,f
a (see chapter k) and gauge fields ^ . - f y ^ (i-1 • •») and A^

for the Q,S,SU(N) and U(1) transformations respectively. These gauge fields

describe (U5+3M") + (2to) (bosonic + fermionic) field degrees of freedom. The
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bosonie degrees of freedom are described by the gauge fields e (12), « (18),
t>H(3)» f*(i2), v\(3(K -1)) and i^(3) (except for N=U where Â  i s absent).
The fermionic degrees of freedom are described by the gauge fields ip (12N) and
<t>*(i2N), We have l isted the generators of SU(2,2[N) with their corresponding
gauge fields in table 1.

superconformal gauge

translations
Lorentz rotations

dilatation
conformal boosts

supersymmetries
specia l super symmeti

ch i r a l SU(N)

c h i r a l U(1)

symmetries

P

M

D

K

ft
i ss S

B

A

gauge

a
eU
a1*

\i

\

*i

\

fields

12

18

3

12

12N

12N

3(N2-1)

3

table 1. Generators end corresponding gauge fields of the superconformal group.
The numbers in the right column denote the field degrees of freedom
represented bj- the gauge fields. The U(1) symmetry i s absent in the
case of N=U.

The transformations of the superconformal gauge fields follow from the
structure constants of the superconformal algebra. The transformations under
Q and S super symmetry, di la tat ions, conf ormal boosts, P and chiral U(1) transfor-
mations are given below; the assignments with respect to the remaining symmetries
follow directly from the index structure of the fields:
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^ + (-2 ë V * ^ . + 2 $ y \ * o-o') *

V I
v J * + (2 nV

+ o-o-) -

. + cc')

(5.W)
5 < -

- J 1

In (5.̂ **) the spinors I|J and e satisfy the chiral notation given in (2.8),
whereas for <k and n we use the chiral notation given in (2.9). The derivatives
D are oovariant with respect to M,D and (S) U(N) transformations. Notice that
the chiral charge of ifij" and if»1 vanishes for N=U. The abbreviation h*c- denotes
a heraitian conjugation.

From the transformations (5.M) i t is straightforward to define the
SU(2,2|N) curvature tensors. They are given by:

V ( D ) f% u * c"c">
D r fa, - k i1, va

(5.U5)
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VA) =

ï 6

Here the derivative D is eovariant with respect to Lorentz rotations and di la-

ta t ions. The expressions (5 -U5) are the superconformal extension of the pure con-

formal curvatures given in (^.101). They transform covariantly under the gauge

field transformation rules (5,UU). In addition they satisfy Bianchi identities

which we do not l i s t here.

We now proceed in analogy to the treatment of the gauge theory of the con-

formal algebra, which was discussed in section (U,6). To achieve a maximal

irreducibility of the superconformal gauge field configuration we impose a

maximal set of conventional constraints on the superconformal curvatures. In-

spection of the explicit farm of these curvatures shows that R(P), R(M), R(D)

and R(Q) contain terms proportional to a connection field, multiplied by a vier-

bein f ie ld . Hence these connections, w , f and * , can be expressed in terms

of other fields by imposing curvature constraints. For this purpose the follo-

wing set of constraints suffices:

BJ W (P) = 0

R^(M)e; = 0 , (5..U6)

YVV(Q) = o

At first sight it seems that one can also restrict R(D), but in the presence of

the first constraint of (5.*»6) one can show that R(D) is no longer independent

by virtue of an SU(2,2|N) Bianchi identity. The notation R(M) indicates that

we have included certain modifications which are required for supercovariance.

We explain this below.

As we have mentioned above the constraints (5.U6) determine the gauge fields

% ' fu and ^u ̂ n 'berms of tne other fields. Since (5.U6) is invariant under

M,D,K and (S)U(N) transformations the corresponding transformations of u a , f a and

* implied by the SU(2,2|N) algebra remain unaffected. However, the constraints
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are not invariant under Q and S super symmetry, and therefore the Q and S trans-
formations of ai , fa and i))1 change by extra terms proportional to the covariant
curvatures. As an example we show how one can determine the extra terra in the
Q transformation of u by requiring invariance of the constraint R(P)=0:

c c ) - («wft)8*1^, = 0 . (5.U7)

Here ^Bauge denotes the variation of R(P) according to the SU(2,2|N) algebra,

while the second term denotes the variation of R(P) owing to the extra term

(Sua ) a in the Q transformation of (ua . Fran (5.Vf) we deduce that this term

is given by

c-c-

Because of these new variations the covariant curvatures for M ,K and S require

extra terms which do not follow from the SU(2,2|N) structure. The presence of

these modifications, which we refrain from giving explicitly, is indicated by

using the notation SC}!), R ( S ) and R(K). We should mention that the detailed

form of the conventional constraints is not crucial, as long as they fully re-

strict the gauge fields in question. As it turns out Q supersymmetry is necessa-

rily affected by the presence of the constraints, but for N=1 and 2 it is possi-

ble to construct a set of S invariant constraints. One can obtain an S invariant

constraint on R(M) by adding a term R (A) to this equation.

The expressions for (o , fa and f1, which follow from (5.U6), can nov be

given. The results are expressed by

(5.U9)

1
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,1

1

The notation R'(M) indicates that we have omitted the f -dependent term that '3

occurs in S(H), while R'(Q) indicates that we have omitted the ̂ -dependent term. |
t "?

When combined with the constraints (5.U6) the SU(2,2|N) Bianchi identities 4
lead to further relations among the superconformal curvatures. As i t turns out
the only independent boaonie curvatures are R(M), which satisfies the same iden-
t i t i e s (U.110) as the pure conformal curvature R(M), and R(V), R(A), which sa-
t isfy the following Bianchi identit ies: ."

Here (abc) indicates a cyclic permutation of the indices a»b and c and D is a

supercovariant derivative. The only independent fermionic curvature is R(Q)

because R(S) satisfies

(5.51)

%«[B) = 0

Here we use the notation

(5.52)

The a priori 2UN components of R(Q) are restricted to 8N independent ones by the

following identities:

(5.53)

Although we have now achieved a maximal irreducibility of the superconformal

gauge field configuration the above procedure does not guarantee that far general

If the auperconformal gauge fields constitute a complete field representation of

the superconformal algebra. The following counting argument proves that for N^I
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this is indeed not the case. The constraints (5.U6) eliminate UO+i6N (bosonic

+ fermionic) fie'̂ d degrees of freedom. Hence after imposing these constraints

we are left with (5+3N2)+8N (or (5+3N -3)+8N for N=U) field degrees of freedom.

The bosonic degrees of freedom are described by the independent gauge fields

e'*(5), V1.(3(H -1))and A (3), while the fermionic degrees of freedcm are de-

scribed by 4i1(8N). From the Bianehi identities, which are satisfied by the

curvatures ccjrresponding to these gauge fields (see eqs.(l».4iO), (5.50) and

(5-53)) we deduce that the gauge field degrees of freedom form one massive

spin-2, 2N massive spin-3/2 and N (or N -1 for N=U) massive spin-1 represen-

tations of the Poinearé" algebra. In teible 2 we have indicated these represen-

tations together with the spins, which are contained in a massive spin-2 repre-

sentation of the super-Poincaré algebra for N=l,.., U. From this table we imme-

diately see that only for H=t the

spin s

2

3/2
1

1/2

0

N = 1

1

2

1

N = 2

1

h
6
k
1

N - 3

1

6

15

20

1U

H = k

1

8

27
1*8

gauge fields

1

2N

N2 (or N2-1 for N=U)

table 2. Massive spin-2 representations of the super-Poincarê algebra. The num-

bers in the centre column denote the spins contained in each represen-

tation. The numbers in the right column indicate the massive spin

states, which are described by the superconformal gauge fields.

superconformal gauge fields form a massive spin-2 representation of the super-

Poincaré algebra. For H>1 additional matter fields must be added to the gauge

fields in order to obtain such a massive spin-2 representation. Hence only N=1

conformal supergravity is based on the gauge fields presented in this section,

whereac for higher N the theory is still incomplete. In the next chapter we shall

develop a systematic method to construct complete field representations of the

superconformal algebras with N < U.
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5, Matter and conformal supergravity

In this section we consider the coupling of a matter chiral multiplet with

H=1 conformal supergravity and construct an action for the chiral multiplet,

which is invariant under local super conformal transformations. Before doing

this we first discuss the H=1 Weyl multiplet.

In the presence of the conventional constraints (5.h6) (for N=0) the only

independent super conformal gauge fields are (e , 'I'*, A , b ). These fields de-

scribe 8+8 field degrees of freedom» which form a massive spin-2 representation

of the super-Poincaré algebra (cf. table 2 in section k). Their transformation

rules are given in eq.,(5.WO. Here we give some of these transformations:

Se* = ë*vu

-V
(5.510

fl!h
, f and are given inThe expressions of the dependent gauge fields <u , f and $

eq.'(5.^9). Their Q and S transformations do not coincide with the transforma-

tions implied by the SU(2,2|i) algebra given in (5.M). Because the constraints

are not invariant under Q and S supersymmetry the 1 and S transformations

of ) , f and change by extra terms proportional tr. the covariant curvatures.

In eq,.(5A7) we have shown how one can derive these extra terms in the transfor-

mations. Explicitly, these terms are given by

-„• =2^A)+«'
c'c- , (5.55)
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The superconformal theory that we have now defined is the gauge theory of

the superconformal transformations. The algebra no longer coincides completely

with the 5U(2,2|i) algebra, because we have imposed a number of constraints.

Since the independent gauge fields describe 8+8 field degrees of freedom, which

i form a massive spin-2 supermultiplet, we expect that in analogy to the pure

f conformal case (cf. section (U.6)) the commutator of two Q transformations yields

| a superconformally covariant translation inatead of a P gauge transformation,

I while the remaining commutators still coincide with corresponding ones of the

! Sl(2,2|l) algebra. We give the most relevant commutators below:

i
i'.'

V n ) J ~ S ^ B ' hKt ' öu(i)tAu(D} , (5.56)

; The parameters on the right-hand side of (5.56) are given by
IS

+ c*c*

2 i'oaDn + ce-

(5.57)

U(1) 21G n. C C

K. 2 1.

The (spacetime-dependent) parameters of the internal A, E, U(1) transformations

have the same value as the (constant) parameters of the rigid D,M,U(i) trans- i
\ formations which result from the commutator of two global supersymmetries on the j
• f ield components of the chiral multiplet (see eq..(5.te)). The K parameter differs |
1 from the K parameter by a factor -2 . This is a consequence of the redefinition |

I « + - 1/2 K which we made after eg..(U.U7). |

fi In coupling the chiral multiplet to H=*1 conformal supergravity, the rigid ï

I transformation rules (5-Uo) will get nonlinear modifications. These modifications
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are 'basically of the sane structure as the nonlinearities present in conventional
gravity theories. To find these nonlinear terms we impose the commutator alge-
bra (5,56), (5.57) on the field components A, t|>* and F of the chiral multiplet.
This is done by induction. One first calculates the commutator of two super-
syanetry transformations on the basis of the linearized results but with space-
time-dependent parameters. To realize the commutator algebra (5.56)* (5.57)
requires the addition of terms of second order in the fields to the transfor-
mation rules. One then repeats the calculation on the basis of these new
transformation rules. This in turn will introduce terms of higher order in the
fields in the transformation rules etc.. In the general case this iterative
procedure can be rather complicated if many nonlinear tenns are consistent with
superconformal invariance, because usually all possible terms do indeed appear.
For the H=1 chiral nrultiplet the resulting nonlinear Q and S transformation
rules are rather simple:

SA = ë'i|i" ,

«•' = DcAe +Fe'+2wAn , (5.58)

6F a ê JJV - 2(w-i)n •*

The supercovariant derivative Dc in (5.58) is defined by

(5.59)

WV* W* W

Inserting the transformations of A and ifr* into (5.59) we find that the superco-
variant derivatives DCA and D°t|)* are given by.

C U l

_ _ . _ . . . . _ ... ... . I W .1. •

f
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We conclude this section with the construction of an action for the chiral

mltiplet (5,58)4 which is invariant under local super canformal transformations.

For this purpose we use the following results, which one can easily verify;

(1) Two chiral multiplets (A.,» i|»i|, P ^ ana (Ag, i|»g, Fg) with Weyl weights w.,

and, w 2 respectively can be multiplied in the following way to yield again a

\. chiral multiplet with Weyl weight w-+w2:

I
(A,, +;, F,) 8 (Ag, •', Fg) S (A^g, A^^ + V i • A^g + A2F1 - S'^) .

; (5.61)

(2) A locally superconformal invariant action foi' a ühiral multiplet (A, 1)»*, F)

with Wey! weight w=3 is defined by the following

£ - f (F + 5, Y V + 25 0 * A) + c-c- . (5.62)

Using these results i t i s straightforward to construct an invariant action for
a chiral owltiplet (A, <|<*, F) with Weyl weight w=1. The F component of such a
chiral multiplet is inert under S supersyrametry (see eq.(5-58)). Therefore F
defines again a chiral raultiplet, which i s called the kinetic chiral nmltiplet.
I t s components are given by

(A, *\ F ) k i n - (F*. ̂  , DCA*) (5.63)

and transform according to (5-58) with weight w=2. The explicit form of the

superconformal d'Alembertian Q A = D D A follows from the superconf ormal trans-
&

formations of the derivative D A (see (5.£>0) for w=1):

Application of a second derivative now gives according to (5.59)

• -Ï
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• We now multiply a w=*1 chiral multiplet with its associated kinetic chiral multi-

plet according to (5.6*1), viz.

(A, « \ P) 8 (A, <(.', F ) K l n = (AP , ABSG* + P i|i', JP A + F F - « ' O ) .
i " '(5.66)
r.
I- This defines a chiral multiplet with w=3 fran which one can directly construct

\ a superconformally invariant by means of (5.62). The Lagrangian takes the form

£ = | (A*Q«A - 1 rt% * F*F)

+ I (*„ YW (A0°* + F%') + 2 3 o * AF*) + C'C . (5.6?)

The action defined by this Lagrangian is the superconformal extension of the

action given in (U.96), which describes the coupling of a scalar field to con-

formal gravity.

6. Decomposition of N=1 Poincaré super gravity

We are now able to show explicitly how one can decompose the N=1 Poincaré

supergravity multiplet (ea, V% A , F) into its irreducible pieces by introducing

the superconformal transformations. To this end we apply the same procedure

described in section (U.5), where we have decomposed the d-bein field e into

its irreducible components by means of the conformal transformations.

We consider the N=1 Poincaré multiplet (ef|, i|»*, A&, F ) . The Q transforma-

tions of the field components are given in eq.(2.56), while a Lagrangian for

these fields is given in e<i.(2.57). The action defined by this Lagrangian is

invariant under general coordinate transformations, local Q supersymmetry trans-

formations and local internal Lorentz rotations, but not under local internal

dilatations, special conformal transformations, U(1) chiral rotations and S

supersymmetry transformations. To obtain invariance under these transformations

we introduce a compensating chiral multiplet (A, i|)', F) (we choose the weight

w=i). The field components of this multiplet do transform under the full super-

conformal group. To construct covariant derivatives we introduce the N=1 Weyl

multiplet (eu, t(/", A , b ). The field components of this multiplet are the gauge
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fields of the superconforraal transformations. The Q and S transformations of

the ehiral aultiplet are given in eq., (5.58), while the Q and S transformations

of the Weyl components are given in eq,,^-?1*}.

Vfe now express the field components of the Poincaré multiplet (e , ip', A ,

F) in terms of the field components of the chiral multiplet (A, ifr'. F) and the

Weyl multiplet (e*, ̂ , A^, h^i

(A a)
P - - $ i (A*A)"3/2(A*D°A -

(F)

(5.68)

The r.h.s. of (5.68) is uniquely determined by the requirement that it is inva-

riant under local internal dilatations, U(1) chiral rotations and S supersymme-

try transformations. The field components of (A, t|i', F) occur such that they

compensate for the transformations of (e , •", A , b ). The overall multipli-

cative factors on the r.h.s. of (5.68) are chosen such that the Q transformations

of the expressions on the right-hand side are equal to the Q transformations of

the Poincaré fields on the left-hand side modulo a field-dependent Lorentz

transformation :

A-1'2A ~*z' ab *c") (5.69)

By substituting the redefinitions (5<68) into the Lagrangian £ for the

Poincaré multiplet (see eq.(2.57))we obtain a Lagrangian in terms of (A, I|I", F)

and (e , ip", A , b ), which is invariant under the full superconformal group.
t1 H U U gp

This Lagrangian is proportional to the Lagrangian £ given in eq..(5.67), which

describes the coupling of the chiral multiplet with the N=1 Weyl multiplet.

Explicitly, we have:

- 3 »sc (5.TO)
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As an example we show how one obtains the A'QA term in JCl , Using eq,.(>+,89) we
p

immediately see that the Einstein term in f yields the following contribution:

3eOtj(A*A)
i/2)2=f e(A*A)"1(A*3yA +A3 wA*)

2 . (5.70

2 P

In addition the A term in £ leads to the following contribution:

- -J e(A*A)"1(A*3yA - A3pA*)2 . (5-72)

Adding (5.?i) and (5.72) we obtain for the A UA term

- 3eA*0A , (5.73)

which i s in accordance t o eq,.(5.70) (see also 64. (5 .67)) .

We have now succeeded in re-sriting N=1 Poincarê supergravity in a super-

conformally invariant way. In t h i s procedure we have decomposed the N=1 Poincari

raulbiplet (e , if)*, A , P) in to i t s i r reducible submultiplets (e , i|>*, A , b )

and (A> •"• F)> which describe 8+8 and h+k f i e ld degrees of freedom respect ively .

The conformal f ie lds form a massive spin-2 representat ion of the super-Poincaré

algebra , while the c h i r a l f i e lds form two massive spin-1/2 representa t ions .

sc
The gauge equivalence of the Lagrangian -3JC to the original formulation

P
JC can be made explicit by imposing a consistent set of gauge conditions. To
break the invariance under K and D transformations we impose the Poincaré gauge
conditions b =0 and |A|=1 (ef .eq.. (U.97)). The invariance under U(1) and S trans-
formations ar« broken by adjusting A /A to a constant and by taking, the spinor
V equal to zero. The super-Poincaré gauge i s thus defined by:

b u = 0, A = 1, if.' = 0 . (5.7M

After imposing these conditions (5.68) becomes

(5.75)
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and the Lagrangian -3£ directly reduces to the form JC .
In the presence of the super-Poincarê gauge the decomposition rule (5.69) is

no longer valid (note that the second term on the r . h . s . of (5.69) vanishes in
this gauge). Instead we have a decomposition rule in analogy to eq.. (3.38),
which reads as follows:

(5.76)

The second terra on the right-hand side of (5.76) i s added to keep i|>" zero after
a Q transformation, while the third term is added to keep h equal to zero after
such a transformation. As an example we show how the Q transformation of (i|i')
is obtained from the superconformal transformations of if»* :

(Dp + i(Ap)P) e" - jY ) 1((F)PE i + i ( A ) V ) . (5-77)

The derivative D is covariant with respect to Lorentz transformations only.
The transformation (5.77) i s exactly the Q transformation of (ifr') given in
(2.55) and (2.56). We note that the Q transformations of the Poincarê fields
are much maro complicated than the Q transformations of the superconformal and
chiral f ie lds . This is one of the advantages of working within the supercon-
formal context. To keep a l l transformation rules as transparent as possible
•we shall therefore always postpone the super-Poincare gauge unti l the very end.
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CHAPTER VI

THE SUPERCURRENT

1, Introduction

In the preceding chapter we have shown that for N > 1 the gauge fields of

the superconformal symuetries do not constitute a field representation of con-

formal supergravity. In section (5.^) we have proven that these superconformal

gauge fields do not form for N > 1 a massive spin-2 representation of the super-

Poincaré algebra. Therefore only N = 1 confirms! supergravity can be described

in terms of these gauge fields, whereas for N > 1 additional matter fields are

required to form complete field representations. In this chapter we develop a

systematic method to construct these field representations for M < k.

In this method we consider the coupling of matter to the superconforraal

gauge fields. To describe the lowest-order coupling we expand the superconformal

gauge fields about their flat spacetime values. By doing so we can distinguish

in the Lagrangian a part £ i+ j which is independent of the superconformal

gauge fields. This term denotes the matter Lagrangian in flat space. The next-

order part £ , which is linear in the superconformal gauge fields, defines the

currents: each gauge field in £ couples to a current. Using the explicit

form of these currents one can construct successive supersymmetry variations

of them and find the complete so-called multiplet of currents (or supercurrent)

for any given theory. The known currents form a part of the field components

of this current multiplet. To obtain i-jvariance of the gauge field * current

coupling terms in JC we are forced to associate to each remaining component of

the current multiplet a corresponding matter fieia in the Weyl multiplet. The

starting point in the method is the construction of the current multiplet. By

using invariance of the gauge field x current coupling terms we can then derive

the linearized transformation rules of all field components (i.e. gauge fields

and matter fields) of the Weyl multiplet.

In four dimensions matter multiplets do not exist for N > h. The reason for

this is that if N > U the multiplet must contain a spin~3/2 field. This field

transforms under Rarita-Schwinger gauge transformations according to Sty = 9 e .
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Hence in the coupling to supergravity \ji will transform linearly to the vierbein

field and therefore has to 'be identified with the gravitino field. Consequently

the natural limit of the construction procedure is the N = k Weyl multiplet. To

illustrate the method we reconstruct the N = i Weyl multiplet. In the next

chapter we present the complete structure of the N = k Weyl multiplet.

This chapter is organized as follows. In section 2 we explain the method

by means of a simple example. In the presence of conventional constraints the

superconformal gauge fields are not mutually independent. In section 3 we show

that the independent gauge fields couple to modified currents, which satisfy

additional algebraic constraints. We will illustrate this by giving three

examples. Finally, in section 1* we ancly the method to rederive the N = 1 Weyl

multiplet,

2. The Yang-Mills current

To e;<plain the ideas outlined in the introduction we consider N Majorana

matter spinor fields i|i = (t|i.p.., <)>„), which transform according to a representation

of some r-dimensional Lie group G:

5if). (x) = (A T a ) ^ ; *• (x) , i, j = (1,.., H)

[T a, Tbl = f° b T c ' . o, b, c = (U..,r)

Here A are the r spacetime-dependent parameters of the (infinitesimal) G trans-

formation. A Lagrangian for ij>, which is invariant under global G transformations

is given by

matter - 5 *'j»l = - 5 gijï1 ^ . (6.2)

where g.. is a symmetrie invariant metric in the representation considered, i.e.

(A*T)I •«. + (A'Tl e. = 0 i(\ -*.\
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When the Aa become spasetime-depenctent, the Lagrangian (6.2) is no longer

In the Noether procedure this term is cancelled by adding a, term J^ to

which is linear in the gauge field V of the a transformations. This gauge

field tafces values in the Lie algebra g of G;

V*1

In addition, its transformation rule under local G transformations contains an

inhomogeneous term:

6Va = 3 A a . (6.6)

This enables us to cancel the variation (6.U) by means of the following term:

.Y T |) ; VaJ . (6.7)
V a v' u pa v i /

This term defines the Noether currents J (a = 1, . . , r ) :
Via

If the matter fields t satisfy the free field equations $ty = 0, the variation
7^*11^311®3 ̂  *° a total privative. This implies that up to the order

f 112

invariant Ï -| "-£;-.

;i

;1 considered also the variation of the V J term must vanish up to a total derivative.I V Via
ï From this we deduce that the Kfoether currents J are conserved:



I

JuaS0 * V u a = 0

v Using the explicit expression (6.6) one can verify that this is indeed the case.

i Because of the transformation of the Noether currents J _ the Lagrangian

F
* ( oL. + VaJ (6.10)
matter \i ua

is not invariant under the local G transformations specified by (6.1) and (6.6),

We now show how the variation caused by the transformation of J can be cancelled
a ^aby adding linear terms to the transformation rule of V . To that end we first

calculate the G transformation of J using the explicit expression (6.8) of J

in terms of the matter fields i|>. This yields the following result:

+ 5 ty'{y T -

h = f°vAbJ„„ . (6.11)

The variation of the V J term caused by (6.11) must be cancelled by a corres-
a.ponding transformation of V , because no other terms in the Lagrangian contribute

to this order. Hence we have:

This enables us to calculate the linear terms in the transformation of Va:

In the presence of these terms the gauge fields V a form a representation of
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the Lie algebra g of G:

I with

To derive the linearized transformation rules of the extended Weyl multi-

plets we can apply the same procedure as outlined above. To that end we consider

a matter theory, which is invariant under rigid superconformal transformations.

We first construct the energy-momentum tensor 6 , which is the Noether current

of translations. Since the matter fields satisfy their free field equations,

it suffices to start from an on-shell formulation of the matter theory considered.

We next apply in analogy to eg.. (6.11) successive supersymmetry transformations

of 9 . This leads to the remaining Noether currents of the superconformal

symmetries. For N > 1 these Noether currents do not constitute a complete multi- . *

plet under supersymmetry. This follows from the counting argument given in

section (5.U), which is again applicable since the gauge fields and their ;

corresponding currents contain the same numbers of degrees of freedom. However,

in this case it is easy to find the missing components. Namely, one can obtain

them by constructing successive variations of the known currents, up to the

point where one encounters only derivatives of bilinears that have been found j
j

before. This will occur after at most UN supersymmetry variations, because

of the anticommuting nature of the supersymmetry generators. We note that, :

although the matter fields are on-shell, the multiplet of currents is a genuine •;

off-shell multiplet. We have already mentioned in the introduction that the I

remaining components of the current multiplet couple to the matter fields of j

the Weyl multiplet. j

We now proceed in analogy to the example above. Once the linear transfor- j

mation rules of the full current multiplet are known, one can find the linear !

transformation rules of all field components (i.e. gauge fields and matter fields) !



I

of the Weyl multiplet by requiring invariance of the gauge field * current

coupling terms (of. eq,, (6.12)). From these linear transformations one can

derive the complete nonlinear transformation rules and corresponding super-

Qonformal algebra by means of an iterative procedure. We will describe this

procedure in section h.

3. Improved currents

To obtain a maximal irreducibility of the superconformal gauge fields we

have, imposed the conventional constraints on th« superconformal curvatures

(see section (5.U)). In the presence of these constraints the superconformal

gauge fields are not mutually independent. When we consider the coupling of

matter to these gauge fields we can only define the currents, which couple to

the independent gauge fields. In this section we show that these currents are

modifications of the currents, which couple to the same gauge fields in the

absence of conventional constraints. They differ by so-called improvement

terms. These terms are generated by the dependence of the remaining gauge

fields on the independent ones. The modified currents satisfy additional

algebraic constraints, which are generated by the improvement terms. Such modi-

fied currents are called improved currents. Successive supersymmetry transfor-

mations of these improved currents lead to the current multiplet, which is

relevant for the construction of the (extended) Weyl multiplets.

To explain the above ideas we give three examples of matter coupled to

gravitational gauge fields both in the absence and in the presence of conventional

constraints. The first example describes the coupling of a matter spinor field

to Einstein gravity in d dimensions. The second example concerns the coupling -;

of a complex scalar field to conformal gravity in d dimensions. In the last :;

example we consider the coupling of a chiral multiplet to U = 1 conformal super- '|

gravity. ]

Example 1 ;|

Consider a Majorana matter spinor field I|I coupled to Einstein gravity in 1

d dimensions: 1
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Here e a and i^ are the gravitational gauge fields (see section (2.3) /in the

absence of conventional constraints. This means that e and w are independent.

| The gamma matrices r in d dimensions are defined by the relation

j r r + r r = 2 5 U . v i..a) . (6.17)

For these matrices we use the notation r = r r and F = r I* r . The

expression between brackets in (6.16) is the Lorentz-cavariant derivative D .
. a abTo describe the lowest-order coupling between ij> and e , w we expand the

gravitational gauge fields about their flat spacetime values e (x)= & and

o^{x)= 0 (see eq, (J».78)). We define

Substitution of (6.18) into (6,16) leads in lowest order to (up to a total deri-

vative ):

£ = -1 f'fy + hau {\ ̂ Tij3a*i + O.Q.) + u?
h (^"Ya%< + o-c.)

s £ ( o ^ + h e + w
ab ^ . (6.19)

matter an ua p u

In (6.19) we have omitted terms, which vanish upon use of the free Dirac equation

H'= 0. The currents 8 and S^ are called the energy-momentum tensor and the
jia yinternal Lorentz current respectively.

In the previous section we have shown how the inhomogeneous terms in the trans-

formations of the gauge fields lead to constraints on the currents, which couple

to these gauge fields. One can find these inhomogeneous terms by substituting

(6.18) into (2.18) and using (2.21^:
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(i) general coordinate transformations : <Sh = 3 £ft ,

(6.20)

(ii) internal spin rotations S : Sw^ = Ŝ e , Sha(i - z&^ .

Using the conjectured invariance of the full action under general coordinate

transformations and internal Lorentz rotations we find in analogy to eq,. (6.9),

that if the matter field * satisfies the free field equation Jfij;' = 0, the

following identity must hold:

Since the parameters e and 5 are arbitrary eq. (6.21) leads to the following

constraints on 9 and S

and 5
atlab n

(i) 3 6 = 0 , (general coordinate transformations)
P Via

(6.22)

(ii) 3 Sa + e* 's 0 . (internal Lorentz rotations Z)

We note that to derive (6.22) we did not use the explicit form of £ I. .
* matter

For another matter theory invariant under the symmetries (6.20) we would obtain

the same result. One can verify the constraints (6.22) for our example by sub-

stituting the expressions for 9 and S a in terms of iji' given in (6.19).
Via u .

From (6.22) we deduce that the current S is not conserved. However, we

can define a modified current S' , which is conserved. Namely, by combining

the above identities we find

(ii)1 8wS^
abH 3 u ( ^

b - 6^axb')= 0. (Lorentz transformations M) (6.23)

The modified current S'a corresponds to the flat-spacttime Lorentz transfor-

mations M, which have been defined in chapter h (see eq. (U.UT)). The inhomogeneous
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terms in the M transformations of h and o>a (taken with spacetirae-depeudent
aw H

parameters) are given by:

(ii )' Lorentz transformations Ms

Substituting these transformations into the variation of the gauge field x current

coupling terms (of. eq,. (6.21)) we indeed obtain the conserved currsnt S'

We now reconsicter the invariance of the action defined by (6.16) in the

presence of the conventional constraint

From this constraint we can solve the Lorentz gauge field w a in terms of

derivatives of the d- bein field according to (2.20). Substituting the expansion

(6.18) into (2.20) leads in lowest order to

« f (h) 3 9 h t a b K 3[ahbl« + 3 lahutl . (6.26)

Consequently, instead of two currents 9 and S81 , we only have one current, which
is a modification of 8 :

ua

£ - 'iakr + Vua + 1' ^

^i V ( V + \ Sa,MX " aaAS[MiAla) + t O t a l

Matter + hau9jaP + t o t a l Privative . (6.27)
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The modified current 9 e differs from 9 by so-called improvement terras which
U& . ua

are generated, by the dependence of u on e . Improvement terms are conserved

because of their form: they can generally be written as the divergence of an anti-

symmetric tensor. That this is the case follows from the curl structure present
ab

in the explicit solution (6.26) for the dependent gauge field u .
Owing to the presence of the improvement terras the modified current 0 ^

satisfies an additional algebraic constraint. For this reason 9,lmp is called
ua

an improved current. To derive this constraint we consider the variation of the

gauge field x current coupling term hau
9l£ u n^ e r o n e o f ^ e symmetries (6.20).

In analogy to eq. {6,$) we find:

From this we deduce the following differential and algebraic constraint on
eimp
ua

3 8 " - 0 , (general coordinate transformations)

u ua
(6.29)

9lmp = 9lm]? . (internal Lorentz rotations 2)
ua an

In deriving (6.29) we have implicitly assumed that the transformations (6.20)

have not been affected by the presence of the conventional constraints. One

can easily verify that this is the case. The construction of the modified

current 9 , which satisfies the conditions above is thus intrinsically relatedua
-imp
ua '

to the possibility for choosing a conventional constraint.

In order to derive (6.29) we did not use the explicit form of £ .L . Of
matter

course we can verify the constraints (6.29) for this example. Using the explicit
expressions of 9 and S 8* in terms of i|/' given in (6.19) we find for the improved

ienergy-momentum tensor 9 p (see e<j. (6.27)):
Via
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6
)ja

3 i(-
u a

- 4 3,o X c-c-

(6.30)

5 *'

I t i s obvious that t h i s expression sa t i s f i e s the i d e n t i t i e s given in (6.29).

Example 2

In this example we consider a complex scalar field A (with Weyl weight

W(A) a s (d-2)) coupled to conformal gravity in d dimensions:

£ = eA*CpA

E eA* {(3 -a 1 d h -
2 a

w, ^ ) ( 3 - 2 (d-2) b ) A + 2 (d-2) f*A}. (6 .31)b , u a a 2 a 2 a

The coï.formal d'Alembertian is defined in chapter h (cf. eq.. (^.80)). To describe

the lowest-order coupling between A.and (ea, u a , b , fa) we expand the confcrmal

gauge fields about the flat spacetime configuration ('+.78). Using definition

(6.18) we find in lowest order (up to a total derivative):

JE = £ ( o ] + + h 6 + o f V ^ + b T + f a U a

matter au via p- y u y U u (6.32)

with the currents 9 , £" , T and Ua given by

( 3 / ) ( 3 a A ) ~

(6.33)
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Ir. (6.33) we have omitted terms, which vanish upon use of the free Klein-Gordon

equation DA. = 0. The free matter term •£ ^tter = A ^ h a s b e e n d i scussed in

chapter k (cf. eq. (^.59)).
In the absence of conventional constraints the eonformal gauge fields are

mutually independent. Together they describe g (d+i) (d+2) x (d-1) field degrees
of freedom (cf. section (lt.6)). The inhomogeneous terms in the transformations
of these fields are given by eq,. (6.20), together with (cf. eg.. (k.t9)):

( i i i ) . internal dilatations A j 6b = 3 A , fih = - 6 A_
w H u ay ctyi u

(6.

(iv) internal coaformal boosts K : fif = 3 A 6m = 2 Ai ö , 3b =

Substituting these transformations into the variation of the gauge field x current

coupling terms (cf. eg.. (6.21)), we find the constraints (6.22) and the following

ones:

(iii) 9 1 + 6 = 0 , (internal dilatations A)

(iv) 3 U^ - 2 S a w- Ta = 0 . (internal conformal boosts K)

(6.35)

To derive these constraints we did not use the explicit form of £ [. . One
•" matter

can verify them for this example by substituting the explicit expressions of the

conformal currents in terms of A given in (6.33).

In analogy to the previous example we can find the conserved currents S' ,
a

T' and U' corresponding to flat spacetime M, D and K transformations respectively

by combining the relations (6.22) and (6.35). For S' we find the same result

(6.23) as before, while T1 and U'a are given by:

(iii)' 3HT« H 3̂  (T̂  + e^x*) = 0 , (dilatations D) (6.36)

Vf a 3w (Ul - 2 S ; \ - T/ + 9ub (J xV* - ,V» = 0 .
(conformal boosts K)
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One can derive these currents immediately by using the inhomogeneous terms in the

M, D and K transformations (taken with spacetime-dependent parameters) of

(h , u , b , f a). These transformations have been defined in eq.. (i+.UT)• For

the M transformations the inhanogeneous terms are given in eq. (6.2U), while for

D and K we have:

( i i i ) 1 dilatations D

(iv)1 Gonformal boosts K : «Sh

= 3ye

^
( 2

(6.37)
2(3 Eb)

In the presence of the conventional constraints (U.98) and (U.1C7) the

oonformal gauge fields describe s (d+1) (d-2) field degrees of freedom, which

form a massive spin-2 representation of the Poincar! algebra. In this ease the

only independent gauge fields are the d-bei.a field e and the dilaton field b .

Since the remaining gauge fields are in lowest order given by (these expressions

can be found by substituting definition (6.18) into eqs. (k.9)) and (U.I08)):

« a b (h,b) = 3 2 bfa6

(6'38)

We only have two currents, which are modifications of 6 and T :

\ W

^lat ter + ha,i { %a + 8XSa,uX " 23XS[u,X]a
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+ •••:>-v ((5 3 3 - & , 3 ,3 ) ÜC + ( • 6 , 6 v - 3 3, 5 J U C

(d-2) au p c vi (p c) a ' p p(u a)c u (C p )a ' p

- . ?• , (<$ • - 3 3 ) U )} + b (T + 2 Saw - 3 Ua)
(d-1) v au a u PP a a U UW

+ t o t a l der ivat ive

5 JC(°L + h 9 i m P + b T i m p + t o t a l derivat ive . (6.39)
matter au ua uw

Because b is the only field in £, which transforms under internal K transforma-

tions» we immediately deduce from the invarianoe of £ under these transformations
that T v is identically zero, i.e. b decouples from the matter field A. Indeed,

using the second relation of (6-35) we find

TlmP = T + 2 Saw - 3 Ua H 0 . (6.kO)
•& a u u w

To derive the constraints on 9imp we consider the variation of the gauge field

x current coupling term h ®lmp under one of the symmetries (6.20) and (6.3*0.

In analogy to eq. (6.28) we find:

d x (3 e + e - <S A_) eimp 5 o . (6.
p a au au D pa

From this we deduce the following differential and algebraic constraints on

9imp:
pa

3 9 = 0 , (general coordinate transformations)

8„„ - 9 p , (internal Lorentz rotations l) (6.1*2)
(Jo, CkJ-l

: 0 . (internal dilatations A)

Hence the current 0 p is an improved current, which satisfies additional algebraicua
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2
; constraints compared to 9 . Owing to these constraints the a priori d com-

imü ^ a 1
ponents of 6 e are restricted to g (d+1)(d-2) independent ones, which is the

same number as the independent components described by the d-bein field e .

; In order to derive (6.^2) we did not use the explicit form of •'Lotte " ^e

\ can verify the constraints (6.U2) for this example. Using the explicit expres-

' sion of 9 , S and Ua in terms of A given in (6.33) we find for the improved

y energy-momentum tensor a^11^ (see eq,, (6.39)):

A> " Suv l*/> W + S {(0
(6.U3)

' It is easy to see that this expression satisfies the identities given in (6.42).

I Example 3

As a last example we consider the coupling of a (on-shell) N = 1 chiral multi-

plet (A,ip") to the K = 1 superconformal gauge fields in four dimensions. The

action which describes this coupling is given in eq. (5.67). Substituting the

expansion (6.18) into this expression we find in lowest order:

ioL + h 8 + u>aVb + b T + fa Ua , A a (6M)
matter au ua u u \i u u u v v \<J.*HI

+ (ijJ'J' + $"G" + c - c - ) ,

w i t h t h e c u r r e n t s ( 6 ^ , S^ , T^, U a , a^ , J * , Gĵ ) given by
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n A) - 3 A
V a

I / 7* • C'C')

Ua «VA

-* 2

(6.1*5)

In (6.U5) we have omitted terms which vanish upon use of the free field equations

Oft. = 0 and ,3i|>"= 0. The free matter term

" **» - 5 **. (6.U6)

has been discussed before (see eq.. (5.^3) with F = 0).
Of course N - 1 conformal supergravity is only defined in the presence of the

conventional constraints (5.^*6)• Nevertheless i t is instructive to first consider
the currents (6.U5) in the absence of these constraints. Again these currents
satisfy differential constraints which follow from the inhomogeneous terms in
+.he transformation rules of the superconformal gauge fields. These inhomogeneous
terms are given by (6.20), (6.3U) and

(v) Q supersymmetry

(vi) internal S supersymmetry

(vii) chiral U(1) symmetry

p* = 9 e'
U U

' , fill»" = - Y

u u u( 1)
They lead to the identities (6.22), (6.35), together with

(6.1*7)

(v)

(vii)

3 J' , (Q supersymmetry)

, (internal S supersymmetry)

. (chiral U(i) symmetry)

(6.1*8)
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By combining these constraints one can derive the currents corresponding to the

flat-spacetime transfo.inations. This leads to the definitions (6.23), (6.36)

and the next one:

(vi)' 3 G' = 3 (G* - i J") s 0. (rigid s super symmetry) (6.1*9)

I
b

"• This definition is consistent with the inhomogeneous terms in the rigid s super-
t
! symmetry transformations of I|I° and <(>*, taken with spacetime-dependent parameter,

(cf. eq. (5.38)):

(vi)1 rigid s supersymmetry : Sty' = ji3n',<5<t>' = 3 n" . (6.50)

In the presence of the conventional constraints (5.1*6) the only independent

rconformal gauge fields are (ea, ty', A , b ]t. Si

fields are in lowest order g;ven by eqs. (6.38) and

superconformal gauge fields are (e,i|>*,A,b)t. Since the remaining gauge

3

•we only have four independent currents, which are modifications of 8 s T , a

J":

E(°], + h e + w
a b (h,b) S a b + b T + fa (h,b) U a

matter au ua ]i y \i \i \i * v

+ A a + (ij)'J' + $" (i|>) G" + e-e)

In analogy to the second example the gauge field b decouples from the theory,

i.e. T i m p = 0. In addition we have a i m p = a . The modified current j " l m p isv v u u

(6.52) I
i
}

126



given by:

J * i n l P s J ' + 1 ( y a , 1 a y ) J O ' , ( 6 . 5 3 )

I while the expression for QX1S& is given in eq, (6,39),.

! To derive the constraints on the improved currents (9 l m p, J'imp, a ) we

;
! consider the variation of the gauge field * current coupling terms in (6.52).

% We thus find the restrictions (6.U2), (6.U8) (vii) and

f. 9 J p = O , (Q supersymmetry) (6.5U)

l>, y J"imp = O . (internal S supersymmetry)
r

f Owing to these conditions the currents (ö , J" , a ) describe 8 + 8 field

I degrees of freedom which couple to the 8 + 8 independent gauge fields (ea,<|>*>

f; V-
I'. Substituting the expressions (6.U5) of the Noether currents into the defini-

; tions of the improved currents (6 i m p, J*lmp
1 a ) (see eqs. (6.39) and (6.53))

'}• we find that these currents are given by

C = 2 (3(UA*} (3v)A) - 6^%k*] (3PA) + 3

(6.55)

1 . ***• 1
au = 2 x A auA ~ 5 x

One can verify that they indeed satisfy the identities given in eqs. (6.k2),

(6.kQ) (vii) and (6.5*0. viz.
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-MM "" ' V M
 = °

k. The K = U d = k supereurrent

In order to illustrate the ideas presented in the previous sections we re-

l' construct the N = 1 Weyl multiplet. In the next chapter we will apply the same

procedure to derive the complete structure of the N = h Weyl multiplet.

\ The starting point is the construction of the N = 1, d = U multiplet of

;• (improved) currents (or supercurrent) corresponding to the coupling of a (on-

| shell) N = 1 chiral multiplet (A,<|>') to the N = 1 superconformal gauge fields

F ( e , i f " , A ) . TO derive the field components of this current multiplet we first

jj consider the improved energy-momentum tensor 8imï> (see eq. (6.55)). This current

| corresponds to the translation invariance of the free natter term given in (6.U6)

f. and is & bilinear in the field components of the chiral multiplet (see eq. (6.55)]

I We next apply a supersymmetry transformation on 8 . In calculating this ';

I transformation we always use the field equations QA = 0 and jty/' = 0 of A and i|>* .•;

:"' respectively. The transformation of 9 leads to another field component of the •

j- current multiplet, namely the (improved) supersymmetry current J". In his turn i

?; a supersymmetry transformation of J' again leads to a new field component of the J

current multiplet, namely the chiral U(1) current a (see eq. (6.55)). Finally, \

a transformation of a only leads back to J'. This means that at this point we

have found the complete N = 1, d = k supercurrent. This could already he guessed

from the fact that the currents (eimp, J"lmp, a ) describe 8 + 8 field degrees

of freedom. We now give the transformation rules of the current multiplet.
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From the N = 1, d = k supercurrent ( 9 ^ 3 Jü l m P> O one cari dei"ive a cor-

responding multiplet of fields (hft , ji', A ) by requiring invariance of the gauge

field * current coupling terms:

(6>58)

h.

1

n',

.) <7X '.e

•«> <8i

Euv' AE

* + Ï

and

i£ V

" n 3[

Au(D

'- Y - trace)

a.\] Y"*1 c'c*

characterive i Q,

+ 3 e'.

(6

g.c.t

- V"'
.59)

The transformation rules of (h , i|i", A ) are given by

Sh = (ë*Y, ifi v + e 'c •- trace) + 3 I + E
au (sp). U a e.]i

<5A

where the parameters e", 5 ,

and internal S, z, A and U(1) transformations respectively. All inhomogeneous

terms in the transformations (6.59) are in correspondence to the constraints

(6.56) on the improved currents. The Q transformations in (6.59) are determined

up to field-dependent gauge transformations. By applying such transformations

we can bring the Q transformations in the following equivalent form:

6h - ë'ï tp + c-e- ,
ap aru. '

% - t a
M - 5 - ? t h ) aab + 5 i A u ) e " • (6l6O)

öA^ = 2 i ê' ̂ ^ W + c-c' ,

with w a (h) and ifi'(ip) defined in eq.. (6.26) and (6.51) respectively.

The derivation of the complete nonlinear transformations proceeds by induction

This procedure resembles the method described in chapter 5 (see after eq. (5.57))

to calculate the nonlinear transformation rules of matter fields which are

coupled to supergravity. We now briefly describe this iterative procedure. We

first replace in the linearized transformation rules (6.6o) h everywhere by ea.
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We then assign Weyl and chiral weights to all fields in the multiplet. After

choosing the standard Weyl weight w =-1 for ea (we must take c = 0 for the

.' chiral weight of ea) all other weights are determined by the [Q,D] and IQ,A]

i commutators. We then make the gauge field b explicit in the covariant derivatives.

I The transformations of b are determined up to field-dependent K transformations.

r We choose them to concide with the S U (2,2|1) transformation rules given in eq.

f (5.W0:
i..

= (e' *W - ? ^ +o-c-)+a MA D + A K w . (6.61

We next covariantiae all derivatives with respect to internal Z, K and S trans-

formations by introducing the gauge fields u> , f and $'. These gauge fields

are not independent. They are completely determined by the conventional constraint!

which also fix their transformation rules (cf. section (5-5)). We now calculate

the commutator algebra on the basis of the linearized transformation rules, but

with spacetime-dependent parameters and ordinary derivatives replaced by covariant

derivatives. We then impose this algebra on all field components. This requires

the addition of terms of second order in the fields to the transformation rules.

One now repeats the calculation on the basis of the new transformation rules.

This may lead to terms of higher order in the fields in the transformation rules

etc..

In the next chapter we apply this procedure to calculate the complete non-

linear transformation rules of the N = k Weyl multiplet. For N = 1 the results

are rather simple. We find that the complete nonlinear transformations of (e ,

ij>", A ) are given by eq. (5.5*0. These transformations are just the covarianti-

zations of the linearized transformations rules (-6.60).
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CHAPTER V U

EXTENDED CONFQRMAL SUPERGRAVITY

1. Introduction

In this chapter we study extended conformal supergravity with N <. It. We

take the limit H = k, because this is the natural limit for the construction

procedure described in the previous chapter (cf. section (6.1.)). Presently

these exists no method to construct confonnal supergravity for H > k. There

are indications that drastic changes take place beyond N = k (see the references

at the end of this chapter).

The first step in the construction of extended conformal supergravity is to

find the multiplet of currents. In this chapter we present the irreducible

N = U, d = h multiplet of currents, which contains the gravitational spin-2

degree of freedom. This supercurrent contains all corresponding d = k super-

currents for lower M. Once the supercurrent is known, it is straightforward

to derive the linearized transformation rules of H = 1) conformal super,gravity.

These linearized results can be extended to the full theory by means of iteration.

To present the complete nonlinear transformations and corresponding algebra it

is advantageous to use a formulation which exhibits the highest possible degree

of invariance. Therefore we first construct a new version of H = k conformal

supergravity which is manifestly symmetric under an extra local U(1) and rigid

SU(i,i) group. In this formulation the complete nonlinear results are obtained

after a finite number of iterations. We thus find the superconformal transforma-

tions and the corresponding algebra which are given in the text.

This chapter is organized as follows. We present the H = h multiplet of

currents in section 2. Here we also give the linearized transformation rules of

the H = k Weyl multiplet. The formulation with an axtra local U(1) and rigid

SU (1,1) invariance is discussed in section 3, while the full nonlinear trans-

formations are given in section U. Finally, in section 5 we give our conclusions.
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':\

2, The N ^ k, d = h supereurrent 5

To construct the largest gravitational multiplet of currents» we consider ';•

an (on-shell) N » k supersymmetric matter theory. The only known candidate for '[;j

this is the aupersymraetric Yang-Mills theory, and for our purpose the aheiian

version suffices. It is hased on a gauge field V , a quartet of Majorana spinors

tyx% for which we use the chiral notation given in (2.8) and a Lorentz scalar <j>
iJ, anti-

symmetric in the SU (k) indices i, j and subject to an SU (H)-covariant reality

constraint;

(7.D

The field strength corresponding to V is denoted hy P ( = 3 V - 3 V ), and

we define (anti-) self dual components by

i§ Euvoa Fpa ) • (7'2)

The fields transform under four independent supersyrametries with parameters

e according to:

•}

h
(7.3)

- 2 i t * i jE,

These transformations are an invariance of the action corresponding to the fol-

lowing Lagrangian:
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Furthermore the action defined by (i.h) is invariant under translations and

chiral SU {k) transformations. Note that the transformations (7-3) do not allow

for an extra chiral U(1) invariance: the transformation of V implies that the

chiral weights of &X and ty- are opposite, whereas the transformation of <|>.. im-
l -̂ J

plies that those of e. and \j>. are opposite. From this we deduce that all chiral
i j

weights are zero, i.e. there is no chiral U(1) invariance present. The commutator

of two Q transformations on (V , IJI1, <!>.•) yields a general coordinate transfer-
u "i

mation with parameter £ = 2 eiYu
ep-i + G"c*»

The improved Hoether currents of translations, supersymmetry and chiral SU (k)

transformations can be constructed in the standard way (see chapter 6). The

explicit expressions are given by

pv vX v '(y vfi pv py p ij

h+ 2
(7.5)

3 4, . + A v ill. — -r o.iivii,

where the SU {k) current v . is antihermitean and traceless. In (7.5) we have

omitted terms, which vanish upon use of the free field equations

3 F = 0 D (7-6)

of V , q> and $1J respectively.Using these field equations one can verify that

the Noether currents (7.5) satisfy the following differential and algebraic

identities:
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9 9imp= O . 3 J ? O
U fiV ' UW

We immediately deduce from (7-7) that the Noether currents (exmp, J1™11, v1.)

do not constitute a massive spin-S representation of the super-Poincarê algebra..

More specifically, they describe 50 + 32 (bosonic + fermionic) field degrees of

freedom, whereas a N = k massive spin-2 representation describes 128 + 128 dynamic

degrees of freedom (see table 2 in chapter 5). Therefore 78 + 96 components are

still missing. To derive the additional quantities, which are needed to describe

these degrees of freedom we apply successive Q transformations on the Noether cur-

rents (7.5), always using the free field equations(7.6)• We thus-find that the

remaining components of the supercurrent are given by:

, (16)

, (20)

ab = *X ffab*J + 2 i ^Kh • ( 3 6 )

(7.8)

where the number between brackets denotes the number of independent components.

In th i s way we find th<;:. besides the Noether currents (7.5) the supercurrent

contains a complex scalar c, a symmetric scalar e . . , an antisymmetric tensor
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(both in Lorenta and SU (k) indices) t1^, which is antiselfdual in the indices

a,"o, a scalar d.^ in the 20-dimensional real representation of SU (U),and two

spinors A. and &?» the latter in a complex 20-dimensional SU (k) representation.

', ine easily verifies that the Noether currents (7-5) together with the quantities

(7.8) indeed describe 128 + 128 field degrees of freedom.

f The supersymmetry transformations of the currents (7-5) and the quantities

• (7.8) are as follows:

6c = 2

- f i w l \ eJJ+ f i ?d^n e
1 - (trace) , (7.9)

t i 5 V ^ « - »•••

From the multiplet of currents (7-9) one can derive a corresponding multiplet

of fields by requiring invariance of the gauge field x current coupling terms:
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fdu
x {n e ^ + v \ v j. + DJJ ê1. + {pj™* + c c

x. + E e . . + T "fc . . + Y, £. • + c "C ' )}
i i j ab ab i j Ak % i j 7

(7.10)

I,' Here we use the obvious notation in which every component of the current multi-

{ plet couples to a corresponding field. In table 1 we have listed some details

I about these fields. Their transformations are given by:

2 f C E . * K . .

-2 o-atj (V) E
J1 - | filj a.RJl (v) e1 (7.11)

4 -"

Sh = ë 1 Y ' l ' -
aw a yi

P

1 - 2

Here R^ . (V) 5 9ïJ, - 3 v \ is the field strength of V1. and aiab (h) is

defined in eq.. (6.26). The lowest-order expression $ (ip) is given by
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(7.12)

In this chapter our conventions for the transformations of the superconformal gauge

fields (and corresponding algebra) slightly differ from the ones in chapter 5

(cf. eg,. (5.MO).

In principle it is now straightforward to derive the complete nonlinear trans-

formation rules and the corresponding superconformal algebra. For this purpose

one can apply the iterative procedure, which is described in section (6.h). Choosing

for e a the standard weights w =* -1 (Weyl weight) and c = 0 (chiral weight) we

find for the weights of the other fields the values given in table 1. If one now

proceeds with the iterative procedure described in section (6.k), one

Field

C

A.

Ei*

ab

u

•Ï
V1.
WO

bw

Type

boson

fermion

boson

boson

fermion

boson

boson

fermion

boson

boson

Restrictions

complex

Y5Ai=Ai

E.;=E..; complex
1J• tJX * < ••

Jab „,~.ba" Ttab *
1 cd_i3 io
Fab cd. ab
v vi0_ 10. ij_ vJi.T5 xk xk lXk ~xk '

viertein

i i . •

V .°'=(Vi.f= -V5.;
Ul x Hj' yi'

V ^ = 0; SU (U) gauge field

dilatabional gauge field

SU (If)

1

k
10

6

20

20

1

k

15

1

w

0
1
2
1

1

3
2

2

-1

1
"2

0

0

c

-2
3
"2
-1

-1

1
"2

0

0

1
~2

0

0

table 1. Fields of N = k conformal supergravity. We have indicated the various

algebraic restrictions on the fields, their representation assignments,

and Weyl and chiral weight factors.
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recognises after a few steps that the scalar field C (see eq,. (7.11)) occurs

, in a non-'polynomial fashion in the Q-transformation rules. This is possible

because C is inert under internal dilatations A. Therefore one can expect that

. the complete transformation rules contain a priori arbitrary functions of |c| ,

| However, it appears that these functions have a remarkable systematic structure.

I The linearized transformations (7.11) are known to be consistent with a rjLgid

i', chiral tj(i) symmetry, and it turns out that the nonlinear Q transformations

t contain precisely such a U(l) transformation with a field-dependent coefficient

;' as a uniform component. Furthermore> all derivatives are augmented by C 8 C terms

in such a way that this quantity can be interpreted as a new gauge field that

makes the derivative co/variant with respect to local U(1) transformations. These

facts can be viewed as an indication that the theory can be reformulated in a

form which is manifestly symmetric under local chiral u(1) transformations.

It turns out that this reformulation also has a rigid SU (1,1) invariance. More

!• specifically, it appears that the scalar C in the original formulation occurs

; as a parametrization of the coset space SU(1,1)/U(1). It has been known for
1 somu time that SU (1,1) invariance plays a xale in Poincaré supergravity (see

the references at the end of this chapter), but this symmetry was never linked

to the superconformal sector of the theory.

Before giving in section k the explicit construction of the full theory with

a manifest rigid SU (1,1) and local U(i) invariance, we first review in the

next section some properties of SU (1,1) and its coset decomposition into

SU (1,1)/U(1) and U(1). Furthermore we indicate how the relation between the

reformulated theory and the original formulation in terms of a complex scalar

C can be made explicit by imposing a gauge condition that breaks the local

; U(1) and rigid SU (1,1) invariance.

3. Rigid SU (1,1) and local U(1) invariance

By definition SU (1,1) (= SO (2,1))is the group of complex 2x2 matrices

with unit determinant that leave the metric n = diag (+1, -1) invariant. There-

fore elements U of SU (1,1) satisfy (to compare we also give the corresponding

more known relation for SU (2) {= SO (3)) :
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uf
nu = n , (su (1,1))

(7.13)

U+6-U = 6 or U+U =31, . (SU (2))

Here 6 is the SU (2) invariant metric <5 5 diag (+1, +1) and U is the hermitean

conjugate of U. An arbitrary element of the group SU (1,1) can be written as

(again we give the corresponding expression f or SU(2), cf. section (3.3)):

with $*$1 - $**2 = *
a*a = 1 ,(SU (1,1)) (7.

• 1 .(SU (2)) (7.15)

In (7.1*0 we use a notation for the doublet- * , in which the metric n raises

and lowers indices according to

*a = na3 («J) = (•*, - **) • (7.16)

One can verify that both the SU (1,1) transformations (7-1*0 and the SU (2)

transformations (7.15) leave the two-index Levi-Civita tensor e D invariant:
otp

UTeU = e . (7.17)

m

Here U is the transpose of U.

We recall that each group elementof SU (2) can be written as the exponent

of a linear combination of the three Su (2) generators T. = TJ T. (i = 1,2,3)

(T. are the standard Pauli matrices, cf. eq. (3.28)) in the following way:
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= exp (7.18)

with « defined 'by

*1 = cos (•p a) + i sin (— a) a.

= sin (̂  a) (ia1 - S

2 =a2 =

(7.19)

Sj = !i (i = 1,2,3) .

This is not true for SU (1,1). The generators of the Lie algebra sudji)

SU (1,1) are given by:

2 T1
— T

2 T2
1 = -=• T

3 2 T3
(7.20)

Exponentiation of these generators gives:

exp £ + i

with *. and *2 given by

(7.21)

*1 = cosh (x a) + i sinh (p- a) a

= sinh (̂  a) («1 + i Sg

2 . 2 , 2 2
, et = a, + a2 - a3,

«i = üi (i = 1,2,3).

(7.22)

This does not lead to all possible group elements. For instance, the matrix

1U1

U = j - cos
\ sii

= I - cosh p

sinh p

sinh p

- cosh p

, P * 0 (7-23)



is an element of SU (1,1), but it is not possible to write it in the form (7.21), \

(7.23), because (7.22) implies that (* + **) > -1. •:

The vector space of the noncompact Lie algebra su (1,1) decomposes quite •

naturally into two vector subspaces: ;j

su (1,1) = u (1) ® (su (1,1) mod u (1)) , (7.2U)

where u (1) is the maximal compact Lie subalgebra generated by the compact

generator T_ ~ ̂  T_ and (su (1,1) mod u (1)) is the vector subspace consisting

of the remaining generators T.. = - T . and T„ S ^ T 2 , both noncompact. The

decomposition (7.2U) of the Lie algebra su (1,1) has the following counterpart

in the Lie group SU (1,1):

SU (1,1) = U (1) . SU (1,1)/U (1) . (7.25)

The left coset SU (1,1)/U (i) is defined as the set of group elements cQ, c , '..

SsU (1j1) with the property that

U (1)-CQ + U (1)-C1 + ... = SU (1,1) (7.26)

and, furthermore, no element gSSU (1,1) is contained more than once in the sum

on the left. In other words, the c. are chosen in such a way that every group

element gSSU (1,1) can be written uniquely as the product of an element hQJ (1)

with an element c in the left coset SU (1,1 )/U (1):

B = h-c höJ (1) , ceSU (1,0/U (1) . (7.27)

A natural choice for the coset representatives is given by

1 / * \ 2 *
U = exp g ( « ^ + <xpTp) = ƒ *, *o \ , *, - *„ *o = 1, (7.28)2 ( V 1 + °2T2) ' (*1 *2 ] ' *1 - *2

\*2 *1 /



\
with *1 (is real and >1) and $ o given hy 4

*. = cosh é a) , a2 5 a^ + ap , (7.29) ï

$ = sinh (la) (5. + i ap) , «. 5 __i (i = 1,2)
* * ' a

On the other hand the general form of an element of the u(1) subgroup of SU (1,1)

is given by:

£ A T 3 =j exp (-gU » exp | AT, =( exp (| A) 0 \ . (7-30)

exp (-̂  A)

Hence each group element U of SU (1,1) can be written as the product of an

element in u (i)with an element in the coset SlX 1,1 )/U (1), which both can he

written into the exponential form. For instance, the group element U given in

eq,. (7.23) can he written as

U = exp (itfT3) • exp (-p^) . (7-31)

Because of the constraint $a$ = 1, a general SU (1,1) doublet # describes

3 field degrees of freedom. Now assume that $ transforms both under rigid SU (1,1)

transformations and local chiral U (1) transformations according to

(UU))'= S U(0) , (rigid SU (1,1))

., (7.32)
9a = exp (-iA) *a , (local U (1))

with S an element of SU (1,1) and U (<&) the matrix given in (7.1*0. The extra ;j

local u (1) invariance allows us to remove one further degree of freedom hy a )

choice of gauge. For instance, one may impose the following gauge condition i

(notice that we always have |#' | > 1): i

** s •, . (7.33) i
i

1U3



In that cage <& describes 2 field degrees of freedom. After imposing the gauge

choice (T-33) $ corresponds to a representation of the coaet space SU (1,1)/U (i)

(see eq,. (7.28)). 3uch a coaet representative can be parametrized, modulo local

U (i) gauge transformations, in terms of a singe complex variable. A possible

parametrization consistent with (7.33) 13

(7.3M

The variable C = *o^*1 *5 called the projective coordinate of the coset space

SU (U1)/U (1).

After imposing the gauge condition (7.33) both the local U (1) and rigid

SU (1 j 1) invariance are broken and we are left with a rigid U (1) symmetry.

This symmetry consists of the previous local U (i)(see eq. (7.32)) but now

restricted to spacetime-independent transformations, combined with the U (1) sub-

group of SU (1,1) (see eq,. (7-30)) in such a way that (7«33) remains unaffected-

This is specified by the following decomposition rule (cf. eq.. (3.38)):

(rigid U (1))' (Ay ( 1 )) = (rigid U (1)) (A = 2 Ay (l))

fi (local U (1))(A(X) = ̂  (1j) , (7.35)

where we have used the same notation as in eq. (3.38). In (7.35) (rigid u (1))

represents the U (1) subgroup of S0 (1,1). Under this group $ transforms accor-

ding to

(U (*))' = exp (|AT3) U (*) (7-36)

or

*1 = exp (|A) *1 , (rigid U (1))

*„ = exp (-èA) *_

(7.37)

exp

with the matrix U (*) defined in eq. (7.1^). Applying the decomposition rule

(7-35) we find that the complex scalar field C transforms under the new chiral



U' (1) transformations with a weight factorC = -2 (cf. table 1):

C '= exp (-2 iAy ( 1 )) C . {(rigid U (I))') (7,38)

In the context of N s h eonformal supergravity the gauge condition (7.33)

also leads to a decomposition rule for the Q transformations. After imposing

this condition the new Q transformations are given by the previous Q transfor-

mations augmented with a field-dependent local U(l) transformation. This explains

the U (1) component in the nonlinear transformation rules, which we mentioned

at the end of the previous section. In the next section we give the explicit

form of this decomposition rule and present the construction of the full N = 4

conformal supergravity theory with a manifest rigid SU (1,1) and local U (1)

invariance.

U. Transformations of H = k conformal supergravity

Assuming that the field Cin the linearized transformation rules (7.11) cor-

responds to a parametrization of the coset space SU (1,1)/U (1) some of the

transformations of N = k conformal supergravity take a unique form. Modulo

•an overall factor the only supersymmetry variation of an SU (1,1) doublet $

that is consistent with SU (1,1), chiral U (1) x SU CO and dilatational in-

variance is of the form

(7.39)

Imposing the gauge condition (7.33) this result is indeed consistent with the

linearized transformation of C given in (7.11), where C is defined by (7.31*).

To preserve the gauge condition the supersymmetry transformations are uniformly

modified by the addition of a A-dependent local U(1) transformation. To determine

this field-dependent parameter we use that before imposing (7.33) the Q and

local U (1) transformations^ (*1 - **) are given by
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After imposing the gauge condition ($.. - $..) = 0 the first two terms on the

right-hand side of (7.UQ) cancel against the third term for a special value of

the parameter A. This is specified by the following decomposition rule:

Q1 U 1 ) = Q (e1) « (local U (D)U(x) » £ i (ë-A1) C + o-o«). (7.M)

Here Q ( E 1 ) and Q (e1) denote a Q-i3upersymmetry transformation with parameter

e1 before and after imposing the gauge condition respectively. The second term

on the right-hand side of (7-^1) explains the previously mentioned U (i) compo-

nent in the nonlinear transformation rules.

Besides the transformation of C itself the only place where this field occurs

in the linearized transformation rules is the transformation of A.. In the for-

mulation with rigid SU (1,1) and local U (1) invariance this field transforms

according to

5A. = 2 e
a \ * B c . + E..eJ + ei<jkla-T

kl
eJ , (7.U2)

where we have used the covariant bilinear expression

~ \ th

In lowest order the transformation (T-^2) reduces to the form given in (7-11).

The gauge field for the local U (1) transformations is not an independent

field. It is only defined modulo U (1) invariant terras. One definition is

1U6



which contains a term (f 3 C in lowest order. This explains the C 3 C terms in

the nonlinear transformation rules, which we mentioned, at the end of section 2.

Using eqs. (7.32), (7.39) and (7,^2) one can verify that this gauge field has

the following variations:

\ =-il =iV"V V1

ö„ a = 0S )>

The formulation with explicit rigid SU (1,1) and local U (1) invariance

offers important advantages because it restricts the nonlinearities that may

occur in the full transformation rules. Clearly the rigid S'U (1,1) invariance ,

prevents non-polvnomial modifications, since all invariants constructed from !

* are equal to constants. In terms of other fields such modifications were al-

ready excluded because of positive Weyl weights (some of the gauge fields have

negative or zero Weyl weight but their presence is already restricted by cor- ;

responding gauge invariances). Of course, we should include derivatives on *

as well, but D * has positive Weyl weight (w = 1). Hence the completion of the

algebra and transformation rules will require only a few iterations. Indeed,

application of the iterative procedure described in section (6.U) leads to the

following Q-supersymmetry• transformations: :

6 « = - êVe Q*
e ,

Q o i af$ »



= 2

(7.U6)

Am A kA m- (traces)

p 3 » P

T (?T A + T . A ) + (h.c; traceless)
abkl K atnp m abmn p

6 ea = ê \ i|) • + c c
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- è

Under S supersymmetry with parameter n1 the fields transform as follows:

6 SA. = 0

CTE. .= 2 ÏÏ/ -A .\

(7.U7)

S ua= 0

2 c"c"

In (7.U6) and (7-^7) the derivatives D are oovariant with respect to the super-



conformal and local U( 1) symmetries. The curvatures R (Q) and R (V) are the

fully covariant curvatures of iji1 and vj". respectively. Their explicit form is

given in the original paper (see the references at the end of this chapter).

In that paper one can also find the Q and S transformations of the dependent

gauge fields to ,f » <j> and of some covariant curvatures as well as many other

details aoout N =• k conformal supergravity.

In deriving the transformations (7«**6) and (7.^7) we have used the conven-

tional constraints (S.U6) for the fully covariant curvatures R (P), R (M) and

R (Q). These curvatures are an extension of the SU (2,2\k) curvatures R (P),

R (M), R (Q) (see the original paper and confer eq.. (5.1*5)):

The first term on the right-hand side of the second equation of (7.^8) corres-
ab

ponds to the extra term in the transformation of u in the presence of the con-

ventional constraints. This term has heen discussed in section (5.1*) (cf. eq.

(5-^8)). The other terms correspond to the matter field-dependent modifications

in the transformations of w and <l> .

We finally present the commutator of two Q transformations, and of a Q and

an S transformation. These commutators have modifications in the form of field-

dependent symmetry transformations. The results are given by

(7.U9)

wi th * g i C < t > a c o v a r i a n t t r a n s l a t i o n ( s ee s e c t i o n (h.6)),and w i t h t h e parameters
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of the transformations on the right-hand side of (7-l*9) equal to

S 44 «<bij
f 4 -

I (5

4
- 2

f
A -

( 7 - 5 0 )

1 •?
Graceless)

Furthermore we hare

. 6S (nil =

cc-

(7.5D
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with the following transformation parameters:

7 £ ™ ~ & T ^ » ' * E ' < * C G
i: 1
i

1 r. X •i = - 2 sxn. + ~ 6^ëV - h.c. , (7.52)

4

5. Outlook

In this chapter we have presented conformal supergravity theories for

N £ h. The complete nonlinear transformation rules and the corresponding com-

mutator algebra of the superconformal gauge transformations were constructed

for N = k. This was done in a formulation with rigid SU (1,1) and local

U (1) invariance.

The next step in this program is the construction of the corresponding

Poincarê supergravity theories. To carry out this program requires knowledge

of a variety of superconformal multiplets, which can be used to provide the

necessary compensating fields when coupled to conformal supergravity. Por N = 1

and N = 2 such a procedure has been applied successfully and in that context

the M = 1 and N = 2 Weyl multiplets have been very useful in clarifying the

off-shell structure of H = 1 and N = 2 Poincaré supergravity.

For N = k not much is known about off-shell representations of rigid super-

symmetry and therefore the compensating mechanism has not been applied in this

case. For instance, ther.e exists no off-shell version of the N = h supersymmetric

Yang-Mills theory which we have considered in section 2 to construct the N = If,

d = h supercurrent. W. Siegel and M. Rocek have given the following counting

argument that for the N = h super Yang-Mills theory the auxiliary field problem

cannot have a solution within any previously known framework. On the one side

the number n^ of fermionic field components of an off-shell Yang-Mills multiplet
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without central charge must toe an integral multiple of the number of fermionic

field comjcnents of the smallest off-shell supei-symmetry representation, which

has dimensionality 128 + 128 (see the table in section (5.*0). Thus, we have

Hj, = n x 128 (n integer)» On the other hand the physical Bose fields A and $1J

of the Yang-Mills multiplet have an even number of SU (It)indices, since the super-

symmetry generators Q3" have one spinor and one SU (U) index, all Fermi fields

are spinors with an odd number of SU (U) indices. All SU (h) tensors with an

odd number of SU (k) indices contain an integral multiple of four components.

Hence each Fermi spinor field has an integral multiple of k x h = 16 components.

Since all spinor auxiliary fields occur in pairs (one as the Lagrange multiplier

for the other), the total Fermi dimensionality n̂ , of the off-shell uepresentation

is thus determined modulo 2 x 16 = 32 by the total dimensionality d = 16 of the

physical Fermi fields I)»1 of the Yang-Mills multiplet, i.e. n r = 16 mod 32. The

compatibility of the first and second condition on the total dimensionality n„

Of off-shell Fermi components thus gives the restriction 128 = 16 mod 32, which

is clearly not consistent.

One way to circumvent this counting jsxgument is by allowing the introduction

of central charges. These are bosonic operators Z 1 J (antisymmetric in the indices

i and j) which occur in a modification of the super-Poincarê algebra (2.66).

This modification has the form

(7.53)

while the Z 1 J commute with all other elements of the algebra. In (7.53) we have

used the same (chiral) notations as in eq.. (5.1*0- However, the presence of

the central charge operators restricts the structure of the internal symmetry

group. For instance, there exists an off-shell formulation of the super Yang-

Mills theory with central charge, but it has only an invariance with respect to

the Sp (U) subgroup of SU (U). In addition, one cannot extend the super-Poincaré

algebra with central charge to include conformal transformations as well. There-

fore multiplets with central charge do not fit in with the compensating mechanism

that we want to apply.

One can give the following arguments (see the references at the end of this

chapter) which suggest that a possible set of compensating field multiplets for
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N - h Poincarê supergravity is six N = k (abeliaa) Yang-Mills multiplets. The

field, content of six (on-shell) ïang-Mills multiplets is given in the table 'be-

low, where wehave taken the six to be a 6 of SU (U). . In this table we have

also listed, the field, content of N = k (on-shell) Poincarê supergravity and, the

Weyl multiplet. We see that the Yang-Mills vectors.A*J are the only physical

fields of Poincare supergravity not already contained in the Weyl multiplet. The

Yang-Mills scalar (j> and, spinors tyX may be used to compensate for dilatations and

S supersymmetry, while $* may be used to compensate for SU {k). The remaining
ii ii ^

fields ip. and $.'' are auxiliary and of the right structure to act as Lagrange

multipliers for

spin

2

3/2

1

1/2

0

N = k Poincarê

ea(D

AJj (6)

• (D

N

<

•i

Ai

c

• h Weyl

(1)

(U)

, (15), T
J
{ k )> 4 d

(IC),B2

ab ( g C )

(20)

(20), Ei-(1O)

6 x N =

AJ^ (6)

• (D,

It Maxwell

•£j (20)

^ (15). *i? (20)

table 2. Field content of the N - k (on-shell) Poincarê supergravity, Weyl and

six (on-shell) Maxwell multiplets. The numbers between brackets denote

the SU {h) representation assignments of the fields.

the high dimension auxiliary fields xiJ and D ^ in the Weyl multiplet. Hence,

coupling the N = k Weyl multiplet to six Maxwell multiplets and fixing the

superconformal gauges <(i=1,i|>:L = <|>:!: = b = 0 , should give N = h Poincarê super-

gravity with the missing auxiliary fields being those of the compensating multi-

plets. Giving that this is so, the full off-shell structure of N = k Poincarê

supergravity will have to await the resolution of the auxiliary field problem

for the N = k Yang-Mills theory.



An alternative way to study the auxiliary field problem is by leaving d = U

dimensions and by considering supergravity models in as high a dimension as

possible. The motivation is that by studying supergravity in another context

than the familiar four-dimensional one we may learn something about the way in

which Poincarê supergravity can be realized in four dimensions. Recently we

have considered an implementation of the superconformal ideas presented in this

thesis in the context of supergravity in ten dimensions (this corresponds to

N - k in four dimensions).

The linearised transformation rules of the N = 1, d = 10 Weyl multiplet can

be found from an analysis of the d = 10 Maxwell supercurrent. This supercurrent

is reducible; it contains a submultiplet of 128 + 128 components, whereas the

remaining degrees of freedom form a constrained scalar (chiral) superfield. In

the nonabelian case the scalar superfield part of the current is unconstrained.

The 128 + 128 current submultiplet is associated with the fields of conformal

supergravity, because it is the smallest off-shell multiplet that contains the

energy-momentum tensor. However, a nontrivial aspect is that the decomposition

of the d = 10 supercurrent into'its two submultiplets is realized in a nonlocal

way. As a consequence the linear transformation rules of the d = 10 Weyl multi-

plet contain nonlocal terms. One can avoid the nonlocal character of the trans-

formations by introducing new fields which are> subject to differential constraints.

Hence these fields do not represent new degrees of freedom. However, the presence

of the differential constraints presents an obstacle for a straightforward appli-

cation of the compensating mechanism.

In a recent paper (see the references at the end of this chapter) we have

shown that it is in principle straightforward to avoid the differential constraints

by introducing new degrees of freedom. After ignoring the constraints one adds

new fields in the transformation laws of the superconformal fields whose varia-

tions are then required to reestablish the closure of the superconformal algebra.

Subsequently the results may be completed by iteration. It is not obvious that

such a program will be successful for the full nonlinear theory, although there

are no conceivable problems at the linearized level. A crucial point is, that

the original commutation relations of the superconformal algebra will be modified

by terms that contain the new fields.

In order to avoid the differential constraints one must at least add a scalar
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multiplet to the Weyl multiplet. This is called the minimal field representation.

We have investigated some nonlinear aspects of this minimal field representation.

We find a number of nonlinear modifications associated with the scalar submultipet,

and at this stage a completion along these lines seems perfectly possible. These

results are in fact relevant for the off-shell formulation of linearized d = 10

Foincarê supergravity, which has 'been obtained recently by P. Howe, H. Nicolai and

A. Van Proeyen (H, N. V.P.),

Using a scalar multiplet of Itagrange multipliers it is possible to construct

a supereonformally invariant action for the minimal field representation. After

imposing the appropriate supereonformal gauge conditions one obtains a Poincare

supergravity action with its auxiliary fields. We expect the results to coincide

with those of (H, N, V,P,).This is confirmedbya calculation of some of the new

terms in the action, which has many of the same ingredients although the supercon-

formal scheme leads to a different arrangement of terms.
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APPENDIX A. NOTATIONS AND COHVENTIONS
r

. In this appendix we collect the notations and conventions used throughout

• the text. When we consider global Lorentz invariance, we denote vectors by the

t indices u» vs... or a, b,.., and spinors by the indices ot, $,.... Both run from

j 1 to h in four-dimensional spacetirae. We use the Pauli metric

I-

i$HV s diag. (+,*,+,+) , (A.1)

with imaginary time components of four-vectors:

k^ = (k, ku) = (k, i kQ) . (A.2)

: Hence there is no need for distinguishing upper and lower indices. In all cases

I repeated indices imply a summation, unless explicitly stated otherwise. The

f four-dimensional Levi-Civita tensor is defined by
!

e = +1 , (uvpff) = even permutation of (123U)

-1 , (uvpa) = odd permutation of (123M (A.3)

0 . otherwise

This tensor satisfies the relations

u'v'p'a'
E.

uv'p'a'

(A.I»)

uvpa

uvpa

Euvpa

uvpa

=

=

= 2'.

= 3!

öu'v'p'a'
uvpa

öv'P'a'
vpa

pa

6a'

e w v p 0 e = U'
uvpa

158



where £V ^ "* are the standard permutation symbols:vp.«

6P'
a' = fiP' 6 ° ' . 6°' «*' etc. • (A.5)

pa p a p a

When we discuss local Lorents invariance, we use the indices u,v,.. to

denote world indices, whereas a, b, .. denote local Lorentz indices, Vierbeins

e and inverse vierbeins e convert world indices into local Lorentz indices

and vice versa. World tensors with upper and lower indices are related by a

contraction with the metric tensor

«uv = « (A'6)

in the following way:

The summation convention for world indices implies a contraction over g .
We now discuss gamma matrices in four dimensions. We will do th is in the

context of global Lorentz invariance. When considering the local case the Dirac
algebra remains unchanged when one defines a l l elements with local Lorentz indices.
The four-dimensional Dirac algebra is defined by

Y Y + Y Y = 2 6 . (A.8)

Here the y are four U x k hermitean matrices:

Yy=Yu . (A.9)

One can construct explicit representations by taking tensor products of the

standard Pauli matrices *• (i = 1,2,3):
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a T3 '
(A.10)

with

,-(?j) •'••(")-*''•("') • <»•»>

This representation!s called the Majorana representation. From the gamma matrices

we define the following quantities!

YS = Y1Y2Y3YU ' Y5 ~ Y5
(A.12)

1 +
O > T (Y Y - Y Y ) > O = - (J .

In the Majorana representation Ye is given by

Y 5 = - T 3 flTg . (A. 13)

The set of sixteen k x U matrices

r A= (1, V 2ia u v, i y 5 V r 5 ) (A.1U)

is complete and satisfies the relations

(rArB) - k
(A.15)
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Using these relations one easily verifies that an arbitrary h x h matrix X can

be expanded, in terms of the r A according to

x * 11 Tf (xrA) rA . (A. 16)

We define a charge conjugation matrix C by

c"\wc = - YJ; • (A. 17)

Here the superscript T denotes transposition. The following symmetry relations

hold:

, MC are antisymmetric

YuG* auvC a r e s y m m e ' b l ' i c

(A.18)

The matrix C has the following form in the Majorana representation (A-10)':

G = - x 2 ft 1 . (A.19)

The four-dimensional representation space of the Dirac algebra is called

spinor space. The elements of this space, the spinors, are denoted "by U» (o= 1..U).

In quantum field theory i|i (x) represents a field with spin 1/2. For consistency

such fields have to be anticommuting, i.e.:

•o*B = ~ V a • (A-20)

The Pauli conjugate ty of a spinor is defined by

<F • * Y^ . (A.21)

A Majorana apinor is defined by the relation

\\> = C ij»T . (A.22)

In the Majorana representation this is just a reality condition:

• - ( T 2 E 1 ) (T2 t i ) # * - V . (A.23)
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The completeness relation (A.16) may be used to expand the product of two spinors:

1 I-T
- 2

(A.2U)

This is called the Fierz rearrangement formula. Using a ohiral decomposition

of the spinors

• • •£ s •'

• Ï ̂  (1 + Y5) + ? I ('1 - Y5)s#' +
(A.25)

one can derive an alternative form of the Fierz rearrangement formula:

We denote commutators and anticommutators "by

and have the following conventions on symmetrization:

(A.26)

(A.27)
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V B ) • a (rArB * ( A-2 8 )

r[ArBrG] S f i Wfl "

We finally give some useful identities:

u' vp 'p vu v p

~ 2 Yv

a a a = a
uv pff w\) p

a
pa
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APPENDIX B. THE CHIRAL NOTATION

In this appendix we explain the chiral notation, which we use throughout

this thesis for spinors which combine into representations of (S)U(N) (we con-

sider SU(N) in this appendix).

By definition SU(N) is the group of complex S x B matrices with unit deter-

minant that leave toe metric S - d,i&S (+»+».•»+) invariant. There are (N -1)

independent matrices that satisfy this requirement. The Lie algebra su(n) of

Stf(JT) consists of «11 9x11 antihermitean traceless matrices. For a N-component

vector we use the following notation:

V1 = (Vj)* • (i = 1..N) (B.1)

In this section V and V. transform according to

6V1 = AX.VJ , (K representation)

[ (B.2)
6 Vi = V ^ " * ^ representation)

where A is a N x N antihermitean traceless matrix parameter that characterizes

the infinitesimal SU(N) transformation:

(A^fs A A - A ^ , A\= 0 . (B.3)

Once can verify the invariante of the metric 6. (isj - i..N) under such trans-
d

formations:

«(«J) = A1. 6̂  + k h i = A1. + A.1 = 0 . (B.lt)

In addition, one can verify that the bilinear V ^ . (i = 1..N) is a scalar:

= 0 . (B.5)
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Por N Majorana spinors ip̂ , with the property that the chiral projections

x (1 + Yc) ̂ w transform under SU(N) as V1 ia (B.2), we use the following

notations:

(B.6)

)In the Majorana representation (A. 10) the second definition reduces to <p. = (i|) )

For the Pauli conjugate spinors we use the notations.

(B.7)

This notation is consistent with (:B.6) in the sense that

{\fix) ~ $. . (B.8)

If the chiral projections g- (1 + Yr) <IVJ transform under SU(N) as V. in ('B.2)

we use instead of (B.6) and (B.7) the definitions:

(B.9)

i s C (ip1) =-1 ( 1+Y 5 ) t j

and

If no confusion is possible we often drop the index M of a Majorana spinor.

For N = 1 the above still applies, Taut with SU(N) replaced by U(1). In

that case we denote the index i (i=i) by a dot. If no confusion is possible

we sometimes omit this dot in the text, but not in the formulae.
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SAMENVATTING

Alle tot nu toe bekende deeltjes in de natuur laten zich onderverdelen in

twee klassen: deeltjes met heeltallige en deeltjes met halftallige spin. De

eerste heten bosonen, terwijl de laatste fermionen genoemd worden. Supersymrae-

trie is de enige symmetrie die in staat is deze opsplitsing in bosonen en fer-

mionen te doorbreken. In de aanwezigheid van deze symmetrie kanen bosonen en

fermionen voor als gelijkwaardige partners van een gemeenschappelijk multiplet

en dienen in hun onderlinge samenhang bestudeerd te worden.

Een belangrijk gevolg van super symmetrie is dat de oneindige resultaten, die

optreden bij de berekening van quantum mechanische correcties, vaak afwezig zijn

in theorieën met supersymmetrie. Supersymmetrie heeft tevens tot gevolg dat de

betreffende theorie invariant is onder translaties. Daarom moet een theorie

die invariant is onder ruimte en tijd afhankelijke supersymmetrie transformaties,

ook invariant zijn onder ruimte en tijd afhankelijke translaties, d.v.z. algemene

coördinaten transformaties. Dit betekent dat een dergelijke theorie een beschrij-

ving van de zwaartekracht inhoudt. We noemen dit soort theorieën supergravitatie.

De bijzondere eigenschappen van supersymmetrie blijven in supergravitatie behouden.

Men hoopt dat deze eigenschappen zullen leiden tot een consistente beschrijving

van de quanturntheorie van de gravitatie. Een dergelijke beschrijving is tot nu

toe niet mogelijk gebleken vanwege de eerder genoemde oneindige resultaten.

Naast de zwaartekracht kernen nog drie andere fundamentele wisselwerkingen in

de natuur voor: de elektromagnetische, de zwakke en de sterke wisselwerking.

Het blijkt dat deze drie wisselwerkingen bijzonder goed beschreven kunnen worden

met behulp van zogeheten ijktheorieè'n. Dit zijn theorieën, die als uitgangspunt

de aanwezigheid van een bepaalde interne symmetrie vooronderstellen. Met intern

bedoelen we hier dat deze symmetrieën geen betrekking hebben op de ruimte en tijd.

Man kan deze interne symmetrieën opvatten als afkomstig zijnde van êên grote in-

terne symmetrie. De ijktheorie van deze interne symmetrie geeft een t^eünificeerde

beschrijving van bovengenoemde drie wisselwerkingen.

Het blijkt dat de aanwezigheid van meerdere onafhankelijke supersymmetrieën

op unieke wijze de invariantie onder een bepaalde interne symmetrie tot gevolg

heeft. Een ijktheorie van dergelijke onafhankelijke supersymmetrieën heet uit-

gebreide supergravitatie. De multipletten van uitgebreide supergravitatie be-

vatten zowel ijkvelden (van ruimte en tijd en interne symmetrieën) als materie
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velden. Op deze manier zou uitgebreide supergravitatie een geünifieeerde be-

schrijving kunnen geven van de elementaire deeltjes en hun onderlinge fundamen-

tele wisselwerkingen.

De structuur van uitgebreide supergravitatie theorieën ligt in principe vast.

Zij is echter vrij ingewikkeld. In het bijzonder hebben de tot nu toe bestaande

formuleringen het nadeel dat zij alleen consistent zijn onder gebruikmaking van

de bewegingsvergelijkingen voor de velden. Deze beperking staat een aantal prak-

tische toepassingen in de weg. In dit proefschrift worden tecnnieken ontwikkeld

die de structuur kunnen verhelderen van formuleringen die deze beperking niet

hebben. Dergelijke formuleringen heten "off-shell". De onderliggende gedachte

is cm door het invoeren van extra symmetrieën de thecrie op te delen in een aan-

tal onderdelen cm deae vervolgens afzonderlijk te bestuderen. Deze extra sym-

metrieën zijn de conforme (super)symmetrieën die in hoofdstuk IV en V van dit

proefschrift besproken worden.

Het construeren van een "off-shell" onderdeel van de theorie blijkt in som-

mige gevallen al zeer moeilijk . -• zijn. In het tweede gedeelte van dit proef-

schrift wordt een me /node ontwikkeld, waarmede men voor een aantal theorieën het

"off-shell" stuk dat het graviton bevat, kan construeren. Dit is het deeltje

dat de zwaartekrachts wisselwerking overbrengt. In het laatste hoofdstuk wordt

deze methode tcegepast om het graviton gedeelte te construeren van een theorie

die invariant is onder vier onafhankelijke supersymmetrieën. Tot nu toe is het

niet mogelijk gebleken cm een formulering van de overige onderdelen van deze

theorie te geven zonder bewegingsvergelijkingen te gebruiken. Recentelijk

heeft men wel vooruitgang geboekt bij het construeren van "off-shell" formule-

ringen van supergravitatie in hogere dimensies.

Een deel van het in dit proefschrift beschreven onderzoek is gepubliceerd in

Nacl.Phys.B. Mevr.A.v.d.Werf-v.d.Vlist verleende assistentie bij de verzorging

van het manuscript.
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STELLINGEN "
1

's
,' •

'i
{ 1. De voor het eerst door Bauer opgemerkte dimensionele gelijkheid tussen

* spinor representaties van orthogonale groepen en representaties van

| symplectische groepen kan niet zonder meer gebruikt worden bij het bepalen

f. van het Kronecker produkt van tensor en spinor representaties van speciale-

ï.
f: orthogonale groepen in even dimensies.
h
t F.L. Bauer, Math.Ann., Bd. .128 (195U) 228.

2. De kinematica van de verdamping uit een vast natrium oppervlak kan niet

beschreven worden door een model dat gebaseerd is op een directe overgang

tussen de vaste en de gasvormige phase.

3. Een antisymmetrisch tensor-ijkveld A kan op consistente wijze gekoppeld

worden aan een foton A , indien men de Maxwell transformatie 6A = 3 A,

fiA^ = 0 uitbreidt tot 6Ay = S^A, Sk^ = gA 0 ^ - 3 ^ ) , waarbij g

een koppelingsconstante is die de dimensie van een inverse massa heeft.

E. Bergshoeff, M. de Roo, B. de Wit en P. van Nieuwenhuizen, Nucl.Phys.

B195 (1982) 97-

H. Nicolai en P.K. Townsend, Phys.Lett. J38B (1981) 25T»

h. Het multiplet van stromen dat behoort bij de koppeling van een supersymme-

trisch Maxwell systeem aan supergravitatie in tien dimensies, is reduci-

bel. Het bevat een irreducibel submultiplet van 128+128 componenten,

terwijl de overige vrijheidsgraden een chiraal scalair superveld vormen

dat aan een beperkende voorwaarde voldoet.

E. Bergshoeff en M. de Roo, Phys.Lett. 112B (1982) 53.



5. Een "off-shell" formulering van Poincarê supergravitatie in tien dimensies

in termen waarvan men een invariante actie kan construeren, moet geba-

seerd gijn op een multiplet dat naast de superconforme velden op zijn

Biinat een scalair submultiplet 'bevat.

E. Bergshoeff, M. de Roo en B. de Wit, Nucl.Phys. B217 (1983)

6. De bewering van Marvin en Toigo dat het capillaire golfmodel voor de

grenslaag vloeistof-gas niet geschikt is om lichtexperimenten hieraan te

verklaren, is ongegrond.

A.M. Marvin en F. Toigo, Phys.Rev. A26 (1982) 2927.

7- Bij de berekeningen van de demping van het vierde geluid in vloeibaar

helium door Kaganov et al. wordt een aantal veronderstellingen gemaakt die

niet alle noodzakelijk zijn en niet alle verantwoord kunnen worden-

B.N. Esel'aon, M.I. Kaganov, E.Ya. Rudavskii en I.A. Serbin, Sov.Phys.

Usp. IJ, 2 (197U) 215.

Zie ook: A. Hartoog, proefschrift Leiden 1979-

8. Het is aan twijfel onderhevig dat de lange relaxatietijden die optreden

bij soortelijke-warmte metingen aan TTF-AuSijCitCCFs)^ beneden 3K uitslui-

tend veroorzaakt worden door de intrinsieke eigenschappen van deze verbin-

ding.

- J.A. Northby, F.J.A.M. Greidanus, W.J. Huiskamp, L.J. de Jongh,
1 I.S. Jacobs en L.V. Interrante, J.Appl.Phys. j>3 (1982) 8032.



9. De conclusie van Rosenberg et al. dat de door adrenaline geïnduceerde

aggregatie van trombocyten "bij maligne hyperthermie gevoelige patiënten

normaal zou aijn, is onjuist.

H. Rosenberg, C. Fisher, S. Heed en P. Addonizio, Anesthesiology j[5_

(1981) 621,

E.A. Bergsaoeff Leiden, 18 mei 1983


