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Abstract. We review the recent progress made in understanding instantons at
finite temperature (calorons) with non-trivial holonomy, and their monopole
constituents as relevant degrees of freedom for the confined phase.

1 Introduction

There has been a revived interest in studying instantons at finite temperature T , so-
called calorons [1, 2]. The main reason is that new explicit solutions could be
obtained in the case where the Polyakov loop at spatial infinity (the so-called
holonomy) is non-trivial, necessary to reveal more clearly the monopole constitu-
ent nature of these calorons [3, 4]. Trivial holonomy, i.e., with values in the centre
of the gauge group, is typical for the deconfined phase. Non-trivial holonomy is
therefore expected to play a role in the confined phase (i.e., for T < Tc) where the
trace of the Polyakov loop fluctuates around small values. The properties of instan-
tons are therefore directly coupled to the order parameter for the deconfining phase
transition.

At finite temperature A0 plays in some sense the role of a Higgs field in the
adjoint representation, which explains why magnetic monopoles occur as constit-
uents of calorons. Since A0 is not necessarily static it is better to consider the
Polyakov loop as the analog of the Higgs field,

Pðt; xÞ ¼ Pexp

� ð�
0

A0ðt þ s; xÞ ds
�
; ð1Þ

which, like an adjoint Higgs field, transforms under a periodic gauge transforma-
tion gðxÞ to gðxÞPðxÞg�1ðxÞ. Here � ¼ 1=kT is the period in the imaginary time
direction, under which the gauge field is assumed to be periodic. Finite action
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requires the Polyakov loop at spatial infinity to be constant. For SUðnÞ gauge
theory this gives

P1 ¼ lim
jxj!1

Pð0; xÞ ¼ gy exp½2�i diagð�1; �2; . . . ; �nÞ� g; ð2Þ

where g is chosen to bring P1 to its diagonal form, with the n eigenvalues being
ordered according to

Xn
i¼1

�i ¼ 0; �1 � �2 � � � � � �n � �nþ1 � 1 þ �1: ð3Þ

In the algebraic gauge (used in constructing solutions), where A0ðxÞ is transformed
to zero at spatial infinity, the gauge fields satisfy the boundary condition

A�ðt þ �; xÞ ¼ P1A�ðt; xÞP�1
1 : ð4Þ

Caloron solutions are such that the total magnetic charge vanishes. A single
caloron with topological charge one contains n� 1 monopoles with a unit mag-
netic charge in the i-th Uð1Þ subgroup, which are compensated by the n-th mono-
pole of so-called type ð1; 1; . . . ; 1Þ, having a magnetic charge in each of these
subgroups [5]. At topological charge k there are kn constituents, k monopoles
of each of the n types. The monopole of type j has a mass 8�2�j=�, with
�j � �jþ1 � �j. The sum rule

Pn
j¼1 �j ¼ 1 guarantees the correct action, 8�2k,

for calorons with topological charge k.
Prior to their explicit construction, calorons with non-trivial holonomy were

considered irrelevant [2], because the one-loop correction gives rise to an infinite
action barrier. However, the infinity simply arises due to the integration over the
finite energy density induced by the perturbative fluctuations in the background of
a non-trivial Polyakov loop [6]. Recently the calculation of the non-perturbative
contribution was performed [7]. When added to this perturbative contribution, with
minima at centre elements, these minima turn unstable for decreasing temperature
right around the expected value of Tc. This lends some support to monopole
constituents being the relevant degrees of freedom which drive the transition from
a phase in which the centre symmetry is broken at high temperatures to one in
which the centre symmetry is restored at low temperatures. Lattice studies, both
using cooling [8] and chiral fermion zero-modes [9] as filters, have also conclu-
sively confirmed that monopole constituents do dynamically occur in the confined
phase.

2 Properties of Caloron Solutions

Well-separated constituents can be shown to act as point sources for the so-called
far field, that is far removed from any of the cores, where the gauge field is Abelian
[10]. When constituents of opposite charge (n constituents of different type) come
together, the action density no longer deviates significantly from that of a standard
instanton. Its scale parameter � is related to the constituent separation d through
��2=� ¼ d. A typical example for a charge-1 SUð2Þ caloron with far and nearby
constituents is shown in Fig. 1 (left). When � � � no difference would be seen
with the Harrington-Shepard solution [1], the gauge field is nevertheless vastly
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different, as follows from the fact that within the confines of the peak there are n
locations where two of the eigenvalues of the Polyakov loop coincide [11]. When,
on the other hand, constituents of equal charge come together (which requires
k> 1), an extended core structure appears [10]. For two coinciding constituents
this gives rise to the typical doughnut structure also observed for monopoles [12],
see Fig. 1 (right).

2.1 Fermion Zero-Modes

An essential property of calorons is that the chiral fermion zero-modes are local-
ized to constituents of a certain charge only. The latter depends on the choice of a
boundary condition for the fermions in the imaginary time direction (allowing for
an arbitrary Uð1Þ phase exp½2�iz�) [13]. This provides an important signature for
the dynamical lattice studies, using chiral fermion zero-modes as a filter [9]. To be
precise, the zero-modes are localized to the monopoles of type m provided
�m < z<�mþ1 (most of the time we use the classical scale invariance to set
� ¼ 1). Denoting the zero-modes by ĈC

a

z ðxÞ, where a ¼ 1; . . . ; k for a caloron of
topological charge k, we can write

ĈC
a

z ðxÞ
yĈC

b

z ðxÞ ¼ �ð2�Þ�2@2
� f̂f

ab

x ðz; zÞ; ð5Þ

where f̂f
abðz; z0Þ is a Green’s function that appears in the construction to be dis-

cussed below. The trace, i.e., the sum over the zero-mode densities, has a remark-
ably simple form in the far field limit (denoted by ff and defined by neglecting
terms that decay exponentially with the distance to any of the constituent cores)

Tr f̂f
ff

x ðz; zÞ ¼ 4�2VmðxÞ; for �m < z<�mþ1: ð6Þ
As is implicit in the notation, Vm is static and independent of z within its interval of
definition. In addition Vm has to be harmonic (up to singularities), because the

Fig. 1. On the left are shown two charge-1 SUð2Þ caloron profiles at t ¼ 0 with � ¼ 1 and

�2 ¼ ��1 ¼ 0:125, for � ¼ 1:6 (bottom) and 0.8 (top) on equal logarithmic scales, cut off below

an action density of 1=ð2e2Þ. On the right we show the action density (on a linear scale) of a typical

SUð2Þ caloron with topological charge 2 and �2 ¼ ��1 ¼ 0:25 for which two constituents of equal

magnetic charge are closer than their individual sizes (but not exactly on top). When the other two

constituents are far away, as for the case shown here, this becomes a charge-2 monopole solution
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zero-modes decay exponentially as long as z 6¼ �j (for any j), and therefore do not
survive in the far field limit. For k ¼ 1 and ym the constituent location one simply
has VmðxÞ ¼ 1=ð4�jx� ymjÞ, whereas for k ¼ 2 we found [10]

VmðxÞ ¼
1

2�jxj þ
D

4�2

ð
r < D

dr d’
@rjx� ryð’Þj�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 � r2
p ; ð7Þ

where yð’Þ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k2

p
cos’; 0; sin’Þ, up to an arbitrary coordinate shift and

rotation. Here D is a scale and k a shape parameter to characterize arbitrary
SUð2Þ charge-2 solutions. In this representation it is clear that VmðxÞ is harmonic
everywhere except on a disk bounded by an ellipse with minor axes 2D

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k2

p

and major axes 2D. Although not directly obvious, when k ! 1 the support of the
singularity structure is on two points only, separated by a distance 2D. Taking an
arbitrary test function f ðxÞ one can prove that [10]

� lim
k!1

ð
f ðxÞ@2

i VmðxÞ d3x ¼ f ð0; 0;DÞ þ f ð0; 0;�DÞ: ð8Þ

Monopoles of different charges have to adjust to each other to form an exact
caloron solution, such that k and D are in general not independent. So far we
constructed two classes of solutions illustrated in Fig. 2 for both of which a large
value of D implies that k approaches 1 exponentially. Hence we find point-like
constituents, a necessary requirement to describe the field configurations at larger
distances in terms of these objects. When all constituents of other types are sent to
infinity, we recover the exact multi-monopole solutions of a given type of magnetic
charge, and our results therefore also provide explicit solutions for the monopole
zero-modes, which were not known before for the multi-monopole configurations.

Surprisingly, the charge distribution that gives rise to the Abelian field far from
any of the constituent cores (even when extended due to overlap) can be calculated

Fig. 2. Illustration of the location of the disk singularities (light and dark shaded according to

magnetic charge) for a so-called ‘‘rectangular’’ (left) and ‘‘crossed’’ (right) configuration, as used

for the k ¼ 2 solutions shown in Fig. 1 and Fig. 3, respectively. The curves for the ‘‘crossed’’ case

represent a one-parameter family of solutions interpolating between two axially symmetric solutions

for which k ¼ 1 independent of D, giving point-like constituents without the need to take D large.

See ref. [10] for more details
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exactly from VmðxÞ. We consider here SUð2Þ, for which we can parametrize the
holonomy by P1 ¼ exp½2�ix � s� (�2 ¼ ��1 ¼ jxj), where �a are the usual Pauli
matrices. The field asymptotically becomes Abelian, and is necessarily propor-
tional to !̂! � s. Hence Aff

0 ðxÞ ¼ 2�ix � s� 1
2
i!̂! � sFðxÞ, where the constant term

(absent in the algebraic gauge) shows again how A0 plays the role of a Higgs field.
We found for k ¼ 1 and 2 that FðxÞ ¼ 2�ðV1ðxÞ � V2ðxÞÞ. Therefore, the singu-
larity structure in the zero-mode density agrees exactly with the Abelian charge
distribution, as given by @2

i FðxÞ. Since the electric field is given in terms of the
gradient of A0, which due to the self-duality is equal to the magnetic field, a
particularly simple formula results for the action density S. Using in addition that
outside the cores there is no source for the Abelian field, implying A0 to be har-
monic in the far field (as is also clear from the relation to Vm), we find

SffðxÞ ¼ �2 trð@iA0ðxÞÞ2 ¼ 2@2
i trA2

0ðxÞ ¼ �@2
i F

2ðxÞ: ð9Þ
The algebraic tail of the action density is thus known to all orders in 1=jxj, which is
of course equivalent to the fact that the charge distribution, @2

i FðxÞ, giving rise to
this asymptotic field is also exactly known, even though the formula for the action
density can of course only be used outside any of the constituent cores.

3 The Construction – in Brief

Our construction of caloron solutions in its practical implementation relies heavily
on the Atiyah-Drinfeld-Hitchin-Manin construction [14] of multi-instantons and on
the closely related Nahm transformation [15]. For the k ¼ 1 Harrington-Shepard
solution [1] one simply takes a periodic array of R4 instanton solutions, which can
be easily constructed through the ’t Hooft ansatz, provided the relative color orien-
tation between subsequent periods is trivial. This necessarily gives trivial holon-
omy. Here the algebraic gauge discussed earlier is useful, as it shows that with
non-trivial holonomy, shifting over each period the gauge field rotates in color space
by an amount exactly given by the holonomy. It necessitates the use of the full
ADHM formalism. The crucial observation has been that the ‘‘twisted’’ shift sym-
metry lends itself very well to Fourier transformation and makes contact with the
Nahm transformation for calorons [15]. The variable z we introduced in formulating
the generalized boundary conditions for the chiral fermions is precisely the dual of t
under this transformation.

To construct a charge k caloron with non-trivial holonomy we place k instan-
tons in the time interval ½0; �½, performing a color rotation with P1 for each shift
of t over � (compare Eq. (4)). The Fourier transformation introduces singularities at
z ¼ �m through the powers of P1, as is seen from writing P1 ¼

P
m e2�i�mPm in

terms of the n projectors Pm. The Fourier transformation also introduces ÂAðzÞ as a
UðkÞ gauge field on a circle, which satisfies the Nahm equation

d

dz
ÂAjðzÞ þ ½ÂA0ðzÞ; ÂAjðzÞ� þ 1

2
"jkl½ÂAkðzÞ; ÂAlðzÞ� ¼ 2�i

X
m

�ðz� �mÞ� j
m; ð10Þ

where one has 2��yaPm�b � 12 ŜS
ab

m � s � qabm , in terms of a two-component spinor �b
in the �nn representation of SUðnÞ.
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A Green’s function f̂f xðz; z0Þ � ĝgyðzÞfxðz; z0Þĝgðz0Þ is introduced, where fxðz; z0Þ is
defined through �

� d2

dz2
þ Vðz; xÞ

�
fxðz; z0Þ ¼ 4�21k�ðz� z0Þ; ð11Þ

with

Vðz; xÞ � 4�2R2ðz; xÞ þ 2�
X
m

�ðz� �mÞSm; Sm � ĝgð�mÞŜSmĝgyð�mÞ;

Rjðz; xÞ � xj � ð2�iÞ�1
ĝgðzÞÂAjðzÞĝgyðzÞ: ð12Þ

Note that the Sm play the role of ‘‘impurities’’ and that

ĝgðzÞ � exp½2�ið	0 � x01kÞz�; ð13Þ
defined in terms of the dual holonomy exp½2�i	0� � Pexpð

Ð 1

0
ÂA0ðzÞ dzÞ, can be used

to transform ÂA0 � 2�ix01k to zero, in order to simplify as much as possible the
Green’s function equation. This is at the expense of introducing periodicity up to a
gauge transformation. Although f̂f xðz; z0Þ is periodic in z and z0 with period 1 (for
� ¼ 1), fxðz; z0Þ no longer is.

Given a solution for the Green’s function, there are straightforward expressions
for the gauge field [16] only involving the Green’s function evaluated at the
‘‘impurity’’ locations and for the fermion zero-modes [10]. For the zero-mode
density see Eq. (5). As an example we give the Green’s function at z0 ¼ z, which
formally can be expressed as (the x dependence of F z is implicit)

fxðz; zÞ ¼ �4�2ðð12k � F zÞ�1Þ12;

F z � ĝgyð1ÞPexp

ðzþ1

z

dw

�
0 1k

Vðw; xÞ 0

�
; ð14Þ

where the ð1; 2Þ component on the right-hand side of the first identity is with
respect to the 2� 2 block matrix structure. This has allowed us to find a particu-
larly compact expression for the action density [16],

SðxÞ � � 1
2

trF2
��ðxÞ ¼ � 1

2
@2
�@

2
� log detðie��ix0ð12k � F zÞÞ; ð15Þ

which can be shown to be independent of z.
The formal expression for F z can be made more explicit by a decomposi-

tion into the ‘‘impurity’’ contributions Tm at z ¼ �m and the ‘‘propagation’’
Hm � Wmð�mþ1; �mÞ between �m and �mþ1, with for z; z0 2 ð�m; �mþ1Þ

Tm �
�

1k 0

2�Sm 1k

�
; Wmðz; z0Þ �

�
fþm ðzÞ f�m ðzÞ
d
dz
fþm ðzÞ d

dz
f�m ðzÞ

��
fþm ðz0Þ f�m ðz0Þ
d
dz
fþm ðz0Þ d

dz
f�m ðz0Þ

��1

;

ð16Þ

F z ¼ Wmðz; �mÞTmHm�1 � � �H1T1ĝg
yð1ÞHnTn � � �Tmþ1HmWmð�m; zÞ: ð17Þ

The k� k matrices f 	
m ðzÞ are defined for z2ð�m; �mþ1Þ and behave as f 	

m ðzÞ !
exp½	 2�jxjðz� �mÞ1k� f 	

m ð�mÞ for jxj ! 1, where f 	
m ð�mÞ can be arbitrary
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non-singular matrices. Together these form the 2k solutions of the homogeneous
Green’s function equation,�

d2

dz2
� 4�2R2ðz; xÞ

�
v̂vðz; xÞ ¼ 0: ð18Þ

We have been able to use this ‘‘mix’’ of the ADHM and Nahm formalism both in
making powerful approximations, like in the far field limit (based on our ability to
identify the exponentially rising and falling terms), and for finding exact solutions
through solving the homogeneous Green’s function equation for k ¼ 2.

What makes this case tractable is the fact that the Nahm equations on each
interval can be solved in terms of elliptic functions [17]. For the caloron, apart
from the axially symmetric solutions constructed in ref. [16], we found two sets of
non-trivial solutions for the matching conditions that interpolate between overlap-
ping and well-separated constituents, see Fig. 2. To resolve the full structure of the
cores we had to find the exact solutions to Eq. (18). For this task we could make
convenient use of an existing analytic result for charge-2 monopoles [18], adapting
it to the case of calorons. Essential is that once the solutions f 	

m ðzÞ are known,
everything else can be easily determined in terms of these (compare Eq. (17)). We
conveniently expressed the explicit solutions for Eq. (18) in terms of the elliptic
integral of the third kind, but refer to ref. [10] for further details. A sample of the
results can be found in Fig. 1 (right) and Fig. 3.

4 Conclusions

We have seen that instantons at finite temperature are composed of constituent
monopoles. Of course, the hope is to develop a calculational scheme to address

Fig. 3. In the middle is shown the action density in the plane of the constituents at t ¼ 0 for an

SUð2Þ charge-2 caloron with trP1 ¼ 0 in the ‘‘crossed’’ configuration of Fig. 2, where all constit-

uents strongly overlap. On a scale enhanced by a factor 10�2 are shown the densities for the two

zero-modes, using either periodic (left) or anti-periodic (right) boundary conditions in the time

direction. Note that these still are able to identify four individual constituents
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questions like monopole condensation in the popular scenario of the dual super-
conductor [19]. However, this is very much complicated by the fact that at low
temperature the coupling constant is large, and instantons form a dense ensemble.
This does imply that the monopoles form a dense ensemble as well. One may then
hope that the confining electric phase could be characterized by a dual deconfining
magnetic phase, where the dual deconfinement is due to the large monopole den-
sity, similar in spirit to high density induced quark deconfinement.
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13. Garcı́a P�eerez, M., González-Arroyo, A., Pena, C., van Baal, P.: Phys. Rev. D60, 031901 (1999)

[hep-th=9905016]; Chernodub, M. N., Kraan, T. C., van Baal, P.: Nucl. Phys. Suppl. B83–B84,

556 (2000) [hep-lat=9907001]

14. Atiyah, M. F., Hitchin, N. J., Drinfeld, V., Manin, Yu. I.: Phys. Lett. 65A, 185 (1978)

15. Nahm, W.: Self-Dual Monopoles and Calorons. In: Lecture Notes in Physics 201, 189 (1984)

16. Bruckmann, F., van Baal, P.: Nucl. Phys. B645, 105 (2002) [hep-th=0209010]

17. Nahm, W.: Multi-Monopoles in the ADHM Construction. In: Gauge Theories and Lepton Hadron
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