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The progress on calorons (finite temperature instantons) is sketched. In particular there is some interest
for confining temperatures, where the holonomy (the asymptoticvalue of the Polyakov loop) is non-
trivial. In the last section I give more recent results by others.
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1. Introduction

First of all I would like to congratulate Sergei Matinyan with his 80th birthday. I met
him actually in the States where I gave a seminar in Duke on June 1, 1993 on my finite
volume work. He emailed me on June 10 with a suggestion, making the zero-momentum
modes stochastic. The last sentence of my reply ended with: “But if some day this might
be achieved, your idea with stochastic behavior in the low-energy modes only, might very
well be the appropriate one.” Unfortunately I became stuck in finite volumes and want
to present now “non-trivial holonomy and calorons”, which is at finite temperature, but
infinite volumes.

There is an other reason why I love to be back in Armenia. I was in Nor Amberd for an
INTAS meeting 15 years earlier (May 26-29, 1996), where I apparently gave two talks and
Ara Sedrakyan showed us around (only me and Charlotte Kristjansen, who now gives two
talks, were representing the West). I have good memories of Armenia.

2. The setting

There has been a revised interest in studying instantons at finite temperatureT, so-called
calorons,1,2 because new explicit solutions could be obtained where the Polyakov loop
at spatial infinity (the so-called holonomy) is non-trivial. They reveal more clearly the
monopole constituent nature of these calorons.3 Non-trivial holonomy is therefore expected
to play a role in the confined phase (i.e. forT < Tc) where the trace of the Polyakov loop
fluctuates around small values. The properties of instantons are therefore directly coupled
to the order parameter for the deconfining phase transition.

At finite temperatureA0 plays in some sense the role of a Higgs field in the adjoint
representation, which explains why magnetic monopoles occur as constituents of calorons.
SinceA0 is not necessarily static it is better to consider the Polyakov loop as the analog
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of the Higgs field,P(t,~x) = Pexp
(∫ β

0 A0(t +s,~x)ds
)

, which transforms under a periodic

gauge transformationg(x) to g(x)P(x)g−1(x), like an adjoint Higgs field. Hereβ = 1/kT
is the period in the imaginary time direction, under which the gauge field is assumed to be
periodic. Finite action requires the Polyakov loop at spatial infinity to be constant. For
SU(n) gauge theory this givesP∞ = lim|~x|→∞ P(0,~x) = g†exp(2πidiag(µ1,µ2, . . . ,µn))g,
whereg bringsP∞ to its diagonal form, withn eigenvalues being ordered according to
∑n

i=1µi = 0 andµ1 ≤ µ2 ≤ . . . ≤ µn ≤ µn+1 ≡ 1+µ1. In the algebraic gauge, whereA0(x)
is transformed to zero at spatial infinity, the gauge fields satisfy the boundary condition
Aµ(t +β,~x) = P∞Aµ(t,~x)P−1

∞ .
Caloron solutions are such that the total magnetic charge vanishes. A single caloron

with topological charge one containsn− 1 monopoles with a unit magnetic charge in
the i-th U(1) subgroup, which are compensated by then-th monopole of so-called type
(1,1, . . . ,1), having a magnetic charge in each of these subgroups.4 At topological charge
k there areknconstituents,k monopoles of each of then types. Monopoles of typej have a
mass 8π2ν j/β, with ν j ≡ µj+1−µj . The sum rule∑n

j=1ν j =1 guarantees the correct action,
8π2k.

Prior to their explicit construction, calorons with non-trivial holonomy were consid-
ered irrelevant,2 because the one-loop correction gives rise to an infinite action barrier.
However, the infinity simply arises due to the integration over the finite energy density in-
duced by the perturbative fluctuations in the background of anon-trivial Polyakov loop.5

The calculation of the non-perturbative contribution was performed in.6 When added to
this perturbative contribution, with minima at center elements, these minima turn unstable
for decreasing temperature right around the expected valueof Tc. This lends some support
to monopole constituents being the relevant degrees of freedom which drive the transition
from a phase in which the center symmetry is broken at high temperatures to one in which
the center symmetry is restored at low temperatures. Lattice studies, both using cooling7

and chiral fermion zero-modes8 as filters, have also conclusively confirmed that monopole
constituents do dynamically occur in the confined phase.

3. Some Properties of Caloron Solutions

Using the classical scale invariance we can always arrangeβ = 1, as will be assumed
throughout. A remarkably simple formula for the SU(n) action density exists,4

TrF 2
αβ(x) = ∂2

α∂2
β logψ(x), ψ(x) = 1

2 tr(An · · ·A1)−cos(2πt),

Am ≡
1
rm

(

rm |~ρm+1|

0 rm+1

)(

cosh(2πνmrm) sinh(2πνmrm)

sinh(2πνmrm) cosh(2πνmrm)

)

,

with rm ≡ |~x−~ym| and~ρm ≡~ym−~ym−1, where~ym is the location of themth constituent
monopole with a mass 8π2νm. Note that the indexmshould be considered modn, such that
e.g.rn+1 = r1 and~yn+1 =~y1 (there is one exception,µn+1 = 1+µ1). It is sufficient that only
one constituent location is far separated from the others, to show that one can neglect the
cos(2πt) term inψ(x), giving rise to a static action density in this limit.4
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In Fig. 1 we show how for SU(2) there are two lumps, except thatthe second lump is
absent for trivial holonomy. Fig. 2 demonstrates for SU(2) and SU(3) that there are indeed
n lumps (for SU(n)) which can be put anywhere. These lumps are constituent monopoles,
where one of them has a winding in the temporal direction (which cannot be seen from the
action density).

Fig. 1. Shown are three charge one SU(2) caloron profiles att = 0 with β = 1 andρ = 1. From left to right for
µ2 =−µ1 = 0 (ν1 = 0,ν2 = 1), µ2 =−µ1 = 0.125 (ν1 = 1/4,ν2 = 3/4) andµ2 =−µ1 = 0.25 (ν1 = ν2 = 1/2) on
equal logarithmic scales, cutoff below an action density of 1/(2e).

Fig. 2. On the left are shown two charge one SU(2) caloron profiles att = 0 with β = 1 andµ2 =−µ1 = 0.125,
for ρ = 1.6 (bottom) and 0.8 (top) on equal logarithmic scales, cutoff below an action density of 1/(2e2). On the
right are shown two charge one SU(3) caloron profiles att = 0 and(ν1,ν2,ν3) = (1/4,7/20,2/5), implemented
by (µ1,µ2,µ3) = (−17/60,−1/30,19/60). The bottom configuration has the location of the lumps scaledby 8/3.
They are cutoff at 1/(2e).

3.1. Fermion Zero-Modes

An essential property of calorons is that the chiral fermionzero-modes are localized to
constituents of a certain charge only. The latter depends onthe choice of boundary con-
dition for the fermions in the imaginary time direction (allowing for an arbitrary U(1)
phase exp(2πiz)).9 This provides an important signature for the dynamical lattice stud-
ies, using chiral fermion zero-modes as a filter.8 To be precise, the zero-modes are local-
ized to the monopoles of typem providedµm < z< µm+1. Denoting the zero-modes by
Ψ̂z(x), we can writeΨ̂†

z(x)Ψ̂z(x) =−(2π)−2∂2
µ f̂x(z,z), where f̂x(z,z′) is a Green’s function

which for z∈ [µm,µm+1] satisfiesf̂z(z,z) = π <vm(z)|Am−1 · · ·A1An · · ·Am|wm(z)>/(rmψ),
where the spinorsvm andwm are defined byv1

m(z) = −w2
m(z) = sinh(2π(z−µm)rm), and

v2
m(z) = w1

m(z) = cosh(2π(z−µm)rm).
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To obtain the finite temperature fermion zero-mode one putsz= 1
2 , whereas for the

fermion zero-mode with periodic boundary conditions one takesz= 0. From this it is easily
seen that in case of well separated constituents the zero-mode is localized only at~ym for
whichz∈ [µm,µm+1]. To be specific, in this limit̂fx(z,z)= π tanh(πrmνm)/rm for SU(2), and
more generallyf̂x(z,z) = 2πsinh[2π(z− µm)rm]sinh[2π(µm+1 − z)rm]/(rmsinh[2πνmrm]).
We illustrate in Fig. 3 the localization of the fermion zero-modes for the case of SU(3).

Fig. 3. For the lower right SU(3) configuration in Fig. 2 we have determined on the left the zero-mode density
for fermions with anti-periodic boundary conditions in time and on the right for periodic boundary conditions.
They are plotted at equal logarithmic scales, cut off below 1/e5.

3.2. Calorons of Higher Charge

We have been able to use a “mix” of the ADHM and Nahm formalism,10 both in making
powerful approximations, like in the far field limit (based on our ability to identify the
exponentially rising and falling terms), and for finding exact solutions through solving

Fig. 4. In the middle is shown the action density in the plane ofthe constituents att = 0 for an SU(2) charge 2
caloron with trP∞ = 0, where all constituents strongly overlap. On a scale enhanced by a factor 10π2 are shown
the densities for the two zero-modes, using either periodic (left) or anti-periodic (right) boundary conditions in
the time direction.
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the homogeneous Green’s function.11 We found axially symmetric solutions for arbitrary
k, as well as fork = 2 two sets of non-trivial solutions for the matching conditions that
interpolate between overlapping and well-separated constituents. For this task we could
make use of an existing analytic result for charge-2 monopoles,12 adapting it to the case of
carolons. An example is shown in Fig. 4.

4. More recent results

There are more recent lectures by Bruckmann13 and Diakonov.14 Also, Diakonov and
Petrov made some progress on constructing the hyperKähler metric which approximates
the metric for an arbitrary number of calorons. They claim that this already gives confine-
ment.14,15 But some cautionary remarks can be made.16 Also multi-calorons were revis-
ited,17 and the authors claim to have the full SU(2) moduli space fork= 2.

The calorons have also adjoint fermionic zero-modes, and they are now known in an-
alytical form.18 Finally, Ünsal has published a paper concerning the mechanism of con-
finement in QCD-like theories,19 for example SU(2) with 1≤ nf ≤ 4 adjoint Majorana
fermions. He argues that there are BPS and KK monopoles (precisely the constituents of
the caloron), which have zero-modes under the adjoint fermions. They then make BPS-KK
bound states (instead of BPS-KK).

Acknowledgments

Thanks to Ara Sedrakyan for inviting me again to Nor Amberd inArmenia and to Tbilisi
in Georgia, and doing such a good job in hosting people in spite of difficult times. The
content of this talk is old (see arXiv:0901.2853), so there is no arXiv number for it. I went
also to Lattice 2011 at Squaw Valley, Lake Tahoe, July 11-16 and thank the organizers, Poul
Damgaard, Kim Splittorff and Jac Verbaarschot for invitingme to the ECT∗ workshop on
“Chiral dynamics with Wilson fermions” in Trento, October 24-28, 2011 and to Robijn
Bruinsma and Terry Tomboulis of UCLA, where amongst other things, I gave a seminar on
January 24, 2012. Finally, I would like to thank FOM for financial support.

References

1. B.J. Harrington and H.K. Shepard, Phys. Rev. D17 (1978) 2122; Phys. Rev. D18 (1978) 2990.
2. D.J. Gross, R.D. Pisarski and L.G. Yaffe, Rev. Mod. Phys. 53(1981) 43.
3. T.C. Kraan and P. van Baal, Phys. Lett. B428 (1998) 268 [hep-th/9802049]; Nucl. Phys. B533

(1998) 627 [hep-th/9805168]; K. Lee, Phys. Lett B426 (1998) 323[hep-th/9802012]; K. Lee and
C. Lu, Phys. Rev. D58 (1998) 025011 [hep-th/9802108].

4. T.C. Kraan and P. van Baal, Phys. Lett. B435 (1998) 389 [hep-th/9806034].
5. N. Weiss, Phys. Rev. D24 (1981) 475.
6. D. Diakonov, N. Gromov, V. Petrov and S. Slizovskiy, Phys. Rev. D70 (2004) 036003 [hep-

th/0404042]; D. Diakonov and N. Gromov, Phys. Rev. D72 (2005) 025003 [hep-th/0502132].
7. E.-M. Ilgenfritz, B.V. Martemyanov, M. M̈uller-Preussker, S. Shcheredin and A.I. Veselov, Phys.

Rev. D66 (2002) 074503 [hep-lat/0206004]; F. Bruckmann, E.-M.Ilgenfritz, B.V. Martemyanov
and P. van Baal, Phys. Rev. D70 (2004) 105013 [hep-lat/0408004];P. Gerhold, E.-M. Ilgenfritz
and M. Müller-Preussker, Nucl. Phys. B760 (2007) 1 [hep-ph/0607315].



March 16, 2012 14:33 WSPC - Proceedings Trim Size: 9.75in x 6.5in Pierre-NorAmberd

6

8. C. Gattringer and S. Schaefer, Nucl. Phys. B654 (2003) 30 [hep-lat/0212029]; C. Gattringer and
R. Pullirsch, Phys.Rev. D69 (2004) 094510 [hep-lat/0402008].

9. M. Garćıa Ṕerez, A. Gonźalez-Arroyo, C. Pena and P. van Baal, Phys. Rev. D60 (1999) 031901
[hep-th/9905016]; M.N. Chernodub, T.C. Kraan and P. van Baal, Nucl. Phys. B(Proc.Suppl.)83-
84 (2000) 556.

10. M.F. Atiyah, N.J. Hitchin, V. Drinfeld and Yu.I. Manin, Phys. Lett. 65A (1978) 185; W. Nahm,
“Self-dual monopoles and calorons,” in: Lecture Notes in Physics, 201 (1984) 189.

11. F. Bruckmann and P. van Baal, Nucl. Phys. B645 (2002) 105 [hep-th/0209010]; F. Bruckmann,
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18. M. Garćıa Perez and A. Gozález-Arroyo, JHEP 0611 (2006) 091 [hep-th/0609058]; M. Garcı́a

Perez, A. Goźalez-Arroyo and A. Sastre, Phys. Lett. B668 (2008) 340 [arXiv:0807.2285 [hep-
th]]; JHEP 0906 (2009) 065 [arXiv:0905.0645 [hep-th]].
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