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The progress on calorons (finite temperature instantonkgtsised. In particular there is some interest
for confining temperatures, where the holonomy (the asymptatige of the Polyakov loop) is non-
trivial. In the last section | give more recent results by oghe
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1. Introduction

First of all | would like to congratulate Sergei Matinyan kvihis 80th birthday. | met
him actually in the States where | gave a seminar in Duke oe 1yri993 on my finite
volume work. He emailed me on June 10 with a suggestion, rgaki@ zero-momentum
modes stochastic. The last sentence of my reply ended vilt if some day this might
be achieved, your idea with stochastic behavior in the loergy modes only, might very
well be the appropriate one.” Unfortunately | became stuckinite volumes and want
to present now “non-trivial holonomy and calorons”, whighait finite temperature, but
infinite volumes.

There is an other reason why | love to be back in Armenia. | wasdr Amberd for an
INTAS meeting 15 years earlier (May 26-29, 1996), where laapptly gave two talks and
Ara Sedrakyan showed us around (only me and Charlotte &nis¢in, who now gives two
talks, were representing the West). | have good memoriesmogAia.

2. Thesetting

There has been a revised interest in studying instantonsit& femperaturd, so-called
caloronst? because new explicit solutions could be obtained where tigaRov loop
at spatial infinity (the so-called holonomy) is non-trividlhey reveal more clearly the
monopole constituent nature of these calorbN&n-trivial holonomy is therefore expected
to play a role in the confined phase (i.e. o Tc) where the trace of the Polyakov loop
fluctuates around small values. The properties of instanaoe therefore directly coupled
to the order parameter for the deconfining phase transition.

At finite temperaturédg plays in some sense the role of a Higgs field in the adjoint
representation, which explains why magnetic monopolearags constituents of calorons.
SinceAy is not necessarily static it is better to consider the Palydkop as the analog
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of the Higgs field,P(t,X) = Pexp(ngo(tJrs,X)ds), which transforms under a periodic
gauge transformatiog(x) to g(x)P(x)g~*(x), like an adjoint Higgs field. Her@ = 1/kT

is the period in the imaginary time direction, under whicé gauge field is assumed to be
periodic. Finite action requires the Polyakov loop at sgatifinity to be constant. For
SU(n) gauge theory this give®ws = limy_,, P(0,X) = g exp(2ridiag(p, Wz, - - - , kn)) G,
whereg brings % to its diagonal form, withn eigenvalues being ordered according to
it =0andy < p <...<pn < pos1 = 1+ . In the algebraic gauge, whefg(x)

is transformed to zero at spatial infinity, the gauge fieldsfathe boundary condition
Au(t+B,%) = PuA(t, %) 2, L.

Caloron solutions are such that the total magnetic chargishes. A single caloron
with topological charge one contaims— 1 monopoles with a unit magnetic charge in
thei-th U(1) subgroup, which are compensated by i monopole of so-called type
(1,1,...,1), having a magnetic charge in each of these subgrbuyigopological charge
k there are&kn constituentsk monopoles of each of thetypes. Monopoles of typghave a
mass 82vj /B, with vj = pj1 — ;. The sum rulg |_,vj =1 guarantees the correct action,
8rek.

Prior to their explicit construction, calorons with nomal holonomy were consid-
ered irrelevant, because the one-loop correction gives rise to an infinitemdiarrier.
However, the infinity simply arises due to the integratioemthe finite energy density in-
duced by the perturbative fluctuations in the background mértrivial Polyakov loop.
The calculation of the non-perturbative contribution wasfermed in® When added to
this perturbative contribution, with minima at center edts, these minima turn unstable
for decreasing temperature right around the expected wllie This lends some support
to monopole constituents being the relevant degrees addreevhich drive the transition
from a phase in which the center symmetry is broken at higlpézatures to one in which
the center symmetry is restored at low temperatures. kastiedies, both using coolifig
and chiral fermion zero-modss filters, have also conclusively confirmed that monopole
constituents do dynamically occur in the confined phase.

3. Some Properties of Caloron Solutions

Using the classical scale invariance we can always arr@ngel, as will be assumed
throughout. A remarkably simple formula for the $)action density exist8,

TR () = 0305 10gW(X),  W(X) = $tr(Fq--- A1) — cog(2nt),

Ay = 1 (rm[Pmal cosh2MVmm) sinh(2Mvmfm)
T rm\ 0 rma sinh(2rvyrm) cosH2mvmrm) /°

with rp = [X— Y| @and pm = Ym — Ym-1, Whereyy, is the location of then™ constituent
monopole with a massr8vy,. Note that the inder should be considered magisuch that
€.0.+1 =r1 andyn1 = Yi (there is one exceptiopy, 1 = 1+ ). Itis sufficient that only
one constituent location is far separated from the othershow that one can neglect the
cog 2t) term iny(x), giving rise to a static action density in this lirfit.
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In Fig. 1 we show how for SU(2) there are two lumps, except thatsecond lump is
absent for trivial holonomy. Fig. 2 demonstrates for SU{®) &U(3) that there are indeed
n lumps (for SUGQ)) which can be put anywhere. These lumps are constituenbpaes,
where one of them has a winding in the temporal direction ¢tvicannot be seen from the
action density).

Fig. 1. Shown are three charge one SU(2) caloron profiles-a@ with 3 = 1 andp = 1. From left to right for
Ho=—m=0V1=0v2=1),p2 =~} =0.125 1 =1/4,v, =3/4) andpp = —py =0.25 (v1 =v2 =1/2) on
equal logarithmic scales, cutoff below an action density /@2e).
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O

Fig. 2. On the left are shown two charge one SU(2) caloronlpsaéitt = 0 with = 1 andpp = —p = 0.125,
for p = 1.6 (bottom) and 0.8 (top) on equal logarithmic scales, cutdfiwan action density of A(2¢?). On the
right are shown two charge one SU(3) caloron profiles-a0 and(v1,v2,v3) = (1/4,7/20,2/5), implemented
by (1, M2, Ms) = (—17/60,—1/30,19/60). The bottom configuration has the location of the lumps sdaye) 3.
They are cutoff at 1(2e).

3.1. Fermion Zero-Modes

An essential property of calorons is that the chiral fermi@no-modes are localized to
constituents of a certain charge only. The latter dependd@rchoice of boundary con-
dition for the fermions in the imaginary time direction @lling for an arbitrary U(1)
phase ex(Priz)).° This provides an important signature for the dynamicaidatstud-
ies, using chiral fermion zero-modes as a fiftdio be precise, the zero-modes are local-
ized to the monopoles of typm providedpm < Z < pmt+1. Denoting the zero-modes by
W,(x), we can write] (x)P(x) = —(2m) 202 fx(2,2), wheref,(z,Z) is a Green’s function
which for z € [Um, bm1] satisfiesf;(z,2) = T<Vm(2)|Am-1-- - 4190 - - A Win(2) >/ (Fml),
where the spinorsy andwn, are defined by} (z) = —wW2,(2) = sinh(2m(z— pm)rm), and
V2,(2) = Wh(2) = cosh(2m(z— pim)Fm)-
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To obtain the finite temperature fermion zero-mode one puts}, whereas for the
fermion zero-mode with periodic boundary conditions oikes$a = 0. From this it is easily
seen that in case of well separated constituents the zede-isdocalized only ay, for
whichz € [, lmy 1] To be specific, in this limif,(z,z) = itanh(Tr ) /rm for SU(2), and
more generallyfy(z ) = 2msinh21(z — pn)Fm] SINN2T(Pms 1 — 2)Fm]/ (FmSINN2MV i m]).
We illustrate in Fig. 3 the localization of the fermion zermdes for the case of SU(3).
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Fig. 3. For the lower right SU(3) configuration in Fig. 2 we baletermined on the left the zero-mode density
for fermions with anti-periodic boundary conditions in timedaon the right for periodic boundary conditions.
They are plotted at equal logarithmic scales, cut off belger1

3.2. Caloronsof Higher Charge

We have been able to use a “mix” of the ADHM and Nahm formalt8rpth in making
powerful approximations, like in the far field limit (based our ability to identify the
exponentially rising and falling terms), and for finding ekaolutions through solving
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Fig. 4. In the middle is shown the action density in the planthefconstituents dt= 0 for an SU(2) charge 2
caloron with tr?, = 0, where all constituents strongly overlap. On a scale erdthby a factor 1 are shown
the densities for the two zero-modes, using either peridéft) (or anti-periodic (right) boundary conditions in
the time direction.
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the homogeneous Green’s functitnWe found axially symmetric solutions for arbitrary
k, as well as forkk = 2 two sets of non-trivial solutions for the matching corati that
interpolate between overlapping and well-separated itoasts. For this task we could
make use of an existing analytic result for charge-2 morexjdladapting it to the case of
carolons. An example is shown in Fig. 4.

4. Morerecent results

There are more recent lectures by Bruckmidnand Diakono* Also, Diakonov and
Petrov made some progress on constructing the hygddek metric which approximates
the metric for an arbitrary number of calorons. They claiit this already gives confine-
ment1415 But some cautionary remarks can be m&tidlso multi-calorons were revis-
ited 1’ and the authors claim to have the full SU(2) moduli spacéfer2.

The calorons have also adjoint fermionic zero-modes, aeg dine now known in an-
alytical form?18 Finally, Unsal has published a paper concerning the mechanism of con-
finement in QCD-like theorie¥ for example SU(2) with K n¢ < 4 adjoint Majorana
fermions. He argues that there are BPS and KK monopolesigptgthe constituents of
the caloron), which have zero-modes under the adjoint fammiThey then make BPISK
bound states (instead of BPS-KK).
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