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ABSTRACT

It will be described how to uniquely fix the gauge using Coulomb gauge fixing, avoiding the
problem of Gribov copies. The fundamental modular domain, which represents a one-to-one
representation of the set of gauge invariant degrees of freedom, is a bounded convex subset
of the transverse gauge fields. Boundary identifications are the only remnants of the Gribov.
copies, and carry all the information about the topology of the Yang-Mills configuration
space. Conversely, the known topology can be shown to imply that (on a set of measure
zero on the boundary) some points of the boundary coincide with the Gribov horizon. For
the low-lying energies, wavefunctionals can be shown to spread out "across” certain parts of
these boundaries. This is how the topology of Yang-Mills configuration space has an essential
influence on the low-lying spectrum, in a situation where these non-perturbative effects are
not erponentially suppressed.

The write-up of my contribution to the International Symposium on Advanced Topics of Quan-
tum Physics will be a short summary, with adequate references, where most of the material I have
presented can be found. The observation concerning Henyey’s gauge copies have not been published
before.

Gauge fixing has remained an essential ingredient for studying non-abelian gauge theories!!],
despite the many attempts of finding gauge invariant variables. This is not too surprising, as
the Yang-Mills configuration space is topologically non-trivial®®. There exists no choice of (affine)
coordinates suitable for the whole manifold. Gauge fixing can be conveniently seen as just one
particular choice of coordinates!®!, They are only locally defined, and one would need different
coordinate patches and transition functions to describe the whole manifold(!. Trying to extend the
coordinate patch to the whole manifold has as a consequence that the gauge condition, beyond a
certain distance in the configuration space, no longer uniquely fixes the gauge, as was first discovered
by Gribovl®l. Analysing this in a finite spatial volume using the Hamiltonian formulation (Ao = 0
and using the Coulomb gauge to fix the time-independent gauge parameters) has demonstrated the
usefulness of this approach. In that case the transition functions were described by topologically
non-trivial gauge transformations!®’. The reason for its success lies in the fact that asymptotic
freedom in four dimensions guarantees that the effective coupling constant in a small volume is
smallm, and that non-perturbative effects will only be of importance for a few low-energy modes.

More recently, a different way of describing the Yang-Mills configuration space was developed, by
using a functional method to net only satisfy the Coulomb gauge condition 9; A; = 0, but also pick
from the different Gribov copies a unique configuration. The collection of these configurations should
thus form a fundamental modular domain, in other words, it should form a one-to-one mapping
with the Yang- Mills configuration space. The relevant functional is the L2-norm of the gauge field:
| A |IP= fM Tr(AlA;). For each gauge invariant field configuration this gives a Morse function on
the gauge orbit. One easily verifies that stationary points of this Morse function satisfy the Coulomb
gauge condition and that the Hessian at the stationary point is precisely given by the Faddeev-Popov
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operator, whose determinant measures the volume of the gauge orbit. This procedure to fix the
gauge has been known already for quite some timem], as well as the obvious conclusion that the
absolute minimum provides the natural way of choosing a unique representativel®’, whose recent
rediscovery!'®! has resulted in a recurrent interest in this problem.

Gribov's original conjecturel® was that one could find a unique representative by demanding
the Faddeev-Popov operator to be positive. This region in the space of connections can be shown
to be convex and is called the Gribov region. In a finite volume one can show that in each direction
of configuration space, the distance of its boundary to the origin is finite'!). However, this would
mean that this choice is only unique if the above discussed Morse function has all its minima to
be absolute minima. The existence of a Gribov horizon, where the Faddeev-Popov determinant
vanishes (we will be reserving the name horizon for the more stringent condition that the lowest
eigenvaluc of the Faddeev-Popov operator vanishes), does imply that points just outside the horizon
have copies just inside, as Gribov showed. But more importantly, taking the global nature of the
Morse function into account, implies two possibilities. Either near the horizon the points inside
the Gribov region correspond to local minima, which therefore have to be copies of an absolute
minimum, by definition also inside the Gribov region[g’m]. This happens if the third order term
of the expansion of the Morse function around the stationary peint, in the direction where the
Hessian vanishes, is non-vanishing. Or, in the case this third order term vanishes, the (local)
minimum bifurcates at the horizon in two local minima and one saddle point[u]. As the two local
minima in the above bifurcation coalesce at the horizon, the relevant gauge transformation has to
be topologically trivial. By definition, these gauge copies lie inside the Gribov region.

Care is required if the gauge configuration is reducible, as in that case the gauge group does
not act freely. However, the gauge subgroup that leaves the reducible connection fixed, generally
does not support topologically non-trivial maps. Nevertheless, reducible connections give rise to
singularities in the physical configuration spacel'®!, where the Morse theory arguments might not be
valid. These singularities turn out to be particularly treacherous in the case of an abelian connection,
which are the simplest examples of reducible connections. As the Coulomb gauge does not fix the
constant gauge transformations, one has to still divide out these constant gauge transformations to
obtain the fundamental modular domain.

With this in the back of our minds let us reconsider an old example due to Henyey(“], for gauge
copies (inside the Gribov horizon) that are related by a homotopically trivial gauge transformation.
As was explained in ref.[12], his was an example related to a bifurcation of local minima at the
horizon. Explicitly Henyey’s example was given by [14] an abelian SU(2) connection on compactified
IR®:

A(B) = a(B)érs,

2
1 b+r2sin20(—d 2 +:1—£i—l—7-)

a(B) = _ ___dr?  rdr
2rsinf B~1sin(2rBbsinf) ’

9(B) = exp(iBrbsin (e**r— + e **1})).

where (7,8, ¢) are the spherical coordinates, 7; the Pauli matrices, b an arbitrary function of r and
g(£3) defines the two gauge copies [g(£8)]A(B), that will coalesce at 8 = 0, which is easily verified
to coincide with the Gribov horizon for a suitable choice of the radial function 1'%, Unfortunately,
close inspection shows that, since g(—f8) = m3g(8)7s and since A(f) commutes with 73, the two
copies [g(+B)]A(B) are related by a constant gauge transformaticn. As we still have to divide
out these constant gauge transformations, Henyey’s example does not really provide an example
of two gauge copies inside the Gribov horizon, that are related by a topologically trivial gauge
transformation. .

Fortunately, however, the general Morse theory argument is sufficiently strong not to have to
worry, that bifurcations of the above type do not occur. To find an example one simply should look
for an irreducible connection on the Gribov horizon, where the third order term in the expansion
around the stationary point of the Morse function vanishes in the direction of the zero eigenvector of
the Hessian. In a recent paper, that analysed gauge fields on'a three-spherel’®| such configurations
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featured prominently as the so-called sphaleron modes (u,v). Part of the Gribov horizon is given
by the equation u +v = 1.5 (for u and v € [0,1.5]) and one easily verifies these configurations are
not reducible and have a Morse function that vanishes to third order in the direction of the zero
eigenvector of the Faddeev-Popov operator.

We now come back to the issue of the fundamental modular domain. It can be shown that the
collection of absolute minima of the Morse function is also convex!'®. One would thus expect it to
be contractable, which is in flagrant contradiction with the assumption that it is a in one-to-one
correspondence with the physical configuration space. The catch is that the absolute minimum of
the Morse function need not be unique. Using the convexity of the set of absclute minima (also
called A) it is not hard to showl1?] that A has a boundary, which if it does not coincide with the
Gribov horizorn, necessarily corresponds to a degenerate absolute minimum of its Morse function.
The other absolute minimum is necessarily a gauge copy and also a point on the boundary. Thus
the set of absolute minima will only become a fundamental modular domain if these appropriate
boundary identifications are taken into account. In this way it will support the known non-trivial
topology of the physical configuration space. On the other hand, the known non-trivial topology
implies the existence of non-contractable n-spheres. Those can only arise through boundary identi-
fications if all points of a suitable n — 1-dimensional subspace of the boundary are identified (gauge
equivalent). These points consequently coincide with the Gribov horizon. These ”singular” bound-
ary points, however, form a subset of the boundary of zero measure (which does not mean they are
unimportant). Note that as the Gribov region is bounded in each direction, the same holds for the
fundamental modular domain.

The dynamical consequence in the context of gauge theories in a finite volume is that at in-
creasing volume (i.e. increasing coupling constant) the wavefunctional starts to spread out over
configuration space, and unavoidably will start to overlap with the boundary of the fundamental
modular domain. Important is that the size of the volume controls this process. At very small vol-
umes the boundary is irrelevant (for a torus typically below 0.1 —0.01 fm?®), whereas at increasing
volume first the lowest energy modes start to be sensitive to the boundary identifications. In this
way the energy of electric flux and the low-lying glueball spectrum were calculated in volumes up to
1fm?® in the geometry of a torus!’2'18] which agreed with the lattice Monte Carlo results obtained
in the same volume within the 2% statistical error of the latter!!™). For the torus geometry the zero
energy modes are parameterized by the constant abelian modes, A; = Cits/(2L) (where L is the
length of the torus). The Gribov horizon and the boundary of the fundamental modular domain in
C- space are given by cubes, centered at C = 0 and respectively with sides of length 47 and 2713,
A recent analysis on the three-sphere is aimed at going to larger volumes!*®.

References

(1] C.N. Yang and R.L. Mills, Phys. Rev., 96 (1954), 191.

[2] 1. Singer, Comm. Math. Phys., 60 (1978), 7.

[3] O. Babelon and C. Viallet, Comm. Math. Phys., 81 (1981), 515.

[4] W. Nahm, in: IV Warsaw Symp. on Elem. Part. Phys., ed. Z. Ajduk, p.275 (Warsaw, 1981).

(5] V. Gribov, Nucl. Phys., B139 (1978), 1. -

[6] P.van Baal, in: Probalilistic Methods in Quantum Field Theory and Quantum Gravity, ed. P. Damgaard
et al (Plenum, New York, 1990) p.131.

[7) M. Liischer, Phys. Lett., 118B (1982), 391; Nucl. Phys., B219 (1983), 233.

[8] K. Wilson, in: Recent developments in Gauge Theories, ed. G. 't Hooft, et al (Plenum Press, New York,

1980) p.363; G. 't Hooft, Nucl. Phys., B190 (1981), 455; T. Maskawa and H.Nakajima, Prog. Theor.
Phys., 60 (1978), 1526.

[9] M.A. Semenov-Tyan-Shanskii and V.A. Franke, Zapiski Nauchnykh Seminarov Leningradskogo Otde-
leniya Matematicheskogo Instituta im. V.A. Steklov AN SSSR, 120(1982)159. Translation: (Plenum
Press, New York, 1986) p.1999.

- 135 -




(10]

(11]

(14]
(15]

(16]
(17)

G. Dell'Antonio and D. Zwanziger, in: Probabilistic Methods in Quantum Field Theory and Quantum
Gravity, ed. P.H. Damgaard et al, (Plenum Press, New York, 1990) p.107; Comm. Math. Phys., 138
(1991), 291.

G. Dell’Antonio and D. Zwanziger, Nuel. Phys., B326 (1989), 333; D. Zwanziger, Critical limit of
lattice gauge theory, NYU preprint, December 1991.

P. van Baal, Nucl. Phys., B369 (1992), 259.

S. Donaldson and P. Kronheimer, The geometry of four—manit:olds (Oxford University Press, 1990); D.
Freed and K. Uhlenbeck, Instantons and four-manifolds, M.S.R.I. publications, Vol 1 (Springer, New
York, 1984).

F.S. Henyey, Phys. Rev., D20 (1979), 1460.

P. van Baal and N.D. Hari Dass, "The theta dependence beyond steepest descent”, Utrecht preprint,
THU-92/03, January 1992.

J. Koller and P. van Baal, Nucl. Phys., B302 (1988), 1.
P. van Baal, Phys. Lett., B224 (1989), 397.

- 136 -




