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Stability of Dirac sheet configurations
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Using cooling for SW2) lattice configurations, purely Abelian constant magnetic-field configurations were
left over after the annihilation of constituents that formed metast@bied configurations. These so-called
Dirac sheet configurations were found to be stable if emerging from the confined phase, close to the decon-
finement phase transition, provided their Polyakov loop was sufficiently nontrivial. Here we show how this is
related to the notion of marginal stability of the appropriate constant magnetic-field configurations. We find a
perfect agreement between the analytic prediction for the dependence of stability on the value of the Polyakov
loop (the holonomy in a finite volume and the numerical results studied on a finite lattice in the context of the
Dirac sheet configurations.
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I. INTRODUCTION instanton action, a metastable configuration can be either a
dyon-dyon pair that shrinks and falls through the lattice or a
In lattice gauge theory cooling is used to remove the highdyon-antidyon pair that finally annihilatg$]. Sometimes
frequency fluctuations to be left with classical solutionsthis annihilation process leaves behind a constant Abelian
[1,2]. This allows one to extract the underlying topological magnetic field, which subsequently turns out to be stable or
content of the gauge field configurations and determine t¢instable under further coolir{], strongly correlated to the
what extent instantons have a role to play. It is known tha@Symptotic value of the Polyakov logthe holonomy which
when using the ordinary Wilson action, the lattice artifactshas been acquired in this stage of cooling. In the deconfined
are such that one can further lower the action by reducing thBhase no dyonic structure was observable under cooling. The
size of the instanton@vhereas in the continuum the classical Polyakov loop remains always close to its trivial value but
action does not depend on the giZgltimately the instanton quasiconstant magnetic-field configurations were seen to
falls through the lattice and in general one relaxes to th&merge as well, although they never happened to be stable.
trivial minimum with zero action. However, at finite tem- In this paper we present an explanation for these observa-
perature, when the Polyakov loop away from the instanton i$lons.
nontrivial, the relevant instantoftalled a caloronactually
consists ofn constituents for SW{) [3,4]. These can be
shown to be 't Hooft—PolyakoBPS monopoles when
identifying Ay with the (adjoiny Higgs field. From the Eu- It is well known that Abelian constant magnetic fields are
clidean four-dimensional point of view, due to the self- embedded solutions of th@on-Abelian equations of mo-
duality of the gauge field, these are dyons with their mag+tion. They tend to be unstable, due to the self-coupling of the
netic charge equal to their electric charge, with overallgauge field$7], which formed the basis for the studies of the
electric and magnetic neutrality. so-called Copenhagen vacuum pict{i8g
Under cooling in the confined phase, due to the discrete- In the four-dimensional context a constant field is stable if
ness artifacts of the Wilson action, these constituents wilit is self-dual[9,10]. Here we will be interested in the degen-
attract and approach each other. When they are no longerate case with magnetic, but no electric flux and periodic
visible as separate entities, the solutions behave like ordinafyoundary conditions(the general case allows for center
instantons localized in space and time. The distance betwedluxes, but requires twisted boundary conditiddd]). For
the constituents i§for SU(2)] given by 7p?/b, whereb is SU(2) these gauge fields are Abelian and there is the freedom
the inverse temperaturghe period in the Euclidean time of adding to it a constant Abelian vector potential, which
direction). Another possibility is the annihilation of dyons does not change the field strengk,,=mi73n,,/(L,L,).
and antidyons left over from different caloron and antical-This field strength is unique up to a constant gauge rotation,
oron solutions. As a result, with an action near the oneandn,, is an integereven in the case of periodic boundary
conditions antisymmetric tensor, fixed by flux quantization.
In the degenerate casg,, has two nonzero eigenvectors,
*Presently at Instituut-Lorentz for Theoretical Physics, Universityand computing the gauge-invariant Polyakov-loop observ-
of Leiden, PO Box 9506, NL-2300 RA Leiden, The Netherlands. ables in this subspace it is easily seen that no translation

II. CONSTANT MAGNETIC FIELDS
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invariance holds. Adding a constant Abelian vector potential N.=4m(2n+1+ 2)/|_§+ (2mp+ C3)2/L§

can consequently be absorbed by a translation and therefore

cannot affect the fluctuation spectrum. But in this degenerate +(2mq+Co)?/L7, (4)
case there are also two zero eigenvectors, and the vector

potential is invariant under translations in this subspace. Its No=(27k, /L)%

Polyakov loops label the gauge invariant parameters on N _
which the fluctuation spectrum does depend! The multiplicities are 4 foi .. and 2 for\g, with all quan-

It had been found12,13 that on a symmetric torus there UM numbersig,p,q.k,) integer(butn=0).
was one class of constant magnetic-field solutions that for a AS argued above the spectrum depends on the constant
certain range of values of the Polyakov loop were stable”belian gauge field described by the constagsand Cs.
This example, involving the smallest possible nonzero magIhese are only defined modulor? as a shift over # is
netic field, possesses nontrivial center flux and requiregelated to a gauge transformation that shifts the relevant mo-
twisted boundary conditions. Therefore it could not explain™enta by one unit. The Polyakov-loop observables are given
the findings of Ref[6]. However, at finite temperature in- by
volving a nonsymmetric box, more room exists to obtain

b ic-field soluti 1 -
stable constant magnetic-field solutions. PﬂZETrexq|CM7’3/2):COS(CM/2), ©=03. (5
IIl. FLUCTUATION SPECTRUM Note that these are antiperiodic under a shift over, 2

_ ) o whereas the fluctuation spectrum is periodic. This is simply
For SU2) all constant curvature solutions in a finite boX pecause the fluctuations involve fields in the adjoint repre-
been calculatefil4]. For the “charged” isospin components, epresentation. IndeeB2 and P2, relevant for the adjoint

in the subspace of nonzero eigenvectors pf, the problem oy resentation, are periodic under a shifGyf and C5 over
is equivalent to that of Landau levels. The eigenfunctions are

described by® functions to incorporate the boundary condi- I.:rom the lattice data it is clear thR =1, and we can put
tions. In the subspace of zero eigenvectors one simply has__ g 45 well asi=p=q=0 (we may reétrictC |<m) to
plane waves, with properly discretized momenta. These moﬁr?d tr’1e lowest eigenvalue. = —4w/L2+CZ/£2 to be

. ! - s o' =t
menta are, however, shifted due to the constant vector pOterr'\egative unless the Polyakov loop is sufficiently nontrivial

s e POl o0 1 s SWOSPACE 1 beng associated 0 @ vl Poakov oofhe
. y" : 1Sty 9 : he ’ lowest eigenvalue is positive when
neutral” isospin component is described by ordinary plane

waves. _ _ _ L, /L< 72,
The following gauge field for S(2) gives the most gen-
eral solution with constant field strength on a tofws]: |Po| = cog Col2) < cog \/;Lt“—s)- (6)

1 We see that these conditions cannot be satisfied when
A, (X)= §|(— mn,, X, /L, +C,)13/L,. (1) = LS_ and the f|r_1|t_e temperature s[tuatlob% L_t_< Ly is es-
sential for providing the opportunity of stability.
This stability was called marginal, because one can
It is periodic up to the gauge transformation changeC, without changing the classical action. Thus noth-
ing prevents us to brin@, close to 0, where the lowest
- 1 eigenvalue\ _ turns negative. Under the cooling there is no
At pbl ) =0 ,0[A() +3,]Q,7(X), 2) reason forC, to change, as one can easily show that the
degeneracy of the action as a functionQyf survives on the
lattice. This then explains the stability of these constant
gauge field configurations, provided the two conditions of
Eq. (6) are satisfied.

where . is the unit vector in thes direction and

1
Qu(x)—exp( 2! WX”””“T3/LV)' & IV. COMPARISON WITH LATTICE DATA
In Ref. [6] SU(2) gauge theory in four-dimensional Eu-
With n,,, even, these Abelian boundary conditions are, how<lidean space was considered on an asymmetric lattice with
ever, gauge equivaleriin general by a non-Abelian gauge periodic boundary conditions in all four directions. The re-
transformation to periodic boundary condition@s long as  spective ensembles of configurations have been created by
Q=0). Following Ref.[6] we assumd.o=L;=b, L;=L, heat-bath Monte Carlo using the standard Wilson plaquette
=L3=Ls. The data in all cases can be interpreted in termsction. The lattice size was?x N, with the spatial extension
of a(nearly constant magnetic field withy, = —n,o=0 and  N.=8,10,12,16,20 and with temporal extensiip=4, i.e.,
m=(0,0,2), wheran,= %sijknjk . Therefore we compute the b=4a andL =aNg with a the lattice spacing. Fa¥;=4 the
fluctuation eigenvalues for this ca@®mpare Refd.12—14)) model is known to undergo the deconfinement phase transi-
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FIG. 1. Correlation in the confined phase of @lattice gauge theory between the holonoRy and the(in)stability of Dirac sheets
which is indicated through the remaining inhomogeneity of the action desgify# Smin (represented by circles and triangles, respectjvely
The limiting values of the holonomj/PO\=cos{\/;(Nt/Ns)], beyond which constant magnetic fluxes become unstable, are indicated by
horizontal lines. The temporal size of the lattices Ng=4, and the DS events are shown for different spatial lattice $ize
=8,10,12,16,20.

tion at the critical coupling3;=2.299[15]. In Ref.[6] two iterative minimization of the Wilson action with the focus on

sets of ensembles with; =2.2< B, and 8,=2.4> 3. were the structure of self-dual caloron solutions. In addition, Dirac

generated. sheet(DS) events were observed at the very last stages of
The equilibrium field configurations have been cooled bycooling, applying a stopping criterion which selects action
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plateaux in the interva<0.6 S,;. In the confined phase, V. CONCLUSIONS

approximately 70/_C(_at _NS:B’lo'_lZ)' 5% Ns=16), and 30_/0 Purely Abelian constant magnetic-field configurations
(Ns=20) of equilibrium configurations have turned int0 \yere ohserved6], randomly emerging from the process of
these purely magnetic configurations, whereas in the decoRg,jing-down equilibrium lattice fields representing the con-
fined phase the yield was 5-14%j. The action values were finaq and deconfined phases of @Ugluodynamics. In the
found close to K;/Ns) Sy characteristic for constant Abe- confined phase they were found to be absolutely stable pro-
lian magnetic flu{16] of size 4 periodically closed along ;deq their Polyakov loop was sufficiently nontrivial. We
one of the spatial directions. A_Ithough the action showed the ;e shown here that this fact is related to the notion of
same dependence on the lattice extenslpandNs, SUp-  marginal stability of the appropriate constant magnetic-field
porting the common interpretation &imos) homogeneous configurations. We have found perfect agreement between
magnetic flux, the configurations were unstable when dege analytically predicted dependence of stability on the
rived from the deconfined phase and partly stable in the casgy e of the Polyakov loofithe holonomy for the set of

of the confined phase. In the case of confinement, the iSSLgepatim lattice sizes that were studied in RE§] and the

of stability vs instability was strongly correlateq t.o the value hymerical observations made there, separating stable from
of the temporal Polyakov lingholonomy Po. This is shown  nstaple Dirac sheet configurations. The dependence on the
in Fl.g. 1_. It presents a set of scatter_pl(()ﬁch for. another geometry of the effect we found makes us believe we are
spatial sizeN) where each DS event is characterized by tWogea|ing with a finite volume artifact. Nevertheless, it demon-
entries: 6min, Po) and Gmax, Po). The valuesyin andsSmax  strates that the influence of a background consani(as
express the action density at sites where it is minimal angyanifested by the Polyakov loppn the dynamics of the
maximal, respectively. If these values differ, the configura-gayge field should not be ignored. The physical significance
tion is bound to decay to the trivial vacuum. Provided thejies i the fact that the Polyakov loop is the order parameter
holonomy remains sufficiently far from trivial, we find only {or the confinement/deconfinement phase transition. A simi-

DS events which consist of a highly homogeneous Abeliang; conclusion can be drawn from the caloron solutions with
magnetic flux signaled bgmin=Smax- This case is tantamont ontrivial holonomy.

to absolute stability under further cooling. In contrast to this,
when the holonomy was close to the trivial orie~{ = 1) the
Abelian magnetic fluxes happened not to be homogeneous
(Smin#Smax and proved to be unstable under further cool-  This work was supported by FOM, by RFBR-DRGrant
ing. The critical value of the holonomy,|Py  03-02-04018 and by DFG(grant Mu 932/2-1 E.-M.l. was
=cos(\/FLt/Ls), limiting the region of stability as given by supported by DFGForschergruppe Lattice Hadron Phenom-
the second condition in E@6), is marked in Fig. 1 by hori- enology, FOR 465 Two of us(E.-M.l. and B.V.M) grate-
zontal lines.No deviationsfrom the predictedin)stability ~ fully appreciate the hospitality experienced at the Instituut-
are seen. Lorentz of Leiden University.
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