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Stability of Dirac sheet configurations
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Using cooling for SU~2! lattice configurations, purely Abelian constant magnetic-field configurations were
left over after the annihilation of constituents that formed metastableQ50 configurations. These so-called
Dirac sheet configurations were found to be stable if emerging from the confined phase, close to the decon-
finement phase transition, provided their Polyakov loop was sufficiently nontrivial. Here we show how this is
related to the notion of marginal stability of the appropriate constant magnetic-field configurations. We find a
perfect agreement between the analytic prediction for the dependence of stability on the value of the Polyakov
loop ~the holonomy! in a finite volume and the numerical results studied on a finite lattice in the context of the
Dirac sheet configurations.
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I. INTRODUCTION

In lattice gauge theory cooling is used to remove the hi
frequency fluctuations to be left with classical solutio
@1,2#. This allows one to extract the underlying topologic
content of the gauge field configurations and determine
what extent instantons have a role to play. It is known t
when using the ordinary Wilson action, the lattice artifa
are such that one can further lower the action by reducing
size of the instantons~whereas in the continuum the classic
action does not depend on the size!. Ultimately the instanton
falls through the lattice and in general one relaxes to
trivial minimum with zero action. However, at finite tem
perature, when the Polyakov loop away from the instanto
nontrivial, the relevant instanton~called a caloron! actually
consists ofn constituents for SU(n) @3,4#. These can be
shown to be ’t Hooft–Polyakov~BPS! monopoles when
identifying A0 with the ~adjoint! Higgs field. From the Eu-
clidean four-dimensional point of view, due to the se
duality of the gauge field, these are dyons with their m
netic charge equal to their electric charge, with over
electric and magnetic neutrality.

Under cooling in the confined phase, due to the discre
ness artifacts of the Wilson action, these constituents
attract and approach each other. When they are no lo
visible as separate entities, the solutions behave like ordin
instantons localized in space and time. The distance betw
the constituents is@for SU~2!# given by pr2/b, whereb is
the inverse temperature~the period in the Euclidean tim
direction!. Another possibility is the annihilation of dyon
and antidyons left over from different caloron and antic
oron solutions. As a result, with an action near the o
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instanton action, a metastable configuration can be eith
dyon-dyon pair that shrinks and falls through the lattice o
dyon-antidyon pair that finally annihilates@5#. Sometimes
this annihilation process leaves behind a constant Abe
magnetic field, which subsequently turns out to be stable
unstable under further cooling@6#, strongly correlated to the
asymptotic value of the Polyakov loop~the holonomy! which
has been acquired in this stage of cooling. In the deconfi
phase no dyonic structure was observable under cooling.
Polyakov loop remains always close to its trivial value b
quasiconstant magnetic-field configurations were seen
emerge as well, although they never happened to be sta
In this paper we present an explanation for these obse
tions.

II. CONSTANT MAGNETIC FIELDS

It is well known that Abelian constant magnetic fields a
embedded solutions of the~non-Abelian! equations of mo-
tion. They tend to be unstable, due to the self-coupling of
gauge fields@7#, which formed the basis for the studies of th
so-called Copenhagen vacuum picture@8#.

In the four-dimensional context a constant field is stable
it is self-dual@9,10#. Here we will be interested in the degen
erate case with magnetic, but no electric flux and perio
boundary conditions~the general case allows for cent
fluxes, but requires twisted boundary conditions@11#!. For
SU~2! these gauge fields are Abelian and there is the freed
of adding to it a constant Abelian vector potential, whi
does not change the field strength,Fmn5p i t3nmn /(LmLn).
This field strength is unique up to a constant gauge rotat
andnmn is an integer~even in the case of periodic bounda
conditions! antisymmetric tensor, fixed by flux quantizatio
In the degenerate casenmn has two nonzero eigenvector
and computing the gauge-invariant Polyakov-loop obse
ables in this subspace it is easily seen that no transla
©2004 The American Physical Society01-1
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invariance holds. Adding a constant Abelian vector poten
can consequently be absorbed by a translation and there
cannot affect the fluctuation spectrum. But in this degene
case there are also two zero eigenvectors, and the ve
potential is invariant under translations in this subspace
Polyakov loops label the gauge invariant parameters
which the fluctuation spectrum does depend!

It had been found@12,13# that on a symmetric torus ther
was one class of constant magnetic-field solutions that f
certain range of values of the Polyakov loop were stab
This example, involving the smallest possible nonzero m
netic field, possesses nontrivial center flux and requ
twisted boundary conditions. Therefore it could not expla
the findings of Ref.@6#. However, at finite temperature in
volving a nonsymmetric box, more room exists to obta
stable constant magnetic-field solutions.

III. FLUCTUATION SPECTRUM

For SU~2! all constant curvature solutions in a finite bo
have been classified. Also the spectrum of fluctuations
been calculated@14#. For the ‘‘charged’’ isospin components
in the subspace of nonzero eigenvectors ofnmn , the problem
is equivalent to that of Landau levels. The eigenfunctions
described byQ functions to incorporate the boundary cond
tions. In the subspace of zero eigenvectors one simply
plane waves, with properly discretized momenta. These
menta are, however, shifted due to the constant vector po
tial which determines the Polyakov loops in this subspa
thereby obviously modifying the fluctuation spectrum. T
‘‘neutral’’ isospin component is described by ordinary pla
waves.

The following gauge field for SU~2! gives the most gen
eral solution with constant field strength on a torus@13#:

An~x!5
1

2
i ~2pnnmxm /Lm1Cn!t3 /Ln . ~1!

It is periodic up to the gauge transformation

An~x1m̂Lm!5Vm~x!@An~x!1]n#Vm
21~x!, ~2!

wherem̂ is the unit vector in them direction and

Vm~x!5expS 1

2
ipxnnnmt3 /LnD . ~3!

With nmn even, these Abelian boundary conditions are, ho
ever, gauge equivalent~in general by a non-Abelian gaug
transformation! to periodic boundary conditions~as long as
Q50). Following Ref.@6# we assumeL05Lt5b, L15L2
5L35Ls . The data in all cases can be interpreted in ter
of a ~nearly! constant magnetic field withn0n52nn050 and
mW 5(0,0,2), wheremi5

1
2 « i jknjk . Therefore we compute th

fluctuation eigenvalues for this case~compare Refs.@12–14#!
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l654p~2n1162!/Ls
21~2pp1C3!2/Ls

2

1~2pq1C0!2/Lt
2 , ~4!

l05~2pkm /Lm!2.

The multiplicities are 4 forl6 and 2 forl0, with all quan-
tum numbers (n,p,q,km) integer~but n>0).

As argued above the spectrum depends on the cons
Abelian gauge field described by the constantsC0 and C3.
These are only defined modulo 2p, as a shift over 2p is
related to a gauge transformation that shifts the relevant
menta by one unit. The Polyakov-loop observables are gi
by

Pm5
1

2
Tr exp~ iCmt3/2!5cos~Cm/2!, m50,3. ~5!

Note that these are antiperiodic under a shift over 2p,
whereas the fluctuation spectrum is periodic. This is sim
because the fluctuations involve fields in the adjoint rep
sentation, whereas the Polyakov loop is in the fundame
representation. IndeedP0

2 and P3
2, relevant for the adjoint

representation, are periodic under a shift ofC0 andC3 over
2p.

From the lattice data it is clear thatP351, and we can put
C350, as well asn5p5q50 ~we may restrictuC0u<p) to
find the lowest eigenvaluel2524p/Ls

21C0
2/Lt

2 to be
negative unless the Polyakov loop is sufficiently nontriv
(P0561 being associated to a trivial Polyakov loop!. The
lowest eigenvalue is positive when

Lt /Ls,Ap/2,

uP0u5cos~C0/2!,cos~ApLt /Ls!. ~6!

We see that these conditions cannot be satisfied whenLt
5Ls and the finite temperature situation (b5Lt,Ls) is es-
sential for providing the opportunity of stability.

This stability was called marginal, because one c
changeC0 without changing the classical action. Thus not
ing prevents us to bringC0 close to 0, where the lowes
eigenvaluel2 turns negative. Under the cooling there is n
reason forC0 to change, as one can easily show that
degeneracy of the action as a function ofC0 survives on the
lattice. This then explains the stability of these const
gauge field configurations, provided the two conditions
Eq. ~6! are satisfied.

IV. COMPARISON WITH LATTICE DATA

In Ref. @6# SU~2! gauge theory in four-dimensional Eu
clidean space was considered on an asymmetric lattice
periodic boundary conditions in all four directions. The r
spective ensembles of configurations have been create
heat-bath Monte Carlo using the standard Wilson plaqu
action. The lattice size wasNs

33Nt with the spatial extension
Ns58,10,12,16,20 and with temporal extensionNt54, i.e.,
b54a andLs5aNs with a the lattice spacing. ForNt54 the
model is known to undergo the deconfinement phase tra
1-2
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FIG. 1. Correlation in the confined phase of SU~2! lattice gauge theory between the holonomyP0 and the~in!stability of Dirac sheets
which is indicated through the remaining inhomogeneity of the action density,smaxÞsmin ~represented by circles and triangles, respective!.
The limiting values of the holonomy,uP0u5cos@Ap(Nt /Ns)#, beyond which constant magnetic fluxes become unstable, are indicate
horizontal lines. The temporal size of the lattices isNt54, and the DS events are shown for different spatial lattice sizeNs

58,10,12,16,20.
b

n
ac
of

on
tion at the critical couplingbc.2.299@15#. In Ref. @6# two
sets of ensembles withb152.2,bc andb252.4.bc were
generated.

The equilibrium field configurations have been cooled
09790
y

iterative minimization of the Wilson action with the focus o
the structure of self-dual caloron solutions. In addition, Dir
sheet~DS! events were observed at the very last stages
cooling, applying a stopping criterion which selects acti
1-3
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plateaux in the intervalS<0.6 Sinst. In the confined phase
approximately 7%~at Ns58,10,12), 5% (Ns516), and 3%
(Ns520) of equilibrium configurations have turned in
these purely magnetic configurations, whereas in the de
fined phase the yield was 5–18%@6#. The action values were
found close to (Nt /Ns)Sinst characteristic for constant Abe
lian magnetic flux@16# of size 4p periodically closed along
one of the spatial directions. Although the action showed
same dependence on the lattice extensionsNt andNs , sup-
porting the common interpretation as~almost! homogeneous
magnetic flux, the configurations were unstable when
rived from the deconfined phase and partly stable in the c
of the confined phase. In the case of confinement, the is
of stability vs instability was strongly correlated to the val
of the temporal Polyakov line~holonomy! P0. This is shown
in Fig. 1. It presents a set of scatter plots~each for another
spatial sizeNs) where each DS event is characterized by t
entries: (smin , P0) and (smax,P0). The valuessmin andsmax
express the action density at sites where it is minimal
maximal, respectively. If these values differ, the configu
tion is bound to decay to the trivial vacuum. Provided t
holonomy remains sufficiently far from trivial, we find onl
DS events which consist of a highly homogeneous Abe
magnetic flux signaled bysmin5smax. This case is tantamon
to absolute stability under further cooling. In contrast to th
when the holonomy was close to the trivial one (P'61) the
Abelian magnetic fluxes happened not to be homogene
(sminÞsmax) and proved to be unstable under further co
ing. The critical value of the holonomy, uP0u
5cos(ApLt /Ls), limiting the region of stability as given by
the second condition in Eq.~6!, is marked in Fig. 1 by hori-
zontal lines.No deviationsfrom the predicted~in!stability
are seen.
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V. CONCLUSIONS

Purely Abelian constant magnetic-field configuratio
were observed@6#, randomly emerging from the process
cooling-down equilibrium lattice fields representing the co
fined and deconfined phases of SU~2! gluodynamics. In the
confined phase they were found to be absolutely stable
vided their Polyakov loop was sufficiently nontrivial. W
have shown here that this fact is related to the notion
marginal stability of the appropriate constant magnetic-fi
configurations. We have found perfect agreement betw
the analytically predicted dependence of stability on
value of the Polyakov loop~the holonomy! for the set of
spatial lattice sizes that were studied in Ref.@6# and the
numerical observations made there, separating stable f
unstable Dirac sheet configurations. The dependence on
geometry of the effect we found makes us believe we
dealing with a finite volume artifact. Nevertheless, it demo
strates that the influence of a background constantA0 ~as
manifested by the Polyakov loop! on the dynamics of the
gauge field should not be ignored. The physical significa
lies in the fact that the Polyakov loop is the order parame
for the confinement/deconfinement phase transition. A si
lar conclusion can be drawn from the caloron solutions w
nontrivial holonomy.
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