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Weyl-Dirac zero mode for calorons
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We give the analytic result for the fermion zero mode of theSU(2) caloronswith a nontrivial holonomy. It
is shown that the zero mode is supported ononly oneof the constituent monopoles. We discuss some of its
implications.@S0556-2821~99!50513-4#

PACS number~s!: 11.10.Wx, 14.80.Hv
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I. INTRODUCTION

In this paper, we give the exact expression for theSU(2)
fermion zero mode in the field of the infinite volume calor
with a nontrivial holonomy and unit charge. Study of th
gauge field configurations had, somewhat surprisingly,
vealed that at nontrivial holonomy calorons have tw
Bogomol’nyi-Prasad-Sommerfield~BPS! monopoles@N for
SU(N)# as their constituents@1,2,3#. For the Harrington-
Shepard@4# solution with trivial holonomy, this is hidden
because one of the constituents is massless~it can be re-
moved by a singular gauge transformation to show that
caloron for a large scale parameter becomes a single
monopole @5#!. We find that, for calorons with well-
separated constituents, the fermion zero mode is entirely
ported on one of them. In itself it is not surprising that t
zero mode is correlated to the monopole constituents. In
pendently, this observation was recently also made for glu
zero modes in the context of supersymmetric gauge theo
@6#. Gluinos are in the adjoint representation of the gau
group, such that there are four zero modes that can be sp
pairs associated with each of the two constituents@6#. How-
ever, for the Dirac fermion, there is only one zero mode.
understand the ‘‘affinity’’ of the zero mode to only one
the two monopoles, we will analyze in some detail wh
distinguishes them.

Calorons are characterized by the~fixed! holonomy@1,7#.
In the gauge in whichAm(x) is periodic, this holonomy is
given by

P`5 lim
uxW u→`

P expS E
0

b

A0~ t,xW !dtD[exp~2p ivW •tW !. ~1!

Solutions are simplest in the so-called ‘‘algebraic’’ gaug
for which

Am~ t1b,xW !5P`Am~ t,xW !P `
21 ,

Cz
6~ t1b,xW !56P`Cz

6~ t,xW !. ~2!

We will generalize the problem of finding the fermio
zero mode in the field of the caloron with nontrivial h
lonomy, by adding a curvature free Abelian field, whi
0556-2821/99/60~3!/031901~4!/$15.00 60 0319
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forms the basis for the Nahm transformation@8#. Why this is
useful will be evident from the construction. The equation
be solved is

D̄zCz~x![s̄m@]m1Am~x!22p izm#Cz~x!50, ~3!

with s̄m5sm
† 5(1,2 i tW ) and ta the Pauli matrices. For cal

orons, defined onR33S1, i.e., at finite temperature 1/b,
one can choosez15z25z350 @the plane-wave factor
exp(2pizW•xW) does not affect the boundary conditions or t
normalization of the zero mode and can be used to rem
the zW dependence#. But z5z0 will be arbitrary~it has a dual
period of 1/b). The zero modes are represented as tw
component spinors in the~chiral! Weyl decomposition for
massless Dirac fermions.

II. ADHM CONSTRUCTION

The construction of the zero mode is best done in
Atiyah-Drinfeld-Hitchin-Manin~ADHM ! formalism@9#. We
will be brief in reviewing this formalism, further details ca
be found in Refs.@1,10,11,12#. In general the ADHM con-
struction involves an operatorD(x) @the ‘‘dual’’ of Eq. ~3!#,
whose normalized zero mode,D†(x)v(x)50, gives the
gauge field asAm(x)5v†(x)]mv(x). For SU(2) instantons
of chargek, one hasD†5(l†,B†2x†), with x†5xms̄m , l a
k dimensional row vector andB ak3k symmetric matrix, all
with values in the quaternions (l i I

l , BIJ
l ,m5BIJ

m,l , with l ,m
51, . . . ,k ‘‘charge’’ and I ,J51,2 spinor indices, wherea
i 51,2 is a color index!. Introducing the row vectoru†(x)
[l(B2x)21 and the scalar~real quaternion! f(x)51
1u†(x)u(x), it can be shown@10,11,12# that the instanton
gauge field and thek zero modes are given by

Am~x!5f21~x!Im„u†~x!]mu~x!…,

C iJ
l ~x!5p21f21/2~x!„u†~x! f x…i I

l « IJ , ~4!

where f x is the matrix inverse, or Green’s function,

f x5„~B2x!†~B2x!1l†l…21. ~5!

Essential in the ADHM construction is thatl andB satisfy a
quadratic constraint, which is equivalent tof x being a sym-
metric matrix whose imaginary quaternion components v
©1999 The American Physical Society01-1
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ish, (f x) IJ
l ,m[ f x

l ,md IJ . From this alone, it can be proven th
the gauge field is self-dual and that theC l(x) are zero
modes,D̄C l(x)[s̄m„]m1Am(x)…C l(x)50. Its proper nor-
malization and the topological charge are read off from
remarkable results@10,11,12#

C l~x!†Cm~x!52~2p!22]m
2 f x

l ,m ,

Tr Fmn
2 ~x!52]m

2 ]n
2 log detf x , ~6!

using limuxu→` f x
l ,m5d l ,muxu22. Before addressing the explic

form of these expressions for the caloron with nontrivial h
lonomy, we perform one further simplification~for the de-
tails follow Eqs.~21!–~29! in Ref. @1#, see also Ref.@10#!,

Am~x!5 1
2 f~x!]n~lh̄mn f xl

†!,

C iJ
l ~x!5~2p!21f1/2~x!]m~l f xs̄m! i I

l « IJ , ~7!

where the anti-self-dual ’t Hooft tensorh̄ is defined byh̄0 j
i

52h̄ j 0
i 5d i j and h̄ jk

i 5« i jk ~furthermore,«1251 and with
our conventions oft5x0 , «0123521).

The caloron with nontrivial holonomy is found by impo
ing boundary conditions to compactify time to a circ
ul 11(t1b,xW )5ul(t,xW )P `

† , which is easily seen to give th
correct boundary conditions for the gauge field. For the g
eral form ofl andB which respect this symmetry, see Re
@1#. Note that now the indexl runs over the set of all inte
gers; theR4 configuration with these boundary condition
has infinite topological charge~unit topological charge pe
time period!. To obtain the zero mode with the appropria
boundary condition, we note that with Eq.~4!

Ĉz~x![(
l

e22p i l bzC l~x!, ~8!

satisfies the boundary condition Ĉz(t1b,xW )
5e22p ibzP`Ĉz(t,xW ) and satisfiesD̄Ĉz(x)50 for all z. The
general solution of the Weyl equation, Eq.~3!, with both
periodic and antiperiodic boundary conditions is now eas
found ~for simplicity, we putb51)

Cz
1~x!5e2p iztĈz~x!, Cz

2~x!5e2p iztĈz11/2~x!. ~9!

In particular, C2(x)5C0
2(x)5Ĉ1/2(x) is the, for finite

temperature, physically relevant chiral zero mode in
background of a caloron, whereasC1(x)5C0

1(x)5Ĉ0(x)
is relevant for compactifications.

III. NAHM-FOURIER TRANSFORMATION

The interpretation of the ‘‘charge’’ index as a Fouri
index, as suggested by the construction of the caloron z
mode, has been essential for solving the quadratic ADH
constraint in the presence of nontrivial holonomy. It ma
the ADHM construction to the Nahm formalism, in whic
furthermore,f x is solved in terms of a quantum mechani
problem on the circle (zP@0,1#) with a piecewise constan
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potential and delta function singularities determined by
holonomy@1#. The relevant quantities involved are

f̂ x~z,z8!5(
l ,m

f x
l ,me2p i ( lz2mz8), l̂~z!5(

l
l le22p i lz,

~10!

where matrix multiplication is replaced by convolution in th
usual sense. The solution of the ADHM constraint impli
thatl̂(z) is the sum of two delta functions. Together with th
explicit expression for the Green’s functionf̂ x(z,z8) as given
in Eqs.~47!–~49! of Ref. @1#, the zero mode reads

Ĉz~x!5~2p!21f1/2~x!]mS E
0

1

dz8l̂~z8! f̂ x~z8,z!s̄mD
i I

« IJ ,

~11!

compare Eq.~4!. Whereas Eq.~6! yields

Ĉz8
†

~x!Ĉz~x!52~2p!22]m
2 f̂ x~z8,z!. ~12!

IV. EXPLICIT EXPRESSIONS

Using the classical scale invariance to putb51, one has
@1#

s~x!52 1
2 TrFmn

2 ~x!52 1
2 ]m

2 ]n
2 logc~x!,

c~x!5ĉ~xW !2cos~2pt !, ĉ~xW !5 1
2 tr~A2A1!, ~13!

where

Am[
1

r m
S r m uyW m2yW m11u

0 r m11
D S cm sm

sm cm
D . ~14!

Noting that r 3[r 1 and yW 3[yW 1 , we definedr m5uxW2yW mu,
with yW m the position of themth constituent monopole, which
can be assigned a mass 8p2nm , where n152v and n2

52v̄[122v. Furthermore, cm[cosh(2pnmrm), sm

[sinh(2pnmrm), andpr25uyW 22yW 1u.
New is the result for the zero-mode density

uC2~x!u252~2p!22]m
2 f̂ x~

1
2 , 1

2 !,

uC1~x!u252~2p!22]m
2 f̂ x~0,0!, ~15!

defined by@1#

f̂ x~
1
2 , 1

2 !5
p

r 1r 2c~x! S s2@r 1c11pr2s1#1r 2s1

1
c221

r 2
@pr2r 1c11 1

2 ~r 1
21r 2

21p2r4!s1# D ,
1-2
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f̂ x~0,0!5
p

r 1r 2c~x! S s1@r 2c21pr2s2#1r 1s2

1
c121

r 1
@pr2r 2c21 1

2 ~r 1
21r 2

21p2r4!s2# D .

~16!

By a suitable combination of a constant gauge transfor
tion, spatial rotation, and translation, we can arrange b
vW 5(0,0,v) and the constituents atyW 15(0,0,n2pr2) andyW 2
5(0,0,2n1pr2). For this choice, we find

Am~x!5
i

2
h̄mn

3 t3]n logf~x!

1
i

2
f~x!Re„~ h̄mn

1 2 i h̄mn
2 !~t11 i t2!]nx~x!…,

~17!

C1I
2 ~x!5~2p!21rf1/2~x!S ]21 i ]1

]02 i ]3
D f̂ x~v, 1

2 !,

C2I
2 ~x!5C1J

2 ~x!* «JI ,

C1I
1 ~x!5~2p!21rf1/2~x!S ]21 i ]1

]02 i ]3
D f̂ x~v,0!,

C2I
1 ~x!5C1J

1 ~x!* «JI , ~18!

with f21(x)512@ pr2/c(x)# (s1c2 /r 1 1 s2c1 /r 2
1 pr2s1s2 /r 1r 2) and x(x)5@pr2/c(x)# (e22p i t(s1 /r 1)
1s2 /r 2)e2p in1t, and

f̂ x~v, 1
2 !5

pep in1t

r 1r 2c~x!
$~ep i t r 1

1e2p i t@pr2s11r 1c1# !sinh~pr 2n2!

1e2p i t r 2s1 cosh~pr 2n2!%,

f̂ x~v,0!5
pe2p in2t

r 1r 2c~x!
$~e2p i t r 2

1ep i t@pr2s21r 2c2# !sinh~pr 1n1!

1ep i t r 1s2 cosh~pr 1n1!%. ~19!

V. PROPERTIES OF THE ZERO MODE

The gauge field has a symmetry under the antiperio
gauge transformationg(x)5exp(pitv̂•tW), which changes the
sign of the holonomy,P`→2P` , or v↔v̄5 1

2 2v. An an-
tiperiodic gauge transformation does, however, not leave
mions invariant, and indeed it interchangesCz

1(x) and
Cz

2(x). To preserve the special choice of parametrizat
presented above, the change of sign in the holonomy, w
interchangesn1 and n2 , is also accompanied by an inte
change of the constituent locations. This indeed leaves
action density invariant. That the zero mode clearly dist
03190
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guishes between the two cases becomes evident in the s
limit, r→` ~or equivalentlyb→0), in which case the zero
mode is completely localized on one of the constitue
monopoles, as follows from@compare Eq.~16!#

lim
r→`

uC2~x!u252]m
2 S tanh~pr 2n2!

4pr 2
D ,

lim
r→`

uC1~x!u252]m
2 S tanh~pr 1n1!

4pr 1
D . ~20!

Under the antiperiodic gauge transformation, the antiperio
zero mode becomes periodic. Thenew antiperiodic zero
mode is now completely localized on theother constituent
monopole@this is consistent with the fact thatf̂ x(0,0) can be

obtained fromf̂ x(
1
2 , 1

2 ) by interchangingr 1 and n1 with r 2

andn2]. Figure 1 illustrates these issues@13#.
In the gauge whereAm(x) is periodic for larger, one of

the constituent monopole fields is completely time indep
dent, whereas the other one has a time dependence
would result from a full rotation along the axis connectin
the two constituents@1#. This is read off from

Am
per5

i

2
h̄mn

3 t3]n logf

1
i

2
f Re@~ h̄mn

1 2 i h̄mn
2 !~t11 i t2!~]n14p ivdn,0!x̃#

1dm,02p ivt3 , ~21!

x̃5e24p i tvx

5
4pr2

~r 21r 11pr2!2 ~r 2e22pr 2n2e22p i t1r 1e22pr 1n1!

3@11O~e24p min(r 1n1 ,r 2n2)!#.

@Note that for larger, f(x) becomes time independent.# This
full rotation—which we will call theTaubes-winding—is re-
sponsible for the topological charge of the otherwise ti
independent monopole pair@14#. Under the antiperiodic
gauge transformation that changes the sign of the holono
the Taubes-winding is supported by the other constituen
has not gone unnoticed that the antiperiodic fermion z

FIG. 1. For the two figures on the sides, we plot on the sa
scale the logarithm of the zero mode densities~cutoff below 1/e5)
for v51/8 ~left C2/right C1) and v53/8 ~right C2/left C1),
with b51 andr51.2. In the middle figure, we show for the sam
parameters~both choices ofv give the same action density!, the
logarithm of the action density~cutoff below 1/2e2).
1-3
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mode is precisely localized on the monopole constituent
carries the Taubes-winding. Another way to distinguish
two constituent monopoles is by inspecting the Polyak
loop values at their centers. One finds21 for the monopole
line with the Taubes-winding and11 for the other monopole
line ~this is correlated to the vanishing of the would-be Hig
field!, see the Appendix of Ref.@15#. For trivial holonomy,
v50, the Polyakov loop is indeed21 at the center of the
Harrington-Shepard@4# caloron. Its zero mode, constructe
before in Refs.@7,16#, agrees with the results found here.

The association of the zero mode with the constituent
carries the Taubes-winding lends considerable support
the role of the monopole loops with Taubes-winding in QC
for chiral dynamics@1#. The precise embedding of thes
straight finite temperature monopole loops as curved mo
pole loops in flat space remains a nontrivial and challeng
,
la-

.
s,
o

ys

.

03190
at
e
v

at
or

o-
g

problem. Although it may seem contradictory to expect t
zero mode with antiperiodic boundary conditions to be
relevant one, one should not forget that for a curved mo
pole loop, the spin frame makes also one full rotation due
the bendingof the loop, thereby most likely providing th
compensating sign flip.
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