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Weyl-Dirac zero mode for calorons
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We give the analytic result for the fermion zero mode of #ié(2) caloronswith a nontrivial holonomylt
is shown that the zero mode is supportedony oneof the constituent monopoles. We discuss some of its
implications.[S0556-282(99)50513-4

PACS numbes): 11.10.Wx, 14.80.Hv

[. INTRODUCTION forms the basis for the Nahm transformat{&}. Why this is
useful will be evident from the construction. The equation to
In this paper, we give the exact expression for $é(2) be solved is

fermion zero mode in the field of the infinite volume caloron o o
with a nontrivial holonomy and unit charge. Study of the DV, (X)=0,[d,+A(X)—27iz,]¥V,(x)=0, (3
gauge field configurations had, somewhat surprisingly, re- .
vealed that at nontrivial holonomy calorons have twowith O'MZO'L:(l,_iT) and 7, the Pauli matrices. For cal-
Bogomol'nyi-Prasad-SommerfielPS monopoles N for orons, defined orR®xS!, i.e., at finite temperature g/
SU(N)] as their constituent$l,2,3. For the Harrington- one can choosez;=z,=z;=0 [the plane-wave factor

Shepard[4] solution with trivial holonomy, this is hidden exp(2riz-x) does not affect the boundary conditions or the

because one of the constituents is mass(éssan be re- normalization of the zero mode and can be used to remove
moved by a singular gauge transformation to show that th%e

| : | | ter b inale BP ez dependende But z=z, will be arbitrary (it has a dual
caloron for a farge scalé parameler becomes a singie riod of 13). The zero modes are represented as two-
monopole [5]). We find that, for calorons with well-

. . . : component spinors in thé&hiral) Weyl decomposition for
separated constituents, the fermion zero mode is entirely su P P tchira) y P

. o S Prassless Dirac fermions.
ported on one of them. In itself it is not surprising that the
zero mode is correlated to the monopole constituents. Inde- Il ADHM CONSTRUCTION
pendently, this observation was recently also made for gluino :

zero modes in the context of supersymmetric gauge theories The construction of the zero mode is best done in the
[6]. Gluinos are in the adjoint representation of the gaugetiyah-Drinfeld-Hitchin-Manin(ADHM) formalism[9]. We
group, such that there are four zero modes that can be split il be brief in reviewing this formalism, further details can
pairs associated with each of the two constitu¢isHow-  pe found in Refs[1,10,11,12 In general the ADHM con-
ever, for the Dirac fermion, there is only one zero mode. Tostryction involves an operatar(x) [the “dual” of Eq. (3)],
understand the “affinity” of the zero mode to only one of \yhose normalized zero mode\’(x)v(x)=0, gives the
the two monopoles, we will analyze in some detail whatgayge field ash,(x)=v"(x)a,0(x). For SU(2) instantons
distinguishes them. : . of chargek, one hasA=(\",BT—x"), with x'=x,0,, N a
Calorons are characterized by tfixed) holonomy[1,7]. k dimensional row vector anll akx k symmetric matrix, all

In the gauge in whichA ,(x) is periodic, this holonomy is with values in the quaternionQ\K , B:'Jm=B|”J‘", with 1.m

given by =1,... k “charge” and 1,J=1,2 spinor indices, whereas
s i=1,2 is a color index Introducing the row vecton™(x)
P.= lim Pexp{f Ao(t,f)dt)zexp(Zwia:-;). (1) =\(B—x)? _and the scalar(real quaternion qb(x):l
e 0 +u’(x)u(x), it can be showr10,11,13 that the instanton

gauge field and th& zero modes are given by
Solutions are simplest in the so-called “algebraic” gauge, _
ror which P 9 gaug Au() =100 IM(U'(x)3,u(x)),
. N Vi) =7t M)W 0 fdiens s @
AL (t+B.X)=P.A,(tLX)P, ",
wheref, is the matrix inverse, or Green'’s function,

W (t+B,X)= =P WS (1,X). (2) f,=((B—x)T(B=x)+A™\) L. (5)

We will generalize the problem of finding the fermion Essential in the ADHM construction is thatandB satisfy a
zero mode in the field of the caloron with nontrivial ho- quadratic constraint, which is equivalentftpbeing a sym-
lonomy, by adding a curvature free Abelian field, which metric matrix whose imaginary quaternion components van-
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ish, (fx):jmzflx'mgu_ From this alone, it can be proven that potential and delta function singularities determined by the
the gauge field is self-dual and that the'(x) are zero holonomy[1]. The relevant guantities involved are
modes D¥!(x)=0,(9,+A,(x))¥'(x)=0. Its proper nor-
malization and the topological charge are read off from the $ , ;1= flmg2rilz-mz) {5 =S )\l 27ilz
remarkable resultg10,11,12 (2.2 ;n X  M2) EI ’
(10)
U)W M(x) =~ (2m) 2",
) - where matrix multiplication is replaced by convolution in the
TrF:, ,(x)=—d,d;log detf,, (6)  usual sense. The solution of the ADHM constraint implies

using “n]xpocf'x’m: 5'"Mx| 2. Before addressing the explicit thatX (2) is the sum of two delta functions. Together with the

form of these expressions for the caloron with nontrivial ho-€xPlicit expression for the Green'’s functiéf(z,z’) as given
lonomy, we perform one further simplificatidfior the de- N EGs.(47)—(49) of Ref.[1], the zero mode reads
tails follow Eqgs.(21)—(29) in Ref.[1], see also Ref.10]),

- 1 ~ R —
AL ()= 2600, (NT7f A \Pz(x)=(277)1¢1’2(x)(9M< jodz’)\(z’)fx(z’,z)aﬂ ey,
14 v'X ! il
Wl(x)=(2m) LX) 3,(M (o)l e15, (7 4

_ — compare Eq(4). Whereas Eq(6) yields
where the anti-self-dual 't Hooft tensoy is defined byr;'oj
=—7njo=0;; and nj, =g (furthermore,e,,=1 and with b (0¥ (x)=—(2m) 26%1 (2 ,2). (12)
our conventions of=Xg, £g12= —1). z a

The caloron with nontrivial holonomy is found by impos-
ing boundary conditions to compactify time to a circle IV. EXPLICIT EXPRESSIONS
uti(t+B8,x)=u'(t,x) P, which is easily seen to give the
correct boundary conditions for the gauge field. For the genry]
eral form of A andB which respect this symmetry, see Ref.
[1]. Note that now the indek runs over the set of all inte-
gers; theR* configuration with these boundary conditions
has infinite topological charg@unit topological charge per R L
time period. To obtain the zero mode with the appropriate P(X)=p(x)—cog2mt), P(x)=3tr(AA;), (13
boundary condition, we note that with E@t)

Using the classical scale invariance to @it 1, one has

S(x)=—3TrF% (X)= — 33295109 4(x),

where
%(x)zEl e 2mAngl(x), (8)

Ap=—
satisfies the boundary condition \PZ(H,B,)Z) Fm
= 27A7p  (t,x) and satisfie®W¥,(x)=0 for all z. The L Lo
general solution of the Weyl equation, E), with both ~ Noting thatrz=r; and y;=y;, we definedr,=|x—yp|,
periodic and antiperiodic boundary conditions is now easilywith y,, the position of thenth constituent monopole, which
found (for simplicity, we putg=1) can be assigned a massr®,,, where v;=2w and v,
=2w=1-2w. Furthermore, c,=cosh(Zrv,f), Sm
=sinh(2muf,), andwp?=y,—y4|.

New is the result for the zero-mode density

1<I‘m |Ym_Ym+1|)(Cm 5m>. (14)

0 I’m+1 sm Cm

T, (x)=e>2(x), W, (x)=e2"2, 1 5(x).  (9)

In particular,\If‘(x)=\lfg(x)=\ifl,2(x) is the, for finite
temperature, physically relevant chiral zero mode in the
background of a caloron, whereds (x) =3 (x) =¥ y(x)

is relevant for compactifications.

W= (0)|?=—(2m) 2751 (3.3),

|¥*(x)|?=—(2m) 25274(0,0), (15)
I1l. NAHM-FOURIER TRANSFORMATION

The interpretation of the “charge” index as a Fourier defined by(1]
index, as suggested by the construction of the caloron zero
mode, has been essential for solving the quadratic ADHM 3 (3,1 7T
constraint in the presence of nontrivial holonomy. It maps  **'?"  rir,i(X)
the ADHM construction to the Nahm formalism, in which,
furthermore,f, is solved in terms of a quantum mechanics +
problem on the circle{[0,1]) with a piecewise constant Iz

So[11C1+ 7p?s]+ 158,

N

c,—1 5 o
[mp®rici+3(ri+ry+a®pY)s ],

031901-2



RAPID COMMUNICATIONS

WEYL-DIRAC ZERO MODE FOR CALORONS PHYSICAL REVIEW 50 031901
£,(0,0= —— [r,Cot mp2s,]+
0= ———{ 5[r,Co+ mp?S,]+11S,
X rlrzlp(x) 1Lt 2%2 P 1
c,—1
+ 2 [7Tp2r2C2+%(r§+r§+772p4)52] .

(16)

By a suitable combination of a constant gauge transforma- FIG. 1. For the two figures on the sides, we plot on the same
tion, spatial rotation, and translation, we can arrange botl?cale the/ |0(£|Jaf£ithm/0f :]he Zf)ro mgde %%S(i(ﬂfog b/ell(:‘tw \I}E?
- ; > 2 v or w=1/8 (left ¥~ /right ¥") and w= right ¥~ /le ,
Z(égg‘s)l:;% .tr;:eof?r?iztléﬁi?g: av%e f(ig.dO,vap ) andy, with 8=1 andp=1.2. In the middle figure, we show for the same
Y ’ parametergboth choices ofw give the same action densitythe
i logarithm of the action densitgcutoff below 1/22).
AL (X)= n,wfsa log ¢(x)
guishes between the two cases becomes evident in the static
i limit, p—oo (or equivalently3—0), in which case the zero
+ §¢(X)Re((?lﬁv—i?iy)(rl+irz)avx(x)), mode is completely localized on one of the constituent
monopoles, as follows frorfcompare Eq(16)]

17
tani(mrrov
. i |9~ ()= — 2 2T 22|
- 1 1| F2tidl) . oo K\ 4w,
VL00=2m) pd™ 0| ;- o (@, 5), b
0 3
_ _ o (tank(mrivy)
Vo (x)=V5(X)* ey, p“flm’ (x)|?=~ —471_',1 (20
vi(x)=(2m) "t ¢1’2(x)( I?) f (@0, Under the antiperiodic gauge transformation, the antiperiodic
- zero mode becomes periodic. Thew antiperiodic zero
mode is now completely localized on tl¢her constituent
Vo () =Wi5(x)* ey, (18 v compietely foca -
monopol€this is consistent with the fact th&f(0,0) can be
with Y (X)=1—[ mp2/y(X)](81C5 /11 + S, /15 obtained fromf,(%,3) by interchanging’; and v, with r,
+ 7p slszlrlrz) and x(x)=[mp¥y(x)]1(e 2™ (s,/r1)  andw,]. Figure 1 illustrates these issupk3).
+s,/r,)e?™"1t and In the gauge wherd ,(x) is periodic for largep, one of
st the constituent monopole fields is completely time indepen-
t(w,h)= meT S dent, whereas the other one has a time dependence that
T2 rr(X) would result from a full rotation along the axis connecting
_ mit ) the two constituentgl]. This is read off from
+e ™[ p?s;+r,c,])SINN( 7T Hv5)
+e” M ,s; cos T ,wy)}, APE'= 277/“,73(9 log ¢
— iyt .
'f 0 717|t | . L . ) ~
d00= o e + 5 RA(7, 17211+ 7)(9,+471 08, 0]
it H
+e™ [ 7p2s,+1,C,])sinh( 71 1 vq) +5,2miwrs, 21)
+e™'r s, coshimrvy)}. (19 B .
X:e74wlth
V. PROPERTIES OF THE ZERO MODE 471-p2 )
— > 2(r2e72ﬂ'r21}2e72ﬂ'|t+r1e72‘rrrlvl)
The gauge field has a symmetry under the antiperiodic (rptry+mp)
gauge transformatiog(x) = exp(mit@- 7), which changes the X[1+ (e~ 47 min(r1v1.r202)]
sign of the holonomyP,,— —P,., or w+w=3—w. An an- '

tiperiodic gauge transformation does, however, not leave fefrNote that for largey, #(x) becomes time independe}ithis
mions invariant, and indeed it interchangds; (x) and  full rotation—which we will call theTaubes-winding-is re-

V¥, (x). To preserve the special choice of parametrizatiorsponsible for the topological charge of the otherwise time
presented above, the change of sign in the holonomy, whiclndependent monopole pairl4]. Under the antiperiodic
interchangesy; and v,, is also accompanied by an inter- gauge transformation that changes the sign of the holonomy,
change of the constituent locations. This indeed leaves thihe Taubes-winding is supported by the other constituent. It
action density invariant. That the zero mode clearly distin-has not gone unnoticed that the antiperiodic fermion zero
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mode is precisely localized on the monopole constituent thagproblem. Although it may seem contradictory to expect the
carries the Taubes-winding. Another way to distinguish thezero mode with antiperiodic boundary conditions to be the
two constituent monopoles is by inspecting the Polyakowelevant one, one should not forget that for a curved mono-
loop values at their centers. One fingéd for the monopole  pole loop, the spin frame makes also one full rotation due to
line with the Taubes-winding antl1 for the other monopole  the bendingof the loop, thereby most likely providing the
line (this is correlated to the vanishing of the would-be Higgscompensating sign flip.

field), see the Appendix of Refl5]. For trivial holonomy,

=0, the Polyakov loop is indeed 1 at the center of the

Harrington-Shepard4] caloron. Its zero mode, constructed ACKNOWLEDGMENTS
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