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Abstract

We present the exact expression for the Nahm gauge field associated to a SU(N) charge one self-dual gauge field on
T3 X R. The result implies that the size of the instanton is determined by the **distance’* between its two flat connections at

t— 400, © 1999 Elsevier Science B.V. All rights reserved.

1. A long standing problem is to find analytic
self-dual solutions on a higher dimensional torus for
non-Abelian gauge theories. For T* solutions with
topological charges higher than one can be proven to
exist [1]. However, it can be shown there is no
regular solution with topological charge one [2],
though existence is assured [3] in case one allows for
twisted boundary conditions [4]. The main tool for
studying self-dual solutions has become the Nahm
duality transformation [5] that maps a charge k,
U(N) solution to a charge N, U(k) solution on the
dual torus. We consider gauge fields in four eu-
clidean dimensions on spaces T¢ X R* 9=R*/A,
where A is a d-dimensional lattice embedded in R*,
whose dual is denoted by the d-dimensiona lattice
A, which we consider to be embedded in RY. The
dual torus on which the Nahm transformed gauge
field livesis T¢ = RY/A. Hence, for d # 4 thereis a
reduction in dimension. The extreme case is when
d =0, which reduces to the algebraic ADHM [6]
construction on R*. The case d=1 has also led to
considerable progress in demonstrating that instan-

tons at finite temperature (calorons) have monopoles
as constituents [7,8]. Important practical use of the
Nahm transformation stems from the fact that the
charge one solutions are mapped to self-dual Abelian
fields.

Recently Gonzalez-Arroyo [9] has constructed the
Nahm transformation in the presence of twisted
boundary conditions for T#. One interprets twisted
boundary conditions as ‘* half-period’’ conditions (for
SU(2) a quite appropriate terminology), applying the
Nahm transformation to the gauge fields on the
(smallest) extended torus with periodic boundary
conditions. One subsequently looks for ‘* half-peri-
ods’ on the dual torus. This elegant construction
will lead to important new insights, but increases the
topological charge of the periodic solutions. It forces
one to deal with Nahm gauge fields that are non-
Abelian, not giving an obvious simplification that is
likely to lead to a handle on an analytic construction.

Here we will be concerned with T3®Xx R, for
which the Nahm transformation was introduced a
few years ago [10], and which is relevant for the
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Hamiltonian formulation of gauge theories in a finite
volume with periodic boundary conditions (for a
recent review addressing the dynamical issues see
Ref. [11]). In this Letter we will present the anaytic
solution for the gauge field obtained after applying
the Nahm transformation to a charge one instanton,
in terms of its flat connections at t — 4. That the
instanton has to approach a flat connection in these
limits is a simple consequence of the requirement of
finite action.

2. We first present the formalism, being rather
brief and referring the interested reader to Refs.
[2,5,10] for details. A self-dua U(N) gauge field
A(x) = A (x)dx, (with A= —A) is defined on
R*/A by

A(X+A) re A

(1)

It is made into a family of self-dual gauge fields by
adding a (flat) constant Abelian connection, A,(x)
= A(X) + 27id(z- x). Note that the differentia is
with respect to x only, d(z- x) =z- dx=z,dx,, and
an identity matrix, |y, in the algebra of U(N) is
implicit. Even though the curvature (field strength) is
independent of z, its dependence cannot be gauged
away since the appropriate Abelian gauge transfor-
mation g(x) = exp(2mriz- x) is not periodic, except
when z€ A. This shows that z can be considered to
live on the dual space RY/A. The reduction in
dimension aluded to above occurs since for non-
compact directions the relevant components of z can
be gauged away. Equivaently, non-compact direc-
tions can be interpreted as having infinite periods,
which under the duality are mapped to zero periods,
removing the dependence on the dua coordinate.

The Nahm transformation involves the zero-modes
of the Weyl equation, of which there are as many as
the charge (k) of the gauge field

D,¥(X) = 9. D.(A;) ¥, X)
0,(9, + A, (X) + 2miz, ) ¥,( X)
=0,
V(x+ 1) =g () (X)), AE€A, (2)

where ¢, form a basis of unit quaternions (o, =1,
and —io, = 7; the Pauli matrices). As ¥, isin the
fundamental representation of the gauge group we

=g\(X)(A(x) +d) gl(x),

can not allow for twisted boundary conditions, which
require the center of the gauge group to act trivialy.
As mentioned above one can enlarge the periods [9]
to deal with twisted boundary conditions. Here we
will instead consider only twisted boundary condi-
tions in the non-compact directions, where the action
of the center of the gauge group is trivialised [10]
due to Weyl fermions vanishing asymptotically, so
as to ensure normalisability.

The Nahm connection is given in terms of the
normalised zero-modes by

Ri(2) = [axu 00000, ()
o

It is not difficult to show that thisis a U(k) connec-
tion on RY /A and using the family index theorem
one concludes [2] the topological charge of the Nahm
gauge field to be N. The index theorem relates the
difference of the number of zero-modes with oppo-
site chirality to the topologica charge, that is
ker(D,)—coker(D,) = ker(D,)—ker(D]) has dimen-
sion k. Additional (i.e. non-generic) zero-modes are
therefore detected as zero-modes of

D,0} = ~DZ(A) ~ 57, Fuu(0). (@)

where 7,, =0, ,0,] is the anti-self dual 't Hooft
tensor. For self dual fields we have that D,D] =
—DZ(A,), which commutes with o, from ‘which
Nahm derived the remarkable result that the Nahm
gauge field is self-dual as well. For T* this is most
easily demonstrated, as the manifold has no bound-
aries. Technically one requires the absence of flat
factors [12] to ensure that ker(D)) is trivial.

For a non-compact manifold, applying index theo-
rems requires some care, but in principle A(z) is
well defined as long as dim ker(D]) =0, and one
finds [10]

Fan(2)
= 8#2fd4xd4x' TO(x) ', G,(x,xX) T X)

lp(')( x)' _
+477|96 V]a(Gzlle(”)(x) d3x,

(5)
a[ﬂ L, IS the self-dual "t Hooft tensor

where 7, =
D2(A).

and G, is the Greens function for —
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3. On T*#, applying the Nahm transformation again
brings one back to the original solution. In other
cases one needs to modify the second, or inverse,
Nahm transformation. The boundary terms are par-
ticularly important in the case of instantons on R*,
leading to the ADHM construction [6] for recon-
structing the original gauge field. The modification
corrects for the fact that A(z) is no longer self-dual
due to the boundary terms. However, boundary terms
only occur at a finite number of isolated points, and
can be expressed in terms of delta functions (exclud-
ing the situation of R* where the dual space is
reduced to a single point). The singularities are fixed
by the asymptotic holonomies (the Polyakov loops).
For T3 X R there are two disconnected asymptotic
regions and we specify

P/ )= tmpesl [ A(] @

where Z is the number of windings for each direc-
tion on T3, specifying the homotopy type of the
curve C(/). The N eigenvalues of P, (/,2) are
given by expmi(w!, +2)-#). For SU(N) gauge
fields one has in addition X !, =0.

It is now easily seen [10] When al eigenvalues
are unequal to one, that a Weyl zero-mode decays as
exp(FtM . (2)), where M_(2) is the mass-gap of
the Weyl equation reduced to T2 for t — +o, with

M, (2)

= min{2m|w), +z+pl;j=1,--- ,N;pe Z?}.

(7)

Now, M, (2) vanishes whenever P,(/,z) has a
unit eigenvalue for al /. Only for those cases the
boundary terms arising from a partial integration in
computing F can be non-vanishing.

Outside of the singularities the field is self-dual
and E(z) B(z) As A(z) is independent of z, we
have E(z) =id, AO( 7). We extract a factor i, to
define E(2) and B(2)(= &ijk k(z)) as red
fields. Assuming other than perlodlc boundary condi-
tions (to avoid the contributions from t— +« to
interfere), near one of the singularities integration by
steepest descent yields Ao(z) - +iq/M, (2), where
q is a positive constant. This means that the singular-
ities act as point sources with charges +q. Since

self-duality implies that the (Maxwell) field equa-
tions are satisfied, the exact solution is found by
performing the sum over periods for these point
charges. But we can say more. For the gauge field to
be well-defined outside of the singularities, charge
quantisation should be enforced and one concludes
that q/7 has to be an integer, but generically
g = 7. This ensures the magnetic sources are those
of Dirac monopoles with unobservable Dirac strings.
We will now demonstrate this on the basis of a Berry
phase type argument.

4. We restrict ourselves to the case of twisted
boundary conditions in the time direction. For ease
of notation we take all three periods equal to one
(generalisation to another torus is straightforward)
and we consider T3 X R as the limit for T — o of
T3 X [0,T]. The twist can be implemented by choos-
ing [4,14] the gauge field to be periodic in the spatial
directions, whereas the gauge field at t = T isrelated
to the one at t =0 by a gauge transformation g(x)
=g, (x) g (x). Here g (x) is a periodic gauge
transformation with winding number k and g,(x) =
exp2mix - k@), with @ (=17, for SU(2) such
that g, (/) =expQmik-Z/N) €z, for /€ Z3(=
A). Thus k; are integers, defined modulo N. For
finite T and k # Omod N existence of a 4Nk param-
eter set of instantonsis guaranteed [3]. Taking T — oo
yields solutions on T2 X R. With twisted boundary
conditions P, (/,2) = expwik -Z)P_(/,2), upto
g (X) gauge conjugation, relating the singularities
discussed above.

Consider T finite and add an Abelian background
gauge field, whose flux compensates for the twist
[13]. The price one pays is that the U(N) gauge field
will in general no longer be self-dual. We introduce
the antisymmetric twist tensor n,,, with ng =Kk,
and vanishing spatial components, n;; = 0. One de-
fines

A, =min, x,Iy/(NT),

F,,=—2min,, 1y/(NT). (8)
In terms of the curvature two-form = 3F,, dx, A
dx,, the first Chern class is given by

c,=TrQ/(2mi). (9)
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The Pontryagin index P, for the U(N) bundle A+
A is now

P=(872) " [Tr(Q+0)A(02+0)

=(87%) " [TrOA 0+ TIOA D, (10)

where (2 is the curvature two-form of the original
(self-dual) SUCN) connection A, satisfying Tr{2 = 0.
For the Pontryagin index of A we find [14] P= v —
(N — Dpf(n)/N, with v integer and pf(n)
= €105y, Ny, SUCh that P=P+P=P— [c,
Ac/(2N) =P —pf(n)/N. Thus, P,= v —pf(n) is
always integer as required for U(N) vector bundles.
For the case at hand, with only twist in the time
direction, pf(n) = 0 and the topological charge is not
affected by adding the twist compensating Abelian
background field.

The Nahm transformation maps this to a bundle
with rank P,, charge N and first Chern class [;4(dz,
A dx,)? A c, (for the precise formulation see Ref.
[2]). Consider now the case of topological charge
one. Assuming the Weyl cokernel to be trivial for all
z, we get a (non-selfdual) U(1) connection with
charge P=N. But for an Abelian connection we
dso have P= — 2/¢, A & = —pf(n) =0. So there
must be values of z for which the Weyl cokernel is
non-trivial. We have

D,D} = —DZ( A, +A) +imn, 7, Iy/(NT)
= —DZ(A,+A)+H -7, (11)

with H = 27k /(NT). We note that D,D] is posi-
tive, but it may vanish. Using that H - 7 has eigen-
vaues +|H|, one easily finds this to be the case if
and only if the positive function f(z) = Ay,(z) —[H|
vanishes, where A,(2) is the lowest eigenvalue of
—DZ(A,+ A). With @,(x) its normalised eigenvec-
tor, we have f(z) = [d*x @, (x) D, D]®,( x) such that
9°1(2)/ 92,0z, = 8w?5,; at the points where f(z)
vanishes. Considering the fact that f(z) is a smooth
and positive function of z, the zeros are generic and
cannot bifurcate in zeros of lower order.

As long as T is finite we can use the index
theorem and conclude that at exactly the same points
where dim ker(D]) jumps from zero to one, dim
ker(D,) has to jump from one to two. Since D,

depends smoothly on z, this necessarily describes
the case of a generic level crossing. The only un-
usua feature is that the ‘*Hamiltonian’’ is arranged
so as to vanish exactly for one of the ' adiabatic’’
eigenstates. The resulting Berry potential [15] associ-
ated to the isolated crossing corresponds precisely to
the spatial components of the Nahm connection, Eq.
(3). Due to the topological nature of the Berry phase
we can immediately conclude that the level crossing
acts as the source of a Dirac monopole with the
appropriate charge quantisation, enforcing q= . It
is clear that this assignment is independent of T and
this fixes the charges for the case of T3 X R.

Note that A— 0 for T— . We reiterate that
under this limit the total action stays fixed to 872, as
dictated by the unit topological charge, and the fields
are forced to decay to flat connections at both ends,
thereby dictating the location of singularities that act
as point sources. We note that for twisted boundary
conditions one can put w! = w! +k/N modZZ,
Generically there are N sources with charge q= 7
and N sources with the opposite charge. Higher
charges appear only in case some of the wii coin-
cide. The enlarged subgroup that leaves the
holonomies invariant leads to appropriate additional
zero-modes for D).

5. The Nahm connection on T2 is uniquely deter-
mined by the point charges we described above,

PO N ,
A== X Y (lo) +z+217"

2 sez8 =1
—lol +z+/17%). (12)

One difficulty is to evaluate the sum over the peri-
ods, as it formally diverges. This can be achieved in
terms of lattice sum techniques based on resumma-
tions [16]. Quite fortunately this problem was already
tackled long ago in evaluating the one-loop effective
potential for constant Abelian gauge fields on T3,
V(C)=2Y, . ssl27/+ C|. In terms of W(C/27)
= 279?V,(C)/dC? one easily finds

A(2) = _;N‘,l(w(znt o!)-W(z+wl)),

(13)

N —
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where the rapidly converging expression for W(z)
can be taken from Eq. (A.10) of Ref. [17],

—77/2
W(z)=—-1+ Z cos(277/ 2)
7#0
erfc(|/+ zl\/?)
—_— (14)
y |/ + 2]
It can be shown [17] that 9°W(2) /027 = — 4w (8(2)

— 1), where 6(2) is the periodic delta function, such
that indeed

i_\l: (8(z+ @l) - 8(z+ wl)).
(15)

Itis still aformidable task to reconstruct from this
explicit expression for the Nahm connection the
original non-Abelian gauge field on T®x R. This
requires, like for the simpler case of the calorons [7],
the formulation of a modified Nahm transformation,
dealing with the singularities to which violations of
self-duality are restricted. Nevertheless, given the
existence of solutions with twisted boundary condi-
tions interesting conclusions can be drawn. Up to an
overall constant, related to the position of the instan-
ton on T3 X R, A(z) is determined uniquely by the
eigenvalues of the holonomies. These holonomies,
when taking the limit T — o (unlike in the case of
the calorons) arise from the properties of the solu-
tions on T*=T3x[0,T], and are thus part of the
gauge invariant moduli. Together with the position
of the charge one instanton, these account for the
3(N — 1) + 4 parameters of the gauge invariant mod-
uli space. The holonomy breaks the gauge group to
U(DN-1, accounting for N— 1 additional parame-
ters that are part of the moduli space of framed
instantons, which has dimension 4N, as is appropri-
ate for the torus and this leaves no room for a scale
parameter of the instanton. We thus conclude that the
size of the instanton is related to the holonomies,
something that was conjectured [10] on the basis of
numerical studies [19] and in direct analogy with the
situation for instantons on the cylinder for the O(3)
model [20].

For SU(2) it was indeed observed that the largest
instanton, the one that described tunnelling through

the lowest barrier (sphaleron), is associated to k =
(1,1,1) and al holonomies equal to +1. This corre-
sponds to @w_ and w, (= 3k + w_) separated on
T2 over the maximal dlstance possible. On the other
hand, when the trace of the holonomy vanishes,
+ w = 2k, the twisted boundary conditions are com-
patible Wlth periodic boundary conditions, and in-
deed @ and w, become equal and A(z) will
vanish (apart from a trivial constant). In that case,
like in the analysis for the caloron [7], associating the
Nahm and ADHM formulation by Fourier transfor-
mation the solution becomes expr ble in terms of
the 't Hooft ansatz [18], A, = 37,,9,10g¢(x), with
d(X)=p 2+ XL, [t? + (x +/)2] !, Resummation
of the Iatt|ce sum is easily performed, but positivity
of ¢(x) is seen to force the instanton scale p to
zZero.

6. It is tempting to conjecture on the basis of our
results for the Nahm connection that charge 1 instan-
tons will exist for open boundary conditions, in
which case the holonomies at both ends are not
related . If true, we can obtain periodic boundary
conditions as a limit from the one with open bound-
ary conditions, implying A(z) to approach a con-
stant, and one would as above conclude that this
forces the size of the instanton to zero.

It isamusing in the light of this to note that, when
extending the caloron construction [7] based on
Fourier transformation of the ADHM formulation in
an obvious way to T3 X R (e.g. see Eq. (40) in Ref.
[8b]), one finds

7(E(2) -B(2) =a 7(5(z- o)

-6(z+ w)). (16)
where for simplicity we only considered SU(2). Here
the direction of a is related to the common gauge
orientation of the holonomies and its length is related
to the sguare of the scale parameter that appears in
the ADHM construction. Due to the vectoria nature
of the singularity it is natural to assume the gauge
field is described by an electric-magnetic dipole.

! The number of gauge invariant parameters describing such
instantons would be 6(N —1)+4. As these solutions cannot be
compactified to T4, there need be no conflict with the standard
result on a compact manifold [12].
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Remarkably, it is well known in the theory of classi-
ca Electrodynamics (e.g. see Ref. [21]) that for
dipoles

3X(p-x)—p(x-x) 4=

E(x) = 5 — — P5(x),
| X 3
B(x) = 3x(n1-xi;%rn(x~x) +-Ezzn18(x).
(17)

These delta functions differ between electric and
magnetic dipoles, as the first comes from two ap-
proaching point charges and the second from a
shrinking current loop. Thus, with p = m, one finds
B(x) — E(x) = 47 mé&(x), precisely of the required
form. The appropriate solution for SU(2) is de-
scribed by two ‘‘dyonic’’ dipoles of opposite strength
located at z= + w. Outside the singularities this can
easily be expressed in terms of the lattice sums we
defined before,

B(2) =E(2)
a 2

d
= 4—; 702 (W(z+w) —W(z—w)).

(18)

Indeed, resolving the quadratic ADHM constraint [6]
and explicit Fourier transformation reproduces this
result, including the appropriate delta functions that
violate the self-dudity [22].

Nevertheless, as we cannot argue for the existence
of solutions with periodic boundary conditions on
T3XR, it may be that this dipole solution to the
Nahm equations is not realised, except for a— 0,
implying the size of the instanton to go to zero. The
dipole approximation obtained from open boundary
conditions, letting w, tend to w_ to approach
periodic boundary conditions, indeed leads to vanish-
ing dipole moments (since the charge is fixed). This
conclusion can only be avoided in case no solutions
with open boundary conditions exist.

7. In conclusion, we have shown that one can
extract, by solving Abelian Bogomolny egquations
with specified sources, analytic results for the Nahm
transformation of the charge oneinstantonon T3 X R,
which provides interesting information on the param-
eters that describe these instanton solutions. The

situation is quite similar to that for the O(3) non-lin-
ear sigma model on the cylinder. It will be interest-
ing to be able to demonstrate the existence of solu-
tions with open boundary conditions. However, the
biggest challenge remains the formulation of the
inverse Nahm transformation, which requires us to
study the (modified) Weyl equation in a lattice of
‘“‘dyonic’’ charges.

Numerical studies of the Nahm transformation
[23] have been implemented, and may well play a
role in analytically addressing these issues. Prelimi-
nary results [24] relevant for the case studied here
are very encouraging and stimulating. Also the de-
formation of the Nahm transformation to the non-
commutative torus [25] and its M-theory compactifi-
cations [26] could perhaps provide insight in the
problem addressed here.

Stimulating discussions with Margarita Garcia
Perez, Tony Gonzalez-Arroyo, Thomas Kraan and
Carlos Pena are gratefully acknowledged. Most of
the ideas presented here were initiated while | was
visiting the Newton Institute during the first half of
1997, giving me another opportunity to thank the
staff for their hospitality and the participants to the
programme on ‘‘ Non-perturbative Aspects of Quan-
tum Field Theory’” for contributing to a stimulating
environment.
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