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Abstract

Ž .We present the exact expression for the Nahm gauge field associated to a SU N charge one self-dual gauge field on
T 3 =R. The result implies that the size of the instanton is determined by the ‘‘distance’’ between its two flat connections at
t™"`. q 1999 Elsevier Science B.V. All rights reserved.

1. A long standing problem is to find analytic
self-dual solutions on a higher dimensional torus for
non-Abelian gauge theories. For T 4 solutions with
topological charges higher than one can be proven to

w xexist 1 . However, it can be shown there is no
w xregular solution with topological charge one 2 ,

w xthough existence is assured 3 in case one allows for
w xtwisted boundary conditions 4 . The main tool for

studying self-dual solutions has become the Nahm
w xduality transformation 5 that maps a charge k,

Ž . Ž .U N solution to a charge N, U k solution on the
dual torus. We consider gauge fields in four eu-
clidean dimensions on spaces T d =R4yd sR4rL,
where L is a d-dimensional lattice embedded in R4,
whose dual is denoted by the d-dimensional lattice
ˆ dL, which we consider to be embedded in R . The

dual torus on which the Nahm transformed gauge
ˆd d ˆfield lives is T sR rL. Hence, for d/4 there is a

reduction in dimension. The extreme case is when
w xds0, which reduces to the algebraic ADHM 6

construction on R4. The case ds1 has also led to
considerable progress in demonstrating that instan-

Ž .tons at finite temperature calorons have monopoles
w xas constituents 7,8 . Important practical use of the

Nahm transformation stems from the fact that the
charge one solutions are mapped to self-dual Abelian
fields.

w xRecently Gonzalez-Arroyo 9 has constructed the´
Nahm transformation in the presence of twisted
boundary conditions for T 4. One interprets twisted

Žboundary conditions as ‘‘half-period’’ conditions for
Ž . .SU 2 a quite appropriate terminology , applying the

Nahm transformation to the gauge fields on the
Ž .smallest extended torus with periodic boundary
conditions. One subsequently looks for ‘‘half-peri-
ods’’ on the dual torus. This elegant construction
will lead to important new insights, but increases the
topological charge of the periodic solutions. It forces
one to deal with Nahm gauge fields that are non-
Abelian, not giving an obvious simplification that is
likely to lead to a handle on an analytic construction.

Here we will be concerned with T 3 =R, for
which the Nahm transformation was introduced a

w xfew years ago 10 , and which is relevant for the
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Hamiltonian formulation of gauge theories in a finite
Žvolume with periodic boundary conditions for a

recent review addressing the dynamical issues see
w x.Ref. 11 . In this Letter we will present the analytic

solution for the gauge field obtained after applying
the Nahm transformation to a charge one instanton,
in terms of its flat connections at t™"`. That the
instanton has to approach a flat connection in these
limits is a simple consequence of the requirement of
finite action.

2. We first present the formalism, being rather
brief and referring the interested reader to Refs.
w x Ž .2,5,10 for details. A self-dual U N gauge field
Ž . Ž . Ž † .A x sA x dx with A syA is defined onm m

R4rL by

A xql sg x A x qd g† x , lgL.Ž . Ž . Ž . Ž .Ž .l l

1Ž .
It is made into a family of self-dual gauge fields by

Ž . Ž .adding a flat constant Abelian connection, A xz
Ž . Ž .sA x q2p id zPx . Note that the differential is

Ž .with respect to x only, d zPx szPdxsz dx , andm m

Ž .an identity matrix, I , in the algebra of U N isN
Ž .implicit. Even though the curvature field strength is

independent of z, its dependence cannot be gauged
away since the appropriate Abelian gauge transfor-

Ž . Ž .mation g x sexp 2p izPx is not periodic, except
ˆwhen zgL. This shows that z can be considered to

d ˆlive on the dual space R rL. The reduction in
dimension alluded to above occurs since for non-
compact directions the relevant components of z can
be gauged away. Equivalently, non-compact direc-
tions can be interpreted as having infinite periods,
which under the duality are mapped to zero periods,
removing the dependence on the dual coordinate.

The Nahm transformation involves the zero-modes
of the Weyl equation, of which there are as many as

Ž .the charge k of the gauge field

D C x ss D A C xŽ . Ž . Ž .z z m m z z

ss E qA x q2p iz C xŽ . Ž .Ž .m m m m z

s0,
C xql sg x C x , lgL, 2Ž . Ž . Ž . Ž .z l z

Žwhere s form a basis of unit quaternions s s Im 0 2
.and yis st the Pauli matrices . As C is in thej j z

fundamental representation of the gauge group we

can not allow for twisted boundary conditions, which
require the center of the gauge group to act trivially.

w xAs mentioned above one can enlarge the periods 9
to deal with twisted boundary conditions. Here we
will instead consider only twisted boundary condi-
tions in the non-compact directions, where the action

w xof the center of the gauge group is trivialised 10
due to Weyl fermions vanishing asymptotically, so
as to ensure normalisability.

The Nahm connection is given in terms of the
normalised zero-modes by

E†i j 4 Ž i. Ž j.Â z s d xC x C x . 3Ž . Ž . Ž . Ž .Hm z zE zm

Ž .It is not difficult to show that this is a U k connec-
d ˆtion on R rL and using the family index theorem

w xone concludes 2 the topological charge of the Nahm
gauge field to be N. The index theorem relates the
difference of the number of zero-modes with oppo-
site chirality to the topological charge, that is

Ž . Ž . Ž . Ž †.ker D –coker D sker D –ker D has dimen-z z z z
Ž .sion k. Additional i.e. non-generic zero-modes are

therefore detected as zero-modes of
1

† 2D D syD A y h F x , 4Ž . Ž . Ž .z z m z mn mn2
†where h ss s is the anti-self dual ’t Hooftmn w m n x

tensor. For self-dual fields we have that D D† sz z
2Ž .yD A , which commutes with s , from whichm z m

Nahm derived the remarkable result that the Nahm
gauge field is self-dual as well. For T 4 this is most
easily demonstrated, as the manifold has no bound-
aries. Technically one requires the absence of flat

w x Ž †.factors 12 to ensure that ker D is trivial.z

For a non-compact manifold, applying index theo-
Ž̂ .rems requires some care, but in principle A z is

Ž †.well defined as long as dim ker D s0, and onez
w xfinds 10

ˆ i jF zŽ .mn

†X X X2 4 4 Ž i. Ž j.s8p d xd x C x h G x , x C xŽ . Ž . Ž .H z mn z z

†Ž i.EC xŽ .z j 3Ž .q4p i h G C x d x ,Ž .Ž .E n z z axaE zw m

5Ž .
where h ss † s is the self-dual ’t Hooft tensormn w m n x

2Ž .and G is the Greens function for yD A .z m z
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3. On T 4, applying the Nahm transformation again
brings one back to the original solution. In other
cases one needs to modify the second, or inverse,
Nahm transformation. The boundary terms are par-
ticularly important in the case of instantons on R4,

w xleading to the ADHM construction 6 for recon-
structing the original gauge field. The modification

Ž̂ .corrects for the fact that A z is no longer self-dual
due to the boundary terms. However, boundary terms
only occur at a finite number of isolated points, and

Žcan be expressed in terms of delta functions exclud-
ing the situation of R4 where the dual space is

.reduced to a single point . The singularities are fixed
Ž .by the asymptotic holonomies the Polyakov loops .

For T 3 =R there are two disconnected asymptotic
regions and we specify

P lllll , z ' lim Pexp A x , 6Ž . Ž . Ž .H" zž /t™"` Ž .C lllll

where lllll is the number of windings for each direc-
tion on T 3, specifying the homotopy type of the

Ž . Ž .curve C lllll . The N eigenvalues of P lllll , z are"

Ž Ž j . . Ž .given by exp 2p i v qz P lllll . For SU N gauge"

fields one has in addition Ý v j s0.j "

w xIt is now easily seen 10 , when all eigenvalues
are unequal to one, that a Weyl zero-mode decays as

Ž Ž .. Ž .exp .tM z , where M z is the mass-gap of" "

the Weyl equation reduced to T 3 for t™"`, with

M zŽ ."

< j < 3smin 2p v qzqp ; js1, PPP , N ; pgZ .� 4"

7Ž .

Ž . Ž .Now, M z vanishes whenever P lllll , z has a" "

unit eigenvalue for all lllll . Only for those cases the
boundary terms arising from a partial integration in

ˆcomputing F can be non-vanishing.
Outside of the singularities the field is self-dual

ˆ ˆ ˆŽ . Ž . Ž .and E z sB z . As A z is independent of z wei i 0
ˆ ˆŽ . Ž .have E z s iE A z . We extract a factor i, toi i 0

iˆ ˆ ˆŽ . Ž .Ž Ž ..define E z and B z sy ´ F z as reali i i jk jk2

fields. Assuming other than periodic boundary condi-
Žtions to avoid the contributions from t™"` to
.interfere , near one of the singularities integration by

ˆ Ž . Ž .steepest descent yields A z ™"iqrM z , where0 "

q is a positive constant. This means that the singular-
ities act as point sources with charges "q. Since

Ž .self-duality implies that the Maxwell field equa-
tions are satisfied, the exact solution is found by
performing the sum over periods for these point
charges. But we can say more. For the gauge field to
be well-defined outside of the singularities, charge
quantisation should be enforced and one concludes
that qrp has to be an integer, but generically
qsp . This ensures the magnetic sources are those
of Dirac monopoles with unobservable Dirac strings.
We will now demonstrate this on the basis of a Berry
phase type argument.

4. We restrict ourselves to the case of twisted
boundary conditions in the time direction. For ease
of notation we take all three periods equal to one
Ž .generalisation to another torus is straightforward
and we consider T 3 =R as the limit for T™` of

3 w xT = 0,T . The twist can be implemented by choos-
w xing 4,14 the gauge field to be periodic in the spatial

directions, whereas the gauge field at tsT is related
Ž .to the one at ts0 by a gauge transformation g x

Ž . Ž . Ž .sg x g x . Here g x is a periodic gaugek k k
Ž .transformation with winding number k and g x sk

1Ž . Ž Ž ..exp 2p ixPkQ , with Q s t for SU 2 such32

Ž . Ž . 3Žthat g lllll sexp 2p ikP lllllrN gZ for lllllgZ sk N
.L . Thus k are integers, defined modulo N. Fori

finite T and k/0mod N existence of a 4Nk param-
w xeter set of instantons is guaranteed 3 . Taking T™`

yields solutions on T 3 =R. With twisted boundary
Ž . Ž . Ž .conditions P lllll , z sexp 2p ikP lllll P lllll , z , up toq y

Ž .g x gauge conjugation, relating the singularitiesk

discussed above.
Consider T finite and add an Abelian background

gauge field, whose flux compensates for the twist
w x Ž .13 . The price one pays is that the U N gauge field
will in general no longer be self-dual. We introduce
the antisymmetric twist tensor n , with n skmn 0 i i

and vanishing spatial components, n s0. One de-i j

fines

A sp in x I r NT ,Ž .m mn n N

F sy2p in I r NT . 8Ž . Ž .mn mn N

1In terms of the curvature two-form Vs F dx nmn m2

dx , the first Chern class is given byn

c sTrVr 2p i . 9Ž . Ž .1
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Ž .The Pontryagin index P for the U N bundle Aqt

A is now

y12P s 8p Tr VqV n VqVŽ . Ž . Ž .Ht

y12s 8p TrVnVqTrVnV , 10Ž . Ž .H
where V is the curvature two-form of the original
Ž . Ž .self-dual SU N connection A, satisfying TrVs0.

w xFor the Pontryagin index of A we find 14 Psny
Ž . Ž . Ž .N y 1 pf n rN, with n integer and pf n

1s ´ n n , such that P sPqPsPyHcmna b mn a b t 18

Ž . Ž . Ž .nc r 2 N sPypf n rN. Thus, P snypf n is1 t
Ž .always integer as required for U N vector bundles.

For the case at hand, with only twist in the time
Ž .direction, pf n s0 and the topological charge is not

affected by adding the twist compensating Abelian
background field.

The Nahm transformation maps this to a bundle
Ž4with rank P , charge N and first Chern class H dzt T m

.2 Žndx nc for the precise formulation see Ref.m 1
w x.2 . Consider now the case of topological charge
one. Assuming the Weyl cokernel to be trivial for all

Ž . Ž .z, we get a non-selfdual U 1 connection with
ˆcharge PsN. But for an Abelian connection we

1ˆ Ž .also have Psy Hc nc sypf n s0. So thereˆ ˆ1 12

must be values of z for which the Weyl cokernel is
non-trivial. We have

† 2D D syD A qA q ip n h I r NTŽ .Ž .z z m z mn mn N

2syD A qA qHPt , 11Ž .Ž .m z

Ž . †with Hs2p kr NT . We note that D D is posi-z z

tive, but it may vanish. Using that HPt has eigen-
< <values " H , one easily finds this to be the case if

Ž . Ž . < <and only if the positive function f z 'l z y H0
Ž .vanishes, where l z is the lowest eigenvalue of0

2Ž . Ž .yD A qA . With F x its normalised eigenvec-m z z
Ž . 4 †Ž . † Ž .tor, we have f z sHd x F x D D F x such thatz z z z

2 Ž . 2 Ž .E f z rE z E z s8p d at the points where f zi j i j
Ž .vanishes. Considering the fact that f z is a smooth

and positive function of z, the zeros are generic and
cannot bifurcate in zeros of lower order.

As long as T is finite we can use the index
theorem and conclude that at exactly the same points

Ž †.where dim ker D jumps from zero to one, dimz
Ž .ker D has to jump from one to two. Since Dz z

depends smoothly on z, this necessarily describes
the case of a generic level crossing. The only un-
usual feature is that the ‘‘Hamiltonian’’ is arranged
so as to vanish exactly for one of the ’’adiabatic’’

w xeigenstates. The resulting Berry potential 15 associ-
ated to the isolated crossing corresponds precisely to
the spatial components of the Nahm connection, Eq.
Ž .3 . Due to the topological nature of the Berry phase
we can immediately conclude that the level crossing
acts as the source of a Dirac monopole with the
appropriate charge quantisation, enforcing qsp . It
is clear that this assignment is independent of T and
this fixes the charges for the case of T 3 =R.

Note that A™0 for T™`. We reiterate that
under this limit the total action stays fixed to 8p 2, as
dictated by the unit topological charge, and the fields
are forced to decay to flat connections at both ends,
thereby dictating the location of singularities that act
as point sources. We note that for twisted boundary
conditions one can put v j sv j qkrN modZ3.q y
Generically there are N sources with charge qsp

and N sources with the opposite charge. Higher
charges appear only in case some of the v j coin-"

cide. The enlarged subgroup that leaves the
holonomies invariant leads to appropriate additional
zero-modes for D†.z

ˆ35. The Nahm connection on T is uniquely deter-
mined by the point charges we described above,

Ni y1jˆ < <A s v qzq lllllŽÝ Ý0 q2 3 js1lllllgZ

< j <y1y v qzq lllll . 12Ž ..y

One difficulty is to evaluate the sum over the peri-
ods, as it formally diverges. This can be achieved in
terms of lattice sum techniques based on resumma-

w xtions 16 . Quite fortunately this problem was already
tackled long ago in evaluating the one-loop effective
potential for constant Abelian gauge fields on T 3,
Ž . < < Ž .3V C s2Ý 2p lllllqC . In terms of W Cr2p1 lllll g Z

1 2 2Ž .' pE V C rE C one easily finds1 i2

Ni
j jÂ z s W zqv yW zqv ,Ž . Ž . Ž .Ž .Ý0 q y2 js1

13Ž .
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Ž .where the rapidly converging expression for W z
Ž . w xcan be taken from Eq. A.10 of Ref. 17 ,

eyp lllll 2

W z sy1q cos 2p lllllPzŽ . Ž .Ý 2
p llllllllll/0

'< <erfc lllllqz pŽ .
q 14Ž .Ý

< <lllllqzlllll

w x 2 Ž . 2 Ž Ž .It can be shown 17 that E W z rE z sy4p d zi
. Ž .y1 , where d z is the periodic delta function, such

that indeed

N
j jˆE E z s2p d zqv yd zqv .Ž . Ž . Ž .Ž .Ýi i q y

js1

15Ž .

It is still a formidable task to reconstruct from this
explicit expression for the Nahm connection the
original non-Abelian gauge field on T 3 =R. This

w xrequires, like for the simpler case of the calorons 7 ,
the formulation of a modified Nahm transformation,
dealing with the singularities to which violations of
self-duality are restricted. Nevertheless, given the
existence of solutions with twisted boundary condi-
tions interesting conclusions can be drawn. Up to an
overall constant, related to the position of the instan-

3 Ž̂ .ton on T =R, A z is determined uniquely by the
eigenvalues of the holonomies. These holonomies,

Žwhen taking the limit T™` unlike in the case of
.the calorons arise from the properties of the solu-

4 3 w xtions on T sT = 0,T , and are thus part of the
gauge invariant moduli. Together with the position
of the charge one instanton, these account for the
Ž .3 Ny1 q4 parameters of the gauge invariant mod-

uli space. The holonomy breaks the gauge group to
Ž .Ny1U 1 , accounting for Ny1 additional parame-

ters that are part of the moduli space of framed
instantons, which has dimension 4N, as is appropri-
ate for the torus and this leaves no room for a scale
parameter of the instanton. We thus conclude that the
size of the instanton is related to the holonomies,

w xsomething that was conjectured 10 on the basis of
w xnumerical studies 19 and in direct analogy with the

Ž .situation for instantons on the cylinder for the O 3
w xmodel 20 .

Ž .For SU 2 it was indeed observed that the largest
instanton, the one that described tunnelling through

Ž .the lowest barrier sphaleron , is associated to ks
Ž .1,1,1 and all holonomies equal to "1. This corre-

1Ž .sponds to v and v s kqv separated ony q y2
ˆ3T over the maximal distance possible. On the other

hand, when the trace of the holonomy vanishes,
1"vs k, the twisted boundary conditions are com-4

patible with periodic boundary conditions, and in-
Ž̂ .deed v and v become equal and A z willy q

Ž .vanish apart from a trivial constant . In that case,
w xlike in the analysis for the caloron 7 , associating the

Nahm and ADHM formulation by Fourier transfor-
mation the solution becomes expressible in terms of

1w x Ž .the ’t Hooft ansatz 18 , A s h E logf x , withm mn n2

Ž . y2 w 2 Ž .2 xy1f x s r qÝ t q x q lllll . Resummationlllll

of the lattice sum is easily performed, but positivity
Ž .of f x is seen to force the instanton scale r to

zero.

6. It is tempting to conjecture on the basis of our
results for the Nahm connection that charge 1 instan-
tons will exist for open boundary conditions, in
which case the holonomies at both ends are not
related 1. If true, we can obtain periodic boundary
conditions as a limit from the one with open bound-

Ž̂ .ary conditions, implying A z to approach a con-
stant, and one would as above conclude that this
forces the size of the instanton to zero.

It is amusing in the light of this to note that, when
w xextending the caloron construction 7 based on

Fourier transformation of the ADHM formulation in
3 Ž Ž .an obvious way to T =R e.g. see Eq. 40 in Ref.

w x.8b , one finds

ˆ ˆt E z yB z saPt d zyvŽ . Ž . Ž .Žž /j j j

yd zqv . 16Ž . Ž ..
Ž .where for simplicity we only considered SU 2 . Here

the direction of a is related to the common gauge
orientation of the holonomies and its length is related
to the square of the scale parameter that appears in
the ADHM construction. Due to the vectorial nature
of the singularity it is natural to assume the gauge
field is described by an electric-magnetic dipole.

1 The number of gauge invariant parameters describing such
Ž .instantons would be 6 Ny1 q4. As these solutions cannot be

compactified to T 4, there need be no conflict with the standard
w xresult on a compact manifold 12 .
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Remarkably, it is well known in the theory of classi-
Ž w x.cal Electrodynamics e.g. see Ref. 21 that for

dipoles

3x pPx yp xPx 4pŽ . Ž .
E x s y pd x ,Ž . Ž .5 3< <x

3x mPx ym xPx 8pŽ . Ž .
B x s q md x .Ž . Ž .5 3< <x

17Ž .
These delta functions differ between electric and
magnetic dipoles, as the first comes from two ap-
proaching point charges and the second from a
shrinking current loop. Thus, with psm, one finds
Ž . Ž . Ž .B x yE x s4p md x , precisely of the required

Ž .form. The appropriate solution for SU 2 is de-
scribed by two ‘‘dyonic’’ dipoles of opposite strength
located at zs"v. Outside the singularities this can
easily be expressed in terms of the lattice sums we
defined before,

ˆ ˆB z sE zŽ . Ž .i i

a E 2
j

s W zqw yW zyw .Ž . Ž .Ž .
4p E z E zi j

18Ž .
w xIndeed, resolving the quadratic ADHM constraint 6

and explicit Fourier transformation reproduces this
result, including the appropriate delta functions that

w xviolate the self-duality 22 .
Nevertheless, as we cannot argue for the existence

of solutions with periodic boundary conditions on
T 3 =R, it may be that this dipole solution to the
Nahm equations is not realised, except for a™0,
implying the size of the instanton to go to zero. The
dipole approximation obtained from open boundary
conditions, letting v tend to v to approachq y
periodic boundary conditions, indeed leads to vanish-

Ž .ing dipole moments since the charge is fixed . This
conclusion can only be avoided in case no solutions
with open boundary conditions exist.

7. In conclusion, we have shown that one can
extract, by solving Abelian Bogomolny equations
with specified sources, analytic results for the Nahm
transformation of the charge one instanton on T 3 =R,
which provides interesting information on the param-
eters that describe these instanton solutions. The

Ž .situation is quite similar to that for the O 3 non-lin-
ear sigma model on the cylinder. It will be interest-
ing to be able to demonstrate the existence of solu-
tions with open boundary conditions. However, the
biggest challenge remains the formulation of the
inverse Nahm transformation, which requires us to

Ž .study the modified Weyl equation in a lattice of
‘‘dyonic’’ charges.

Numerical studies of the Nahm transformation
w x23 have been implemented, and may well play a
role in analytically addressing these issues. Prelimi-

w xnary results 24 relevant for the case studied here
are very encouraging and stimulating. Also the de-
formation of the Nahm transformation to the non-

w xcommutative torus 25 and its M-theory compactifi-
w xcations 26 could perhaps provide insight in the

problem addressed here.
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Carlos Pena are gratefully acknowledged. Most of
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visiting the Newton Institute during the first half of
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staff for their hospitality and the participants to the
programme on ‘‘Non-perturbative Aspects of Quan-
tum Field Theory’’ for contributing to a stimulating
environment.
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