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Abstract

Ž .We determine all SU 2 caloron solutions with topological charge one and arbitrary Polyakov loop at spatial infinity
Ž Ž ..with trace 2cos 2pv , using the Nahm duality transformation and ADHM. By explicit computations we show that the

3 1 'moduli space is given by a product of the base manifold R =S and a Taub-NUT space with mass Ms1r 8v 1y2v ,Ž .
1 1w xfor vg 0, , in units where S sRrZ. Implications for finite temperature field theory and string duality between2

Kaluza-Klein and H-monopoles are briefly discussed. q 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

Properties of self-dual solutions to the Yang-Mills
equations of motion have played an important role in
understanding both the physical and mathematical
properties of gauge theories. The last couple of years
these solutions also feature prominently in the de-
scription of dualities in supersymmetric theories and
in string theories, in particular for extensions to
D-branes and M-theory.

w xWe will present the calorons 1 , which are instan-
tons at finite temperature defined on R3 =S1, in an
explicit and simple form for topological charge one.
The reader interested in the physical applications,
like for finite temperature field theory, should skip
the mathematically oriented introduction below and
go directly to Section 2. Sections 3 and 4 can be
skipped as well. A more detailed description will be
published elsewhere.

1 E-mail: tckraan@lorentz.leidenuniv.nl.
2 E-mail: vanbaal@lorentz.leidenuniv.nl.

We were inspired to pursue the case of calorons
by a question posed one year ago by J. Gauntlett
concerning the moduli space of calorons with non-
trivial asymptotic behaviour of the Polyakov loop
Ž . w xnon-trivial holonomy 2 . These calorons appear as

w xthe non-trivial component of H-monopoles 3 . Oddly
enough explicit solutions with non-trivial holonomy
were not known. With trivial holonomy they can be
obtained as an infinite periodic array of instantons,

w xall oriented parallel in group space 1 . Recent work
on the T-duality between Kaluza-Klein and H-mono-

w xpoles in string theory 4 made us aware that our
construction explicitly provides the classical duality
transformation. It can be formulated without their
embedding in string theory. We nevertheless hope
this result can contribute to resolving some of the
puzzles that seem to be involved in the relevant
string dualities. There will be many experts better
equipped than we are in addressing these stringy
issues.

w xThe Nahm transformation 5,6 , also known as
w xMukai transformation 7 when considered as a map-

0370-2693r98r$19.00 q 1998 Elsevier Science B.V. All rights reserved.
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ping between holomorphic vector bundles, maps
self-dual fields on R4rL to self-dual fields on
R4rL). Here L is an integer lattice and L) is its

Ž .dual. For the gauge group U N this Nahm transfor-
mation interchanges the rank N and the topological

Žcharge also mapping the first Chern class to its
.Hodge dual , as follows from a family index theorem

w x8 . The family parameter is defined in terms of the
Ž .moduli space of flat U 1 connections, v sz

Ž .2p iz dx , which when added to the self-dual U Nm m

connection does not change the curvature. This gives
rise to a family of zero-modes for the chiral Dirac

Ž .operator the Weyl operator . The vector bundle
Ž .defined over the dual space of flat connections thus

obtained, has itself a self-dual connection.
Monopoles, calorons, and instantons on R4 can all
be considered to arise from suitably chosen limits of
lattices L. In particular for R4 seen as a torus, all of
whose sides are sent to infinity, the dual space is a

Žsingle point periods L are mapped to 1rL and it is
in this sense that the Nahm transformation is in fact

w x.a T-duality mapping 9 . This explains the algebraic
nature of the Atiyah-Drinfeld-Hitchin-Manin
Ž . w xADHM construction 10 and can be used as most

w xelegant and straightforward derivation 6,11,12 . It
can be shown that the Nahm transformation is an
involution; applied twice it gives the identity opera-
tion. Furthermore it preserves the metric and hy-

w xperKahler structure of the moduli spaces 8 .¨
In the process of sending certain periods to infin-

ity, boundary terms arise that destroy the self-duality
of the Nahm bundle, but this can be repaired by
suitably extending the Weyl operator on the dual

w xspace 6,11,13 . A particularly interesting feature
arises on non-compact four dimensional manifolds
for which infinity has the topology of T d, where d
can be either 1, 2, or 3. These correspond respec-
tively to instantons on R3 =S1, R2 =T 2 and T 3 =R.
Note that in the latter case infinity actually contains

w xtwo disconnected three dimensional tori 13 . As the
solutions have finite action the connection at infinity
is flat, parametrised by the Polyakov loops winding

Ž .around the d circles. Combined with the flat U 1
connection that is added to perform the Nahm trans-
formation, the Weyl operator reduced to the asymp-
totic T d generically has a gap. This is guaranteed to

Ž .be the case as long as the combined flat U N
d w xconnection on T is without flat factors 12 , i.e.

Ž . Ž . Ž .does not reduce to U 1 [U Ny1 with U 1 triv-
Ž .ial. For SU 2 it is easily seen that the Weyl operator

reduced to the asymptotic T d will have a zero
eigenvalue at 2 d values of z. If the holonomy in the
direction i is in the center of the gauge group, the
values for the components z of these points willi

Ž .coincide. As soon as at least one of the Polyakov
loops is non-trivial, the symmetry is spontaneously

Ž .broken to U 1 . The zero-modes of the reduced
Weyl operator lead to non-exponential decay of the
zero-modes for the full Weyl operator and a partial
integration, required in computing the curvature of
the Nahm bundle, will pick up a boundary term.
These boundary terms can only occur at the 2 d

points mentioned above, and therefore are distribu-
tions, indeed for the calorons easily seen to be delta

w xfunctions 13 . This was already realised long ago by
w xNahm himself 6 , but up to now this has not led to

explicit construction of solutions.
While finishing this paper we became aware of

w xRef. 14 in which some of the same issues are
addressed.

2. The solutions

For calorons we compactify the time direction by
periodic identification. One requires the gauge fields
to be periodic up to a gauge transformation. By a
suitable choice of gauge, where A tends to zero at0

infinity, and the topological charge k is realised by
the winding number of the gauge transformation that
describes A at spatial infinity, one hasi

A x , x q1 sexp 2p ivPt A x , xŽ . Ž . Ž .m 0 m 0

=exp y2p ivPt , 1Ž . Ž .
with t the Pauli matrices. We have chosen unitsi

such that the period in the time direction equals one.
Its proper value, where relevant, can be reinstated
later on dimensional grounds.

Ž . Ž 1 Ž ..The Polyakov loop, P x 'Pexp H dtA x , is0 0

seen to satisfy

P ' lim P x sexp 2p ivPt . 2Ž . Ž . Ž .`
< <x ™`

Ž < < .For the periodic case v' v s0 the caloron solu-
w xtions are well known 1 , but to this date no solutions
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for the general case were known. Although it was
argued that for the case of non-trivial values of P̀
these solutions are not important in the finite temper-

w xature partition function 15 , it might be worthwhile
to reinvestigate this issue now the solutions are
known explicitly. As the finite temperature partition
function requires the physical, i.e. gauge invariant,
components of the fields to be periodic, we do in
principle have to include also the configurations with
P non-trivial.`

We will first give the explicit solution before
discussing its construction. Using a rotation, we can

1w xachieve vPtsvPtrvst , with vg 0, . Theˆ 3 2

Ž Ž ..solution is written in terms of one real f x and
Ž Ž ..one complex x x function, and in terms of the

i iŽ . w x Ž . Žanti- self dual ’t Hooft tensors 16 h h withmn mn

.our conventions of tsx , ´ sy10 0123

i i i i i ih syh sh syh sd , h sh s´ .j0 0 j 0 j j0 i j jk jk i jk

3Ž .
We find

i
3A x s t h E logfŽ .m 3 mn n2

i
1 2q Re t q it h y ih E x f ,Ž .½ 5ž /1 2 mn mn n2

4Ž .
where

ˆfscrc ,

xspr 2cy1e4p i v x 0

= y1 y2p i x y10s sinh 4p sv e qr sinh 4p rv ,Ž . Ž .Ž .
1

v' 1y2v ,Ž .2

ĉscosh 4p sv cosh 4p rvŽ . Ž .
r 2 qs2 yp 2r 4Ž .

q sinh 4p sv sinh 4p rvŽ . Ž .
2 rs

ycos 2p x ,Ž .0

ˆcsc

2 y1qpr s sinh 4p sv cosh 4p rvŽ . Ž .Ž .
y1qr sinh 4p rv cosh 4p svŽ . Ž .
p 2r 4

q sinh 4p sv sinh 4p rv . 5Ž . Ž . Ž .
rs

Ž .The two radii, r and s, that appear in Eq. 5 are
defined by

2 22 2 2 2r s xq2pvr a , s s xy2pvr a ,Ž . Ž .

asv , 6Ž .ˆ

and in a sense the solution can be seen as being built
Žfrom a suitable combination of two dyons BPS

.monopoles of opposite charge, best understood in
terms of an old construction by Taubes involving
non-contractible loops in Yang-Mills configuration

w xspace 17 . The parameter r is related to the scale of
the instanton solution, and the two constituent BPS
monopoles are separated by a distance pr 2. Their
mass ratio approaches vrv for large r, when the

Ž .solution becomes static in a suitable gauge . Some
of these features are illustrated in Fig. 1. For vs

10 mod , P s"1, the gauge symmetry is no longer`2

Ž .broken to the U 1 subgroup generated by vPt . Inˆ
this case one of the two radii will drop out of the
problem and the solution is spherically symmetric.
The relation to the BPS monopole for large r at

w xvs0 can already be found in Ref. 18 . The con-
stituent monopole description is also the basis for the

w xresults in Ref. 14 , and seems to be the natural
framework for discussing the situation for arbitrary

w xgauge groups, going back to the work of Nahm 6 .
For the case P s"1 one finds xsx ) s1y`

1y1 jf and A s it h E logf, which is in the formm j mn n2

w xof the celebrated ’t Hooft ansatz 19 , and for which
fy1E 2fs0. For non-trivial values of v such am

simple characterisation is not readily available. Nev-
2 Ž . 2 2ertheless, the expression of trF x syE E logf,mn m n

w xderived for the ’t Hooft ansatz 19 , has a remarkable
generalisation to the case of non-trivial v,

trF 2 x syE 2E 2 logc . 7Ž . Ž .mn m n

This equation was used for constructing Fig. 1. We
have also computed numerically the curvature di-

Ž .rectly from Eq. 4 , checking the self-duality and
Ž .verifying Eq. 7 .

Finally we note that v should not be considered
as part of the moduli. For each v one has a different
set of solutions. This is particularly clear when we
transform to the periodic gauge, for which A s0

< <2p ivPt at x ™`. For each choice of v we have
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ŽFig. 1. Profiles for calorons at v s0, 0.125, 0.25 from top to
.bottom with r s1. The axis connecting the lumps, separated by

Ž .a distance p for v /0 , corresponds to the direction of v. Theˆ
other direction indicates the distance to this axis, making use of
the axial symmetry of the solutions. Vertically is plotted the action
density, at the time of its maximal value, on equal logarithmic
scales for the three profiles. The profiles were cut off at an action
density below 1re. The mass ratio of the two lumps is approxi-

Ž . Žmately v rv, i.e. zero no second lump , a third and one equal
.masses , for the respective values of v.

an eight dimensional moduli space with as parame-
ters the position of the caloron, which can be ob-
tained by translating our solution in space and time,
the scale r and a combined rotation and gauge

Ž .transformation keeping P fixed .`

3. The construction

Rather than presenting the Nahm transformation
w x5,6 , we make a shortcut by describing the ADHM

w xconstruction 10 , and showing how from an infinite

Žperiodic array of instantons no longer oriented par-
w x.allel in group space 15 we can obtain the caloron.

Input from the Nahm transformation comes at the
point where we interpret the quaternionic valued
matrices and vectors that appear in the ADHM con-

Ž .struction collectively known as ADHM data as the
Fourier coefficients with respect to z, appearing in
the Nahm transformation. The main advantage of
this approach is that already much is known about
the calculus of multi-instantons in the ADHM for-

w xmalism 11 , in particular also for computing the
w xmetric on the moduli space 20 . The ADHM data

are obtained after applying the Nahm transformation.
Applying this transformation for the second time
yields the construction of the self-dual field in terms

w xof the ADHM parameters 13 .
Ž .Specifically, for charge k SU 2 instantons the

ADHM data are given by a quaternionic valued
Ž .vector ls l ,l , PPP ,l and a symmetric quater-1 2 k

nionic valued k=k matrix B. We parametrise the
quaternions as linear combinations of the unit quater-
nions, s s1 and s s it . The vector l is directly0 2 j j

related to the asymptotic behaviour of the zero-modes
for the Weyl operator, which gives rise to the bound-

Žary terms mentioned in the introduction see Ref.
w x .6,11,13 for details . This will be seen to be respon-
sible for the announced delta function singularities in
the case of calorons. The matrix B is related directly
to the connection for the Nahm bundle. In order for
the ADHM data to describe a self-dual connection,
they have to satisfy a quadratic relation which states
that B†Bql†l is a non-singular symmetric k=k

Žmatrix whose entries are real i.e. proportional to
. † †s . Alternatively one may state that B Bql l has0

to commute with the quaternions.
ŽWe replace B by Byx, with xsx s a k=km m

.unit matrix is implicit in our notation . The quadratic
ADHM relation obviously remains valid. We note

Ž .that x corresponds precisely to adding the flat U 1
connection to the Nahm connection when applying
the Nahm transformation for the second time. The

w xself-dual gauge field is now given by 10

u† x E u x y E u† x u xŽ . Ž . Ž . Ž .Ž . Ž .m m
A x s ,Ž .m †2 1qu x u xŽ . Ž .Ž .

y1†u x sl Byx . 8Ž . Ž . Ž .
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There remains a redundancy which can be related to
the gauge invariance for the Nahm bundle,

y1l™qlT , B™T BT , A x ™qA x q ,Ž . Ž .m m

9Ž .
2Ž < < .where q is a unit quaternion qqs q s1 , i.e. a

Žconstant gauge transformation we use x to denote
† y1.the conjugate quaternion x , note qsq , and T is

an orthogonal k=k matrix with real entries. This
can be used to count the number of moduli of a
charge k instanton, being 8ky3. Including the q as
moduli gives 8k parameters, forming a hyperKahler¨

w xmanifold 12,21 .
Ž . ŽThe boundary condition A xq1 sexp 2p ivm

. Ž . Ž .Pt A x exp y2p ivPt is compatible with them

algebraic nature of the ADHM construction, and can
be implemented by

l sexp 2p invPt z , B sB qd ,Ž .n m ,n my1,ny1 m ,n

10Ž .

with z an arbitrary quaternion, such that

u xq1 su x exp y2p ivPt . 11Ž . Ž . Ž . Ž .mq 1 m

Ž .We note that this means ks`. Indeed, A xm

viewed as a solution on R4 with unit topological
charge per period has an infinite total topological

1Ž < < .charge. For trivial holonomy v' v s0 mod it2

is seen that the quadratic constraint on the ADHM
Ž .data is solved by choosing B s mqj d , withm ,n m ,n

j an arbitrary quaternion, which describes the posi-
tion of the caloron. The caloron size is given by

< <rs z and zrr represents a constant gauge trans-
formation.

The major obstacle for non-trivial holonomy was
satisfying the non-linear constraint. This can be
solved most easily by introducing a Fourier transfor-

w xmation 22 . Let us first give the solution in the
matrix representation

ˆB s mqj d qA ,Ž .m ,n m ,n m ,n

sin 2pv mynŽ .Ž .
Â s izvPtz 1yd .Ž .ˆm ,n m ,nmyn

12Ž .

It has the right number of parameters, 8 in total,
Ž .where q'zrr is split in a U 1 part commuting

Ž .with P , describing the residual U 1 gauge invari-`

Ž . Ž .ance, and a part SU 2 rU 1 describing a rotation of
the vector v , compensated by a gauge transforma-
tion to ensure that P , or equivalently the periodicity`

condition, is unaltered.
It is advantageous to first give some general

results, valid for arbitrary instantons, giving a more
Ž .efficient way of representing A x . The derivationm

is straightforward and will be given elsewhere. It is
well known that in this problem two Green’s func-

w xtions appear 6,11 . One is associated to the quadratic
ADHM relation

y1 †† † †f s D x D x , D x s l , Byx ,Ž . Ž . Ž . Ž .Ž . Ž .x

†† †D x D x s Byx Byx ql l. 13Ž . Ž . Ž . Ž . Ž .
†Ž . Ž .D x is a k= kq1 dimensional quaternionic ma-

trix. Self-duality implies that f commutes with thex

quaternions. The other Green’s function is given by

y1†G s Byx Byx . 14Ž . Ž . Ž .Ž .x

Ž .From the definition of u x it follows that

f'1qlG l† s1qu† x u x . 15Ž . Ž . Ž .x

One finds the following compact result

1 y1 †A x sy fE f lh G l , 16Ž . Ž .Ž .ž /m n nm x2

i Ž w xwhere h 's h the ’t Hooft tensors 16 may bemn i mn
1 Ž .defined through h s s s y s s and hmn m n n m mn2

1 Ž ..s s s ys s .m n n m2

By choosing B diagonal and the entries of l real,
this result immediately leads to the subclass of solu-
tions that are expressed in terms of the ’t Hooft

w xansatz 19 . The quadratic ADHM condition is obvi-
1Ž .ously satisfied, and A x s h E logf.m mn n2

We note that the Green’s functions f and G arex x

intimately related. In particular

G l† sf f l†, 17Ž .x x

Ž w xwhich implies that see also Ref. 23 ; their conven-
† y1.tions relate to ours by u™l , f™f

y1 1† †fs 1yl f l , A x sy fE lh f l .Ž .Ž . Ž .x m n nm x2

18Ž .

As a consequence we will only need to know f .x

This Green’s function is simpler to determine than
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G , since f is proportional to s . A standard com-x x 0

putation, that lies at the heart of showing that the
curvature obtained after applying the Nahm transfor-

w x Žmation is self-dual 6,11,8 for which it is crucial
.that f commutes with the quaternions , yieldsx

F s2fy1 u†h f u. 19Ž .mn mn x

We have now reduced the explicit computation of
instanton solutions to the computation of f . Inciden-x

tally, it can be verified that all infinite sums involved
in expressions that appear for the calorons are con-

Ž .vergent. Eq. 19 demonstrates that it gives a self-dual
solution. We now discuss the Fourier transformation,
in terms of which one solves for the quadratic ADHM
constraint and for the Green’s function f . Onex

defines

l̂ z s exp 2p imz lŽ . Ž .Ý m
m

s P d zyv qP d zqv z ,Ž . Ž .Ž .q y
X ˆ X

d z yz D z s exp 2p i mz ynz B ,Ž . Ž . Ž .Ž .Ý m ,n
m ,n

20Ž .
1 Ž .where P s 1"vPt . Parametrising B as be-ˆ" m ,n2

ˆ X ˆŽ . Ž .fore in terms of j and A , with d z yz A z sm ,n
X ˆŽ Ž ..Ý exp 2p i mz ynz A , we findm ,n m ,n

1 d
ˆ ˆD z s qjqA z . 21Ž . Ž . Ž .

2p i dz
Thus, B has been turned into a differential operator,
precisely the Weyl operator appearing in the Nahm

ˆ ˆŽ . Ž .transformation, with A z 'A z s the connec-m m

w x Žtion for the Nahm bundle 13 up to factors 2p i, to
match with the conventions of the ADHM construc-

ˆ† ˆ.tion . The Nahm transformation would require D D
to commute with the quaternions, which is equiva-
lent to saying that the curvature of the Nahm connec-
tion is self-dual. Due to the boundary terms dis-
cussed in the introduction, this self-duality is vio-

w xlated at a finite number of points 13 and the
presence of l†l in the quadratic ADHM relation is
precisely so as to correct for the violations of self-
duality, in accordance with the expectations ex-
pressed in the introduction. After Fourier transforma-
tion this quadratic relation reads, with a slight abuse
of notation,

D† x D x zŽ . Ž . Ž .Ž .
†ˆ ˆ ˆ' D z yx D z yx qL z , 22Ž . Ž . Ž . Ž .Ž . Ž .

where

X ˆ ˆ† X ˆd z yz L z sl z l z ,Ž . Ž . Ž . Ž .

L̂ z sz P d zyv qP d zqv z . 23Ž . Ž . Ž . Ž .Ž .q y

†Ž . Ž .The condition that D x D x has to commute with
the quaternions is now seen to lead to the equation

ˆdA z rdzspzvPsz d zqv yd zyv ,Ž . Ž . Ž .Ž .ˆ
24Ž .

Žwhich is solved by eliminating an arbitrary additive
constant that can be absorbed in j by imposing

1 Ž̂ . .H dzA z s0 ,0

Ž0.ˆ ˆA z szvPsz A z ,Ž . Ž .ˆ

Ž̂0.A z sp 1y2vyx z , 25Ž . Ž . Ž .Ž .v

Ž . Žwhere x z s1 for v-z-1yv requiring vgv
1w x.0, and 0 elsewhere. Fourier transformation of2

Ž̂ . Ž .A z yields the result in Eq. 12 .
As x and j always occur in the combination

xyj , we absorb j by a translation in x. The
computation of f now reduces to a one-dimensionalx

quantum mechanical problem on the circle,

21 d
2 2yx qr x z qs 1yx zŽ . Ž .Ž .0 v v½ ž /2p i dz

1 X2q r d zqv qd zyv f z , zŽ . Ž . Ž .Ž . x2 5
sd zyz X , 26Ž . Ž .

Ž . Žwhere the radii r and s were given in Eq. 6 note
2< < .that here aPsszvPszr z . We will present theˆ
Ž X.explicit analytic solution for f z, z elsewhere, butx

it should be noted that, due to the particular form of
ˆŽ . Ž . Ž . Ž .l z , only f v,v s f yv,yv and f v,yvx x x

Ž .)s f yv,v , respectively real and complex func-x
Ž .tions of x , will occur in the evaluation of A xm m

Ž Ž .. Ž . Ž .see Eq. 18 . To obtain Eq. 4 from Eq. 18 , one
ˆŽ .moves h through l z , which for non-trivial v domn

not commute.
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We close this section by quoting a useful and
w xremarkable result 11,20 ,

trF 2 x syE 2E 2 logdet f , 27Ž . Ž . Ž .mn m n x

Ž .which leads to the result given in Eq. 7 . Although
Ž . Ž .for the caloron logdet f is divergent, E logdet fx m x

is well defined.

4. The geometry of moduli space

The moduli space of the self-dual solutions is
given by the ADHM data, or equivalently by the
Nahm connections. The latter are self-dual connec-
tions on the dual space and the Nahm transformation

w xprovides precisely a T-duality 9 . It has been well
established that this transformation preserves the
metric and hyperKahler structure of the moduli spaces¨
w x8,12 . By computing this metric on the moduli space
we can determine its geometry. We use results due to

w xOsborn 20 , which can be readily transposed to the
case of the calorons and become particularly elegant
after the Fourier transformation.

Ž .Since we have a closed expression for A x inm

terms of the ADHM parameters, we can compute the
Ž .variations d A x with respect to the moduli inm

terms of variations of the ADHM data, summarised
Ž .in terms of dD x . The metric is obtained by com-

< < < < 2 Ž Ž ..2puting d A syHd x tr Pd A x , where P is4 m

the projection on the transverse gauge fields, achieved
by applying an infinitesimal gauge transformation

X Ž .such that d A x satisfies the background gaugem
X Ž . w xcondition D d A x s0. It can be shown that 20m m

D d A xŽ .m m

y1 † † †sf u f s dD DyD dD s f u , 28Ž . Ž . Ž .Ž .x m m x

1 †which vanishes if and only if tr dD DŽ .Ž2

yD† dD s0. This condition is precisely theŽ . .
background gauge condition for the Nahm connec-

Ž 4 w xtion for T this is an exact statement 8 , whereas in
general l provides the corrections due to the asymp-
totic behaviour of the chiral zero-modes of the Weyl

.operator . In particular this implies that the back-
ground gauge condition is preserved under the Nahm,
or T-duality, transformation. Projection to a trans-
verse variation of the connection can therefore be
achieved by applying an infinitesimal gauge transfor-

Ž .mation to the ADHM data as given in Eq. 9
Ž .qs1 . Under such an infinitesimal gauge transfor-

Ž .mation, Tsexp d X s1qd Xq PPP ,

w x †d lsld X , d Bs B ,d X , d X syd X .X X

29Ž .

Replacing dD by C 'dDqd D, the backgroundX X

gauge condition gives an equation for d X in terms of
dD,

1 † † †w x w xtr B B ,d X y B ,d X Bq2d XLqD dDŽ2

ydD†D s0. 30Ž ..
For the caloron, with d X preserving the periodicity
Ž .11 , the transformation of dD to a transverse varia-
tion can now be reformulated after Fourier transfor-
mation as

2 ˆ1 d d X zŽ .
y 2 24p dz

2 ˆ< <q z d zyv qd zqv d X zŽ . Ž . Ž .Ž .
i

s tr dzzyzdz vPsˆŽ .ž /4

= d zyv yd zqv , 31Ž . Ž . Ž .Ž .
X ˆ XŽ . Ž . Ž Žwhere d z y z d X z s Ý exp 2p i mz ym , n

ˆ.. Ž .nz d X . Solving for d X z givesm ,n

tr dzzyzdz vPsˆŽ .ž /ˆd X z syp iŽ . 22 < <1q4p v 1y2v zŽ .

=
z

X XŽ0.ˆdz A z , 32Ž . Ž .H
0

Ž .which is a zig-zag function periodic and odd in z ,
with discontinuous derivatives at zs"v.

The following miraculous formula due to Osborn
w x < < < < 220 allows us to compute d A ,

2
tr Pd A xŽ .Ž .m

1 2 † †s E tr Tr C 2yD x f D x C f .Ž . Ž .Ž .Ž .m X x X x2

33Ž .

Since the right-hand side of this equation is smooth
and a total derivative, the integration over space and
time is completely determined by the behaviour for

< < Ž X .rs x ™`. In this limit we may replace f z, z byx
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y1 < X < X Žp r exp y2p r zyz q2p ix zyz near zŽ .Ž .0
X 1 1.sz , properly extended as a function on S =S .

From this we find

12 2 †ˆ ˆ< < < <d A s2p tr dz dB z dB zŽ . Ž .H ½
0

1
X X†ˆ ˆq2 dl z dz dl z , 34Ž . Ž . Ž .H 5

0

where

ˆ ˆdl z 'P d zyv dzqzd X vŽ . Ž . Ž .Ž .q

ˆqP d zqv dzyzd X v ,Ž . Ž .Ž .y

ˆ1 dd X zŽ .
ˆ ˆdB z 'djqd A z q . 35Ž . Ž . Ž .

2p i dz

For the metric one finds the explicit result

< < < < 2 2 < < 2 2 2 < < 2d A s4p dj q8p 1qR dzŽ .
1 222 2 < <y2p R z 1q vPds ,Ž .ˆ2ž /1qR

36Ž .
Ž .where z'y sm m

2 2 < < 2 2 y2R sp z rM , M s8v 1y2v ,Ž .
1 y2j < <ds sh z y dy . 37Ž .j mn m n2

One readily recognises, putting djs0, the Taub-
w xNUT metric 24 with mass M. For v in the thirdˆ

w xdirection this metric is given by 25

x 2
12 2 2 2 2ds s 1q dx q x ds qdsŽ .Ž .1 242ž /16M

x 2
1 2 2q x ds r 1q , 38Ž .34 2ž /16M

where we identify x 2 s8p 2r 2. We note that the
Taub-NUT space is a self-dual Einstein manifold
w x w x26 and that it has a hyperKahler structure 27 ,¨
inherited from the hyperKahler structure of R3 =S1.¨

5. Conclusions

Ž .We have found the explicit charge one SU 2
caloron solutions with the Polyakov loop at spatial
infinity non-trivial. Previously only solutions for

w xwhich the latter was trivial were known 1 . Those

were argued to dominate in the instanton contribu-
w xtion to the finite temperature partition function 15 ,

a question that can now more directly be addressed
and is perhaps of physical significance.

We have shown that the moduli space of these
solutions forms a Taub-NUT space, providing an
exact classical T-duality between H-monopoles and

w xKaluza-Klein monopoles 4 . Indeed it is well-known
Žthat the Taub-NUT metric describes the spatial part

. w xof the Kaluza-Klein monopole 28 with compactifi-
cation radius 4M. Most importantly we have related
the holonomy to the compactification radii involved
in the dual descriptions.

6. Note added in proof

For clarity we emphasise the obvious fact that the
Taub-NUT space is a double cover of the moduli
space of framed instantons. The relevant identifica-
tion, z™yz , corresponds to the Z gauge invari-2

ance and leaves the gauge field unaltered. It has the
Žorigin as a fixed point resulting in an orbifold

.singularity for the moduli space . Indirect arguments
concerning the nature of the moduli space can be

w x w xfound in Ref. 2,29 . See also the results in Ref. 30 ,
which appeared after the completion of our paper.
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