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Abstract

We determine all SU(2) caloron solutions with topological charge one and arbitrary Polyakov loop at spatia infinity
(with trace 2cos(27w)), using the Nahm duality transformation and ADHM. By explicit computations we show that the
moduli space is given by a product of the base manifold R® x S and a Taub-NUT space with mass M =1/ V8w(l-2w),
for we[0,4], in units where S'=R/Z. Implications for finite temperature field theory and string duality between
Kauza-Klein and H-monopoles are briefly discussed. © 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

Properties of self-dual solutions to the Yang-Mills
equations of motion have played an important role in
understanding both the physical and mathematical
properties of gauge theories. The last couple of years
these solutions also feature prominently in the de-
scription of dualities in supersymmetric theories and
in string theories, in particular for extensions to
D-branes and M-theory.

We will present the calorons[1], which are instan-
tons at finite temperature defined on R® X S, in an
explicit and ssimple form for topological charge one.
The reader interested in the physical applications,
like for finite temperature field theory, should skip
the mathematically oriented introduction below and
go directly to Section 2. Sections 3 and 4 can be
skipped as well. A more detailed description will be
published elsewhere.

! E-mail: tckraan@l orentz.leidenuniv.nl.
2 E-mail: vanbaal @lorentz.|eidenuniv.nl.

We were inspired to pursue the case of calorons
by a question posed one year ago by J. Gauntlett
concerning the moduli space of calorons with non-
trivial asymptotic behaviour of the Polyakov loop
(non-trivia holonomy) [2]. These calorons appear as
the non-trivial component of H-monopoles[3]. Oddly
enough explicit solutions with non-trivial holonomy
were not known. With trivial holonomy they can be
obtained as an infinite periodic array of instantons,
all oriented parallel in group space [1]. Recent work
on the T-duality between Kaluza-Klein and H-mono-
poles in string theory [4] made us aware that our
construction explicitly provides the classical duality
transformation. It can be formulated without their
embedding in string theory. We nevertheless hope
this result can contribute to resolving some of the
puzzles that seem to be involved in the relevant
string dualities. There will be many experts better
equipped than we are in addressing these stringy
issues.

The Nahm transformation [5,6], also known as
Mukai transformation [7] when considered as a map-
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ping between holomorphic vector bundles, maps
self-dual fields on R*/A to self-dual fields on
R*/A*. Here A is an integer lattice and A* is its
dual. For the gauge group U(N) this Nahm transfor-
mation interchanges the rank N and the topological
charge (also mapping the first Chern class to its
Hodge dual), as follows from a family index theorem
[8]. The family parameter is defined in terms of the
moduli space of flat U(1) connections, w,=
2miz,dx,, which when added to the self-dual U(N)
connection does not change the curvature. This gives
rise to a family of zero-modes for the chiral Dirac
operator (the Weyl operator). The vector bundle
defined over the (dual) space of flat connections thus
obtained, has itself a self-dual connection.
Monopoles, calorons, and instantons on R* can all
be considered to arise from suitably chosen limits of
lattices A. In particular for R* seen as atorus, al of
whose sides are sent to infinity, the dual space is a
single point (periods L are mapped to 1/L and it is
in this sense that the Nahm transformation is in fact
a T-duality mapping [9]). This explains the algebraic
nature of the Atiyah-Drinfeld-Hitchin-Manin
(ADHM) construction [10] and can be used as most
elegant and straightforward derivation [6,11,12]. It
can be shown that the Nahm transformation is an
involution; applied twice it gives the identity opera-
tion. Furthermore it preserves the metric and hy-
perKahler structure of the moduli spaces [8].

In the process of sending certain periods to infin-
ity, boundary terms arise that destroy the self-duality
of the Nahm bundle, but this can be repaired by
suitably extending the Weyl operator on the dual
space [6,11,13]. A particularly interesting feature
arises on non-compact four dimensional manifolds
for which infinity has the topology of T¢ where d
can be either 1, 2, or 3. These correspond respec-
tively toinstantonson R* X S', R*X T2 and T3 X R.
Note that in the latter case infinity actually contains
two disconnected three dimensional tori [13]. As the
solutions have finite action the connection at infinity
is flat, parametrised by the Polyakov loops winding
around the d circles. Combined with the flat U(1)
connection that is added to perform the Nahm trans-
formation, the Weyl operator reduced to the asymp-
totic T generically has a gap. This is guaranteed to
be the case as long as the combined flat U(N)
connection on T¢ is without flat factors [12], i.e.

does not reduce to U(1) & U(N — 1) with U(2) triv-
id. For U(2) it is easily seen that the Weyl operator
reduced to the asymptotic T¢ will have a zero
eigenvalue at 29 values of z. If the holonomy in the
direction i is in the center of the gauge group, the
values for the components z of these points will
coincide. As soon as (at least one of) the Polyakov
loops is non-trivial, the symmetry is spontaneously
broken to U(1). The zero-modes of the reduced
Weyl operator lead to non-exponential decay of the
zero-modes for the full Weyl operator and a partial
integration, required in computing the curvature of
the Nahm bundle, will pick up a boundary term.
These boundary terms can only occur at the 2¢
points mentioned above, and therefore are distribu-
tions, indeed for the calorons easily seen to be delta
functions [13]. This was aready realised long ago by
Nahm himself [6], but up to now this has not led to
explicit construction of solutions.

While finishing this paper we became aware of
Ref. [14] in which some of the same issues are
addressed.

2. The solutions

For calorons we compactify the time direction by
periodic identification. One requires the gauge fields
to be periodic up to a gauge transformation. By a
suitable choice of gauge, where A, tends to zero at
infinity, and the topological charge k is realised by
the winding number of the gauge transformation that
describes A; at spatia infinity, one has

A (X X+ 1) =exp(mie- 7) A (X,X)
xXexp(—27iw- 1), (1)

with 7; the Pauli matrices. We have chosen units
such that the period in the time direction equals one.
Its proper value, where relevant, can be reinstated
later on dimensional grounds.

The Polyakov loop, P(x) = Pexp( [3dtA(x)), is
seen to satisfy
P.= lim P(x) =exp(2mie- 7). (2)

| x]|— oo

For the periodic case (w = | w| = 0) the caloron solu-
tions are well known [1], but to this date no solutions
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for the general case were known. Although it was
argued that for the case of non-trivial values of P,
these solutions are not important in the finite temper-
ature partition function [15], it might be worthwhile
to reinvestigate this issue now the solutions are
known explicitly. As the finite temperature partition
function requires the physical, i.e. gauge invariant,
components of the fields to be periodic, we do in
principle have to include also the configurations with
P, non-trivia.

We will first give the explicit solution before
discussing its construction. Using a rotation, we can
achieve & 7= - 7/0 =15, With w<[0,3]. The
solution is written in terms of one real (¢(x)) and
one complex ( x(x)) function, and in terms of the
(anti-)self dual 't Hooft tensors [16] (7j;,),, (with
our conventions of t =Xy, €103 = —

njio = —néj =77(iJj =~ =6, njik = 7Ijik = Eijk-
(3)
We find
i
A(x) = 573775»%'09(1)
i
+oRe{(ry+im) (7, — 12 ) 2 x 6,
(4)
where
b=u/i,

X= 7Tp2¢fle47riwxo
X (s~'sinh(4msw)e ?"* + 1~ tsinh(47rw)),

w= %(1 - 2w),
b= cosh(4msw)cosh(4mrw)
(r2+s*—ap*) _
+ sinh(4m sw)sinh(4mrw)
2rs
—€0S(27 Xq)
=1

+mp?(s™ 'sinh(4msw)cosh(47r®))
+r~tsinh(47ro)cosh(4msw)
2.4

4 Z sinh(47sw)snh(471@). (5)

The two radii, r and s, that appear in Eq. (5) are
defined by

r2= (X + 27Ta)p2a)2, = (X — 277'Z)p2a)2,
a=o, (6)

and in a sense the solution can be seen as being built
from a suitable combination of two dyons (BPS
monopoles) of opposite charge, best understood in
terms of an old construction by Taubes involving
non-contractible loops in Yang-Mills configuration
space [17]. The parameter p is related to the scale of
the instanton solution, and the two constituent BPS
monopoles are separated by a distance wp2. Their
mass ratio approaches w/w for large p, when the
solution becomes static (in a suitable gauge). Some
of these features are illustrated in Fig. 1. For o =
Omod 3, P, = +1, the gauge symmetry is no longer
broken to the U(1) subgroup generated by @ - 7. In
this case one of the two radii will drop out of the
problem and the solution is spherically symmetric.
The relation to the BPS monopole for large p at
w =0 can aready be found in Ref. [18]. The con-
stituent monopole description is also the basis for the
results in Ref. [14], and seems to be the natural
framework for discussing the situation for arbitrary
gauge groups, going back to the work of Nahm [6].
For the case P, = +1 one finds y=x"=1-
¢~ and A, = 3iTm),4loge, which is in the form
of the celebrated 't Hooft ansatz [19], and for which
¢ 92p=0. For non-trivial values of w such a
simple characterisation is not readily available. Nev-
ertheless, the expression of trE2(x) = —379%log¢,
derived for the 't Hooft ansatz [19], has a remarkable
generalisation to the case of non-trivial w,

trE2,(x) = — 3797 logy. (7)

This equation was used for constructing Fig. 1. We
have aso computed numerically the curvature di-
rectly from Eq. (4), checking the self-duality and
verifying Eq. (7).

Finally we note that » should not be considered
as part of the moduli. For each w one has a different
set of solutions. This is particularly clear when we
transform to the periodic gauge, for which A, =
27iw- 7 a | x| — «. For each choice of w we have
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Fig. 1. Profiles for calorons a w =0, 0.125, 0.25 (from top to
bottom) with p = 1. The axis connecting the lumps, separated by
adistance 7 (for w # 0), corresponds to the direction of @. The
other direction indicates the distance to this axis, making use of
the axial symmetry of the solutions. Verticaly is plotted the action
density, at the time of its maximal value, on equa logarithmic
scales for the three profiles. The profiles were cut off at an action
density below 1/e. The mass ratio of the two lumps is approxi-
mately o /@, i.e. zero (no second lump), a third and one (equal
masses), for the respective values of w.

an eight dimensional moduli space with as parame-
ters the position of the caloron, which can be ob-
tained by tranglating our solution in space and time,
the scde p and a combined rotation and gauge
transformation (keeping P, fixed).

3. The construction
Rather than presenting the Nahm transformation

[5,6], we make a shortcut by describing the ADHM
construction [10], and showing how from an infinite

periodic array of instantons (no longer oriented par-
allel in group space [15]) we can obtain the caloron.
Input from the Nahm transformation comes at the
point where we interpret the quaternionic valued
matrices and vectors that appear in the ADHM con-
struction (collectively known as ADHM data) as the
Fourier coefficients with respect to z, appearing in
the Nahm transformation. The main advantage of
this approach is that aready much is known about
the calculus of multi-instantons in the ADHM for-
malism [11], in particular also for computing the
metric on the moduli space [20]. The ADHM data
are obtained after applying the Nahm transformation.
Applying this transformation for the second time
yields the construction of the self-dual field in terms
of the ADHM parameters [13].

Specificaly, for charge k SU(2) instantons the
ADHM data are given by a quaternionic vaued
vector A = (A, A,, - -+ ,A,) and a symmetric quater-
nionic valued k X k matrix B. We parametrise the
guaternions as linear combinations of the unit quater-
nions, o, =1, and o; =i7;. The vector A is directly
related to the asymptotic behaviour of the zero-modes
for the Weyl operator, which gives rise to the bound-
ary terms mentioned in the introduction (see Ref.
[6,11,13] for details). This will be seen to be respon-
sible for the announced delta function singularities in
the case of calorons. The matrix B is related directly
to the connection for the Nahm bundle. In order for
the ADHM data to describe a self-dual connection,
they have to satisfy a quadratic relation which states
that B'B+ AT\ is a non-singular symmetric k X k
matrix whose entries are real (i.e. proportiona to
a,). Alternatively one may state that B'B + A\ has
to commute with the quaternions.

We replace B by B — x, with x=x,g, (@ kXk
unit matrix is implicit in our notation). The quadratic
ADHM relation obviously remains valid. We note
that x corresponds precisely to adding the flat U(1)
connection to the Nahm connection when applying
the Nahm transformation for the second time. The
self-dual gauge field is now given by [10]

U (qu(x)) = (4,u'(x))u(x)
B 2(1+ u"(x)u(x)) '

A(X)

uf(x) =A(B—x) " (8)
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There remains a redundancy which can be related to
the gauge invariance for the Nahm bundle,

A—QAT, B-T7'BT, A,(X)—0A,(x)T,

©)

where q is a unit quaternion (qi=1ql*=1), i.e a
constant gauge transformation (we use X to denote
the conjugate quaternion x', note G=q 1), and T is
an orthogonal k X k matrix with real entries. This
can be used to count the number of moduli of a
charge k instanton, being 8k — 3. Including the q as
moduli gives 8k parameters, forming a hyperKéhler
manifold [12,21].

The boundary condition A,(x+ 1) = exp(27iw
~T)A(Xexp(—2mie- 7) is compatible with the
algebraic nature of the ADHM construction, and can
be implemented by

Ay=exp(2minew-7){, B,,=Bn_ 1,11 8nn

(10)
with ¢ an arbitrary quaternion, such that
Ups 1 X+ 1) =u(x)exp( —27iw- 7). (11)

We note that this means k=c. Indeed, A (x)
viewed as a solution on R* with unit topological
charge per period has an infinite total topological
charge. For trivial holonomy (» =|w|=0mod 3) it
is seen that the quadratic constraint on the ADHM
datais solved by choosing B, ,=(m+ £)§, ,, with
¢ an arbitrary quaternion, which describes the posi-
tion of the caloron. The caloron size is given by
p=I|{]and {/p represents a constant gauge trans-
formation.

The major obstacle for non-trivial holonomy was
satisfying the non-linear constraint. This can be
solved most easily by introducing a Fourier transfor-
mation [22]. Let us first give the solution in the
matrix representation

Bm,n= (m+ f)am,n—'_Am,nv

sin(2rw(m-—n))

(1 - 3m,n) .
(12)

m-—n

It has the right number of parameters, 8 in total,
where q=¢/p is split in a U(1) part commuting
with P,, describing the residual U(1) gauge invari-

ance, and a part SU(2) /U(1) describing a rotation of
the vector @, compensated by a gauge transforma-
tion to ensure that P, or equivaently the periodicity
condition, is unaltered.

It is advantageous to first give some genera
results, valid for arbitrary instantons, giving a more
efficient way of representing AM( X). The derivation
is straightforward and will be given elsewhere. It is
well known that in this problem two Green's func-
tions appear [6,11]. One is associated to the quadratic
ADHM relation

f=(AT(x)A(x) ", AT(x)=(A"(B-x)"),
AT(X)A(X)=(B—x)"(B—x) +AlA. (13)

A'(x) isa k x (k+ 1) dimensional quaternionic ma-
trix. Self-duality implies that f, commutes with the
guaternions. The other Green's function is given by

G=((B-x)'(B-x) . (14)
From the definition of u(x) it follows that
$=1+AGAT=1+u"(x)u(x). (15)
One finds the following compact result

A(X) = —3d,( o7 (15,,G,AT)), (16)

where 7, = o;7,, (the 't Hooft tensors [16] may be
defined through 7,, = 3(G,0, — G,0,) and 7,
=3(0,0,— 0,7,)).

By choosing B diagonal and the entries of A real,
this result immediately leads to the subclass of solu-
tions that are expressed in terms of the 't Hooft
ansatz [19]. The quadratic ADHM condition is obvi-
ously satisfied, and A (x) = 37,,49,109¢.

We note that the Green’s functions f, and G, are
intimately related. In particular

G A" = of, AT, (17)
which implies that (see also Ref. [23]; their conven-
tions relate to oursby u— A", ¢ — ¢~ 1)
-1 _
b=(1-AFAT) 7, A(X) = —3¢4,(AT, fX/\T).
(18)

As a consequence we will only need to know f,.
This Green's function is simpler to determine than
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G,, since f, is proportiona to o,. A standard com-
putation, that lies at the heart of showing that the
curvature obtained after applying the Nahm transfor-
mation is self-dual [6,11,8] (for which it is crucia
that f, commutes with the quaternions), yields
F,=2¢ "ulm, fu. (19)

We have now reduced the explicit computation of
instanton solutions to the computation of f,. Inciden-
tally, it can be verified that all infinite sums involved
in expressions that appear for the calorons are con-
vergent. Eg. (19) demonstratesthat it gives a self-dual
solution. We now discuss the Fourier transformation,
in terms of which one solvesfor the quadratic ADHM
constraint and for the Green's function f,. One
defines

M z) = Y exp(2mimz) A,,
=(P,8(z—w)+P_8(z+w))L,
8(z —2)D(2)= Y exp(2mi(mz —nz)) B, ,,

(20)

where P, = 3(1 £ &- 7). Parametrising B, , as be-
foreinterms of £ and A, ,, with 6(z —2) A(2) =
Emaexp2mi(mz —nz)) A, ,, we find

. 1 d .
D(2) = 5= T+ A(2). (21)

Thus, B has been turned into a differential operator,
precisely the Weyl operator appearing in the Nahm
transformation, with A(z) = A (z)g, the connec-
tion for the Nahm bundle [13] (up to factors 271, to
match with the conventions of the ADHM construc-
tion). The Nahm transformation would require D'D
to commute with the quaternions, which is equiva
lent to saying that the curvature of the Nahm connec-
tion is self-dual. Due to the boundary terms dis-
cussed in the introduction, this self-duality is vio-
lated at a finite number of points [13] and the
presence of A"\ in the quadratic ADHM relation is
precisely so as to correct for the violations of self-
duality, in accordance with the expectations ex-
pressed in the introduction. After Fourier transforma:
tion this quadratic relation reads, with a slight abuse
of notation,

(47(x) A(x))(2)
=(B(2) -x) (B(2) -x) + A(2), (22

where
8(z—2)A(2)=A(2)A(2),
A(2) ={(P,8(z— 0) +P_8(z+w)){. (V)

The condition that AT(x) A(x) has to commute with
the quaternions is now seen to lead to the equation

dA( 2) /dz= 7o ol (8(z+ w) — 8(2— )),
(24)

which is solved by (eliminating an arbitrary additive
constant that can be absorbed in ¢ by imposing
[3dzA(2) = 0),

A(2)=Co- o RO(2),
AO(2) =7(1- 20— x,(2)), (25)

where x,(2) =1 for w <z<1— o (requiring o €
[0,3D and O elsewhere. Fourier transformation of
A(z) yields the result in Eq. (12).

As x and ¢ always occur in the combination
x—¢&, we absorb ¢ by a trandation in x. The
computation of f, now reduces to a one-dimensional
quantum mechanical problem on the circle,

{(i.i—xo) +12%,(2) + (1= x,(2))

+3p%(8(z+ ) + 8(z—w))}fx(z,z’)

=8(z—-72), (26)

where the radii r and s were given in Eg. (6) (note
that here a- o= & - /| £ |?). We will present the
explicit analytic solution for f (zz) elsewhere, but
it should be noted that, due to the particular form of
M2), only f(w,0)=f(—w,—w) and f(w,— w)
=f(—w,w)"*, respectively real and complex func-
tions of x,, will occur in the evaluation of A,(x)
(see Eq. (18)). To obtain Eq. (4) from Eq. (18), one
moves 7, through A(z), which for non-trivial w do
not commute.
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We close this section by quoting a useful and
remarkable result [11,20],

trE2,(x) = — 379 logdet( f,), (27)

which leads to the result given in Eq. (7). Although
for the caloron logdet(f,) is divergent, d,logdet(f,)
is well defined.

4. The geometry of moduli space

The moduli space of the self-dual solutions is
given by the ADHM data, or equivaently by the
Nahm connections. The latter are self-dua connec-
tions on the dual space and the Nahm transformation
provides precisely a T-duality [9]. It has been well
established that this transformation preserves the
metric and hyperKahler structure of the moduli spaces
[8,12]. By computing this metric on the moduli space
we can determine its geometry. We use results due to
Osborn [20], which can be readily transposed to the
case of the calorons and become particularly elegant
after the Fourier transformation.

Since we have a closed expression for A (x) in
terms of the ADHM parameters, we can compute the
variations 8A,(x) with respect to the moduli in
terms of variations of the ADHM data, summarised
in terms of SA(x). The metric is obtained by com-
puting [|8AlI” = — [d, x tr( P5A,(X))?, where P is
the projection on the transverse gauge fields, achieved
by applying an infinitesimal gauge transformation
such that 6A (x) satisfies the background gauge
condition D,8A (x)=0. It can be shown that [20]

D, 8A(X)
= ¢ LU0, ((54T) A— AT(54))F, fu, (28)

which vanishes if and only if 3tr((84")4
—A'(84))=0. This condition is precisely the
background gauge condition for the Nahm connec-
tion (for T* thisis an exact statement [8], whereas in
general A provides the corrections due to the asymp-
totic behaviour of the chiral zero-modes of the Weyl
operator). In particular this implies that the back-
ground gauge condition is preserved under the Nahm,
or T-duality, transformation. Projection to a trans-
verse variation of the connection can therefore be
achieved by applying an infinitesimal gauge transfor-

mation to the ADHM data as given in Eq. (9)
(g=1). Under such an infinitesimal gauge transfor-
mation, T=exp(6X) =1+ 86X+ - - -,

SyA=A8X, 8,B=[B,5X], &8X'= —5X.
(29)

Replacing 64 by C, =64 + 8, A, the background
gauge condition gives an equation for 6 X in terms of
84,

str(B'[B,8X] — [B",6X]B+25XA + A'8A
—-584™A) =0. (30)

For the caloron, with 6 X preserving the periodicity
(11), the transformation of 8A to a transverse varia-
tion can now be reformulated after Fourier transfor-
mation as

1 d%X(z2)
C 4r? dZ2

+1Z1P(8(z2— w) + 8(z2+ w))8X( 2)
=%tr((6{f—§8f)&ra)

X(8(z—w) —8(z+ w)), (31)
where §(z — z)8)€(z)A= Yo nexpmri(mz —
nz))8 X, .. Solving for 6 X(z) gives
r((808— ¢80 )+ o)

5X(2) = —mi
()= - 1+ 4m2w(l-2w)l¢

X f Zdzbb:(o)( z), (32)
0

which is a zig-zag function (periodic and odd in 2z),
with discontinuous derivatives at z= + w.

The following miraculous formula due to Osborn
[20] allows us to compute || SAl|?,

tr(PSAL(X))°
= 392 trTr(Cl (2 A(x) f,AT(x))Cxf,).
(33)
Since the right-hand side of this equation is smooth
and a total derivative, the integration over space and

time is completely determined by the behaviour for
r =|x| — oo. In this limit we may replace f,(z,z) by
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mrtexp(—2mr|z—Z|+ 2mwixy(z—2)) (near z
=7, properly extended as a function on S' x S).
From this we find

18Al1% = 272 tr[oldz{déf( z)dB( )

+2d1(2) [ dzdi( z’)}, (34)
0
where
dA\(2) =P, 8(z— w) (8, + (6X(w))
+P_8(z+ w)(8— (X (w)),

- . 1 déX(z)
dB( z) = 8¢+ 6A(z)+%T. (35)
For the metric one finds the explicit result
I18AI7 = 472|6¢ 1> + 872(1+ R?)|6¢ |2
— 2772R2|§|2(1+ T )(a,. 802,
(36)

where ({=y,q,)
R?=m?|{1?/M?, M™2=8w(1l-2w),
3807 =ml1L17 %y, dy, . (37)

One readily recognises, putting 6¢= 0, the Taub-
NUT metric [24] with mass M. For @ in the third
direction this metric is given by [25]

2

X
ds? = |1+ 16M2)(dxz+%xz(d012+d022))

+ix2do2/

X2
1+ ——|, 38
where we identify x%=8x7%2. We note that the
Taub-NUT space is a sdlf-dual Einstein manifold
[26] and that it has a hyperKahler structure [27],
inherited from the hyperKahler structure of R® x Sh.

5. Conclusions

We have found the explicit charge one SU(2)
caloron solutions with the Polyakov loop at spatial
infinity non-trivial. Previously only solutions for
which the latter was trivial were known [1]. Those

were argued to dominate in the instanton contribu-
tion to the finite temperature partition function [15],
a question that can now more directly be addressed
and is perhaps of physical significance.

We have shown that the moduli space of these
solutions forms a Taub-NUT space, providing an
exact classical T-duality between H-monopoles and
Kaluza-Klein monopoles [4]. Indeed it is well-known
that the Taub-NUT metric describes (the spatial part
of) the Kaluza-Klein monopole [28] with compactifi-
cation radius 4M. Most importantly we have related
the holonomy to the compactification radii involved
in the dual descriptions.

6. Note added in proof

For clarity we emphasise the obvious fact that the
Taub-NUT space is a double cover of the moduli
space of framed instantons. The relevant identifica-
tion, {— — ¢, corresponds to the Z, gauge invari-
ance and leaves the gauge field unaltered. It has the
origin as a fixed point (resulting in an orbifold
singularity for the moduli space). Indirect arguments
concerning the nature of the moduli space can be
found in Ref. [2,29]. See aso the results in Ref. [30],
which appeared after the completion of our paper.
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