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We compute analytically the effective hamiltonian (i.e. the logarithm of the transfer matrix) in the zero-momentum modes on
a finite lattice. We present the results for the low-lying spectrum obtained from a Rayleigh-Ritz analysis for lattices of spatial sizes
43, 6% and co®, and compare with lattice Monte Carlo results for intermediate volumes. We discuss the implications and limitations
of the good agreement found.

1. Introduction

Everyone who has ever looked into lattice perturbation theory must have realized that it would almost be
miraculous if the Monte Carlo results were actually to agree with continuum results at the relatively large cou-
plings employed. Still, within the limited range of varying lattice sizes being used, one does seem to find a
behaviour close to scaling. Yet statistical and systematic errors are often still quite large, leaving more than
enough room for those who wish to remain sceptical. Nevertheless, the last two years have seen considerable
progress in the accuracy and reliability of the pure-gauge spectrum calculations in intermediate volumes [1,2].
These results seem to imply the almost “preposterous” claim that a 4° lattice is able to describe with some
confidence the continuum behaviour of the low-lying spectrum in volumes of sizes between one and five scalar
glueballs.

This was not only substantiated by Monte Carlo calculations of up to 103 lattices, but also by the comparison
with our continuum calculations [ 3,4] based on Liischer’s effective hamiltonian for the zero-momentum modes
[5]. However, the accuracy of the Monte Carlo calculations has progressed for this volume range to the point
where deviations from the analytic results become significant [2]. For the lattice one can obviously suspect
mainly the lattice artifacts to be responsible for this deviation. However, the continuum calculation does contain
a so-called adiabatic approximation, which can be considered essential for the reduction to the relevant degrees
of freedom (the zero-momentum modes in this volume range), for which we had to look beyond the Gribov
horizon [6]. A considerable effort was made on pinning down the accuracy of this approximation, nevertheless
leaving some room for doubt [3].

Since our method of looking beyond the Gribov horizon (i.e. having different coordinate patches in configu-
ration space with a “prescription” of glueing these patches together) is intended to be applied to more general
and complex cases, we wish to give some weight to demonstrating the viability of the method in a situation
which is under relatively accurate control. Rather than spending more effort on calculating the theoretical error
due to the non-adiabatic behaviour, which we suspect not to lead to more insight in the dynamics and physics
involved (although it would lead to a more rigorous formulation of the “patching”), we decided on the easier,
more experimental route of calculating analytically the effect of the finite lattice size on the low-lying spectrum.
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In demonstrating the close agreement of the thus corrected data, we indirectly demonstrate the (expected, but
unproven) accuracy of the approximations involved. As a bonus, we remove the mystery of why lattice Monte
Carlo (with Wilson’s original action [7]) works so well for the domain considered. We wish to emphasize,
however, that we do not claim to have demonstrated the same miracles to occur for SU(3), or in larger volumes.

This letter is intended to outline roughly the main points of the calculations and to give the most important
results. Details and a more extensive discussion wi/l be published elsewhere.

2. From lattice to effective action

We start with Wilson’s action [7] for a lattice of dimensions Ny X N, X N, X N; with periodic boundary
conditions

1
S=—= Y Tr(1=UcspUsrsxrirs UbisxrarsUlirs) (1)

80 uv.x
and split the gauge field in the spatially constant ““background field”” and the non-zero momentum “quantum
fields™:

Us.crp=explic,(¢)/N,] explig,(x) /N, ] =U () Uy cr - (2)

We fix the gauge, similarly to what was done in the continuum [3], with a non-local “background field” gauge
fixing

Y 4 (x—A)=UL()g () UL (t)=0. (3)
oy

For a readable account of lattice perturbation theory we refer to ref. [8]. The lattice background field calculation
to which our approach has some resemblance can be found in ref. [9].

As in the continuum, one next integrates out the non-zero momentum quantum modes to be left with an
effective lagrangian in the zero-momentum modes. We have done this calculation explicitly to one-loop order
and to the same order in the background fields ¢; (¢,=0) as in the continuum, taking N, to infinity but otherwise
having arbitrary spatial size for the lattice (later on we specialize to the cubic case N;=N,=N;=N and the
asymmetric case N =N, #N;).

As compared to the continuum, there are four additional complications in evaluating the effective lagrangian
from the lattice action. First, instead of the infinite continuum momentum sums, we have finite lattice momen-
tum sums, where the lattice momenta are defined by the Fourier decomposition of the fields:

g (x+9)=exp(2nin,/N,)q" (x), (4)

with n, restricted to the Brillouin zone (i.e. #n,=0, 1, 2,..., N,—1). In the time direction we want the lattice to
extend to infinity, so one of the sums will actually be infinite (see below). Second, the tree-level action is non-
polynomial. Likewise, the part of the action quadratic in the quantum fields has a more complicated structure
than in the continuum (see ref. [9]). Third, the effective action is still discrete in time. Its path integral repre-
sents the trace of the transfer matrix to the power N, and the logarithm of this transfer matrix is what we want
to extract, giving us the lattice effective hamiltonian for the zero-momentum modes. Finally the kinetic term is
that of SU(2) (or the standard kinetic term on S*).

Let us discuss the relevant “tricks™ of working our way around each difficulty. The finite momentum sums
can hardly be a problem. In a sence it is a blessing to be able to work for a change in a rigorous context (on a
Jinite lattice). The interest is ultimately of course in the scaling limit of all N,,— oo, but for the comparison with
the actual Monte Carlo results we do have only a finite number of degrees of freedom. As a little thought will
reveal, all the infinite n, sums at the one-loop level can be computed in terms of the following heat kernel:

398



Volume 224, number 4 PHYSICS LETTERS B 6 July 1989

L) = % gl exp{—4ssin’[n(n+1)/N]}= kzz exp(—2s—2mikt) I (25) , (5)

where the latter expression follows from a simple Poisson resummation ([, is the modified Bessel function of
order » [10]). The one-loop ‘““integral” now consists of a sum over the (spatial) Brillouin zone (excluding the
origin ) of the expression

n=

- fd?sexp(—swz)fv(O =1Q(w)+ —ln{l—exp[—N.Q(w)]}— —ln ( i exp[—N(n+%)Q(a))]> , (6)

with 2(®) the “effective frequency”
Q(w)=2asinh(iw), (7)

where @ is a function of n, N, and ¢;. This of course goes back to Feynman [11] and is nothing but the exact
solvability of the harmonic oscillator path integral with a finite step size.

For an abelian zero-momentum background field this dependence of @ on ¢; “collapses” to a very simple
expression and leads to the so-called vacuum-valley effective potential [3,12] (¢;=Ci03/2)

" Ni 2 :
P(C:N)=4 asinh \/z sin?| T >] (8)
ni=1
which (for the cubic case) has the same properties as its well-studied scaling limit [12]
- 4 sin?(n-C/2)
V(C)= —= —
() ﬂanEzZ_o () (9)

By studying the deviation of LP,(C) from NV,(C; N), one can already get a decent impression for what values
of N the lattice results might be close to the continuum.

3. The “flow” of the effective action

The remainder of the calculation is an order of magnitude more complicated than in the continuum, but tricks
that are partly special to SU(2), allowed us to do the full calculation by hand. Needless to say that an indepen-
dent check is not a luxury, for which we used the new symbolic manipulation programme FORM [13]. The
final result looks much like in the continuum:

Ser(c)= 3, (kli]l Nk) [ 22 (é +c‘z§”(N)> Tr[1=-UP(+ 1)U (1) ]

+ iz > Tr[l—Uz‘”’(t)U}O’(t)U,‘O”(t)U}O”(Z)]]+ Vale(t); N) +Vr(ci(1); N) +... (10)

0y

where the vacuum-valley and transverse potentials (respectively V, and V) are given by

Vo(e, NY=Vo(r; N)—4a sinh( /i sinz[r,«/(ZN,-)]>

(Z (PN +982 (N0 (NP1 + X 80 (N)rir+ X p§7 (N)riri +y6(N) H rit. )

>j i#£j =1

(11)
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Vr(c, N)= Nll (Z L& (NYF2 + ,zk a {5 (NYriF3+ z afP (N)r2Fi+as(N) det2c+...) , (11 cont’d)
i i i

with the curvature F'¢ and the radial coordinate r; given by
Fé&=—ggactcd, ri=2Tr(c}). (12)

For later purposes we treated the most general case, but we will be mostly interested in the cubic situation
N=N,=N,=N,, for which all coefficients are independent of the coordinate index. Fig. 1 gives the ratio of each
coefficient with its continuum value as quoted in table 1 (this corrects a thus far undetected sign error in a; it
is now indeed given by eq. (2.17) of ref. [3]). In all cases except for ¢, and «,, these continuum values are the
respective scaling limits of &;(N) and y,(N).

For &, and &, the renormalization group dictates the following behaviour to one-loop order:

11 . R 11
E;r—zln(N)-i-al(N)a aZ(N)—_ 12”2

where &, > (V) have finite scaling limits. This is of course such that the renormalized flow of the effective action
to one-loop order is defined by keeping 1/g& =1/g3 — (11/12n%)In(N) fixed, where g is the lattice renormal-
ized coupling. Let us remind the reader how &, » (oo) are related to «, , obtained from the continuum calcula-

a(N)=-

In(N)+6&,(N), (13)

N
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N Table 1
-5 0'01 0 '(E OI = 0'0 P '05 0 l06 . 0-75 Coefficients for the continuum effective hamiltonian. eq. (10).
VN 1=—0.30104661 o= 2.1810429x10-2
. . . . . 7,=—1.4488847x 1073 o= 7.5714590% 1072
Fig. 1. The ratio of the co.efﬁcm.lts of th_c effecuve' action, eq. ya=  1.2790086% 10-2 ay=  1.1130266 10~
(10), as a function ofN, with their value 12n. the continuum. The ya=  4.9676959% 10~ Qym ~2.1475176 X 10~
lines are dr?.wn to guide the eye‘and. l/N is plotted on a hnf:ar Jo=—5.5172502% 10~ g=—1.2775652% 103
scale to indicate the way the scaling limit is reached as a function Yo=—1.2423581x 10>

of N.
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tion in the minimal subtraction scheme [9,14]. One has (by definition) to one-loop order

1

g 12 2ln(aAL) (14)

where a is the lattice spacing and A, the lattice scale parameter. Therefore one has

1 11
é—% 127 SaIn(N)+a(N)=- 12 21n(aNAL)+a12(N)
11 11 1
=T 12x 3 In(Ldys) + @ (N) = 127 21n(AL/AMS)——2(—5+a1,2, (15)

where L=aN is the physical size of the volume, g(L) is the renormalized coupling at the scale L for minimal
subtraction and Ayg is its scale parameter. Eq. (15) confirms independently from «, — &, (o0) and a; — &, (o0)
to a high accuracy the result for A, /Ays [9,14] which is an important consistency check. In fig. 1 we have plotted

~ 11 4
@12 (N)=612(N) = 5—1n (A;S) (16)
with (11/127%) In{(A; /Apys) = ~0.1866792 [9].

Next we discuss the tree-level action, where both the kinetic and the potential parts differ from the continuum
result. These can be considerably simplified for SU(2), by using the expression U{% =cos(r,/2N;)+ic%,sin(r;/
2N;)/r;, which gives

2
T Te(1= U UO UOTUO) = ¥ sin (r,/2N)s1n (r/2N) (17)
e

I rr

This gives an important simplification for the Rayleigh—Ritz analysis of the effective hamiltonian. The kinetic
term will be discussed after we have dealt with the issue of discrete time.

4. The effective hamiltonian

There is an elegant way of incorporating the discrete time when one realizes that the path integral is given by
[8,11]

Z=Tr[(e K~ ")M]=Tr(I™), (18)

where 7 is the transfer matrix, and the trace is taken over a complete set of quantum states. Here K is the
[SU(2) or standard S®] kinetic and ¥ the potential term. The masses obtained from lattice Monte Carlo calcu-
lations, in the ideal situation [4], are the logarithm of the eigenvalues of the transfer matrix. Equivalently they
are the eigenvalues of the effective hamiltonian:

Hr=In[exp(—}K)exp(—V)exp(—3iK)]. (19)

This choice is to ensure that the effective hamiltonian is hermitian. An alternative choice would have been
In[exp(—3Mexp(—K)exp(—1V)], but we leave it to the reader to verify that this is related to eq. (19) by a
unitary transformation, and it has therefore the same spectrum. It is also some fun to play with the harmonic
oscillator, for which H.g is again harmonic, but with @ replaced by the effective frequency Q(w), see eq. (7).
From eq. (10) we see that K and V are proportional to 1/N and NH.¢ will be a power series in 1/N 2, which we
computed (both by hand and with the algebraic manipulation programme FORM [13]) to eighth order in the
background field ¢ and to second order in 1/N 2. This generates, for example, terms quartic in the curvature, but
details will be postponed to the long write-up of this work.
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Finally, the kinetic term in the hamiltonian can be converted to that of flat three space by a rescaling of the
wave function:

( S e W AP \/ L2) iy
"~ sin?(r;/2N;) or; TET S, 4sin?(ri/2N) ' ) sin(r,/2N;)

7 o’ (r:/2N;)? )L_2 3 ]
~ sin(r,/2N,) [’ ac? + <sin2(r,./2N,.) -1 r2 ~ 4N? F. (20)

This again leads to only a simple correction in the way we implement the Rayleigh—-Ritz analysis for the effective
hamiltonian [3]. But it is important for the issues concerning the non-perturbative part incorporated in our
analysis. As was discussed at great length for the continuum [3], a discussion which carries over directly to the
lattice, there are coordinate singularities at r,= 2z, related to the Gribov horizon [6] and signalled by the conic
singularity in the vacuum-valley effective potential. This problem was resolved by employing an adiabatic ap-
proximation, which together with the symmetries of the effective hamiltonian lead to implementing boundary
conditions on the wave function at r,=n. We restrict ourselves to the positive parity sector for which these
boundary conditions are by now well established [3,4,15]. By the conversion of the SU(2) metric to the flat
metric these boundary conditions are identical to those used for the continuum [ 3]. In conclusion, the effective
hamiltonian as obtained from the transfer matrix can be transformed to be exactly of the same form as in the
continuum, except that its coefficients depend on the lattice size through N, and that quite a few additional, and
for small N, relevant, eighth-order terms are generated. In the full analysis we have also expanded Vy(c; N) to
eighth order in ¢, but as in the continuum, their effect remains small for cubic volumes (this situation will
dramatically differ in asymmetric volumes as we will see further on).

5. Comparison with Monte Carlo results

In fig. 2 we compare the Monte Carlo data of refs. [1,2] with our results obtained from the effective hamil-
tonian, using a Rayleigh-Ritz calculation [3]. Note the highly blown-up scale. Horizontally we plot the scale-
independent quantity zg+ = Nmg+ and vertically the ratio of the square root of the string tension with the E*
mass. The full lines give the results from H.¢ as described above for lattices with spatial sizes 4%, 63 and o3,
where N=co0 is equivalent to the continuum. We also have results for 83, which lie in between the N=6 and
N=co curves,but were not drawn to keep the graphs legible. The dashed lines corresponds to incorporating the
two-loop correction to the vacuum-valley effective potential which for N=oco was described in ref. [3] (the
corresponding curve in fig. 2 corrects the earlier mentioned sign-error in ¢ ). For the finite lattice the equivalent
two-loop analysis is complicated, to put it mildly and will be considered in the future. Instead, we have used the
continuum expression for this two-loop correction, and expect that the error thus made should not be more than
25% of the correction due to this two-loop contribution (therefore being smaller than 0.5-1% in the final result).

We see that the agreement is excellent, except for the 83 data point of ref. [2] at zg+ =3.1, §=2.7. In table 3a
of ref. [2] this point was labelled as having a “not so good” asymptotic estimate for the string tension. Never-
theless, we included the data point to avoid personal bias. Instead we imposed on the data of ref. [2] the rigorous
cut that N, should be bigger than or equal to 64. The reason is that it was clearly demonstrated in ref. [2] that
data with a shorter time extent suffer from finite temperature effects and mixing with excited states. The data
of ref. [1], which was obtained using the “fuzzing” procedure, should be relatively free from these unwanted
contaminations. Where S=4/g3 and lattice size agree, the two groups have the same results (for the data point
at zg+ = 3.63, even the blown-up scale cannot resolve the difference), except for the scalar A mass at §=3.0,
L=4(zg+ =1.7). We believe that the evidence is such that at smaller volumes the scalar glueball masses of ref.
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Fig. 2. Comparison of the Monte Carlo results ( a from ref. [2] and b from ref. [1]) with the hamiltonian results. The full curves give
for a 43, 6° and co® spatial volume the results from the effective hamiltonian (for 8° the curve lies midway between those for N=6 and
N=00). The dashed curves include the continuum two-loop correction. Horizontally is plotted zg+ = Nmg+ and vertically the mass ratio
\/;/mE+, where k is the finite volume string tension, i.. the energy of one unit of electric flux divided by N.
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Fig. 3. As for fig. 2, but now for the mass ratio »2,+/mg-. Here the dashed curves would almost coincide with the full curves and are
consequently not drawn.

[2] are still overestimated by up to 10%, if the time extent is not taken large enough. This should explain any
remaining discrepancies visible in fig. 3 for the mass ratio m, /mg- . Note the data point with the smallest value
for zg+ was sampled for #=4.5 and N,=256 (which is quite an impressive achievement) and is therefore ex-
pected to be less affected by these contaminations. Finally, table 2 collects additional intermediate volume re-
sults from the T}, and the T3 states considered in ref. [1]. Also here the agreement is excellent,taking into
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Table 2

Comparison of the Monte Carlo results of ref. [ 1] with our results from the effective hamiltonian for the glueball state TS and the state
T which has two units of electric flux. The » for the hamiltonian results indicate the use of the two-loop contribution discussed in the
text. The value of z,, was used as input for the hamiltonian calculation.

R Monte Carlo [1] Hamiltonian mg/may
B N3XN, Zay mp/mag 43 *43 6* *63 o0? *c0>
TH 3.0 43%99 2.04 0.65+0.02 0.66 0.65 0.61 0.60 0.60 0.58
2.4 43% 32 3.84 0.5310.01 0.54 0.53 0.52 0.51 0.51 0.50
T3 3.0 43%99 2.04 1.59+0.03 1.58 1.60 1.67 1.69 1.70 1.73
2.4 43% 32 3.84 1.67+0.06 1.66 1.68 1.70 1.72 1.71 1.73
2.5 63%x 32 4.20 1.64+0.05 1.67 1.68 1.70 1.71 1.71 1.73
24 63x32 5.28 1.6310.04 1.68 1.69 1.70 1.71 1.71 1.72

account that the effective hamiltonian is expected to break down for z> 5, or even earlier for heavier states
[3,4,15].

The main reason we embarked on this project (which got slightly out of hand) was to understand why the
value of zx+ where tunneling sets in as found in the Monte Carlo data [2] (i.e. where the lines of fig. 2 cross the
horizontal axis around zg+ =1) was 10% off from our prediction [3]. However, in this region (small values for
g) our methods, including the adiabatic approximation, should be more accurate. We believe we have now
demonstrated indirectly that they are. We could not have done it without the Monte Carlo results and this is
maybe a good place to thank all of those involved for spending some of their efforts in probing the intermediate
volume regime more accurately. We have explained in the introduction why this is not a purely academic exercise.

6. Problems in asymmetric volumes

We end this letter with a discussion of some naively unexpected but nevertheless well-understood problems
with calculating the low-lying spectrum on an asymmetric lattice. This was introduced in ref. [16] to study the
deconfining transition. We think the principles outlined in that paper are correct, but unfortunately have to
conclude that the analytic evidence as provided there should be reconsidered. The geometry relevant for Hg is
now N, =N,=N=zyN;, where z is the asymmetry parameter considered in ref. [16]. In fig. 4 (the lower curve
a) we reproduce the analytic results for \/Et /m at zr=1.5 and the Monte Carlo results of ref. [2] for N,=N,=6,
N;=4. Here m is the mass gap and k; is the string tension for electric flux in the third (short) direction. Their
curve coincides with what we phrased as results coming from the “minimal hamiltonian™ [3], which takes no
two-loop and eighth-order terms into account and puts ;=03 =as=0.

For the cubic geometry, corrections due to the higher order contributions are at most 3%, but already for the
mild asymmetry of z;y = 1.5, including these higher order terms has a dramatic effect, as can be seen in fig. 4. The
curves labelled by b include the effect of the sixth-order terms in the transverse potential, whereas the curves
labelled by c include on top of that the eighth-order contribution coming from the vacuum-valley effective po-
tential. One of the main reasons for the sensitivity of the spectrum on the higher order terms is that the polynom-
ial approximation for the vacuum-valley potential is bad along the r; axis. The potential in this direction is
mainly responsible for the string tension in the short third direction. To test this idea, we have also given the
(analytic and Monte Carlo [2]) results for the string tension in the other directions, which is denoted by «,. We
see that (at least in larger volumes) the sensitivity is much less.

Even including the eighth-order terms is far from sufficient to approximate the effective potential accurately
(our programme would allow us to go up to twelfth order without much difficulty). As an example we give the
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0.6 T T T
0.5 h
-
- & Fig. 4. Various results for the spectrum in an asymmetric volume
0.4 T a & i with asymmetry zy = 1.5. The Monte Carlo data {2] are for a lat-
b d tice of spatial size 6 X6 4 and the curves d are results from the
oa i effective lattice hamiltonian with the same size. Curves a, b and
0.3 1 ¢ are results from the continuum effective hamiltonian with an
E asymmetry of 1.5, where a corresponds to the truncation of the
L= 0.2 | | vacuum-valley potential to sixth and the transverse potential to
*?' fourth order, b includes the sixth-order terms of the transverse
potential and ¢ on top of that incorporates the eighth-order terms
0.1 F p of the vacuum-valley potential. The upper part of the figure and
the square data points correspond to \/;s /m, the lower part of
3y c d the figure and the circular data points correspond to \/;. /m,
o 1' é ; " where «; is the string tension in the long and x; the string tension

in the short direction. Horizontally is plotted z=N;m.

reader the following situation at zr=2 to play with. With techniques identical to those employed in the cubic
case [12] one can show that the following expansion of the effective potential is very accurate:

2r(2m— 16 & .
2 Qn=rs) ;[ ’s) + = Y a,sin’*(inrs), (21)

n=1

L, I7;2(”1 =r=0)=

with a,=0.6156595, a,=6.763187x 1073, a;=1.467451x10~%, a,=4.012186x 10~ ° and the convergence is
determined by the general estimate a, < (572/2n)exp( —nn). From this expression one easily deduces the bad
convergence of the Taylor expansion up to eighth order (for r;<=r). One can show that the mismatch grows
roughly linearly with the asymmetry. Considering the bad behaviour for the still small value zr= 1.5, this does
not promise much good for the study of the deconfining transition based on these calculations. In principle,
since one can easily construct rapidly converging sums for the vacuum-valley effective potential, valid for a
much larger range of asymmetries, it is likely that one can correct for part of the above problem relatively easy.
It would be more alarming if the expansion of the transverse potential V1 were to be badly converging. There
are signs for this to occur, since «; increases by respectively the factors 6, 11 and 47 for the asymmetries 1.5, 2.0
and 4.0. This is far more difficult to correct for and would basically require a construction of ¥ to all orders in
¢. We intend to look into these matters in the future.

In fig. 4 we have also given, with the curves labelled d, our results as obtained from the lattice effective ham-
iltonian by taking N, =N,=6 and N;=4, to compare with the Monte Carlo data of ref. [2]. In the light of the
above discussion the agreements and disagreements are relatively well understood.

7. Conclusion

In this letter we studied the size of lattice artifacts in the low-lying spectrum of intermediate volume SU(2)
pure gauge theory with the Wilson lattice action. We confirm that indeed a lattice of spatial size 4° is able to
approximate continuum physics at the 10% level. We used the correction for the lattice artifacts to argue the
accuracy of the approximations involved in the analytic approach based on the zero-momentum effective ham-
iltonian. For asymmetric spatial volumes we indicated well-understood difficulties with truncating the effective
hamiltonian. Hopefully this can be corrected for in the near future.
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