
Volume 224, number 4 PHYSICS LETTERS B 6 July 1989 
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We compute analytically the effective hamiltonian (i.e. the logarithm of the transfer matrix ) in the zero-momentum modes on 
a finite lattice. We present the results for the low-lying spectrum obtained from a Rayleigh-Ritz analysis for lattices of spatial sizes 
43 , 63 and oo3, and compare with lattice Monte Carlo results for intermediate volumes. We discuss the implications and limitations 
of the good agreement found. 

I. Introduction 

Everyone who has ever looked into lat t ice per turba t ion  theory must  have realized that  it would almost  be 
miraculous  i f  the Monte  Carlo results were actually to agree with cont inuum results at the relat ively large cou- 
plings employed.  Still, within the l imi ted  range of  varying latt ice sizes being used, one does seem to f ind a 
behaviour  close to scaling. Yet statist ical  and systematic errors are often still quite large, leaving more  than 
enough room for those who wish to remain  sceptical.  Nevertheless,  the last two years have seen considerable 
progress in the accuracy and rel iabi l i ty  of  the pure-gauge spectrum calculat ions in in termedia te  volumes [ 1,2]. 
These results seem to imply  the almost  "p repos te rous"  claim that  a 43 latt ice is able to describe with some 
confidence the con t inuum behaviour  of  the low-lying spectrum in volumes o f  sizes between one and five scalar 
glueballs. 

This was not  only substant ia ted  by Monte  Carlo calculations o f  up to 103 lattices, but  also by the compar ison  
with our con t inuum calculat ions [ 3,4 ] based on Liischer 's effective hami l ton ian  for the ze ro -momentum modes  
[ 5 ]. However ,  the accuracy o f  the Monte  Carlo calculat ions has progressed for this volume range to the point  
where devia t ions  from the analyt ic  results become significant [2 ]. For  the latt ice one can obviously suspect 
mainly  the latt ice art ifacts to be responsible for this deviat ion.  However,  the con t inuum calculat ion does contain 
a so-called adiabat ic  approximat ion ,  which can be considered essential for the reduct ion to the relevant  degrees 
of  f reedom (the ze ro -momentum modes  in this volume range) ,  for which we had to look beyond the Gr ibov  
horizon [6] .  A considerable  effort was made  on pinning down the accuracy of  this approximat ion ,  nevertheless 
leaving some room for doubt  [ 3 ]. 

Since our  me thod  of  looking beyond the Gr ibov  horizon (i.e. having different  coordinate  patches in configu- 
rat ion space with a "p resc r ip t ion"  o f  glueing these patches together)  is in tended to be appl ied  to more  general 
and  complex cases, we wish to give some weight to demons t ra t ing  the viabi l i ty  o f  the method  in a s i tuat ion 
which is under  relat ively accurate control.  Rather  than spending more effort on calculating the theoret ical  error  
due to the non-adiaba t ic  behaviour ,  which we suspect not to lead to more  insight in the dynamics  and physics 
involved (al though it would lead to a more  rigorous formula t ion  of  the "pa t ch ing" ) ,  we decided on the easier, 
more exper imenta l  route o f  calculating analyt ical ly the effect of  the finite latt ice size on the low-lying spectrum. 
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In demonstrating the close agreement of the thus corrected data, we indirectly demonstrate the (expected, but 
unproven) accuracy of the approximations involved. As a bonus, we remove the mystery of why lattice Monte 
Carlo (with Wilson's original action [7] ) works so well for the domain considered. We wish to emphasize, 
however, that we do not claim to have demonstrated the same miracles to occur for SU (3), or in larger volumes. 

This letter is intended to outline roughly the main points of the calculations and to give the most important 
results. Details and a more extensive discussion will be published elsewhere. 

2. From lattice to effective action 

We start with Wilson's action [ 7 ] for a lattice of dimensions No × N~ × N2 × N3 with periodic boundary 
conditions 

S=  1 ~ Tr(1 - Ux,x+o Ux+o,x+O+o Ux+o,x+~+oUx,x+o)* * , ( I ) 
go l,,v,x 

and split the gauge field in the spatially constant "background field" and the non-zero momentum "quantum 
fields": 

Ux.x+;,=exp[ic~,(t)/Nu] exp[ iqu (x ) /Nu]  = U~°)(t)(Jx,z+z. (2) 

We fix the gauge, similarly to what was done in the continuum [ 3 ], with a non-local "background field" gauge 
fixing 

qu ( x - f i )  - U~°)( t)qu (x )  U~ °>* ( t) = O . (3)  
×,It 

For a readable account of lattice perturbation theory we refer to ref. [ 8 ]. The lattice background field calculation 
to which our approach has some resemblance can be found in ref. [ 9 ]. 

As in the continuum, one next integrates out the non-zero momentum quantum modes to be left with an 
effective lagrangian in the zero-momentum modes. We have done this calculation explicitly to one-loop order 
and to the same order in the background fields c~ (Co-- 0 ) as in the continuum, taking No to infinity but otherwise 
having arbitrary spatial size for the lattice (later on we specialize to the cubic case N~ = N 2 = N 3 = N  and the 
asymmetric case Nl = N2 ~ N3 ). 

As compared to the continuum, there are four additional complications in evaluating the effective lagrangian 
from the lattice action. First, instead of the infinite continuum momentum sums, we have finite lattice momen- 
tum sums, where the lattice momenta are defined by the Fourier decomposition of the fields: 

q(~) (x+fJ)  =exp(2~in, /N~)q~u")(x)  (4) /z 

with n~ restricted to the Brillouin zone (i.e. n ,=0 ,  1, 2,..., N , -  1 ). In the time direction we want the lattice to 
extend to infinity, so one of the sums will actually be infinite (see below). Second, the tree-level action is non- 
polynomial. Likewise, the part of the action quadratic in the quantum fields has a more complicated structure 
than in the continuum (see ref. [9] ). Third, the effective action is still discrete in time. Its path integral repre- 
sents the trace of the transfer matrix to the power No and the logarithm of this transfer matrix is what we want 
to extract, giving us the lattice effective hamiltonian for the zero-momentum modes. Finally the kinetic term is 
that of SU(2) (or the standard kinetic term on $3). 

Let us discuss the relevant "tricks" of working our way around each difficulty. The finite momentum sums 
can hardly be a problem. In a sence it is a blessing to be able to work for a change in a rigorous context (on a 
f ini te lattice ). The interest is ultimately of course in the scaling limit of all N u--, ~ ,  but for the comparison with 
the actual Monte Carlo results we do have only a f ini te  number of degrees of freedom. As a little thought will 
reveal, all the infinite no sums at the one-loop level can be computed in terms of the following heat kernel: 
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1 N 
f s ( t )=  N~=I= e x p { - 4 s s i n 2 [ l r ( n + t ) / N ] } =  k~z • exp(--2s--2;rikt)Iuk(2s) , (5) 

where the latter expression follows from a simple Poisson resummation (I~ is the modified Bessel function of 
order v [ 10 ] ). The one-loop "integral" now consists of a sum over the (spatial) Brillouin zone (excluding the 
origin) of the expression 

oo 

- exp(-sco2)fs(0)=½g2(co)+ ~ l n { 1 - e x p [ - N l 2 ( c o ) ] } =  In oeXp[-N(n+½)g2(co)]  , (6) 
o 

with g2 (o9) the "effective frequency" 

12(co) =2a  sinh( ½co), (7) 

where co is a function of n~, N~ and c~. This of course goes back to Feynman [ 11 ] and is nothing but the exact 
solvability of the harmonic oscillator path integral with a finite step size. 

For an abelian zero-momentum background field this dependence of o9 on ci "collapses" to a very simple 
expression and leads to the so-called vacuum-valley effective potential [ 3,12 ] (c~ = Ci~r 3 / 2 ) 

IT"~(C; N) =4  ~ a s i n h [ N / ~ "  2127rn~-C~'~7 ,,=, i= s in l t  ~ ..]_j, (8) 

which (for the cubic case) has the same properties as its well-studied scaling limit [ 12 ] 

pie(C) 4 sinZ(n.CI2) 
- n T L . ~ _ o  (n2) z (9)  

By studying the deviation of L 17"Q (C) from NIT"~ (C; N), one can already get a decent impression for what values 
of N the lattice results might be close to the continuum. 

3. The "flow" of the effective action 

The remainder of the calculation is an order of magnitude more complicated than in the continuum, but tricks 
that are partly special to SU (2), allowed us to do the full calculation by hand. Needless to say that an indepen- 
dent check is not a luxury, for which we used the new symbolic manipulation programme FORM [ 13 ]. The 
final result looks much like in the continuum: 

S e f f ( C ) =  ~t (kFI=lNk)[2~i (~oo+6~i)(N') Tr[1-U'°,(t+l,U'°)*(t,] 
+ ~ Tr[ 1 - U! °) (t)  U} °) ( t)  U[°)*(t) U}°)*(t) ] + V~(ci(t); N)  + VT(C,(t); N)  + .... (10) 

where the vacuum-valley and transverse potentials (respectively V~ and liT) are given by 

g~(c;N)=V~(r;N)-4asinh(~/i~__lsin2[rJ(2Ni)] ) 
- N~ ,~= +7~ ' ) (N)r4+y~ i ) (N)r6]+E Y~iJ)(N)r2ir2+ E Y~iJ)(N)r2r4+y6(N) r2+ . . . .  

i>j i~ j  i= 1 ( 11 ) 
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1 ( ~  l&~ iJ ) (N)F2+ ~ a ~ o k ) ( N ) r ~ F 2 +  ~ a ~ i ~ ) ( N ) r 2 F 2 + a , ( N ) d e t 2 c + . . . )  (11 c o n t ' d )  VT ( C; N )  = -~] 
(0) 

with  the cu rva tu re  F ~  a n d  the radia l  coord ina te  ri given by 

a _  b d r ~ = 2 T r ( c ~ ) .  (12 )  F o - - ~ , a b d C i  Cj , 

For  later  purposes  we t rea ted the mos t  general  case, bu t  we will be  most ly  in teres ted  in  the cubic  s i tua t ion  
N =  NI = N2 = N3, for which  all coefficients  are i n d e p e n d e n t  o f  the coord ina te  index.  Fig. 1 gives the rat io o f  each 
coefficient  wi th  its c o n t i n u u m  va lue  as quo ted  in  table 1 ( this  corrects a thus  far unde tec ted  sign error  in  or3; it  
is now indeed  g iven by  eq. (2.17 ) o f  ref. [ 3 ] ). In  all cases except for oq and  0~2, these c o n t i n u u m  values  are the 
respect ive scaling l imi ts  o f  og i ( N )  a n d  y~ (N) .  

For  &~ and  &2 the r e n o rma l i za t i o n  group dictates  the fol lowing behav iou r  to one- loop order: 

11 I1 
& , ( N ) = -  I ~ 5 ~ 2 1 n ( N ) + ~ I ( N ) ,  d / 2 ( N ) = - -  1 2 7 r 2 1 n ( N ) + ~ z ( N ) ,  ( 13 )  

where ~],2 (N)  have  f in i te  scaling l imits .  This  is o f  course such that  the r enormal i zed  flow of  the effective ac t ion  
to one- loop order  is def ined  by keeping 1 / g 2  = 1/g2o - ( 11 / 127~ 2)ln (N)  fixed, where  ga is the lat t ice r enormal -  
ized coupling.  Let us r e m i n d  the reader  how ~1,2 (oo) are related to a],2 ob t a ined  f rom the c o n t i n u u m  calcula- 

N 
32 161210 8 6 5 /* 

5 I I  I I I I I I I 

~l~ I 

o ~ o ~ 
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¢,,,- i i  3 
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-5 ~ - 5  
0 0.01 0.02 0.03 0.0t~ 0.05 0.06 0.07 

Fig. 1. The ratio of the coefficients of the effective action, eq. 
(10), as a function of N, with their value in the continuum. The 
lines are drawn to guide the eye and I / N  2 is plotted on a linear 
scale to indicate the way the scaling limit is reached as a function 
of N. 

Table 1 
Coefficients for the continuum effective hamiltonian, eq. (10). 

yl= --0.30104661 a l =  2.1810429X 10 -2 
y2 = -- 1.4488847X 10 - 3  0t2= 7.5714590× 10 -2 
ys= 1.2790086×10 -2 OrS= 1.1130266×10 -4 
Y4= 4.9676959× 10 -s a4 =-2.1475176X 10-4 
ys= --5.5172502 X 10 -3 Ors= -- 1.2775652× 10 -3 
y6 = -- 1.2423581 X 10 -3 
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tion in the minimal  subtraction scheme [9,14 ]. One has (by definit ion) to one-loop order 

1 11 
g2 -- - 12/t2 l n ( aAt )  , (14) 

where a is the lattice spacing and AL the lattice scale parameter .  Therefore one has 

1 11 11 
g~ 121~ 21n(N)+dq'2(N)=- 12zt21n(aNAL)+d~l,2(N) 

11 LA 11 1 
- -  l ~ 2 1 n (  MS) + c~t .2(N)-  1---j77n21n(AL/AMs)-- g2(L)  +oq.2 , (15)  

where L=aN is the physical size of  the volume, g(L) is the renormalized coupling at the scale L for minimal  
subtraction and A MS is its scale parameter .  Eq. ( 15 ) confirms independently f rom oq - 8~ (oo) and 012 - ~2 (oo) 
to a high accuracy the result fOrAL/AMs [ 9,14 ] which is an important  consistency check. In fig. 1 we have plotted 

11 ( A L )  (16)  
o q , 2 ( N ) = ~ l , 2 ( m ) -  1-~21n ~ , 

with ( 11/127t 2) ln(AL/AMs) = --0.1866792 [9].  
Next we discuss the tree-level action, where both the kinetic and the potential  parts differ f rom the cont inuum 

result. These can be considerably simplified for SU(2) ,  by using the expression U} °) =cos(ri/2N,) + i  c~aa sin ( r J  
2Ni)/ri, which gives 

sin 2 (r , /2Ni)  sin 2 (ri /2Nj) 
Tr(1-U!°'U)°'U!°)*U}°'*)= ~ r]r~ F2" (17) 

This gives an impor tant  simplification for the Rayleigh-Ritz  analysis of  the effective hamiltonian.  The kinetic 
te rm will be discussed after we have dealt with the issue of  discrete time. 

4. The effective hami l tonian  

There is an elegant way of  incorporating the discrete t ime when one realizes that the path integral is given by 
[8,11] 

~ = T r [  ( e - % - v )  no] = T r ( j n o ) ,  (18) 

where Y is the transfer matrix,  and the trace is taken over  a complete set of  quantum states. Here K is the 
[SU (2)  or standard S 3 ] kinetic and V the potential  term. The masses obtained from lattice Monte  Carlo calcu- 
lations, in the ideal situation [ 4 ], are the logari thm of  the eigenvalues of  the transfer matrix. Equivalently they 
are the eigenvalues of  the effective hamiltonian: 

He~ = In [ exp ( - ½ K) exp ( - V) exp ( - ½ K) ] . ( 19 ) 

This choice is to ensure that  the effective hamil tonian is hermitian.  An alternative choice would have been 
In [exp ( - ½ V)exp ( - K )  exp ( - ½ V) ], but we leave it to the reader to verify that this is related to eq. ( 19 ) by a 
unitary t ransformation,  and it has therefore the same spectrum. It is also some fun to play with the harmonic  
oscillator, for which Herr is again harmonic,  but with ~o replaced by the effective frequency £2(co), see eq. (7) .  
F rom eq. (10)  we see that  K and V are proport ional  to 1 / N  and NHerf will be a power series in 1 / N  2, which we 
computed  (both by hand and with the algebraic manipulat ion p rogramme F O R M  [ 13 ] ) to eighth order in the 
background field c and to second order in 1 / N  2. This generates, for example, terms quartic in the curvature, but 
details will be postponed to the long write-up of  this work. 
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Finally, the kinetic term in the hamiltonian can be converted to that of flat three space by a rescaling of the 
wave function: 

1 0 0 N'f -2 _2"~ r i 
-- sin2(rJ2N,) Or, sin2(ri/2N*) ~ + 4sin2(ri/2Ni) L, ) sin(ri/2Ni) ~ 

ri [ 0 2 ( ( r i / i N i )  2 ) L 2  3 1 
- sin(ri/2N~) - Oc~ - - 7  + \sinE(r,/2N,) - 1 r2 4 ~  2 g-'. (20) 

This again leads to only a simple correction in the way we implement the Rayleigh-Ritz analysis for the effective 
hamiltonian [ 3 ]. But it is important for the issues concerning the non-perturbative part incorporated in our 
analysis. As was discussed at great length for the continuum [ 3 ], a discussion which carries over directly to the 
lattice, there are coordinate singularities at ri= 2re, related to the Gribov horizon [6] and signalled by the conic 
singularity in the vacuum-valley effective potential. This problem was resolved by employing an adiabatic ap- 
proximation, which together with the symmetries of the effective hamiltonian lead to implementing boundary 
conditions on the wave function at r~=zt. We restrict ourselves to the positive parity sector for which these 
boundary conditions are by now well established [ 3,4,15 ]. By the conversion of the SU (2) metric to the flat 
metric these boundary conditions are identical to those used for the continuum [ 3 ]. In conclusion, the effective 
hamiltonian as obtained from the transfer matrix can be transformed to be exactly of the same form as in the 
continuum, except that its coefficients depend on the lattice size through Ni and that quite a few additional, and 
for small N, relevant, eighth-order terms are generated. In the full analysis we have also expanded V~(c; N)  to 
eighth order in c, but as in the continuum, their effect remains small for cubic volumes (this situation will 
dramatically differ in asymmetric volumes as we will see further on). 

5. Comparison with Monte Carlo results 

In fig. 2 we compare the Monte Carlo data of refs. [ 1,2 ] with our results obtained from the effective hamil- 
tonian, using a Rayleigh-Ritz calculation [ 3 ]. Note the highly blown-up scale. Horizontally we plot the scale- 
independent quantity ZE+ =NmE+ and vertically the ratio of the square root of the string tension with the E + 
mass. The full lines give the results from Heff as described above for lattices with spatial sizes 4 3, 6 3 and oo 3, 
where N = ~  is equivalent to the continuum. We also have results for 83, which lie in between the N =  6 and 
N =  ~ curves,but were not drawn to keep the graphs legible. The dashed lines corresponds to incorporating the 
two-loop correction to the vacuum-valley effective potential which for N =  ~ was described in ref. [ 3 ] (the 
corresponding curve in fig. 2 corrects the earlier mentioned sign-error in o~ 3 ). For the finite lattice the equivalent 
two-loop analysis is complicated, to put it mildly and will be considered in the future. Instead, we have used the 
continuum expression for this two-loop correction, and expect that the error thus made should not be more than 
25% of the correction due to this two-loop contribution (therefore being smaller than 0.5-1% in the final result). 

We see that the agreement is excellent, except for the 83 data point of ref. [ 2 ] at ZE+ = 3.1, r =  2.7. In table 3a 
of ref. [ 2 ] this point was labelled as having a "not so good" asymptotic estimate for the string tension. Never- 
theless, we included the data point to avoid personal bias. Instead we imposed on the data ofref. [ 2 ] the rigorous 
cut that No should be bigger than or equal to 64. The reason is that it was clearly demonstrated in ref. [ 2 ] that 
data with a shorter time extent suffer from finite temperature effects and mixing with excited states. The data 
of ref. [ 1 ], which was obtained using the "fuzzing" procedure, should be relatively free from these unwanted 
contaminations. Where r =  4/g  g and lattice size agree, the two groups have the same results (for the data point 
at ZE+ = 3.65, even the blown-up scale cannot resolve the difference), except for the scalar A ~- mass at r =  3.0, 
L = 4 (ZE+ = 1.7 ). We believe that the evidence is such that at smaller volumes the scalar glueball masses of  ref. 
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Fig. 2. Comparison of the Monte Carlo results ( a from ref. [2] and b from ref. [ 1 ] ) with the hamiltonian results. The full curves give 
for a 4 3, 63 and 003 spatial volume the results from the effective hamiltonian (for 83 the curve lies midway between those for N=6 and 
N= oo ). The dashed curves include the continuum two-loop correction. Horizontally is plotted ze+ = NmE+ and vertically the mass ratio 
x~/rnE--, where x is the finite volume string tension, i.e. the energy of one unit of electric flux divided by N. 
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Fig. 3. As for fig. 2, but now for the mass ratio mat/mE+. Here the dashed curves would almost coincide with the full curves and are 
consequently not drawn. 

[ 2] are  still o v e r e s t i m a t e d  by up  to 10%, i f  the  t i m e  ex ten t  is no t  t aken  large enough.  Th is  should  exp la in  any 
r e m a i n i n g  d i sc repanc ies  v is ib le  in fig. 3 for  the  mass  ra t io  mat/mE+. N o t e  the  da ta  po in t  wi th  the  smal les t  va lue  

for  ZE+ was s a m p l e d  for  f l=  4.5 and  No = 256 (which  is qu i te  an  impres s ive  a c h i e v e m e n t )  and  is the re fore  ex- 
pec ted  to be  less a f fec ted  by these  c o n t a m i n a t i o n s .  Final ly ,  table  2 collects  add i t iona l  i n t e r m e d i a t e  v o l u m e  re- 

sults f r o m  the  T~-] and  the  T~- states cons ide red  in ref. [ 1 ]. Also here  the  a g r e e m e n t  is exce l len t , tak ing  into  
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Table 2 
Comparison of the Monte Carlo results of ref. [ 1 ] with our results from the effective hamiltonian for the glueball state T~- and the state 
T+~ which has two units of electric flux. The * for the hamiltonian results indicate the use of the two-loop contribution discussed in the 
text. The value ofz,~ r was used as input for the hamiltonian calculation. 

R Monte Carlo [ 1 ] Hamiltonian mglmAr~ 

fl N3XNo ZA~- ma/mAe 43 ~r43 63 ,63 ~3 ,oo3 

T+l 3.0 43)<99 2 .04  0.65+0.02 0.66 0.65 0.61 0.60 0.60 0.58 
2.4 43)<32 3.84 0.53+0.01 0.54 0.53 0.52 0.51 0.51 0.50 

T~" 3.0 43)<99 2 .04  1.59+0.03 1.58 1.60 1.67 1.69 1.70 1.73 
2.4 43)<32 3 .84  1.67+0.06 1.66 1.68 1.70 1.72 1.71 1.73 
2.5 63)<32 4.20 1.64+0.05 1.67 1.68 1.70 1.71 1.71 1.73 
2.4 63)<32 5.28 1.63+0.04 1.68 1.69 1.70 1.71 1.71 1.72 

account that  the effective hami l ton ian  is expected to break  down for z >  5, or  even earl ier  for heavier  states 
[3,4,151. 

The main  reason we embarked  on this project  (which got slightly out  o f  hand)  was to unders tand  why the 
value o f  ZE + where tunneling sets in as found in the Monte  Carlo data  [ 2 ] (i.e. where the lines o f  fig. 2 cross the 
hor izonta l  axis a round  ZE+ = 1 ) was 10% off  from our  predic t ion  [ 31. However,  in this region (small  values for 
g)  our  methods,  including the adiabat ic  approximat ion ,  should be more  accurate.  We believe we have now 
demons t ra ted  indirect ly that  they are. We could not  have done it wi thout  the Monte  Carlo results and  this is 
maybe a good place to thank all of  those involved for spending some o f  their  efforts in probing the in termedia te  
volume regime more accurately. We have explained in the introduct ion why this is not a purely academic exercise. 

6. Problems in asymmetric volumes 

We end this let ter  with a discussion of  some naively unexpected but  nevertheless wel l -unders tood problems 
with calculating the low-lying spectrum on an asymmetr ic  lattice. This was in t roduced in ref. [ 16 ] to study the 
deconfining transi t ion.  We think the principles out l ined in that  paper  are correct, but  unfor tunately have to 
conclude that  the analytic evidence as p rov ided  there should be reconsidered.  The geometry relevant  for Heff is 
now N~ = N2 = N =  2TN3, where zT is the asymmet ry  pa ramete r  considered in ref. [ 16 ]. In fig. 4 ( the lower curve 
a)  we reproduce  the analytic results for ~ / m  at ZT = 1.5 and the Monte  Carlo results of  ref. [ 2 ] for N1 = N2 = 6, 
Na = 4. Here m is the mass  gap and ~ct is the string tension for electric flux in the th i rd  (shor t )  direction.  Thei r  
curve coincides with what  we phrased as results coming from the " m i n i m a l  hami l ton ian"  [ 3 ], which takes no 
two-loop and eighth-order  terms into account and puts  a3 = a4 = a5 = 0. 

For  the cubic geometry,  correct ions due to the higher order  contr ibut ions  are at most  3%, but  already for the 
mi ld  asymmet ry  o f z x =  1.5, including these higher order  terms has a d ramat ic  effect, as can be seen in fig. 4. The 
curves labelled by b include the effect of  the s ixth-order  terms in the transverse potential ,  whereas the curves 
labelled by c include on top of  that  the e ighth-order  contr ibut ion  coming from the vacuum-val ley effective po- 
tential.  One of  the main  reasons for the sensi t ivi ty o f  the spectrum on the higher order  terms is that  the po lynom-  
ial approx imat ion  for the vacuum-val ley  potent ia l  is bad  along the r3 axis. The potent ia l  in this d i rect ion is 
mainly  responsible for the string tension in the short  th i rd  direction.  To test this idea, we have also given the 
(analyt ic  and  Monte  Carlo [ 2 ] ) results for the string tension in the other  directions,  which is denoted  by xs. We 
see that  (at  least in larger vo lumes)  the sensi t ivi ty is much less. 

Even including the eighth-order  terms is far from sufficient to approximate  the effective potent ia l  accurately 
(our  p rogramme would allow us to go up to twelfth order  without  much diff icul ty) .  As an example we give the 
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Fig. 4. Various results for the spectrum in an asymmetric volume 
with asymmetry zr = 1.5. The Monte Carlo data [ 2 ] are for a lat- 
tice of spatial size 6 X 6 X 4 and the curves d are results from the 
effective lattice hamiltonian with the same size. Curves a, b and 
c are results from the continuum effective hamiltonian with an 
asymmetry of 1.5, where a corresponds to the truncation of the 
vacuum-valley potential to sixth and the transverse potential to 
fourth order, b includes the sixth-order terms of the transverse 
potential and c on top of that incorporates the eighth-order terms 
of the vacuum-valley potential. The upper part of the figure and 
the square data points correspond to ~ / m ,  the lower part of 
the figure and the circular data points correspond to x/~t/m, 
where x s is the string tension in the long and tq the string tension 
in the short direction. Horizontally is plotted z=N3m. 

reader the following si tuation at zT = 2 to play with. With techniques identical to those employed in the cubic 
case [ 12] one can show that the following expansion of the effective potential is very accurate: 

L~ l?~(r~ = r 2 = 0 ) -  2r3(2n-r3) + 16 ~ a, s i n 2 ( l n r 3 ) ,  (21) 
7[ 7E n = l  

with a~ =0.6156595,  a2=6.763187X 10 -3, a3= 1.467451 X 10 -4, a4=4.012186X 10 -6 and the convergence is 
determined by the general estimate a ,  < (5~z2/2n)exp ( - n n ) .  From this expression one easily deduces the bad 
convergence of the Taylor expansion up to eighth order (for r 3 < 7[). One can show that the mismatch grows 
roughly linearly with the asymmetry. Considering the bad behaviour  for the still small value zT= 1.5, this does 
not promise much good for the study of the deconfining transi t ion based on these calculations. In principle, 
since one can easily construct rapidly converging sums for the vacuum-valley effective potential, valid for a 
much larger range of asymmetries, it is likely that one can correct for part of the above problem relatively easy. 
It would be more alarming if the expansion of the transverse potential Vv were to be badly converging. There 
are signs for this to occur, since a3 increases by respectively the factors 6, 11 and 47 for the asymmetries 1.5, 2.0 
and 4.0. This is far more difficult to correct for and would basically require a construction of VT to all orders in 
c. We intend to look into these matters in the future. 

In fig. 4 we have also given, with the curves labelled d, our results as obtained from the lattice effective ham- 
i l tonian by taking N~ = Nz = 6 and N3 = 4, to compare with the Monte Carlo data of ref. [ 2]. In the light of the 
above discussion the agreements and disagreements are relatively well understood. 

7. Conclusion 

In this letter we studied the size of lattice artifacts in the low-lying spectrum of intermediate volume SU (2) 
pure gauge theory with the Wilson lattice action. We confirm that indeed a lattice of spatial size 43 is able to 
approximate con t inuum physics at the 10% level. We used the correction for the lattice artifacts to argue the 
accuracy of the approximations involved in the analytic approach based on the zero-momentum effective ham- 
iltonian. For asymmetric spatial volumes we indicated well-understood difficulties with truncating the effective 
hamil tonian.  Hopefully this can be corrected for in the near future. 
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