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This review is in two parts; it presents the status of the spectrum for the low-lying glueballs and the ('t Hooft) 
string tension in pure gauge theory. Part I compares numerical simulations of SU(2) lattice gauge theory with 
analytic (continuum) calculations in intermediate volumes. In particular it deals with the issues surrounding the 
7.~ + and E + glueballs. It also discusses a new zero-momentum effective Lagrangian, the analytic calculations 
for asymmetric volumes in relation with the deconfining temperature and the recent results for twisted boundary 
conditions. Part II outlines problems facing numerical simulations, which had brought progress to a standstill. 
It reviews methods which are aimed at mitigating these problems. Their implementation has recently yielded a 
wealth of results that are, by and large, quite consistent. Finally, this part tabulates "world averages" for the 
scalar and tensor glueballs, as determined in numerical simulations of pure lattice gauge theory. 
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C O M P A R I S O N  O F  M O N T E  C A R L O  A N D  
A N A L Y T I C  R E S U L T S  F O R  SU(2 )  

1. INTRODUCTION 
In Part I of this review we will discuss the compari- 

son between analytic and Monte Carlo results in inter- 
mediate volumes for SU(2) gauge theory. Part II will 

concentrate on the Monte Carlo method, in particular 
the recent progress for finding operators with a large 
overlap with the glueball wave functions. 

l-he outline of Part I is as follows. We will first 
give the Monte Carlo data for SU(2) pure gauge theory 
obtained since last year's lattice conference at Seillac. I 
Michael, Tickle and Teper 2 found the mass for the 'I~ + 
glueball in intermediate volumes to disagree with last 
year's analytic prediction. 3 Vohwinkel 4 showed that this 
discrepancy could be resolved by a change in associ- 
ating electric flux quantum numbers to the '1'2 + state. 
We discuss the present status of these issues. Next we 
say a few things about an effective Lagrangian used 
by Kripfganz and Michael 5 to calculate the interme- 
diate volume low lying spectrum. Then we move on 
to discuss the analytic calculation of Berg, Vohwinkel 

and Korthals-Altes 6 in asymmetric boxes, aimed at un- 

derstanding the deconfining transition. We end Part I 
with a comparison of preliminary Monte Carlo data by 
Stephenson and leper 7 for the spectrum in the presence 
of twisted boundary conditions, with the recent analytic 
results of Daniel, Gonzalez-Arroyo, Korthals-Altes and 
S6derberg. 8 

2. 7~ + OR NOT T2 + AND THE TALE OF THE SPEC- 
TRUM 

In fig. i we collect all lattice Monte Carlo data for 

the low-lying positive parity states in SU(2), obtained 
since the lattice conference of Seillac. I We plot the 

mass ratios with the scalarglueballmassmA+ ~ asafunc- 

tion of the Lfischer scale parameter 9 Za,+ : rnn+ • L, 
where L is the size of the cubic volume. Since the vol- 
umes are still finite the cubic symmetry is relevant. We 
thus classify the states by the irreducible representa- 
tions of the cubic group, which are tabulated in Part II. 
It is important to note that all quantities in fig. I are 

dimensionless, which is necessary for comparing results 
from different regularization schemes. In this way we 
can compare lattice Monte Carlo and analytic results, 
based on a continuum calculation in finite volumes. 3 
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The data originates from the following sources: 
Michael, Tickle and Teper 2 performed an impressive 
analysis of al l  representations in both intermediate and 
large volumes. This breakthrough in scope and extent 
of the pure glue lattice Monte Carlo analysis is mainly 
due to the fuzzing procedure, reviewed in Part II, sect. 3. 
The open circles represent their ~I~ + data, the closed cir- 
cles the E + and the points the v /K  data (the latter two 

at the same value of ZA+ as the ~r~+ data). The finite 

volume "string tension" K is the energy of 't Hooft's 
electric flux 10 per unit length. The smallest z (z = ].6) 
data, as well as the crossed data points, were presented 
elsewhere 5 as an update of the earlier results. 2 The 
remainder of the data comes from a universality anal- 
ysis, using different actions. The squares and triangles 
are data from Billoire, Decker and Henzi, ] I  using a 

mixed fundamental/adjoint action, whereas the other 
data (mainly at larger z) originate from Michael and 
Teper ]2 using various actions. (We did not plot the re- 
sult coming from the fundamental action at 13 = 2.2.) 

For E +, A + and K at intermediate volumes, these 
data confirm the pioneering results of Berg, Billoire 
and Vohwinkel. 13,14,15 Fig. i also confirms last year's 
result 10'17,18 that the mass of the E ÷ increases by a 

factor 1.5 when going from z -- 5 to z = ]0. We 
now see that this joins up with the :/~+ at larger z to 
form the tensor glueball, apparantly restoring rotational 
invariance in these larger volumes. Note that within 

the errors the tensor glueball mass is the multiplicity 

weighted average mass of the E + and 7~ ÷ states at 

z ~ 5. It is clear, however, that we need better statis- 
tics. 

We will now discuss the comparison with the an- 
alytic results 3,4 indicated in fig. i by the solid lines 
not extending beyond z ~ 6, where we expect the 
approximations to break down. 3,4,19 For z < 0.8 we 

have plotted the perturbative prediction by Li~scher and 
MLinster 20 for E + and ~+ (which at the scale of fig. 1 
are degenerate). It is perhaps worthwhile to say a few 
words about the region around z ~ I. For z < 1 the 
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Figure 1: The SU(2) lattice Monte Carlo data 2'11'12 since Seillac for the mass ratios V/K-/m%+, m r + / m a +  ' , 

m .g+ /mA+ ' and m~+/rn, A+ as a function of zA,+ = rn, A+ • L. The solid curves give the analytic predictions 3'4'20 

and the dashed curves give the Monte Carlo results obtained from the effective Lagrangian. 5 
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electric flux energies go to zero and the nonzero tem- 
perature effects, to be discussed in Part II, become im- 
portant. These effects have been clearly identified by 
Berg and Billoire 21 and form a technical obstacle for 

obtaining accurate data in this region. Also in the an- 
alytic calculations, based on a Rayleigh-Ritz analysis, 
one has difliculty in getting accurate results due to the 
(de-)localization of the wave function, which is why the 
small and intermediate volume analytic results are not 
connected by a solid curve. All this intricate dynam- 
ics occurs in a very small window of z-values. This is 
because ZA+ is almost independent of the physical size 
L (or equivalently the renormalized coupling constant) 
over the range where for example the "string tension" 

K changes from zero to close to its asymptotic value 
(to be precise, L increases by about six orders of mag- 

nitude, going from ZA+ ' = 0 . g t o z A +  = 1.2). 

The glueball state which taught us most this year 

was theT~ + state. In intermediate volumes the Monte 
Carlo data 2 give a mass of about 1.1 times the scalar 
glueball mass. This deviates considerably from the 
prediction 3 EI.T2+/nI.A+ ~ 0.5, indicated by the second 
full curve in fig. I. This discrepancy was puzzling in the 
light of the satisfactory agreement for v/K/m%+ and 
mr;+/mA+. The resolution of this problem was discov- 

ered by Vohwinkel, 4 who noticed that the state origi- 
nally considered as the 7~ + glueball, actually carried two 
units of electric flux. The top solid curve gives his re- 

sult for the genuine 2/~ + glueball and agrees wonderfully 
well with the Monte Carlo data. Even more convincing 
are the crosses, representing the data of the "7~ +'' state 
in the sector of two units of electric flux. They almost 
perfectly coincide with the old analytic prediction. 3 This 
state, labelled by 7'~ was measured in the Monte Carlo 
analysis using appropriate combinations of a Polyakov 
line in the fundamental representation, winding around 
the torus in two directions. 2 

We wish to emphasize that these 7~ + states show 
a rather unexpected "binding" effect; adding two units 
of electric flux to the  7~ + glueball  drast ically decre, ascs 

its mass. This is, however, strictly a finite volume ef- 
fect since at large volumes we expect tnT. ~ ~x v I 2 K L ,  
whereas roT+ is expected to go to a constant. Hence 
for some L these two states will cross. For the rather 
technical details of the appropriate assignment of the 
electric flux quantum numbers in the analytic calcula- 

tion we refer to Vohwinkel 4 and to ref. 19 where the 
negative Parity states are also discussed. 

Needless to say, it would be very useful if the dy- 
namically most interesting region of z = 5 to z -- ]0 
were to be probed in more detail in the near future. 

The payoff will undoubtedly be a better understanding 
of what makes QCD tick nonperturbatively. Further- 
more, who will pick up Berg's challenge 15'22 to find 

the QCD string by computing the ratios of energies 
of electric flux? Also very promising are the calcula- 
tions of the topological susceptibility in intermediate 
volumes. 23 These should be useful guidance for the an- 
alytic attempts along the lines sketched in ref. 3 

3. AN EFFECTIVE LAGRANGIAN 
In this section we discuss an effective Lagrangian for 

the zero-momentum modes, proposed by Kripfganz and 
Michael. 5 It avoids the explicit use of different coordi- 

nate patches in the Hamiltonian formulation by map- 
ping the zero-momentum gauge fields A;(x) = c l / L  = 
c~r~/(2L) onto SU(2) group valued matrices: 

Uj = exp( ie j )  . (3.1) 

In this formulation the coordinate patches are identified 
by the sign of Tr(Uj). Since SU(2) is effectively the 
three-sphere, we can identify these coordinate patches 
as the various hemispheres. 

Let us recall the effective Hamiltonian up to the 
relevant order 

I I~ i  I = - -~  + oq -Oe~ (3.2) 

+ ~ + ~  ,j.~+v~(~). 

Here we have put  L = 1, ~i are small cons tan ts ,  F/} = 

- ~ c ! c ~  and I,}(c) is the  effective potent ia l  

,t ~ s i n 2 ( n . r / 2 )  
~%(~) = ~ . ~ o  (-~)~ ~Irl, (3.3) 

with rl = ~ .  This is the expression in one coordi- 
nate patch, defined by r; _< 7r. Note that Tr(Ui) = 0 
at r i = 71". The other eight coordinate patches are ob- 

tained by reflection in the rl coordinate at rl -- ~r. 
The effective Lagrangian is now given by 

£~.t.t = Ek~ + £FF + £v  , (3.4) 

where the three terms are to correspond to their coun- 
terparts in the effective Hamiltonian. Kripfganz and 
Michael used the following expressions: 5 
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~ k , . =  ( g ~ + o q ) ~ .  Tr({UiU:}~) ,  (3.5) 

} , 

whereas L~v is a polynomial in (Tr(U~)/2 - 1), chosen 
such as to reproduce Vz as accurately as possible. The 
kinetic term is simply proportional to the metric of the 
three-sphere; in ref. 5 a discretized version was used: 

T r ( { & U t }  ~) = l i m - 2 T r ( U ~ ( t ) U : ( l + ~ ) ) / ~ .  (3.1) 
~ o  

Furthermore L~FF is such that it reproduces the term 
?a ::a proportional to l i j l l j  to quartic order in c. 

In fig. I we indicated by the dashed curves the 
Monte Carlo results 5 based on L~df (using the Haar 
measure in the the path integral). It does describe the 
main features of the intermediate volume glueball spec- 
trum and in particular also shows that the 7~ + glue- 
ball is about twice as heavy as the scalar glueball. But 
it deviates, especially at larger z values, considerably 
from the analytic results. The reason is that the ki- 

netic term should be that of flat three-space, the O(c ~) 
terms in L~m;' are nonnegligible, and L:v fails to describe 
~,~ accurately around rl = ~. All these effects become 
important at larger z values, when the wave function 
will be probing the region around rl = ;r. As we de- 
scribed in detail elsewhere, 24 all these deficiencies can 

be easily fixed using a conformal mapping of S '~ to flat 
three-space, giving: 

(;r + iej) 2 (3.8) u j = k j -  : + ~  , 

with kj : :El labellingthe different coordinate patches. 
The following path integral 24 will give the exact equiv- 
alence with the effective Hamiltonian: 

= Ki 
(3.9) 

where dU~ is the Haar measure, 

K~ = (2 + ITr(U~)])/~, (3.10) 

Tr(U, U jU:UJ)  - 2 

and 

,., = ~,,/2 - I T r ( V ) I / v / 2  + [Tr(U~)I . (3.12) 

The advantage of using the SU(2) group variables 
is that the boundary conditions, which had to be im- 
posed in the Hamiltonian approach, are already properly 

incorporated. In technical terms they amount to the 
continuity of the wave function in the vacuum-valley 
coordinates rl, but no further analysis is necessary to de- 
rive boundary conditions at r; = 7r. In the Lagrangian 
formulation the appropriate state is selected by using 
operators with the right quantum numbers. A further 
advantage is that only a minor modification of the ef- 
fective Lagrangian will allow one to include massless 
fermions 5'24 and obtain intermediate volume results for 
the glueball masses for an arbitrary number of quark 
flavours, thus extending earlier small volume perturba- 
tive calculations. 25 A preliminary conclusion is that at 

least for SU(2) the mass ratios are rather insensitive to 
the number of flavours. 

4. THE ASYMMETRIC BOX AND @~ 

In this section we wish to outline the results of Berg, 
Vohwinkel and Korthals-Altes 6 on the spectrum in an 
asymmetric box. That is, the gauge fields now satisfy 

A ( x  + f .  nL) = A ( x )  , (4.1) 

with f describing the asymmetry. Typically we will be 
interested in the case f l j  = 0 for i # j and 

fu = l / z o ,  ./'22 ---- f,~3 ---- I , (4.2) 

with zo the asymmetry parameter considered in ref. 6 
The geometry in the four-dimensional context is that of 
a hypercube Eo x L 2xoo, with 1,o = L/zo.  The fourth 
direction has an infinite extension, since the Hamilto- 
nian formulation wilt give us zero temperature results. 
However, if we calculate, say, the energy of electric 
flux in the Lo direction and apply 't Hooft's duality 
transformation 10 (interchanging the Lo and time direc- 

tion), then we would be calculating a quantity relevant 
to finite temperature gauge theory. 

One can easily calculate the effective Hamiltonian 
in the small volume perturbation [heory (ze fixed, L 
and Lo small), first calculating the effective Lagrangian 
with the background field method 3 in terms of the zero- 
momentum gauge fields Ai : t i l L  and then converting 
back to the Hamiltonian. The result is: 
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[ •  ]- '  02 I I + ~0(z~ ) 
Lo. no:A~o) = -~  042 

+ .SZS + a~ F ~ F ~ . 
~| Z 6 )  , 

This  clearly reduces for zo = 1 to eq. (3.2),  in which 

case c~l ') and ~ii)  are i n dependen t  of i and j ,  due  to the  

cubic symmetry.  (Here and in eq. (3.2) we neglected 

t e rms  to O(cS), which vanish for Fq = 0; they, as well 

as the  small cons t an t s  c~ i) and ~(ij), have been com- 

puted for arbitrary zo in ref. O.) Furthermore, I,~(c; zo) 
can be shown to be of the form: 

4 ~ sin~(n . r / 2 )  2 ~/Ir~'~ c~c'~ 

- ( . z o ) ,  z o  ' 

(4.4) 
where e~ is given in terms of the radial coordinates 

(ri, 01, ¢i) by: 

(e~, <'~, e~) = r / (cos  ¢i cos 01, sin ¢i cos 0;, sin O d / f .  
(4.5) 

These radial parameters play exactly the same role as 
for zo = I, in particular they parametrize the basic 
coordinate patch by rl _< 7r. Also the complete and 
gauge invariant basis of wave functions to be used is 
ezact ly the same as for zo = I, with the same choice 
of boundary conditions at ri = ~. 

This was used by Berg, Vohwinkel and Korthals- 

Altes o to calculate for various values of Zo > l the 

energy of electric flux (E(.q, zo ) )  as a function of .q, 
where 9 in this case is the renormalized coupling con- 
stant in the minimal subtraction scheme at the scale 
i t = I / I , o  = (9. In the sense explained above, (-) 
is the physical temperature. Their results clearly in- 
dicate that zoE(.q, zo) tends to a step function in the 
limit zo -~ o0, with zoE(.q, zo) = 0 for .q < .q,~ and 

z6)E(g,z~.~ ) = oo for g > 9~- Fur thermore ,  there  

seems to be a fixed point at g~ with a finite value for 

lim . . . .  zo E(.q~, z~ ). 
The  mass  gap in the  two-dimensional  Ising model  

shows exactly the same behaviour and the interpretation 
is therefore that (-)~, obtained from solving the equation 
g(@~) = .Cl~, corresponds to the deconfining tempera- 
ture. We refer to Berg's contribution to this conference 

for a further discussion of the results. Despite the in- 
evitable breakdown of the method for z6) too large and 
the fact that higher loop corrections to the two-loop/3- 
funct ion  might  be nonnegl igible  at  g~ ~ 2.25, the  results 

look very convincing and nicely show the interpolation 
between the tunnelling transition at z6) = 1 (around .q 
is 0.Z) and the deconfining transition at z6) = o0.15'26 

5. LET'S TWIST AGAIN 
In this section we will describe the use of twisted 

boundary conditions, I0 causing the presence of mag- 

netic flux. The main motivation for studying twisted 
boundary conditions is that the classical vacua are iso- 
lated due to the twist-induced absence of zero mo- 
mentum modes, making perturbative calculations much 
easier. 2z,28 The finite volume behaviour is possibly 
smoother for some quantities, 28 however, for electric 
flux energies a strong volume dependence (probably 
around 0.7 fm) is unavoidable. 29 Nevertheless, in suf- 

ficiently large volumes one does not expect to observe 
any dependence on the boundary conditions; I0 the large 

volume expansion for the glueball masses 30 and the 
string tension 31 will be independent of the magnetic 

flux (to the order presently known). But since ] fm is 
exactly the distance scale at which confining effects are 
expected to set in, the use of twisted boundary condi- 
tions will be an indispensable additional probe for the 
physics at this scale. 

We will formulate the continuum theory in the 

Hamiltonian approach in a cubic volume of size L with 
the following boundary conditions for the gauge fields: 

A ( x  + Lek) = f ~ A ( x ) O  t • (5.1) 

We have chosen a gauge in which the gauge func- 
tions ~k are constant SU(N) matrices. They satisfy 
't Hooft's consistency conditions, which also give the 

relation to the magnetic flux m E ~ v  

f~l,f~t[~f~ = exp(2~riektjmj/N) . (5.2) 

From now on we only consider SU(2) with m = (I, I, i )  
realized by 

f~k = i~k • (5.3) 

Generalizations to SU(3) (or arbitrary SU(N)) and mag- 
netic flux are easy to obtain. 8 However, the present 
choice has the additional advantage of not breaking the 

cubic group (1 = - ]mod2) .  Consequently, glueball 
states are still classified by the irreducible representa- 
tions of the cubic group. 

In lattice gauge theory one can similarly impose 

twisted boundary conditions on the link variables 32 

and to make contact with the Hamiltonian formalism 
one should choose a time-asymmetric lattice of size 
Nr  x N 3 with N,r >> Ns (in the above equation we sup- ,q, 
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pressed the dependence on the time parameter). The 
boundary condition in the time direction should be cho- 
sen periodic and glueball masses are again measured 
with adjoint Polyakov loops, whereas electric flux en- 

ergies are measured with fundamental Polyakov loops, 
.just as in the case of periodic boundary conditions. 13,14 

However, in order to preserve the gauge invariance, 
the definition of the Polyakov loop has to be slightly 
modified: 33 

Tr Pexp( i  Aj(x  4- se j )ds)~  , (5.5) 

with a similar definition on the  lattice. 

It is not too  hard to see tha t  the boundary 

conditions can be solved by the following Fourier 
expansion:8, 29 

A~(x)  = y~ 
k~:ZZ 3 

A~(k + r~) exp(27ri(k + r~). x/L), 

(s.6) 
with 

r .  = (e~ x m ) / 2 .  (5.7) 

Next one uses the Coulomb gauge OiAi = 0 and ex- 
pands around the classical vacuum A = 0, which in this 

case is isolated with all fluctuations quadratic. There is 

a discrete subgroup of the gauge transformations: 

tC = {l , iol ,  io2, io'a} x { 1 , - 1 }  , (5.8) 

which leaves the gauge and boundary condi t ions  invari- 

ant. The wave functionals are therefore representations 
of /C., and the nontrivial representations carry electric 
flux as defined by 't Hooft. 10 Obviously, the one-particle 
states associated with the creation operator bt(a~ p, 4-) 
belonging to the Fourier mode A~=(p) have nonzero 
electric flux (here 4- stands for the polarization of the 
gauge field, satisfying A~=(p) • p = 0). Actually, it is 

not hard to show that the electric flux vector associated 
to this s ta te  is ea. This is why one can think of  27rr~/L 
as a Poynting vector P (see ref. 8 for details). 

Hence, if we are interested in the zero electric flux 
sector, one needs two-particle states, built from two 
states with opposite (which for SU(2) is equivalent with 
identical) electric flux and are thus of the form: 

bt(~, p, ~)b'(~, q, 6)10), (5.9) 

with e, 6 = 4- the polarizations of the one-particle 
states. These states have total momentum q and en- 
ergy E satisfying: 

Q = 2~(p+ q ) / L ,  E = 2~r(Ip i + l q l ) / L .  (5.10) 

Since the smallest value of IPl is Irol = ~ / 2 ,  the mass 
gap in lowest order is 

m,op = 2~leo × ml /L  = 2~r,/2/L, (5.11) 

which is twice the length of the Poynting vector. This 
Poynting vector also plays an interesting role in how 

the wave functional behaves under translations over L 
in the three coordinate directions. From very general 
arguments one finds: 33 

I ~ ( x  + Ln))  = e x p ( i n .  P l , ) l ~ ( x ) )  , (5.12) 

with P = 7r(e x m ) / L  the Poynting vector if Ik0) has 

magnetic flux m and electric flux e. 
Since the two-particle states are in many respects 

very similar to two-photon states, with three coloured 
species, one easily shows (taking Bose statistics into 
account) that the colourless, zero momentum, first ex- 
cited state is 24-fold degenerate. Let us point out that 

there are nonzero momentum states, which are degen- 

erate with this, thus making the projection of the oper- 
ators on the zero-momentum sector in a lattice Monte 
Carlo analysis mandatory. In ref. 8 it is shown that the 
24-fold degeneracy will in lowest order split according 
to the irreducible representations r of the cubic group, 
leaving a few accidental degeneracies between even/odd 
parity pairs, which will be lifted in higher order. To low- 
est order the masses of these various states are given 
by the parameter 7n: 

127r 2 ' 

where g(L) is the renormalized coupling constant, ob- 
tained by dimensional reduction with minimal subtrac- 
tion at the scale/z-- 1/L. The constants 8 7r are given 
in Table 1. 

In fig. 2 we compare the analytic results with recent 
(preliminary) lattice Monte Carlo data from Stephenson 
and Teper, 7 for Tna~, nIF,÷ and roT2+ at fl =- 2.3 and 
N~,. x N~ = 16 x 4 '~. As one can see, they agree rather 
well. Stephenson and -leper are working on getting bet- 
ter statistics, going to smaller volumes and calculating 
electric flux energies, whereas loop corrections for the 
analytic calculations are underway, which will give us an 
idea of the range of validity of the first order result. 
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Fable 1: The constants 7, as they appear in Madrid 
preprint 8 FTUAM/89-01, January 1989. These differ 
From what was presented at the conference, but fig.2 
remains correct. Note the near even/odd degeneracies. 

irrep r 7, # 

,.|+,A~- -69.06,-68.94 2 
- 3 0 9 3  3 

E + -17.00 2 
T +, 7~- -5.56,-4.94 6 

+ s.14 3 
'r, + 11.o6 3 
,,q 19.18 1 

E +, E-  27.12,27.06 4 

2 . 0  b i ¢ i 

1 6 . . . . . . . . . . . . . . . . . . .  E % q  

~ -  I f .  " . . . . . . . . . . . . . . . . .  L~  

1,0 ! 0 fill 
[] 

OB 

m = lI,1,1] 
I ~ I I I I 

0 . 6 &. S 6 7 8 9 10 12 

zA~ = mA; ' L 

Figure 2: Comparison between lattice Monte Carlo 7 
and analytic 8 results for SU(2) with twisted boundary 
conditions. The dotted curve indicates the anticipated 

large volume behaviour. We indicated the approximate 
corresponding values of L. The shaded boxes give the 
intermediate and large volume results of fig. I as a com- 
parison. 

Let us end this section with a few words on how to 
interpret fig. 2. First, the behaviour of ZA+ as a function 
of L is distictly different from the case with no twist. In 

perturbation theory it is a decreasing function of L, but 
it can do so only for small volumes, because at larger 
volumes the scalar glueball mass will rapidly tend to a 
constant making zA+ grow linearly with L. Hence, at 
some point the curves for the mass ratios will fold over, 
presumably around z%+ = 5. The dotted curve gives 
the anticipated behaviour at larger volumes, merging 
with the large volume results obtained in the untwisted 
case (indicated by the shaded box, labelled E+&~T+). 
At various points along the curves we have indicated 
the approximate corresponding value of L. Second, the 
~/~+ and E + states never split in intermediate volumes 
as much as they did in the periodic case. Thus indeed 
roT+/mE+ is one example of a quantity with a small vol- 
ume dependence in the twisted case, but e.g. mT+/mA+ 
has a volume dependence comparable to that in the pe- 
riodic case. In fig. 2 we have also indicated by the 
shaded boxes around z -- 4, the result for T + and E + 
in the case of periodic boundary conditions. Third, as 
we emphasized before, 29 studying various electric flux 

energies will give us some interesting clues on the dy- 
narnics of the confining region. 

6. CONCLUSION 

Looking back at the last two years one has to con- 
clude that we have gained a lot of understanding on 
the dynamics of pure gauge theories. The impressive 
progress in the lattice Monte Carlo calculations is start- 
ing to give us, even in large volumes, a clear picture of 
the spectrum. It should be a "piece of cake" to fill in 
the conspicuous gap around z ~ 7 in fig. 1. It is also 
gratifying to see that results with twisted boundary con- 
ditions are becoming available. We would like to urge 

that all these tools be used for probing the intricate dy- 

namics at the scale of ] fro, where confining effects are 

expected to set in. From the analytic point there is the 
challenge to go to larger volumes, for which we believe 
it is necessary to include instantons and O dependence. 
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P a r t  I I  
N U M E R I C A L  P R O G R E S S  T O W A R D S  

T H E  C O N T I N U U M  A N D  L A R G E  

V O L U M E  L I M I T S  

1. INTRODUCTION 

At present, analytical methods are not reliable for 
z >6 ,  so one still needs numerical simulations to probe 

the z ---* oo limit. The progress made towards infinite 
z is the subject of this part of the review. Since the 
numerical simulation always has a nonzero lattice spac- 
ing a, this part of the review also details the progress 
made in reaching the l imit a --* 0. In practice, the 
zero-lattice-spacing l imit has been the more daunting 
problem, but methods have been devised, by a number 

of groups, to cope with this problem. Efficient numer- 
ical methods for large volumes also work well in small 
volumes, so this discussion is also relevant to the Monte 
Carlo simulations in the 0 < z _< 5 region, covered in 

Part I. 

The presentation is as follows: After some prelimi- 
naries on notation (sect. 2), the theoretical framework 
for extracting the spectrum from a finite lattice is re- 

viewed in sect. 3. Sect. 3 also discusses the origin of 
noise at finite statistics, the problems of poor signal- 
to-noise ratios in old-fashioned methods, and the new 
methods devised to cope with these problems. Readers 
who are more interested in results than methods will 
find this section painfully boring, but they are urged to 
suffer slightly and to skim (at least) the explanation of 
the problems. Otherwise, the danger of misinterpreting 
the results is very large! A summary of these results 
appears in sect. 4, followed by some remarks on future 

prospects (sect. 5). 

2. NOTATION 

The simulations are performed on ]V~] x NT, hyper- 
cubic lattices with lattice spacing a. In all cases (re 
viewed here) periodic boundary conditions are imposed 
--spacetime is a torus. In physical units, the linear 
size of the spatial volume is L = Nsa, and the max- 
imum time extent is T = /VTa. The fact that ]V:r is 
always finite, in practice, implies that the system is at 
a nonzero physical temperature O --- J/(N-ra) = I /T. 
The infinite-volume, continuum limit is a --* 0 with L 
fixed, followed by L --~ oo. In numerical simulations 

these limits are "attained" by looking for asymptotic 
behaviour in the a-dependence at fixed L and in the 

/,-dependence at fixed a. 
For all a and L the Irans]'er malriz. ~ is well- 

defined: it is the operator which time-translates 
a (three-dimensional) configuration by one timeslice. 
Physical states are eigenstates of Cf: 

~-I,~, r)  -- ~., . I" . ,  r>, (2.1) 

where 'Tn, r is the eigenvalue of "-)-. The eigenvalue offers 
a definition of the energy for arbitrary a and L: 

m,,,(,,, I 0 = ~,-' Iog%,T, (2.2) 

adopting the convention of expressing spectral quan- 

tities in physical units. The quantum number 7~ dis- 
tinguishes excited states within the representation r of 

the symmetry group for the transfer matr ix--or,  equiv- 

alently, the Hamiltonian. For SU(N) gauge theory, this 
group is 

C = 2Z~v. S(T '~) (2.3) 

where S(T S) is the symmetry group of the (continuous 
or discrete, as appropriate) 3-torus. The center sym- 
metry 77~v is associated with the 't Hooft electric-flux 
sector. 20 For N > 3 there is also charge conjugation. 

Saturday morning is the ~l~r0~.9 time to discuss 
group theory, so we shall focus on only a few represen- 
tations. In the zero electric-flux sector, i.e. the glueball 
sector, we shall concentrate on zero 3-momentum, and 
for the nonzero electric-flux sectors we shall concentrate 
on the splitting of these sectors' ground states from 
the ground state of the zero electric-flux sector. These 
splittings are usually referred to as energies of units of 
't Hooft electric flux 3 or as a "torelon mass. ''34 In par- 

ticular, the energy lf t  of the one electric flux sector is 
related to the string tension K by ]0 

/'Jl 
K =  lim - - .  (2.4) 

It is common to refer to E~/I,  as the ('t Hooft) string 
tension, even though the interpretation is only clear-cut 
for large L. 

For finite L and nonzero a the rotation group is 
broken to the symmetry group of a cube--this is then 
the relevant symmetry group for the (zero-momentum) 
glueball states. Table 2 lists the irreducible representa- 
tions, along with their dimensions and the lowest-spin 
representation of the full rotation group. Especially im- 
portant to the large z limit are the If and 7.~ representa- 
tions; these states combine to form the tensor (J = 2) 
glueballs. As we have learned from Part I, the I')-'I~ 
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Table 2: Irreducible representations of the cubic group. 

irrepr dim spin J 
A~ 1 0 
A2 1 3 
E 2 2 
7'~ 3 i 
"I~ 3 2 

mass difference is rather large for z <5 ,  whereas for 

sufficiently large values of z, where rotational invariance 

ought to be restored, the two states should be degen- 
erate. Consequently, one should stress the distinction 
between the two states, until Monte Carlo results indi- 
cate that they are degenerate, in which case the term 
"tensor glueball" is justified. 

Numerical simulations only determine dimensionless 
combinations like aro,,,, or a~K. The lattice spacing is 
varied indirectly by adjusting the bare gauge coupling 
/3. As we've seen already in Part I, it is convenient 
to form dimensionless quantities in which a does not 

appear. These include mass ratios and v/K/to.,  as well 
as the scaling variable z, = Nsarnl,, = Lmi,,,  which 
is the size of the spatial volume in glueball Compton 
wavelengths. The discussion of the numerical results, 
sect. 4, focuses on z = zA,, corresponding to the lowest 
scalar glueball. In terms of these combinations, the 
infinite-volume, continuum limit has been reached when 
all of these ratios are independent of fl and Ns. 

3. METHODOLOGY 

3.1. Transfer matrix and correlation functions 

The masses are determined from correlation func- 
tions 

C , (0  = ( : ~ ; ( 0 :  :~,(0) : ) ,  (3.1) 

where 4~ r is a function of the lattice gauge field with 
support on the timeslice nt: l = nta. Under the sym- 
metry group of the transfer matrix, the d~, transform 
as an r-tensor. The colons indicate that the vacuum 
expectation value has been subtracted out, i.e. C~(l) is 
a connected correlation function. 

In the transfer matrix formulation the correlation 
function is 

C,(t,) = Tr [¢NT-" '  : ¢ ; :  ¢ " '  :~ ' : ]  
Tr[,~_NT ] , (3.2) 

where the trace Tr is taken over all physical states, e.g. 
over all eigenstates of "]-. By inserting complete, or- 
thonormal sets of states, one can show that 

c , ( 0  = 2 

{ e x p ( - m , , , l )  + e x p [ - m , , , ( T  - l ) ] }  

+ Z I(t, pl :¢.: T) 
t,p 

+ E =x 
(t,r)#(n,q) 

exp[--(ml,p 
J 

where 

Z =  1 +  ~ exp( - rn , , ,T) ,  (3.4) 
(n,,)#0 

and 10} denotes the vacuum. Eq. (3.3) is obviously a 
mess, and part of the art of numerical simulations is 
choosing the parameters so that it is possible to extract 
useful information from it. Usually one assumes that 
m T  >> 1 and neglects all but the first sum in eq. (3.3). 
However, it is important to realize that all states con- 
tribute to the second sum, unless they are forbidden 
by the Wigner-Eckhart theorem. If some state has a 
very small energy, then 7' must be huge to suppress 
this contribution. Relevant examples include the elec- 
tric flux energy in a small volume 21 and (approximate) 

Goldstone bosons. Neglecting this term can hamper 
attempts to extract masses of heavier states from the 
/-decay of the correlation function. 

If T is sufficiently large, the first term in eq. (3.3) 
dominates. Then for I and T -  l >> rn~,~ we obtain 

C(t) = A cosh[m,,r(t - ~T)] + B, (3.5) 

with 

1 I(0] :4,,: ]1, r ) l=exp( -~mt , ,T ) .  (3.6) A = 

The mass rnr,,, and possibly the constant /3, which 
compensates for the nonzero temperature effects, are 
then determined from a fit to eq. (3.5). Two state fits 
are also possible. 

The method outlined above is called the "correla- 
tion method." Another method is the "source method," 
which introduces a source into the partition function at 
I = 0. The resulting correlation function is then 
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S,(1) = Tr[~-Nr-"' :~ ; :  ~ , t ~ ]  (3.7) 
Tr[~-~,' 4,] ' 

where @ denotes the source. S,(/.) has an expansion 
similar to eq. (3.3), but the coefficients in the sums 
are no longer positive definite. To analyze all quan- 
tum numbers during one simulation, gl must be in a 
reducible represantation, containing all irreducible rep- 
resentations of interest. A popular choice is the "cold 
wall," which freezes a two-dimensional plane of links to 
the unit element. 

3.2. Finite statistics, fluctuations, and error bars 
A Monte Carlo simulation never reaches infinite 

statistics. For fixed statistics, the statistical errors are 
quantified by the usual (quantum mechanical) disper- 
sion. For the correlation function the variance is 

~=(t) -- ( : ~ * ( 0 : : ¢ ( 0 ) : : ~ * ( 0 ) : : ~ ( 0 : )  - C'~(0.  (3.8) 

In quantum field theory, ~r2(l) can be ultraviolet di- 
vergent, due to the composite operator I : (b(0) : 12. 
Assuming t large enough for clustering, the divergence 
is 

,~(t) ~ <1: ¢~(0): l~> ~ = C~(O) (3.9) 

- - the statistical errors are proportional to C(0)! Thus 
the signal-to noise ratio is 

SIGNAL (J(~) (3.10) 
Nols~ C(0)' 

Eqs. (3.9) and (3.10) merely state the well-known fact 

that the absolute statistical errors are approximately t- 

independent, i.e. the relative statistical errors grow with 

t. Conversely, the syst¢rnalzc errors are greatest for 

smaller t, of. eqs. (3.3) and (3.5). 

3.3. Estimating the signal-to-noise ratio 

To compromise between the systematic and statis- 

tical errors, a useful criterion is to maximize the signal  
to-noise ratio at t > m  -1 ~ a. This can be clone by 

selecting ap, intelligently. A versatile choice of ~ ,  will 

have some variational parameters, which can be tuned 

for optimization. In order to be confident that eq. (3.,6) 

is adequate, one wants to follow the signal at least to 

l ~ m - l .  Otherwise, it is possible that an insidious com- 

bination of excited states and nonzero O effects has 
mimicked the shape of eq. (3.5). 

To lowest order in perturbation theory the correla- 
tion function can be depicted as in fig. 3. It is unwise 
and unnecessary to treat the long-distance part of the 
gluonic time-evolution perturbatively. That part will be 
represented by a kernel defined by 

9C 
Figure 3: Diagrammatic expression for C,(I). 

( :A(U' + k ) A ( ~ r -  k ) : : A ( W  + k ' )A (~ r ' -  k'):/ 

= (2~)~(4~(r + r')lC(tfl~, k'). (3.11) 

(The following analysis suppresses the clutter of indices. 
The full analysis will appear elsewhere. 35) In terms of 

the correlation function is given by 

[ - /o  ~po ~4k d~'  
C(/,) = ~_~/o 2~ (2~p  (2~) ~ ~"0 'x  

~(Polk)K(1½lk , k')~(Polk'), (3.12) 

where ~p arises from and depends on the choice of q#. 
We are interested in the behaviour of this integral for 
a --~ 0. The kernel /C has length-dimension 8, which 
cancels the eight powers of momentum from the k and 
k' integration. For t :/- 0 the oscillatory factor permits 
us to complete the contour at It01 = ~/., and the P0 
integration then picks up contributions from the poles 
in the upper- (lower-) half-plane, for ~ > 0 (l < 0). For 
/, = 0 there is no longer any damping at large ll~l, and 
the integral diverges in the limit a --~ 0; the degree or 
divergence depends on ~p. 

The "first generation" of glueball mass calculations 
employed small Wilson loops, such as the plaquette. 
This corresponds to ~ = [2sin(~ka)/a] 2, which has 
ultraviolet degree of divergence 2. The integral has two 
factors of qa and the diverging [ dPo, whence 

C(I) ~ a.~. (3.13) 
c(o) 

This behaviour is an obstacle to seeing continuum 
physics comparable to critical slowing-down. The prob- 
lem is already apparent in the region 5.7 _< fl < 5.9. Us- 
ing data from a late "first generation" computation, 36 
one finds the signal-to-noise ratio proportional to a s, 
using the string tension to set the scale. The disastrous 
a s arises because local operators couple to long-distance 
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physics as cp ~ k 2. To improve on this, one must resort 
to nonlocal operators. Fortunately, there are (at least) 
four methods which are known to work. Let's see why. 

3.4. Nonlocaloperators 
3.4.1. Adjoint lines 
The first breakthrough came with the suggestion 

of using adjoint Polyakov loops (or Wilson lines). 13 A 
related method uses the product of two fundamental 
lines, displaced by a distance of ordera. Here one has 
(], = tr[(fr/t-dx)~], where the path l '  winds once around 
the torus. Consequently, ~o does not introducek 2 sup- 
pression in the infrared, and 

CV) 
~ ~. (3.14) 

c(0)  

This method is straightforward to implement, and it 
has been very successful in small volumes. However, it 
seems plausible that this method will no longer outper- 
form the others in the large z limit. 

3.4.2. Fuzzy loops 
Teper's fuzzing procedure 16 is inspired by the 

Monte Carlo renormalization group. In fact the first 
papers referred to it as "blocking," though the term 
"fuzzing" has now been adopted to avoid confusion. 
I-he procedure is depicted in fig. 4. The blocking is 
performed only in the spacelike directions, because un- 
ambiguous identification of the masses relies, through 
the transfer matrix, on operators with support on one 
timeslice; cf. sect. 2. In principle the cv i are tunable, 
though in practice it seems adequate to choose cv~ = c~, 
such that the fuzzy link is in SU(N). A nice feature of 
this technique is that there are 2 's times fewer fuzzy 
links than original links. Moreover, after iteration, a 
simple loop of very fuzzy links is a complicated linear 
combination of loops of original links. Consequently, 
elementary loops of fuzzy links are quite nonlocal when 
expressed in terms of the original links. 

To see how fuzzing works, model it by 

1 f 

Afuzzy - vf J d'sxA(z)f(x)' (3.15) 

with v I = f dSxf(x).  Then the Fourier transform of the 
fuzzing-function f enters eq. (3.12), and if f(k) falls 
off fast enough for large k, the integration converges 
(except perhaps f dPo) for all t and again one has 

c:(0 
C(0) ~ a, (3.16) 

v c g  
g v # 4  

+o Z° I 
Figure 4: Depiction of Teper's algorithm for fuzzy links. 

g v c g  
v g 4  

Figure 5: Depiction of Ape's algorithm for smearing. 

as for the adjoint lines, but the reason is slightly differ- 
ent. 

Of course, the fuzzing procedure, like most Monte 
Carlo renormalization group transformations, is just a 
recipe. Because of the complicated nonlinear nature 
of the system, it may turn out that the hypothesis of 
eq. (3.15) is too charitable, and that eq. (3.16) is too 
optimistic. Still, this method has provided the bulk 
of the numerical results covered in this review, so it 
obviously works very well at current values of ft. 

3.4.3. Smeared loops 
The Ape collaboration's smearing method 37'38 is 

depicted in fig. 5. At the pictorial level, it appears quite 
similar to fuzzing, but note that smearing involves no 
factor-of-two blocking. Again, the transformation in- 
volves only spacelike links, out of respect for the transfer 
matrix. The effect of smearing, in a continuum nota- 
tion, is similar to a diffusion equation: 37 

i I~ = I ) ~ I , ~ .  ( 3 . 1 7 )  

In momentum space (and neglecting subtleties of the 
gauge), nit iterations of the smearing procedure corre- 
sponds to 

Ai(k) -~ e-T~2Ai(k), (3.18) 

where ~- oc nite is the total elapsed "smearing time." 
The smeared plaquette thus has 

~ k~c -Tk~ (3.19) 
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and, if ~- ~ m -~, the k and k' integrations are cut ofT, 
even for t = 0. This is just a specific example of the 
trick discussed in sect. 3.4.2: smearing also suppresses 

the overlap with ultraviolet modes, and the signal-to- 
noise ratio is again 

C(t) ~ a. (3.20) 
c(0) 

This method has been very successful at fl = 
5.9. 37,38 Deeper into the continuum, the method will 

be critically slowed down: as a --~ 0, with 7- ~ m -2 
fixed, one will find nit --~ oo. 

3.4.4. Inverse Dirac operator 
Like the adjoint line method, this method 39 breaks 

away from using local, albeit fuzzed or smeared, oper- 
ators. Let ~ be a two- or three-dimensional staggered 
fermion matrix; then 

where # is a variational parameter. The right- 

hand-side of eq. (3.21) is computed using Lanczos 
tridiagonalization. 39 To determine cp one has to exam- 
ine a one-loop diagram over the (fictitious) staggered 
fermions. 35 One finds 

whence 

T ( k ) ~ l  +O(k2a2), (3.22) 

c(O 
C(O) ~ a, (3.23) 

because the infrared suppression has been removed. 

Note that this result does not depend on the dimen- 
sionality of the staggered fermions. Naively, one might 
expect that the two-dimensional operator wouldn't fare 
as well as the three-dimensional, because it is "thin" in 
one direction. However, the two-dimensional "/9 is still 
nonlocal, and hence it evades the infrared suppression 
inherent in local operators. Initial results employing the 
two dimensional Dirac operator indicate a I behaviour, 
using the string tension to set the scale. 39 

One selects specific glueball or electric-flux states 
by choosing various boundary conditions on ~ and con- 
structing the combinations with appropriate 2Z~v quan- 
tum numbers. In the glueball sector, spin-parity is cho 
sen by inserting a suitable ")'-matrix inside the trace (for 
three-dimensional ~9), or by taking appropriate combi- 
nations of planes (for two-dimensional "D). 

The drawback of this method is that the Lanc- 

zos tridiagonalization becomes rather time-consuming 
for larger lattices, even for two-dimensional staggered 
fermions. 

3.4.5. Which method is best? 

In the absence of direct comparisons, this question 
is impossible to answer. It is likely that the meth- 
ods mentioned above have different anomalous dimen- 
sions, although the computation would be rather te- 
dious. Since no method is perfect, one option is to 
combine methods. For example, in small volumes fuzzy 
adjoint lines are an improvement over the usual adjoint 
lines. 40'41 Also, to reduce CPU-time refs. 38,39 have 

used one fuzzing step before smearing or tridiagonaliz- 
ing ¢) on their largest lattices. 

4. RESULTS 

The z-dependence of the SU(2) gauge theory has 
been thoroughly discussed in Part I. This part therefore 
concentrates on SU(3), except for occasional allusions 
to SU(2). 

SU(3)'s analog of fig. i is in fig. 6; the Monte Carlo 
results 37'38'40'41'42'44'45'46 are qualitatively similar. 

Analytic work for SU(3) in intermediate volumes is in 
progress. 47 The numerical simulations have hence con- 

centrated on large z, using the SU(2) simulations to in- 
dicate when z can be considered large. The error-bars in 
z are obtained directly from the original literature. The 
error-bars on the ratios are obtained by adding the er- 
rors of numerator and denominator in quadrature. This 

is not necessarily a reliable estimate; due to correlations 
in the data, the true (statistical) errors could be either 
smaller or larger. 

For z %].6 vacuum-valley tunneling 48 can be ne- 
glected and the energy of electric flux essentially van- 
ishes, making accurate Monte Carlo simulations ex- 
tremely difficult. For z>1.6  the ratio x/K/mA+,+ is 
only moderately z-dependent, but the qualitative trend 

is not what is expected from asymptotic formulae for 
K and m at large z. 30,31 However, fig. 6 has data 

from many different values of ~, so a melange of finite 
lattice-spacing effects might throw up a smoke screen. 
Clearly, the asymptotic formulae can only be verified by 
fixing fl (and hence a) and varying N~. Nevertheless, 
the fact that several different groups agree, within error 
estimates, is significant and satisfying. 

The situation for the I~ '++ is somewhat less pleas- 
ing. In particular, the source method 37 does not agree 
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Figure 6: The SU(3) lattice Monte Carlo data for the mass ratios v~/rnA, (ordinates less than 0.5), mE/rna , and 
m.7'~/ma, as a function of z = zg, (ordinates greater than 0.5), all in the PC' = + +  sector. Except for the crosses 42 
and the solid circle 44 the data are since Seillac: open ('I~) and closed (K  and E) squares, 40 open triangles, 37 closed 
triangles, 38 four-pointed stars, 45 hexagons, 41 and the open circle (which used a MCRG improved action). 46 

with the correlation method, 40'45 even from the same 
group. 38 It is tempting to blame the cold wall source 

and say that it does not couple well to the E representa- 
tion. The error estimates for mE++ are large enough to 
raise eyebrows. Moreover, DeGrand's analysis 43 found 
very large (correctly normalized) X ~ for the /~J state, 
in runs where the X ~ was acceptable for l (  and m h++. 

However, the cold wall doe.~ couple well to the A ++ and 
electric flux states, and the source method gives results 
for a/ft and area++ systematically lower than the cor- 
relation method. To explain this one must blame the 
negative coefficients in some terms of the expansion of 
eq. (3.7). 

If one provisionally discards the source method re- 
sults, one finds that the E ++ and 7~ ++ states are de- 
generate for z>~7, as in SU(2). Hence, it is sensi- 
ble to compute the error-weighted averages over the 

z > 7 data contained in figs. 1 and 6. To reduce 
finite lattice-spacing effects, only data with 13 _> 2.3 
in SU(2) and ~ >_ 5.9 in SU(3) have been included. 
We find k//K/ITIA+]+ = 0.308 ± 0.020[0.265 ± 0.016] 
and m~,:++/m h++ = 1.5,13 ± 0.082 [1.530 ± 0.060] for 
SU(3) [SU(2)]. Given the agreement over several dif- 
ferent simulations, it would be very surprising to see 
these numbers change in the pure glue theory. Of 
course, the inclusion of dynamical quarks could change 

the results, particularly through mixing; simulations 
along these lines are still at an embryonic state in their 
development. 49 

From a phenomenological point of view, numbers in 
MeV are most interesting. -the best estimates presently 
available are collected in Table 3. The physical scale has 

Table 3: Large z averages for the glueball masses in 

MeV, assuming v /K  = ,|20 MeV. For SU(2) there is no 
charge conjugation, so C" should be ignored for the en- 
tries in the second column. See the note on the oddball 
in the text. 

.i ''~ su(2) su(3) 
0 ++ 1590 ± 100 1370 ± 90 
2 ++ 2430 ± 100 2115 ± 125 
l -+ < 5000 ?% CL 

been set by taking v / K  = ,120 MeV. Scalar and ten- 
sor glueballs could be identified experimentally by find- 
ing additional states beyond (traditional) meson nonets. 
On the other hand, the I -+ oddball has quantum num- 
bers precluded by the quark model, so a state with those 
quantum numbers would be a clear glueball candidate. 
Unfortunately, the operators discussed in sect. 3 cou- 
ple to this channel very weakly, too weakly even to as- 
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sign a confidence level to the bound. 40 The techniques 
of sect. 3 will need some refinement, before definitive 
statements on these states are possible. 

5. PROSPECTS 
The status of the pure glue spectrum is very sat- 

isfactory. For z _< 5 the agreement with the analyt- 
ical methods is remarkable. The ratio v/K/mA+,+ is 
in very good shape, m~++/mA+i+ and mT2++/mA++ are 
in good shape, and we can hope that future simula- 
tions will have a handle on the oddballs. The numerical 
simulations can receive enough computer power so that 
the (estimates of) statistical errors are now compara- 
ble to (estimates of) systematic errors. Hence, a more 
thorough, more sophisticated error analysis 43'44 is now 
needed: the "systematic" effects of nonzero a and fi- 
nite L can only be recognized and disentangled when 
the statistical errors are genuinely and reliably smaller. 
For example, the error bars are still too large to verify 
the prediction 31 for the ('t Hooft) string tension 

/ r  

K ( I ; )  = K(~) 3 m  (5.1) 

based on the string picture. Finally, while the raw data 
(not shown here) do not yet exihibit asymptotic scaling, 
the tendency towards universal scaling is encouraging. 

This status should be compared to lg85-- the Wup- 
pertal proceedings 50 contain no report on glueballs. 
In 1986 Berg, Billoire and Vohwinke114 had the first 
results in the scaling region, with the shocking result 
that m.~/rn.4, was slightly less than unity. While these 
results were correct, skeptics claimed that z was not 
yet large enough to draw conclusions for infinite z. It 
turns out that the skeptics were right, but it is unlikely 
that they really anticipated the dramatic changes in the 
masses that we see (somewhere) between 5 and 8. The 
region 5 < z < l0 remains a puzzle. Its solution is 
motivation to go back to smaller lattices, for a change. 
At present the only clue is that z = 7 corresponds to 1 
fro, which is exactly where things should happen. 

ACKNOWLEDGEMENTS 
One of us (PvB) thanks Fermilab for its hospitality 

during the preparation of the review. He is grateful to 
Jaap Hoek, Chris Korthals-Altes, Chris Michael, Mike 
Teper and Claus Vohwinkel for discussions and corre- 
spondence on the subject of this review. The other 
(ASK) recalls pleasant discussions on glueballs with 
Frank Brandstaeter, Martin LLischer, Paul Mackenzie, 

and Gerrit Schierholz. He also thanks Bernd Berg, Tom 
DeGrand, Andreas Gocksch, Enzo Marinari, and Chris 
Michael for sending copies of their papers. Both of us 
wonder what the lattice conferences would be like with- 
out discussions with the other participants and Toscani 
cigars from Pietro Rossi. Finally we thank the organiz- 
ers for bringing us together to review this subject, es- 
pecially in a year that has seen much exciting progress 
on both the Monte Carlo and analytic fronts. 

REFERENCES 
1. A.H. Billoire, et al, eds., Nucl. Phys. B(Proc. 

Suppl.)4 (1988) 
2. C. Michael, G.A. Tickle and M.J. leper, Phys. 

Lett. 207B (1988)313 
3. J. Koller and P. van Baal, Phys. Rev. Lett. 58 

(1987) 2511; Nucl. Phys. B302 (1988) i; Nucl. 
Phys. B(Proc. Suppl.)4 (1988) 47 

4. C. Vohwinkel, Phys. Lett. 213B (1988) 54; this 
volume 

5. J. Kripfganz and C. Michael, Liverpool preprint, 
LTH 216, July 1988 

6. B.A. Berg, C. Vohwinkel and C.P. Korthals-Altes, 
Phys. Lett. 209B (1988) 319; 
B.A. Berg, this volume 

7. P. Stephenson and M. Teper, work in progress (M. 
Teper, private communication) 

8. D. Daniel, A. Gonzalez-Arroyo, C. Korthals-Altes 
and B. S6derberg, private communication by C.P. 
Korthals-Altes, to appear; 
A. Gonzalez-Arroyo and C.P. Korthats Altes, Tal- 
lahassee preprint FSU-SCRI-87-17, to be revised 

9. M. [iischer, Phys. Lett. 118B (1982) 391 

10. G. 't Hooft, Nucl. Phys. B153 (1979) 141 

11. A. Billoire, K. Decker and R. Henzi, Phys. Lett. 
211B (1988) 124 

12. C. Michael and M. Teper, preprint (Oxford 40/88; 
Liverpool LTH 214) 

13. B.~. Berg and A.H. Billoire, Phys. Lett. 166B 
(1986) 203; (E) 185B (1987) 466 

14. B.A. Berg, A.H. Billoire and C. Vohwinkel, Phys. 
Rev. kett. 57 (1986) 400 

15. B.A. Berg, Nucl. Phys. B(Proc. Suppl.)4 (1988) 6 

16. M. Teper, Phys. Lett. 183B (1986) 345; 185B 
(1987) 121 

17. B. Carpenter, C. Michael and M. Teper, Phys. 
Lett. 198B (1987) 511 

18. C. Michael and M. leper, Phys. Lett. 199B (1987) 
95 

19. P. van Baal, Lectures at 28th Cracow School, 
CERN preprint Ttl.5141/88, August 1988 



P. van Baal, A.S. Kronfeld / Spectrum of pure glue theory 241 

20. M. LSscher, Nucl. Phys. B219 (1983) 233; 
M. Li]scher and G. Mi]nster, Nucl. Phys. B232 
(1984) 445 

21. B.A. Berg and A.H. Billoire, private communica- 
tion; SCRI preprint, in preparation 

22. B.A. Berg, Phys. Lett. 206B (1988) 97 

23. J. Hoek, M. Teper and J. Waterhouse, Nucl. Phys. 
B288 (1987) 589; J. Hoek, this volume; 
M. Kremer, A.S. Kronfeld, M.L. Laursen, G. 
Schierholz, C. Schleiermacher and U.-J. Wiese, 
Nucl. Phys. B305[FS23] (1988) 109; 
M.L. Laursen, this volume 

24. P. van Baal, to appear in the proceedings of 
the workshop: Frontiers of Nonperturbative Field 
Theory, held in Eger (Hungary), CERN preprint 
TH.5215/88, October 1988 

25. J. Kripfganz and C. Michael, Phys. Lett. 209B 
(1988) 77; P. van Baal, Nucl. Phys. B307 (1988) 
274 

26. B.A. Berg, A.H. Billoire and C. Vohwinkel, Phys. 
Lett. 191B (1987) 157 

27. A. Gonzalez-Arroyo and M. Okawa, Phys. Rev. 
D27 (1983) 2397 

28. A. Coste, A. Gonzalez-Arroyo, C.P. Korthals-Altes, 
B. S~derberg and A. Tarancon, Nucl. Phys. B287 
(1987) 569 

29. T.H. Bansson, P. van Baal and I. Zahed, Nucl. 
Phys. B289 (1987) 628 

30. M. L~scher, in Progress in Gauge Field Th, e.ory, 
G. 't Hooft et al, eds., (Plenum, New York, 1984); 
Comm. Math. Phys. 104 (1986) 277 

31. R.D. Pisarski and O. Alvarez, Phys. Rev. D26 
(1982) 3735; 
Ph. de Forcrand, G. Schierholz, H. Schneider and 
M. Teper, Phys. Lett. 160B (1985) 137 

32. J. Groeneveld, J. Jurkiewicz and C.P. Korthals- 
Altes, Phys. Scripta 23 (]98]) 1022 

33. P. van Baal, Twisted Boundary Conditions: .... 
Thesis, Utrecht (July 1984) 

34. C. Michael, J. Phys. G13 (1987) 1001 
35. F. Brandstaeter, A.S. Kronfeld and G. Schierholz, 

HLRZ preprint HLRZ 10/88. 
36. Ph. de Forcrand, G. Schierholz, H. Schneider and 

M. leper, Phys. Lett. 152B (1985) 107 
37. Ape Collaboration: M. Albanese, et al, Phys. Lett. 

192B (1987) 163; 205B (1988) 535 
38. Ape Collaboration: M. Albanese, et al, Phys. Lett. 

197B (1987) 400; 
L.A. Fernandez and E. Marinari, Nucl. Phys. 
B295[FS21] (1988) 51; 
E. Marinari, private communication (fl = 6, L = 
18 results) 

39. G. Schierholz, Nucl. Phys. B(Proc. Suppl.)4 
(1988) I I ;  
A.S. Kronfeld, K.J.M. Moriarty and G. Schierholz, 
to appear in Comput. Phys. Commun. 

40. C. Michael and M. Teper, Phys. Lett. 206B (1988) 
299; Liverpool preprint LTH 218 

41. J. Hoek, private communication 
42. B.A. Berg, SCRI preprint FSU-SCRI-86-89 (unpub- 

lished) 
43. T.A. DeGrand, Phys. Rev. D36 (1987) 176 
44. T.A. DeGrand, Phys. Rev. D36 (1987) 3522 
45. F. Brandstaeter, A.S. Kronfeld and G. Schierholz, 

in preparation; G. Schierholz, this volume 
46. A. Patel, private communication 
47. C. Vohwinkel, private communication 
48. P. van Baal and J. Koller, Phys. Rev. Lett. 57 

(1986) 2783 
49. R.V. Gavai, A. Gocksch and U.M. Heller, Phys. 

Lett. Ig0B (1987) 282; A. Gocksch and U.M. 
Heller, Phys. Rev. Lett. 60 (1988) 1809 

50. Lallice Gauge Theory A Challenge to Large 
Scale Computing, edited by B. Bunk, K.-H. 
Mi]tter and K. Schilling (Plenum, New York, 1986) 


