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Constituent monopoles without gauge fixing
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We discuss the recent construction of new exact finite temperature instanton solutions with a non-trivial value
of the Polyakov loop at infinity. They can be shown, in a precise and gauge invariant wa¥, to be formed by the
superposition of n BPS monopoles for an SU(n) gauge group.

1. Introduction

Instantons at finite temperature (or calorons)
are constructed on R* x 57, taking a periodic
array of instantons. For SU(2) the five param-
eter Harrington-Shepard solution {1] can be for-
mulated within the 't Hooft ansatz. New exact
solutions with a non-trivial value of the Polyakov
loop at infinity [2] were only constructed very re-
cently, either using [3] results due to Nalhm [4]
or by using [5] the well-known ADHM construc-
tion [6], translated by Fourier transformation to
the Nahm language, Thus mapped to an Abelian
problem on the circle, the quadratic ADHM con-
straint is solved [3].

2. New caloron solutions

In the periodic gauge, A,(x+3) =A,(x), the
Polyakov loop at spatial infinity
B
Po = lim P exp f Ao(E, £)dt), (1)
|£]-+eo ]
after a constant gauge transformation, is charac-
terised by (3_n _, tm =0)
P, = exp[2midiag(p1,-. ., pa)]s (2)
1 <o < fin < o =y + 1L
A non-trivial value, P & Z,, acts like a Higgs
field. We found [5¢] a remarkably simple formula

for the action density, valid for arbitrary SU{(n).
Using the classical scale invariance to put 3 =1,

trF3, = 8362 logy, 1=~ cos(nt)+ ;trHAm,

m=k

* Presented by second author.

Am = _1_ (ran |ym_'ym+1|) (Cm sm) : (3)

m Tm+1 Sm Cm

with ry, = |£—#m| the center of mass radius of the
m'" constituent monopole, which can be assigned
a mass 167%y,,, where ¢, = ftm41 — ftm. Also
Tutl = 1, T+l = T1, ¢m = cosh(2wv,,r,,) and
8$m = sinh(2m0,7,, ). The order of matrix multi-
plication is crucial here, [, _, Am = An... Ay

Figure 1. Action densities for the SU(3) caloron
on equal logarithmic scales, cut off at 1/e, for
t = 0 in the plane defined by #;, = (~4,4,0),
!72 = (0’ éao) and .'73 = (é:‘%’o)s in units of oes
for 8 = 1/4, 1/3 and 2/3 from top to bottom,
using (ger, g2, p43) = (—17,-2,19)/60.
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For P, = exp(2miwt;) the SU(2) gauge field
reads [5a], in terms of the anti-selfdual 't Hooft
tensor 7 and Pauli matrices 7,

Aulr) = %ﬁf‘,faa,, log ¢(zx) + (4)

S9(@)Re (7L, —#72,)(n + im)Bux(z))

Tre

where (ﬁ’l = 1-1'.4;& (ﬁ‘,‘fz + gﬁ%+ wpls Ay and

Y = 3.%2 (e""”“f} + %:) 2™t with 1y = 2w,
ve =1 — 2w and mp? = |, — §f)|. The solution is
presented in the “algebraic” gauge, A,(x + 8) =
P Au(z)PZ).

Figure 2. Action densities for the ST(2) caloron
on equal logarithmic scales, cut off below 1/e?,
fort =0,w=10.125, =1 and p = 1.6, 1.2 and
0.8 (from top to bottom).

Figure 3. As in fig. 2, now cut off below 1/e, for
t=0, p=F=1 with w=1 (top) and 0 (bottom).

For small p, equivalent to large 3, the caloron
approaches the ordinary single instanton solu-
tion, with no dependence on P,. Finite size
effects set in roughly when p = 8. At this
point, for v; # 0, two lumps (n for SU(n)) are
formed, whose separation grows as np?/3. When
Po = (—)1 for SU(2), one of the lumps disap-
pears, as v)(y =0, and the spherically symmetric
Harrington-Shepard solution is retrieved.

A non-trivial value of P, will modify the vac-
uum fluctuations and thereby leads to a non-
zero vacuum energy density [2] as compared to
P € Z,. A dilute, semi-classical instanton calcu-
lation is no longer considered a reliable starting
point for QCD. Rather, it is the monopole con-
stituent nature from which we should draw im-
portant lessons for QCD [5b).

3. Monopoles from instantons

At small 3 the solution becomes static and the
lumps are well separated and spherically symmet-
ric. As they are self-dual, they are necessarily
BPS monopoles [7]. Also, when sending (at fixed
) one of the constituents to infinity, |fm| — oo,
the solution becomes static and yields a simple
way to obtain SU(n) monopole solutions [5¢]. Ex-
plicitly we find (assuming v, # 0) in the limit
|#=| = 0o, which removes the n-th constituent,

A 20, ([1) (1]) , Apa Bl (SH .:H) (5)

Tn \Sn=1 Cpn-|

implying v{x) = 2|7,| exp (271, |§a—Z|):(F), with

WF) = 1br{ —— (3"-1 "'"-') ﬁA (6)
s Fp-l 0 0 me1 ™

As was emphasised in ref. [5¢], the energy den-

sity of the SU(n) monopale is easily found from

eq. (3) (for a detailed description of some special

cases see ref. [8])

E(#) = —4trF 2 (F) = — 1A% log ¥(2). (7)

4. Instantons from monopoles

The new caloren solutions provide examples
of gauge fields with topological charge built out
of monopole fields, a construction going back to
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Taubes [9]. Non-trivial SU(2) monopole fields are
classified by the winding number of maps from
$? to SU(2)/U(1) ~ 5%, where U(1) is the un-
broken gauge group. Isospin orientations for a
configuration made cut of monopoles with oppo-
site charges behave as shown in fig. 4 (top), in a
suitable gauge and sufficiently far from the core
of both monopoles. Taubes constructed topo-
logically non-trivial configurations by creating a
monopole anti-monopole pair, bringing them far
apart, rotating one of them over a full rotation
and finally bringing them together to annihilate
(cmp. fig. 5). We can describe this as a closed
monopole line (or loop) with the orientation of
the core defined by SU(2)/U(1) ~ §%, “twist-
ing” along the loop, thus describing a Hopf fi-
bration [5b] (see fig. 4 (bottom)). The only topo-
logical invariant available to characterise the ho-
motopy type of this Hopf fibration is the Pon-
tryagin index. It prevents full annihilation of the
“twisted” monopole loop.

For large p, eq. (4) gives up to exponential cor-
rections, i.e. outside the cores of the constituents,

: (8)

2

ry +rg + mp?

A, = .
# ry + 1y — mp?

i), Ou log do, @0 =

This describes two Abelian Dirac monopoles and
one easily verifies log ¢g is harmonic, as required
by self-duality. Furthermore ¢! vanishes on the
line connecting the two monopole centers, giving

rise to return flux, absent in the full theory. The
-2mwit

relative phase e in the expression for ) given

Figure 4. Topological charge constructed from
oppositely charged manopoles by rotating one of
them. For a closed monopole line, the embedding
of the unbraken subgroup makes a full rotation.

before, describes the full rotation of the core of a
constituent monopole, required so as to give rise
to non-trivial topology.

A conjectured QCD application, in the form
of a hybrid monopole-instanton liquid, was dis-
cussed in ref. [5b]. Abelian projection applied to
our solutions was also discussed at this confer-
ence [10].

Figure 5. Action density in the z-t-plane for z=
y=0,w=1, p=14 and 3=1 on a linear scale. One
can trace the constituent monopoles in the low
field regions, “annihilating” to give an instanton.
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