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We discuss the recent construction of new exact finite temperature instanton solutions with a non-trivial value 
of the Polyakov loop at infinity. They can be shown, in a precise and gauge invariant way, to be formed by the 
superposition of n BPS monopoles for an SU(n) gauge group. 

1. In tr od u c t ion  

Instantons at finite tempera ture  (or calorons) 
are constructed on 1t  3 × S 1, taking a periodic 
array of instantons. For SU(2) the five param- 
eter Harrington-Shepard solution [1] can be for- 
mulated within the 't Hooft  ansatz. New exact 
solutions with a non-trivial value of the Polyakov 
loop at infinity [2] were only constructed very re- 
cently, either using [3] results due to Nalun [4] 
or by using [5] the well-known ADHM construc- 
tion [6], t ranslated by Fourier transformation to 
the Nahm language. Thus mapped to an Abelian 
problem on the circle, the quadratic ADHM con- 
straint is solved [5]. 

2. N e w  caloron so lut ions  

In the periodic gauge, A~,(x+~) =Aj,(x) ,  the 
Polyakov loop at spatial infinity 

/: P c ¢ =  lim P exp( Ao(£,t)dt), (1) 
IZl-+oo 

after a constant gauge transformation, is charac- 
terised by (~"~=l  pm = 0) 

g o  = exp[27ridiag(pl . . . .  , #,,)], (2) 

Pl < . . .  < P n  <pn+l  ~ p l  + 1 .  

A non-trivial value, P ¢ Z , ,  acts like a Higgs 
field. We found [5c] a remarkably simple formula 
for the action density, valid for arbi t rary SU(n). 
Using the classical scale invarimace to put /3  = 1, 

I1 

trF~v 2 =8~O~log~, ¢ = - e 0 s ( 2 r t ) +  ~tr l"  I A m ,  
m = l  

* Presented by second author. 

rrn rm+l ] Sm Cm 

with r , ,  = I£- ml the center of mass radius of the 
m th constituent monopole, which can be assigned 
a mass 167r2vm, where Vm - p,n+l - p r o .  Also 
r ,+ l  - r l ,  ~n+l - ~71, cm -= cosh(27rvmrm) and 
Sm = sinh(27rvmr,,~). The order of matr ix  multi- 
plication is crucial here, 1-I~=1 Am = A , . . .  A1. 

Figure 1. Action densities for the SU(3) caloron 
on equal logarithmic scales, cut off at l / e ,  for 
t = 0 in the plane defined by ffl = ( -½,½,0) ,  

if2 = (0, ½, O) and if3 -- (½,-¼, 0), in units of/3, 
for j3 = 1/4, 1/3 and 2/3 from top to bot tom,  
,,sing (m, m, = (-17, -2,19)/60. 
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For ~Poo = exp(2zriwra) the SU(2) gauge field 
reads [5a], in terms of the anti-selfdual 't Hooft 
tensor g/and Pauli matrices va, 

ap(x)--  i-3 ~rlm,~'aO,, log 4)(x) + 

i x 
~b(x)Re ((~}.. - i~/2u.)(v I + ir2)O~x(x)), 

(4) 

where ¢-1 = 1 - - ~  (+-~  + ~ + ~ and 
\ rl r2 rlr2 ] 

~ (e-2rrits-d'-I - s-'z) e 2~riv't, with Vl -- 2w, 

u2 = 1 - 2w and 7rp 2 = I]i2 - ]ix I- The solution is 
presented in the "algebraic" gauge, Au(x +/3) = 
PooA.(z)P£ 1. 

Figure 2. Action densities for the SU(2) caloron 
on equal logarithmic scales, cut off below 1/e 2, 
for t = 0, w = 0.125,/3 = 1 and p = 1.6, 1.2 and 
0.8 (from top to bottom). 

Figure 3. As in fig. 2, now cut off below l /e ,  for 
t = 0 ,  p = / 3 = 1  with w=  ¼ (top) and 0 (bottom). 

For small p, equivalent to large/3, the caloron 
approaches the ordinary single instanton solu- 
tion, with no dependence on Poo. Finite size 
effects set in roughly when p = ½/3. At this 
point, for vi # 0, two lumps (n for SU(n) )  are 
formed, whose separation grows as ~rp2//3. When 
7~c¢ = (-)1 for SU(2), one of the lumps disap- 
pears, as u1(2)=0, and the spherically symmetric 
Harrington-Shepard solution is retrieved. 

A non-trivial value of Poo will modify the vac- 
uum fluctuations and thereby leads to a non- 
zero vacuum energy density [2] as compared to 

E Z~. A dilute, semi-classical instanton calcu- 
lation is no longer considered a reliable starting 
point for QCD. Rather, it is the monopole con- 
stituent nature from which we should draw im- 
portant lessons for QCD [5b]. 

3. M o n o p o l e s  f r o m  i n s t a n t o n s  

At small/3 the solution becomes static and the 
lumps are well separated and spherically symmet- 
ric. As they are self-dual, they are necessarily 
BPS monopoles [7]. Also, when sending (at fixed 
/3) one of the constituents to infinity, I]i-+l --~ oo, 
the solution becomes static and yields a simple 
way to obtain SU(n) monopole solutions [5c]. Ex- 
plicitly we find (assuming u. # 0) in the limit 
[]in[-~oc, which removes the n-th constituent, 

A,-+  2c, 0 , A,-x -~ , (5) 
rn-x \Sn--I Cn-x/ 

implying tb(x) --+ 21]i,I exp(27rv.I]i.-~l)~(~), with 

 ;(e)=½tr 1 8 , c  r+_--; ;- ;-' I I A m  . (6) 
m-~--I 

As was emphasised in ref. [5c], the energy den- 
sity of the SU(n)  monopole is easily found from 
eq. (3) (for a detailed description of some special 
cases see ref. [81) 

2 - = - 5  t r F ~ ( x )  = - ½A 2 log ~(~). (7) 

4. I n s t a n t o n s  f rom m o n o p o l e s  

The new caloron solutions provide examples 
of gauge fields with topological charge built out 
of monopole fields, a construction going back to 
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Tanbes [9]. Non-trivial SU(2) monopole fields are 
classified by the winding number of maps from 
S 2 to SU(2)/U(1),,~ S 2, where U(1) is the un- 
broken gauge group. Isospin orientations for a 
configuration made out of monopoles with oppo- 
site charges behave as shown in fig. 4 (top), in a 
suitable gauge and sufficiently far from the core 
of both monopoles. Taubes constructed topo- 
logically non-trivial configurations by creating a 
monopole anti-monopole pair, bringing them far 
apart, rotating one of them over a full rotation 
and finally bringing them together to annihilate 
(cmp. fig. 5). We can describe this as a closed 
monopole line (or loop) with the orientation of 
the core defined by SU(2) /U(1)  ,,, S 2, "twist- 
ing" along the loop, thus describing a Hopf fi- 
bration [5b] (see fig. 4 (bottom)). The only topo- 
logical invariant available to characterise the ho- 
motopy type of this Hopf fibration is the Pon- 
tryagin index. It prevents full annihilation of the 
"twisted" monopole loop. 

For large p, eq. (4) gives up to exponential cor- 
rections, i.e. outside the cores of the constituents, 

i -3  r l  + r2  + 7rP 2 
A~ = ~r3r/~v0v log ~bo, ¢o  = . . . .  r l  ~ r2  7rp2 . (8 )  

This describes two Abelian Dirac monopoles and 
one easily verifies log ¢0 is harmonic, as required 
by self-duality. Furthermore ~o t vanishes on the 
line connecting the two monopole centers, giving 
rise to return flux, absent in the full theory. The 
relative phase e -2~it in the expression for X given 

:ii~:.i!!ii!!ii!ili:.:iii!i:: = £ >'~"i =" 

~i!i i i i i i l i l i l i l i~i i i i i i i i i i i i i i ::  I -  - '-"~I 
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Figure 4. Topological charge constructed from 
oppositely charged monopoles by rotating one of 
them. For a closed monopole line, the embedding 
of the unbroken subgroup makes a full rotation. 

before, describes the full rotation of the core of a 
constituent monopole, required so as to give rise 
to non-trivial topology. 

A conjectured QCD application, in the form 
of a hybrid monopole-instanton liquid, was dis- 
cussed in ref. [5b]. Abelian projection applied to 
our solutions was also discussed at this confer- 
ence [10]. 

Figure 5. Action density in the z-t-plane for x = 
y=O, w= ~, p =  ½ and 3 =  1 on a linear scale. One 
can trace the constituent monopoles in the low 
field regions, "annihilating" to give an instanton. 
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