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We review issues involved in understanding the va£uum, long-distance and low-energy structure of non-Abelian 
gauge theories and QCD. The emphasis will be on the role played by instaatons. 

1. I N T R O D U C T I O N  

Tile t e rm "QCD vacuum" is frequently abused. 
Only in the case of tile Hamil tonian formulation 
is it clear what  we meazl by the vacuum: it is the 
wave functional associated with the lowest energy 
state. Observables create excitations on top of 
this vacuum. Knowing the vacuum is knowing 
all: We should know better .  

Strictly speaking the vacuum is empty. Nev- 
ertheless its wave functional can be highly non- 
trivial, deviating considerably fl'om that  of a non- 
interacting Fock space, based on a quadrat ic  the- 
ory. Even in the later case the result of probing 
the vacuum by boundaries is non-trivial as we 
know froin Casimir. The  probe is essential: one 
needs to disturb the vacuum to s tudy its prop- 
erties. Somewhat  perversely the vacuum may be 
seen as a relativistic aether. It  promises to mag- 
ically resolve our problems, f rom confinement to 
the cosmological constant.  For the lat ter  super- 
symmet ry  is often called for to remove the other- 
wise required fine-tuning. I t  merely hides the rel- 
ativistic aether,  ew~n giving it further  structure.  
Remarkably  it seems to have enough structure to 
give a non-trivial ex~nple  of the dual supercon- 
ductor  at work [1]. 

Most will indeed put  their bet  on the dual su- 
perconductor  picture for the QCD vacuum [2], 
and this has mot iva ted  the hunt for magnetic  
monopoles using lattice techniques, long before 
supersymmetr ic  duality stole the show [1]. The 
definitions rely on choosing an abelian projec- 
tion [3] and the evidence is based on the no- 
tion of abelian dominance [4], establishing the 
dual Meissner effect [5], or the construction of 
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a magnetically charged order parameter ,  whose 
non-zero expectat ion value implies spontaneous 
breaking of the dual gauge symmet ry  [6], yielding 
electric confinement. But center vortices, probed 
by the newly defined center dominance, this year 
suddenly became center stage [7] again and we 
will surely hear more next  year. 

In the euclidean pa th  integral only the  vacuum 
state  will contribute when we let the (imaginary) 
t ime go to infinity, underlying the essence of the 
transfer matr ix  approach to extract  observables 
from euclidean pa th  integrals as used in lattice 
gauge theories. However, this is not what  peo- 
ple have in mind when talking about  the vac- 
uum structure  of gauge theories. More appro- 
pr iate  for most  studies would be to talk about  
the low-energy and long-distance behaviour of the 
theory. One way to address this is to a t t emp t  to 
isolate the relevant degrees of freedom for which 
one can derive an effective low-energy theory. 
Monopole actions derived from block-spin trans- 
formations [8] and the instanton liquid model [9] 
are examples. It  is not required tha t  the relevant 
degrees of freedom are associated to semi-classical 
objects, the main reason being tha t  in a strongly 
interacting theory the quantum fluctuations can 
be (much) bigger than  the classical effects. Soine-. 
times this argument  is used against the relevance 
of instantons, which by their very definition as 
localised objects in t ime might lose significance 
when quantum fluctuations are too strong. 

Due to tim limited space available this re- 
view concentrates on the instanton content of the 
theory, where recently considerable progress has 
been achieved. But first I will use this opportu-  
nity to explain my own thoughts  on the mat te r .  
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2. VACUUM D E M O C R A C Y  

The inodel we wish to describe here starts  from 
tile physics in a small volume, where asymptot ic  
freedoln guarantees tha t  per turbat ive  results arc 
valid. Tile aSSulnption is made,  that  at least for 
low-energy observables, integrating out tile high- 
energy degrees of freedom is well-defined pertur-  
batively and all the non-perturbatiw',  dynalnics is 
due to a few low-lying modes. This is most  easily 
defined in a Halniltonian setting, since we are in- 
terested ill situations where the non-per turbat ive  
cff'ects are no longer described by semiclassical 
methods.  

2.1. Complete gauge fixing 
Due to the action of tile gauge group on the 

vector fields, a finite dimensional slice through tile 
physical configuration space (gauge inequivalent 
fields) is bounded. One way to demonst ra te  this 
is by using the coinplete Coulomb gauge fixing, 
achieved by minimising tile L 2 norln of tile gauge 
field along tile gauge orbit. At small energies, 
fields are sufficiently smooth  for this to be well 
defined and it can be shown tha t  the space under 
consideration has a boundary,  defined by points 
where the norm is degenerate. These are by defi- 
nition gauge equiwflent such tha t  the wave func- 
tionals are equal, possibly up to a phase factor in 
case tile gauge t ransformat ion is homotopically 
non-trivial. Tile space thus obtained is called a 
fundanlental  domain. For a review see ref. [10]. 

2.2. Non-perturbative dynamics 
Given a part icular  compact  three dilnensional 

manifold M on whidl  tile gauge theory is defined, 
scaling with a factor L allows one to go to larger 
volumes. It is inost convenient to tbrlnulate the 
Halniltonian ill scale invariant fields A = LA.  Di- 
viding energies by L recovers tile L dependence ill 
tile classical case, but  the need of all ultraviolet 
cutoff and tile resulting scale anomaly introduces 
~t running coupling constant g(L) ,  which in tile 
low-energy effective theory is the only remnant  of 
tile breaking of scale invariance. 

When tile volulne is very slnall, the effective 
coupling is very small and tile wave functional is 
highly localiscd, staying away froln tile bound- 
aries of tile tllndanlental donlain. We Inay toni- 

pare with quantum mechanics oil the circle, seen 
as azl interval with identifications at  its bound- 
ary. At which points we choose these boundaries 
is just  a ma t t e r  of (technical) convenience. The 
fact tha t  the circle has non-trivial homotopy, al- 
lows one to introduce a 0 pa ramete r  (playing the 
role of a Bloch momentum) .  

Expressed ill A, the shape of the fundamental  
domain and tile nature  of ttle boundary  condi- 
tions, is independent of L. Due to the rise of the 
running coupling constant  with increasing L tile 
wave functional spreads out over the fundamental  
domain and will s tar t  to feel the boundary  iden- 
tifications. This is tile origin of non-per turbat ive  
dynamics in the low-energy sector of the theory. 

Quite remarkably, in all known examples (for 
the torus and sphere geometries),  tile sphalerons 
lie exactly at the boundary  of the fundamental  
dolnain, with the sphaleron m a p p e d  into the anti- 
sphaleron by a homotopically non-trivial gauge 
transtbrmation.  The sphaleron is tile saddle point 
at tile top of the barrier readmd along the tun- 
nelling pa th  associated with tile largest instanton, 
its size limited by the finite volume. 

For increasing volumes the wave functional first 
s tar ts  to feel the boundary  identifications at these 
sphalerons, "biting its own tail". When the en- 
ergy of the s tate  under consideration becomes of 
tile order of the energy of this sphaleron, one can 
no longer use the semiclassical approximat ion to 
describe the transit ion over the barrier  and it is 
only at this moment  tha t  the shift in energy be- 
comes appreciable and causes sizeable deviations 
from the per turbat ive  result. This is in part icular  
t rue for the groundstate  energy. Excited states 
feel these boundary  identifications at somewhat  
smaller volumes, but  nodes in their wave func- 
tional near tile sphaleron can reduce or pos tpone  
tile influence of boundary  identifications. 

This has been observed clearly for SU(2) oil a 
sphere [111. The scala '  and tensox' glueball mass is 
reduced considerably due to the boundary  identi- 
fications, whereas the oddball  remains unaffected 
(see fig. 1). These non-per turbat ive  effects re- 
Inove an unphysical near-degeneracy in per turba-  
tion theory (with the pseudoscalar even slightly 
lower than  tile scalar glueball mass).  Tile doln- 
inating configurations involved are associated to 
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instanton fields, ill a situation where senficlassical 
techniques are inappropriate for computing tile 
magnitude of tile effect. When boundary identi- 
fications matter ,  the pa th  integral receives large 
contributions from configurations that  have non- 
zero topological charge, and ill whose background 
tile fermions have a chiral zero mode, its conse- 
quences to be discussed later. 4 
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Figure 1. Tile low-lying glueball spectl'tml on a 
sphere of radius R as a function of" f = g2 (R)/2r 2 
at (¢ = 0. Approximately, / = 0.28 corresponds to 
a circmnference of 1.3 fin. Froln l'ef. [11]. 

At solne point technical control is lost, since 
so far only the appropriate boundary conditions 
near tile sphalerons can be implemented. As soon 
as the wave functional starts to become apprecia- 
ble near the rest of the boundary too, this is no 
longer sufficient. 

This method  has ill particular been very suc- 
cessful to determine the low-lying spectrum on 
tile torus ill interlnediate volumes, where for 
SU(2) agreement with tile lattice Monte Carlo re- 
sults has been achieved within tile 2% statistical 
errors [10,12]. In this case tile non-perturbative 
sector of tile theory was dominated by the eil- 
ergy of electric flux (torelon mass), which van- 
ishes to all orders ill per turbat ion theory. The 
leading semiclassical result is exp ( -  So/g ( L )), due, 
to tunnelling through a quantum induced barrier 
of height E ,  -- 3 .21/L and action So -- 12.5. Al- 
ready beyond 0.1 fin this approximation breaks 
down. One finds, accidentally in these small vol- 
umes, tile energy to be nearly linear ill L. 

The effective Halniltoniazl ill tile zerolmomen- 
tuln gauge fields, derived by Lfischer [13], and 
later augnmnted by boundary identifications to 
include tile non-perturbat ive eff'ects [12], breaks 

down at the point where boundary identifica- 
tions in the non-zero moinentum directions as- 
sociated with instantons become relevant. The 
sphaleron has an energy 72.605/(ig2(i)) a[ld 
was constructed numerically [14]. Its effect be- 
comes noticeable beyond volumes of approxi- 
inately (0.75 fin) 3. For SU(3) this was verified 
directly in a lattice Monte Carlo calculation of 
the finite volume topological susceptibility [15]. 
Tile results for the sphere have shown that  also 
these effects can in principle be included reliably, 
but the lack of an analytic instanton solution oil 
T 3 × JR, has prevented us from doing so in practise. 

2.3.  D o m a i n  f o r m a t i o n  
Tile shape of the fundamental  domain depends 

on the geometry. Assuming that  g(L) keeps on 
growing with increasing L, causing the wave func- 
tional to feel more and more of the boundary, one 
would naturally predict tha t  the infinite volume 
linlit depends on the geometry. This is clearly 
unacceptable, but can be avoided if" the ground 
state obtained by adiabatically increasing L is not 
stable. Thus we conjecture tha t  tile vacuum is 
unstable against domain formation. This is the 
ininimal scenario to make sure that  at large vol- 
unms, the spectrum is independent of its geome- 
try. Domains would naturally explain why a non- 
perturbative physical length scale is generated ill 
QCD, beyond which tile coupling constant will 
stop running. However, we have no guess for the 
order parameter,  let alone all eff'ective theory de- 
scribing excitations at distances beyond these do- 
inains. Postulating their existence, nevertheless a 
number of interesting conclusions can be drawn. 

Tile best geometry to s tudy domain formation 
is that  of a box since it is space-filling. We call 
exactly fill a larger box by smaller ones. This is 
not t rue tbr most other geometries. In small to 
intermediate volumes the vacuum energy density 
is a decreasing function [12] of L, but  in analogy 
to the double well problem one may expect that  
at stronger coupling the vacuum energy density 
rises again with a minimum at some value L0, 
assumed to be 0.75 fm. For L sufficiently larger 
than L0 it thus beconms energetically favourable 
to split the volume in domains of size L30 . 

Since the ratio of the string tension to the 
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scalar glueball mass squared shows no s t ructure  
around (0.75 ti11) 3 , w e  may assume tha t  both  have 
reached their large volume value within a domain. 
Tile na ture  of their finite size corrections is sufli- 
(:iently diffcrent to expect these not to cancel ac- 
cidentally. The colour electric string arises ti 'om 
the fact tha t  flux tha t  enters tile box has to leave 
it in tile opposite direction. Flux conservation 
with these building blocks automatical ly  leads to 
a string picture, with a string tension as coin- 
puted within a single dolnain azld a transverse 
size of tile string equal to tile average size of a 
dolnain, 0.75 fin. Tile tensor glueball ill all in- 
terlnediate volulne is heavily split between the 
doublet (E  +) and triplet (T + )  representations of 
the cubic group, with resp. 0.9 and 1.7 times tile 
scalar glueball inass. This implies tha t  tile tensor 
glueball is at least as large as tile average size of 
~ dolnain. Rotat ional  invariance in a dolnain-like 
vacuunl comes about  by averaging over all orien- 
tations of the dolnains. This is expected to lead to 
a tm~ss which is tile nmltiplicity weighted average 
of the doublet  and triplet, yielding a mass of 1.4 
times the scalar glucball Inass. Domain tornlation 
in this picture is driven by tile laz'ge field d y n a l n -  

its associated with sphalerons. Which s tate  gets 
affected most  depends ill all intricate way oil the 
behaviour of the wave functionals (clnp. fig. 1). 

In the tbur dimensional euclideazl context, 0(4)  
invariance inakes us assume tha t  domain forma- 
tion ('xtends ill all four directions. As is implied 
hy averaging over orientations, domains will not 
neattv stack. There  will be dislocations which 
most natural ly  are gauge dislocations. A point- 
like gauge dislocation in four dimensions is an in- 
stanton,  lines give rise to monopoles and surfaces 
to vortices. In tile lat ter  two cases inost natu- 
rally of tile Z x  type. We est imate the density of 
these objects to be one per average dolnain size. 
We thus predict all instanton density of 3.2 fin -'t , 
with an average size of 1/3 fin. For inonopoles we 
i)redict a density of 2.4 fm -a.  

If an effective colour scalar field will play the 
role of a Higgs field, abelian projected inonopoles 
will appear.  It  can be shown [16] tha t  a inonopole 
(or ra ther  (lyon) loop, with its U(1) phase rotat-  
ing Q tilnes along the loop (generating all dec- 
tric field), gives rise to a topological charge Q. 

Ill abelian projection it has been found tha t  all 
instanton "always contains a dyon loop [17]. We 
thus argue this result to be more general, leading 
to further  ties between monopoles and instantons. 

2.4. Regularisat ion and 0 
It  is useful to point out tha t  the non-trivial ho- 

motopy of the physical configuration space, like 
non-contractable loops associated to the instan- 
tons (Trl(A/~) ~ - -  lr3(G) = 7Z), is typically de- 
stroyed by the regularisation of the theory. This is 
best  illustrated by the example of quan tum me- 
chanics on the circle. Suppose we replace it by 
all annulus. As long as the annulus does not fill 
the hole, or we force the wave function to vanish 
in the middle, the ta  is a well-defined paramete r  
associated to a multivalued wave function. Wc 
may imagine the behaviour tbr slnall instantons 
ill gauge theories to be sinfilar to tha t  at the ceil- 
ter in the above nmdcl. Indeed, the gauge in- 
variant geodesic length of tim tunnelling pa th  for 
instantons Oll i x IR, given by g =  . / ' -~ dt X / ~ ,  
where )?(t) is tile classical potential  along ttle tun- 
nelling path,  is expected to vanish for instantons 
that  shrink to zero size. This is confirmed for 
M = S a, using results of ref. [18] to show that  

(for unit radius) t' = 2 F 2 ( { ) ~ - ~ ( 1  + O(b-~) ) ,  

with tile instanton size defined by p = ( l + b  2)-  ½. 
Duc to the need of regulaxising the ultraviolet 

bchaviour, tile small instantons arc cut out of the 
theory. Using the lattice regularisation this does 
not leave a hole, but ra ther  removes the "sin- 
gularity at the origin", as the lattice configura- 
tion space has no non-contractable loops. Strictly 
speaking this ineans one can not have a the ta  pa- 
rameter  at any finite lattice spacing. Fur thermore  
tile regularisation forces one to divide out all tile 
gauge t ransfbrmations as there are 11o tlomotopi- 
tally non-trivial ones. It  is advisable to divide 
out all gauge transformations,  even if some of the 
homotopy is preserved by some regularisation! 

One call, however, still introduce the the ta  pa- 
i 'ameter by adding iOQ (with Q = J'd4xq(x), 

q(x) = Tr(Fm'(x)Fm,(x)) /167r 2 the topological 
charge operator)  to tile action. Of course only 
for smooth fields the charge Q will be  (approx- 
imately) integer. Also within the Hamil tonian 
fornmlation one Inay introduce a the ta  paI'alne- 
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ter by mixing the electric field with 0 times the 
magnetic field, E ---r E - OB/(2rc) 2. In these ap- 
proaches the ta  is simply a parameter  added to tile 
theory. Whether  or not one will retrieve the ex- 
pected periodic behaviour in the continuunl limit 
becolnes a dynamical question. 

It should be pointed out that  in particular for 
SU(N)  gauge theories in a box (in sectors with 
non-trivial inagnetic flux) there is room to argue 
for a 27rN, as opposed to a 27r, periodicity fox' 
the 0 dependence. However, tile spectrum is pe- 
x'iodic with a period 2~r, and the apparent dis- 
ci'epancy is resolved by observing that  there is a 
lion-trivial spectral flow [19]. This may lead to 
phase transitions at some value(s) of 0, related 
to tile oblique confinelnexxt mechanism [3]. Sinl- 
ilarly tor supersyInxnetric gauge theories this in- 
terpretat ion,  supported by the recent discovery 
of donmin walls between different vacua [20], re- 
moves the need for senficlassical objects with a 
charge 1IN. Such solutions do exist for the torus, 
but  tile fractional charge is related to magnetic 
flux and tile interpretat ion is necessarily as stated 
above! The "wrong" periodicity in the ta  has long 
been used to argue against the relevance of in- 
stantons, but  in the more recent l i terature this is 
now phrased more cautiously [21,22]. 

3. I N S T A N T O N S  

Instantons arc euclidean solutions responsible 
tbr the axial anonlaly, breaking the UA(1) sub- 
group of tile U(Ny) x U(Ny) chiral symmetry for 
ivy flavours of massless ferinions [23], as dictated 
by tile a~lomaly, E I  cg~,~ f')'~'Ts~ f (x)  = 2gfq(x) .  
The breaking of UA(1) manifests itself in the 
selniclassical computat ions through the presence 
of fermion zero modes, with their number and 
dlirality fixed by tile topological dlarge, through 
the Atiyah-Singer index theoreln [24]. Integra- 
tion over the f'erlnion zero Inodes leads to the so- 
called 't Hooft vertex or effective interaction [23]. 
The integration over the scale paralueter of tile 
instanton ensexnble is infrared dominated and a 
non-perturbat ive computat ion is desirable. 

In addition it is believed that  the instantons are 
responsible for dfiral synmmtry breaking, where 
a chiral condensate is formed, which breaks the 

axial gauge group UA (Nf)  completely. This spon- 
taneous breaking is dynamical and it is less well 
established that  instantons are fully responsible. 
It is the basis of the instazlton liquid model as 
developed by Shuryak over the years. For a com- 
prehensive recent review see ref. [9]. The  details 
of the instanton ensemble play an important  role. 
Only a liquid-like phase, as opposed to the di- 
lute or crystalline phases, will give rise to a chiral 
condensate. The model also makes a prediction 
for the average size azld the topological suscep- 
tibility. In particular the latter quantity should 
be well-defined beyond a semiclassicai approxima- 
tion. For large sizes the instanton distribution is 
exponentially cut-off and instantons do not give 
rise to an area law for the Wilson loop. When 
large instantons are more weakly suppressed the 
situation may differ [25], but  a semiclassical az:al- 
ysis in this case should not be trusted. 

Remarkably the topological susceptibility in 
pure gauge theories can be related to the r / m a s s  
through the so-called Witten-Veneziano relation, 
2 2 2 2 f , (m,( t-m,7,--2mK)/2N f =. f  d4x < T(q(x)q(O) ) > R 

=-- Xt, leading to the prediction Xt "' (180 MeV) 4. 
This is based on the fact tha t  the UA(1) symme- 
t ry  is restored in the planar limit [26,27], with 
Xt of order 1 IN  2. Fi'om the requirement that  in 
tile presence of massless quarks Xt (and the the ta  
dependence) disappears, tile pure gauge suscep- 
tibility can be related to tile quark-loop contri- 
butions in tile pseudoscalar channel. Pole dom- 
inance requires tile lightest pseudoscaiar meson 
to have a mass squared of order 1IN. Relating 
the residue to the pion decay constant gives the 
desired result [27]. The index R indicates the ne- 
cessity of equal-time regularisation [26]. A deriva- 
tion orl the lattice using Wilson and staggered 
fermions was obtained in ref. [28], making use 
of Ward-Takahashi identities. Finally, also the 
coarse grained part i t ion thnction of the instan- 
ton liquid model [9] allows one to directly deter- 
mine the 't Hooft effective Lagrangian [23], from 
which the Witten-Veneziano formula can be read 
off [29]. This formula is almost t reated as tile 
holy grail of instanton physics. It is important  
to realise that  some approximations are involved, 
although it is gratifying there are three indepen- 
dent ways to obtain it [26-29]. 
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3.1.  F i e l d  t h e o r e t i c  m e t h o d  
A direct computat ion of Xt =.t~/4x < q(x)q(O)> 

on the lattice requires a dmice of discretisation 
ibr tile charge density. A particularly simple 
,,,,e is [301 q L ( a : ) = - E T " ( C ~ / ~ ' ) ( / , / ~ : ) ) / 1 6 ~  2, 
where [5 , , , (x)= ~,,~,~,~,~(x) is the clover aver- 
~tged plaquette -Puu (x), formed by the four plaque- 
ttes tha t  meet at x. Due to tile short distance sin- 
gularities tile operators require renormalisations. 
Tile lattice dlarge operator  is conjectured to sat- 
isfy QL = E ,  qL(x) = a4QZ(fi)+O(a6), correct- 
ing for tile fact that  QL need not be integer. In 
addition a~l additive renormalisation, associated 
to tile contact terin discussed beJbre [26], arises 
due to mixing of" )~L with operators with tile same 
quant mn ,luinbers, ,YL = a 4 x tZ  2 (,~)+M(Z)-~Q(a6) • 

To determine Z(~) and M(fl) one takes a clas- 
sical configuration with a fixed topological charge 
Q [31]. Monte Carlo updates are rejected it' they 
change tile charge as determined by cooling and 
subsequent ineasurements of QL mid XL allows 
one to extract  Z and M. (In a sector with fixed 
ch~u'ge Q we note that  Xt =Q2/V,  with V the vol- 
ume.) Over a certain range, independence of the 
starting configuration mid tile volume has been 
observed and was henceforth assumed [31]. Due 
to tile need to fix Q to determine the renormali- 
sation factors, this is in a sense a hybrid method,  
mid might also be sensitive to some of the prob- 
lems of cooling - to be discussed shortly. 

Considerable progress has been achieved, how- 
ew~r, by repeating tile s tudy with other dloices 
for qL, based on smearing the links (iteratively 
replacing them by staples). This considerably re- 
duces tile wtlue of M, greatly facilitating the ex- 
t ract ion of a signal. On a 164 lattice one finds 
~t = (175(5) MeV) 4 (for SU(3) at Z = 5.9, 6.0 
~tnd 6.1) and Xt : (198(8) ~¢ieV) 4 (for SV(2) at 
/ ]=2.44,  2.5115 and 2.57). For tile discussion oil 
finite temperature ,  how the scale was set and for 
fln'ther details and references see ref. [31]. 

3.2.  C o o l i n g  
In tile continuum, tile Schwartz inequality im- 

plies that  the action of any field configuration 
with charge Q is bounded by 87r21QI, and is 
reached by (anti-)selfdual solutions. In its sim- 
plest form, cooling aims at finding this rain- 

imal action, using it to identify the topologi- 
cal charge. As all quantum fluctuations are re- 
moved, no renormalisations are required, such 
that  Xt =< Q2 > IV, where the average is over the 
Monte Carlo ensemble. Cooling can be achieved 
by putt ing fi = ~ in the s tandard Monte Carlo 
update  (accepting updates only if they lower the 
action). The same result is obtained by a sort of 
congruent gradient method,  which uses tile lattice 
equations of motion to lower the action [32]. For 
SU(2) this method is deterministic and allows for 
estimating its rate of convergence [14]. 

It is a remarkable and deep mathematical  prop- 
erty of non-Abelian gauge theories on a compact 
four dimensional manifold that  exact SU(N) so- 
lutions exist for any charge Q with 4NIQ I pa- 
rameters (moduli), in general describing position, 
size and colour orientation of IQI pseudoparticles. 
Although a compact manifold breaks the scale 
invariance, generically insta~ltons with arbi t rary 
size exist, only limited by the finite volume. A 
notable exception is charge one instantons on T 4. 
There is no problem in having smooth configura- 
tions of unit charge, but  in an a t t empt  to make 
them self-dual they shrink to a point [33]. 

To understand its implications we take the time 
direction to infinity, in which case finite action 
forces tunnelling from vacuum to vacuum config- 
uration. Tile vacuuin on a torus is, however, not 
unique. Periodic boundary conditions in the time 
direction force tile vacua at both  ends to be the 
same and as soon as one releases this constraint, 
exact vacuum to vacuum tummlling solutions ex- 
ist. This was studied for 0(3)  through tile exact 
solutions on a cylinder [34]. For gauge theories 
it can be proven that  twisted (for SU(2) "az~ti- 
periodic") boundary conditions [19] remove the 
obstruction, even at finite T. Large instantons 
have finite size effects [35] of O(1/T).  For suffi- 
ciently large volumes, assuming the instazlton size 
will be cutoff dynamically, the effect is irreleva~lt, 
further helped by the fact that  in a large volume 
almost all configurations have higher charges. 

As alwa.ys, the continuum limit competes with 
the infinite volume limit. Even with presentday 
computer  power, the remaining window is uncom- 
fortably small. The  above finite size effect is usu- 
ally swamped by the cutoff effects. As the lattice 
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cutoff breaks the scale and rotational invariance, 
we would expect  tha t  the action is no longer con- 
stant on the continuum moduli space. Indeed, for 
a slnooth instanton the Wilson action behaves as 
Sw (~ = P/a)  = 8~2 (1-p-2/5-bO(/~-4))  and causes 
tile inst~mton to shrink, until it becomes of the 
size of the cutoff and falls through tlle lattice. 
Cooling will first remove high-frequency modes 
and one is left with a slow motion along the  mod- 
uli space, giving rise to a plateau in the cooling 
history, used to identif:y the topological charge. 
One will miss instantons smaller than some fixed 
value [~c. Assuming asymptotic  freedom, one eas- 
ily shows that  the error vanishes in the contin- 
uum limit. Note ttmt by construction, the cooling 
method never will associate charge to a disloca- 
tion with an action smaller than 96~r2/llN, tile 
entropic bound, which would spoil scaling [36]. 

For extracting the sizedistribution, cooling and 
under-relaxed (or slow)cooling [37] is problematic 
as the size clearly will depend on where along 
the plateau one analyses the data  [38]. The size 
distribution c a t  be made to scale properly only 
at the expense of carefully adjusts the number of 
cooling steps [39] when going to different ft. 

One can avoid loosing instazltons under cooling 
by inodii~ying the action such that  the scaling vio- 
lations change sign [35], for example by adding a 
2x2 plaquette to the Wilson action. This so-called 
over-improved action has the property that  in- 
stantons grow under cooling, until stopped by the 
finite volulne. Consequently it would still muti- 
late the size distribution. This can be avoided by 
improving the action so as to Ininimise the scaling 
violations [40]. A particularly efficient choice is 
the so-called five-loop improved (5Li) lattice ac- 
tion: &Li = Em,n  Cm,n E;~,,u~, T r ( 1 , P m u , n , ( x ) ) ,  
where Pm,,n~,(x) is the m x n plaquette and 

CI ,1  : ~ ,  ( :2 ,2  : 720 ,  ( :1 ,2 ~-~ 4 5 ,  ( :1,3 9A60 and 
(:3,3 = ~ .  Overiinproved cooling [35] is defined 
by c1,1 = ( 4 - ¢ ) / 3  and (:2,2 = ( ¢ - 1 ) / 4 8 ,  which 
is O(a 2) improw~d for ¢ = 0. The 5Li is im- 
proved to (9(a 4) and allows fbr a tiny action bar- 
rier of less tha~t one permill of the instanton ac- 
tion at ~¢ = 2.3. Instantons of smaller size will 
be rapidly lost under cooling, but larger ones will 
stay forever and practically not change their size, 
of course using twisted boundary conditions. For 

/3 > 4 the action is at most a factor 10 -4 larger 
ttlan its continuum value. After thus eliminat- 
ing the cutoff effects, the finite size effects in the 
dlarge one sector are clearly observed, see fig. 2. 

- 1 2  ~ t.b,c. 
- 1 inst. 

- 124 p.b.c. 
1 inst. 

~ r T - r - ~ r T T T r  
--123X36 p.b.c. 

- r - r r r ] -~r - rT-r r~  
-1L~136 p.b.c. _" 

2 inst. 

500 I000 0 500 lO00 0 500 1000 0 500 i000 
# s w e e p s  

Figure 2. Cooling history [401 for SV(2) charge 
one (and two) instanton with twisted and periodic 
boundary conditions. Squares represent 5Li and 
circles over-inlproved cooling (s = - 1 ) .  

It is important  to note that  improved cool- 
ing [40] is used as a diagnostic tool; the config- 
urations are still generated by the s tandard Wil- 
son action. One may of course also use improved 
actions for this purpose, but  the 5Li action was 
simply not tuned dynaznically. One difficulty in 
extracting the instanton distribution is that  a 
typical ensemble will have both instantons and 
anti-instazltons. These interact, although the ac- 
tion only slightly differs from 8 r  2 times the num- 
ber of pseudoparticles, provided they are not too 
close. Close instanton anti-instanton (I-A) pairs 
will annihilate. Cooling sufficiently long also re- 
moves more widely separated pairs. As the cool- 
ing makes the configuration smooth, the total 
charge can be measured reliably even in the pres- 
ence of these pairs. For SU(2), lattices of sizes 
124 and 123 x36 at f l=2 .4  and 2.5 with periodic 
and twisted boundary conditions, as well as 244 
at fl = 2.6 with twisted boundary conditions were 
used. At fl = 2.5 a physical volume of 1.02 fin 
across gives sizable finite size corrections. One 
obtains X t -  (200(15)MeV) 4 with good scaling 
properties [40], which agrees with ref. [31]. 

Extracting the size of azt instanton is based 
on identif]ying the pseudoparticles. Using among 
other things the known profile of an isolated in- 
stanton, five different definitions for the size p 
were used, which are all well correlated [40]. The 
resulting size distribution is given in fig. 3, corn- 
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bining results for 3 = 2.4 (averaged ow~r the differ- 
ent lattice types and boundary conditions alter 20 
cooling sweeps) and for .:3 = 2.6 (after 50 cooling 
sweeps). The solid curve is a fit to the tormula 
p(p)  ~ pT/a exp ( - (p /w)v ) ,  with w = 0.47(9)fin 
and p = 3(1), which at small sizes coincides with 
the semiclassical result [23]. Tile peak of this dis- 
tr ibution occurs at p = 0.43(5) fm. Under pro- 
longed cooling, up to 300 sweeps, I-A instanton 
anIfihilations amd in particular finite size effects 
in tile charge one sector do affect the distribu- 
tion soinewhat, but not the average size, which 
therefore seems to be quite a robust result. 

2 

g 

1 

/ 

0 

Figure 3. 

, : , , I , i i I i ~ i I ~ ' v ~ "  Y ,  - J ~ , e  

0.2 0.4 0.6 0.8 1 
p(fm) 

SU(2) instanton size distribution for 
/~ = 2.4 (squares) and 2.6 (crosses) in a voluine 
1.44 fm across at lattice spacings a = 0.12 and 
0.06 fin. Tile dot ted and dashed lines represent 
the cutoff at also for both  lattices. From ref. [40]. 

It would be advantageous if one could come up 
with a definition for the size that  is related to a 
physical quantity, since now the notion is based 
on the semiclassical picture. This is neverthe- 
less appropriate for the comparison with tile in- 
stanton liquid. Tile relatively large value of the 
average size ~s compared to that  of 1/3 fin pre- 
dicted by the instanton liquid [9] is a point of 
worry, typically leading to stronger interactions 
that  may lead to a crystal (without chiral sym- 
metry  breaking), rather  than a liquid. Neverthe- 
less, ill ref. [40] it has been tested that  the pseu- 
doparticles are homogeneously distributed with a 
density of 2 -  3 fm -4 and occupying nearly half 
the volume. This is tile case when only close I-A 
pail's have amfihilated azld therelbre depends on 

the anmunt of hnproved cooling. It does, how- 
ever, show that  the pseudoparticles are relatively 
dense (more so than assumed ill the instanton liq- 
uid [9]). The value of 3.2 fin -4 tbr the density, de- 
rived earlier in the context of tile domain picture 
is quite realistic in the light of these results. 

3.3. Smoothing 
Another method to s tudy instantons on the 

lattice is based on the classical fixed point ac- 
tions [41], defined through tile saddle point equa- 
tion sFP(v)=min{u}(sFP(u)+nT(U, V)). It is 
obtained as the weak coupling limit of tile block- 
ing transformation with a positive definite ker- 
nel n.T(U, V), which maps a lattice {V} to {Y}, 
coarser by a factor two. Reconstructing tile fine 
from tile coarse lattice is called inverse blocking. 

It call be shown to map a solution of the lattice 
equations of motion to a solution on the finer lat- 
tice with the same action. I terat ing the inverse 
blocking, tile lattice can be made arbitrarily fine, 
thereby proving the absence of scaling violations 
to any power in the lattice spacing [41]. This 
classically perfect action still looses instantons be- 
low a critical size, which is typically smaller than 
a lattice spacing. For solutions this most likely 
happens at the point where the continuuin inter- 
polation of the lattice field is ambiguous, causing 
the integer geometric charge [42] to jump. For 
rough configurations that  are not solutions, in- 
verse blocking typically reduces the action by a 
factor 32 a11d makes it more smooth. The fixed 
point topological charge is defined as the limit- 
ing charge after repeated inverse blockings. This 
guarantees no dlarge will be associated to disloca- 
tions (of any action below the insta~lton action). 

The classical fixed point action, al though op- 
timised to be short range, still has a~l infinite 
number of terms and finding a suitable trunca- 
tion is a practical problem. From examples of 
parametrisations, the success of reducing scaling 
violations in quantities like tile heavy quark po- 
tential (tested by restoring rotational invariazlce) 
is evident, for recent reviews see ref. [45]. Ill prac- 
tise only a limited number of inverse blockings is 
feasible and tile fixed point topological charge has 
to rely on a rapid convergence. The closer one is 
able to construct the fixed point action the bet- 
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tcr this convergence is expected to be. For two di- 
mensional non-linear sigma models sufficient con- 
trol was achieved to demonstrate  that  more than 
one inw~rse blocking did ,lot appreciably change 
the topological charge [43]. 

In four dimensional gauge theories, both  find- 
ing a manageable parametrisat ion and doing re- 
peated inverse blockings is a major  effort. It goes 
without saying that  if" no good approximation to 
the fixed point action is used, one cannot rely on 
its powerful theoretical properties. Studies of in- 
staatons for SU(2) gauge theories were performed 
in ref. [44]. A 48 tern, approximation to the fixed 
point action was used to verily the theoretical 
properties. The geometric charge was measured 
after oue inverse blocking and it was shown that  
for Q = 1 the instanton action was to within a 
few percent from the continuum action (slightly 
above it due to finite size effects), whereas for 
Q = 0 tile action was always lower. Subsequently 
a simplified eight paxameter form was used on 
which tile instanton action was somewhat poorly 
reproduced, but  such that  tile Q = 1 boundary 
stayed above tile entropic bound for tile action. 

h wduc of )~t = (235(10)MeV) 4 was quoted 
oil a 84 lattice with physical volumes of up to 
1.6 fm, taking lull advantage of the fact tha t  fixed 
point actions can be simulated at rather  large lat- 
tice spacings. However, < Q2 > measured on tile 
coarse lattice wa~s up to a factor 4 larger than 
on the fine lattice (for the two dimensional study 
much close,' agreenmnt was seen [43]). Fhrther 
inverse blocking to check stability of the charge 
measurement was ,lot performed. 

The same eight paranmter action was used in 
ref. [46], but  they did their simulations on the 
fine lattice and performed an operation called 
smoothing: first blockiug and then inverse block- 
ing. They chaalgcd tile proportionali ty factor t~ 
in the blocking kernel, requiring that  the saddle 
point condition is satisfied for the blocked lat- 
tice. Due to the change of t~ the properties of" 
the fixed point action that  inspired these authors 
can unfortunately no longer be called upon as a 
justification. This smoothing satisfies the prop- 
erties of cooling (the action always decreases and 
stays fixed for a solution) azld should probably 
by judged as such. (See for t'urther comments be- 

low.) They consider their s tudy exploratory and 
concentrate on finite tempera ture  near and be- 
yond the deconfinement transition. 

In ref. [47] the number of terms to parametrise 
the fixed point action was extended to four powers 
of resp. the plaquette, a six-link and an eight-link 
Wilson loop. The latter was required to improve 
on the properties for the classical solutions. They 
achieved tSc = 0.94, still considerably smaller than  
for SSLi, and reproduced the continuum instan- 
ton action to a few percent for p > Pc. To increase 
the quality of' the fit a constant was added, which 
should vanish in the continuum limit (as it drops 
out of the saddle point equation). Possible rami- 
fications of this at finite coupling are not yet su f  
ficiently understood. 

After one inverse blocking insufficient smooth- 
ing is achieved to extract  the pseudoparticle po- 
sitions and sizes and further inverse blocking was 
considered computationally too expensive. Like 
in ref. [46], they also introduced a smoothing cy- 
cle, but  now by blocking the fine lattice back to 
the coarse one. Such a cycle would not change the 
action when the blocking is indeed to the same 
coarse lattice. However, there are 24 different 
coarse sublattices associated to a fine one and in 
ref. [47] the smoothing cycle involved blocking to 
the coarse lattice shifted along the diagonal over 
one lattice spacing on the fine lattice. Unlike in 
ref. [46], the smoothing cycle will be repeated. 

1 

1 

1 

i 

2 4 6 8 i0 12 14 16 2 4 6 8 i0 12 14 16 

Figure 4. Example of the smoothing after 1 and 
9 cycles, shown on the fine lattice. From ref. [47]. 

Although the fixed point nature  of the action 
guarantees it is close to a perfect classical action 
it needs to be demonstrated that  it preserves the 
topological charge at sufficiently large scales. For 
cooling this is argued from the local nature  of 
tile updates,  not aff'ecting the long distance be- 
haviour, hnproved cooling is in this sense less 
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local than ordinary cooling, and it nfight seem 
that  duc to the rather  compact Wilson loops in- 
volved in the parametrisat ion of the fixed point 
action, tile situation for the smoothing cycle is 
intermediate. Nevertheless, it should be pointed 
out that  tile global mininfisation involved in in- 
verse blocking, at least naively, has its effect felt 
over tile eutire lattice. 

As evidence in favour of preserving long raalge 
physics, it was shown [47] that  the string tension 
is conserved under this smoothing (unlike for the 
nmthod of ref. [46], that  reports changes up to 
25%). Tha t  smoothing is successful in removing 
noise is seen in fig. 4. Somewhat surprisingly close 
I-A pairs remained stable for distaalces as close as 
80(~ of tile sum of their radii. Virtually no change 
is seen for up to 9 sinoothing cycles. As I-A pairs 
are not solutions one would have expected some 
change. Possibly this is due to critical slowing 
down as ca~l also occur tot cooling [14]. It depends 
quite intricately on tile details of tile mapping 
iInplied by the sinoothing cycle. 

0 . 6  

0 . 4  

0 2  0 . 4  
0 . 0  

0 . 0  0 . 6  

Figure 5. The SU(2) integrated instanton size 
distribution (integrated over bins of size 0.05 fm) 
t b r f l  = 1.4 (octagons), 1.5 (diamonds) and 1.6 
(squares) on a 84 lattice, with resp. a = 0.188, 
0.144 and a=0.116 fin. From ref. [47]. 

In fig. 5 tile resulting instanton size distribu- 
tion is given and we refer to ref. [47] for the 
details Oil the analysis. Tile instanton density 
is approximately 2.0 frn -4 and tile size peaks at 
0.2 fro. This points to a rather  dilute situation, 
although a s tudy of correlations among the in- 
stantons seems to point to clustering. The sus- 

ceptibility Xt - (230(10) MeV) 4 agrees with the 
earlier value [44]. Cutting out instantons below 
0.27 fin (see fig. 3) would give Xt = (190 MeV) 4, 
but  a cut at half' this value would cause no sig- 
nificant change. It would imply large scaling vi- 
olations for tile improved cooling method,  which 
were not observed in ref. [40]. Both the suscepti- 
bility azld the average size therefore disagree sig- 
nificantly with improved cooling. 

3.4. Spectral  flow 
One can extract  the topological charge by 

counting the number of chiral zero modes of the 
Dirac operator,  using the Atiyah-Singer index 
theorem [24]. Although only valid for smooth 
configurations, a lattice version could in principle 
be defined [48], Q = m ~ p T r ( 7 5 / ( f ] ~ - m ) ) / N y  , with 
ecp a renormalisation constant that  depends oil 
tile lattice definition of the Dirac operator  ~9 and 
75 used. Due to the discretisation of the lattice 
no exact zero modes exist. For Wilson fermions 
these would-be zero nlodes will typically be real 
and give rise to poles in the euclidean path  inte- 
gral that  are related to the "exceptional configu- 
rations". Given the relation to instantons care is 
required in handling these configurations and in a 
recent series of papers a "pole shifting" algorithm 
has been proposed to remedy this problem [49]. 
One might also be tempted to extract  the index 
by counting the real eigenvalues [50]. 

Inspired by the overlap fornmlation for dfi- 
ral fermions [51] a inuch simpler method  to ex- 
tract  the zero modes has been recently used [52]. 
The Wilson Dirac operator  has the property that  
H ( U )  = 75 (J~(U)-  W ( U )  + 4 - m )  is hermitian. In 
tile continuum this operator  has a spectral flow 
as a function of m. Non-zero modes cross zero 
in pairs of opposite chirality (one going up, tile 
other going down). A zero mode is generically 
responsible tbr a~l isolated crossing (the direction 
of crossing determines tile chirality). It is these 
properties that  are expected to be robust under 
discretisation [51]. All that  should change on the 
lattice is that  the zero modes no longer cross at 
m = 0 (we know that  m needs to be tuned to 
m~ # 0 at finite [3, but  for individual configura- 
tions the crossings will occur at different values of 
m). Tile topological charge is now simply defined 
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as tile number of net crossings. 

0 " 3  [ . . . .  ] . . . .  
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Figure 6. CoInparison of tile SU(2) topolog- 
ical charge distribution from improved cooling 
(squares) and from the spectral flow (dialnonds), 
on a 12 4 lattice at :3 = 2.4. From ref. [52]. 

For very smooth instanton fields (instantons of 
large size), one should have near continuuni be- 
haviour alld the crossing of the zero mode should 
occur at small values of m. Perhaps the crossing 
value cazl thus be used to define the size of the 
instanton [52]. One way to study the correlation 
between size azld crossing would be to use cooling 
to inanipulate the size of an instazlton. Essen- 
tial is that  the spectral flow analysis is done Oil 
a coarse lattice. No Slnoothing is necessary. Fur- 
tiler studies will be required, but tile prospects 
are quite prolnising. 
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Figure 7. Comparison [52] tbr tile fixed point ac- 
tion of tile topological charge distribution using 
the spectral flow (Qlevet) and after nine smooth- 
ing cycles (Qcyclog) on tile same configurations. 

In fig. 6 a comparison is given for the topolog- 

ical charge distribution generated with the Wil- 
son action oil the same lattice, measured with im- 
proved cooling [40] and with the spectral flow [52]. 
The agreement is excellent. From the spectral 
charge one extracts X~ = (184(6) MeV) 4. 

Fig. 7 is based on 30 configurations generated 
with the fixed point action of ref. [47], oil a 124 
lattice. The charge measured after nine smooth- 
ing cycles is compared with the spectral charge 
on the initial rough configuration [52]. Cycling 
is seen to suppress the small charges. One con- 
figuration was used to trace the cause for this 
discrepancy [52] and it comes as an unpleasant 
surprise that  tile spectral charge was 1 without, 
3 after 9 and 2 at'ter 12 smoothing cycles. 

4 .  E P I L O G U E  

I report - you conclude. Who thought so much 
can be said about nothing. I humbly apologise 
to those that  had hoped to find something else. 
I would have liked to discuss more on finite tem- 
perature and implications fbr the instanton liq- 
uid, on non-perturbative results in supersymmet- 
ric gauge theories as a testing ground for QCD 
and nmch more. But instantons are here to stay. 
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