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Abstract

We use the fermion zero-modes in the background of multi-caloron solutions with non-trivial
holonomy as a probe for constituent monopoles. We find in general indication for an extended
structure. However, for well separated constituents these become point-like. We analyze this in
detail for theSU(2) charge 2 case, where one is able to solve the relevant Nahm equation exactly,
beyond the piecewize constant solutions studied previously. Remarkably the zero-mode density can
be expressed in the high temperature limit as a function of the conserved quantities that classify the
solutions of the Nahm equation.
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1. Introduction

To describe regular monopoles in gauge theories a Higgs field is required. This defines
the Abelian subgroup of the gauge field. Yet in the full non-Abelian theory there is no Dirac
string and a regular solution results, the well-known 't Hooft—Polyakov monopole [1]. In
the strong interactions no such Higgs field should be present, but nevertheless it has been
conjectured that a dual superconductor description, in which monopoles form the dual
charges that condense, could explain confinement[2]. This scenario receives some support
from the studies in supersymmetric theories through Seiberg—Witten duality [3], although
also the old center vortex picture is still under active study [4]. Lattice studies based on
Abelian and center projections, and their respective notions of dominance [5] are the main
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means through which one tries to address these issues. One relies on so-called gauge fixing
singularities to identify the relevant monopole [6] or center vortex degrees of freedom.

A more recent alternative to study the monopole content of gauge theories, without
the need of addressing singular configurations, gauge fixing, nor introducing an extra
Higgs field, has been through calorons, which are instantons at finite temperature. It
has been found that calorons are actually made up from constituent monopoles [7-9],
which becomes most apparent when the background Polyakov loop is non-trivial (as in
the confined phase), and the size of the caloron is larger than the inverse temperature (the
extent of the euclidean time direction). The background Polyakov loop is defined in the
periodic gauget, (x, 1) = A, (X, 1+ B) by its asymptotic value, or the so-called holonomy,

B
Poo = lim Pexr(/Ao()?,t) dt) =gTexp(2nidiag(;L1,u2,...,;L,,))g, (1)
X—> 00
0

where g is the gauge rotation used to diagonali2g,, whose eigenvalues ef@ri ;)
can be ordered on the circle such that< puo < -+ <y < ppg1, With g =14
and)_?_; u; = 0. The masses of the constituent monopoles are givemByjaﬁ, with
vj =pj+1— ij, which add up to 82/, consistent with the instanton action.

Solutions are known explicitly [10] foBU (rn) charge 1 calorons. Theconstituents can
have any spatial location, although all have the same location in time (they do, however,
become static when well separated), and1 Abelian phases complete its parameters.
Chargek calorons can be viewed as composeflinmonopoles, of which a class of axially
symmetric configurations was constructed explicitly [11].

The purpose of this paper is to study in more detail these higher charge calorons,
where the emphasis is on constructing the chiral fermion zero-modes. Charge 1 calorons
have exactly one fermion zero-mode, which was shown for well separated constituents
to be supported on one and only one constituent [12,13]. We may change the constituent
that supports the zero-mode, by changing the fermion boundary conditions from (anti)-
periodic, to being periodic up to a phase éXpiz) (from now on we will use the classical
scale invariance to sgt = 1). Forz € [}, i+ +1] the zero-mode is localized to what we
will call type j constituent monopoles (with mass%};j, and the appropriat&/"~1(1)
charge associated to their embeddin@inn)).

Lattice evidence has been gathered over recent years that these monopole constituents
are present in dynamical configurations in the confined phase of gauge theofes2pr
using cooling [14,15], and foBU(3) using fermion zero-modes [16] as a filter. It is
somewhat of a puzzle that these constituent monopoles had not been seen in earlier cooling
studies (apart from when using twisted boundary conditions [17]). That they remained
unnoticed when using fermion zero-modes as a filter is, however, simply a consequence of
the fact that these studies were restricted to the use of fixed fermion boundary conditions.
Only when cycling through boundary conditions specified by periodicity up to a phase, the
U (3) charge 1 instanton configurations will show three separate constituent monopoles. In
Fig. 1 we show a typical example based on the exact solutior&X@), closely following
the observed behavior [16] based on actual lattice simulations in the confined phase, which
guarantees the background Polyakov loop to be non-trivial. In the high temperature phase,
where the Polyakov loop is trivial, two of the constituents are massless and only one peak
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z=43/60

Fig. 1. The logarithm of the properly normalized zero-mode density for a ty§d&B) caloron of charge 1,
cycling throughz. Shown arez = ; (for linear plots see Fig. 2) and three values abughly in the middle of
each intervak € [, Hjyl- All plots are on the same scale, cutoff for values of the logarithm bel®wThe
zero-mode with anti-periodic boundary conditions is foungd2t30/60. For the action density of the associated
gauge field, see Refs. [13,19].
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Fig. 2. The properly normalized delocalized zero-mode densities#og ;, on alinear scale (cmp. Fig. 1).

will be seen. These massless constituents are interesting in their own right, giving rise to
so-called non-Abelian clouds [18], but they will not concern us here.

We do not only study the fermion zero-modes for the higher charge calorons to
compare with lattice simulations, but also as a tool to understand to which extend the
constituent monopoles can be unambiguously identified in the caloron solutions. In the
high temperature limit the non-Abelian cores of the monopoles shrink to zero-sizes, and
one is left with Abelian gauge fields. Without taking the high temperature limit, but
excluding the non-Abelian cores, the same physics describes what we called the far field
region [11]. It would be desirable if the Abelian field in this region is described by point-
like Dirac monopoles (actually dyons because of self-duality), when the constituents are
well separated. For charge 1 calorons and the class of axially symmetric solutions studied
before [11] the density of the fermion zero-modes become Dirac delta functions at the
locations of the constituent monopoles in the high temperature limit, for any constituent
separation. This infinite localization in the high temperature limit can be understood from
the fact that for most values there is an effective mass for the fermions. Therefore, by
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studying these zero-modes in the general case, we hope to learn more about the localization
of the monopoles.

It is not directly obvious that any higher charge caloron can be described by point-
like constituents in the far field limit. The tool to construct these solutions is the Nahm
equation [7,20], which is a duality transformation that maps the problem of finding charge
k calorons to that ot/ (k) gauge fields on a circle with specific singularitiescat ;.

In the cases studied so far, the dual (Nahm) gauge field can be made piecewize constant,
from which one easily reads off the constituent monopole locations. In general, however,
the Nahm gauge fields depend non-trivially grand it is important to understand what

this implies for the localization of the constituents. Quite remarkably, we will nevertheless
find that in the high temperature limit the fermion zero-mode density does not depend
on z and can be expressed in terms of the conserved quantities of the Nahm equation. We
compute it explicitly for charge 2, revealing in general an extended structure. However,
the extended structure collapses to isolated points for well separated constituents. This is
so as long as # ., which is the value where the localization of the zero-modes jumps.
We separately study in the high temperature limit the case where. ;, for which the
fermion zero-modes delocalize (decaying algebraically). Support of the zero-modes is now
on constituent monopoles of typgs- 1 andj. We analyze this in detail for the class of
axially symmetric solutions of Ref. [11], in the light of some puzzles concerning so-called
bipole zero-modes [21].

This paper is organized as follows: first we describe the caloron zero-modes in Section 2
and set up the Green'’s function calculation in Section 3, to be able to discuss the zero-mode
and far field limits. Section 4 deals with the case whete 1 ;, for which zero-modes
are delocalized. In Section 5 we relate the zero-mode density $6y.; to conserved
guantities of the Nahm equation and study in Section 6 the general solutiGJfaj
charge 2 calorons. We conclude with a discussion of the implications of our results and
the problems that still need to be addressed. Two appendices provide the details for the
zero-mode and far field limit calculations.

2. Fermion zero-modes

We wish to construct the zero-modes of the chiral Dirac equation in the background of a
self-dual gauge field at finite temperature. The Dirac equation in its two-component Wey!l
form, with &, = a): = (12, —i7) (z; are the usual Pauli matrices), reads

DU, (x) =6, Dp W, (x) = 6, (3 + Ap(x)) ¥, (x). 2)

Assuming the gauge field is periodic in the imaginary time direction, with pefiedl,
we seek the zero-modes that satisfy the boundary condition

U, (t+1,%) =exp(—2riz)W.(t, ¥). (3)

A simple Abelian gauge transformatiof, (x) = exp(Zm'zt)@ (x), makes the zero-mode
periodic. This gauge transformation replaces the gauge field {ty) — 27iz,1,, but it

does not change the field strength, such that existence of the appropriate number of zero-
modes is guaranteed by the index theorem.



F. Bruckmann et al. / Nuclear Physics B 666 (2003) 197-229 201

The caloron solutions are obtained by Fourier transformation, reformulating the
algebraic ADHM (Atiyah—Drinfeld—Hitchin—Manin) construction [22] of multi-instanton
solutions inR*, as the Nahm transformation [7]. For this the instanton®4mperiodically
repeat themselves in the imaginary time direction up to a gauge rotatiorPa4thThis
Fourier transformation also selects out of the infinite number of fermion zero-modes in
R*, those that satisfy the correct periodicity.

In the ADHM formulation thek normalized fermion zero-modes for a chakg8UJ (N)
instanton are givenby(=ito=o02,i =1,...,nisthecolorindex] =1, ..., k the charge
index andl = 1, 2 the spinor index)

vl = Yo V2wt 0 fre)l, ¢ =1+ u ul), (4)
with «T(x) given explicitly in terms of the ADHM parameters by
ut(x) =r1(B —1,0)7L, B=o0,B,. X =Xxu0u, (5)

wherei = (A1, ..., Ax), with )J a two-component spinor in therepresentation 08U (n)
(A can be seen asmx 2k complex matrix), andB,, Hermitiank x k matrices. Asp (x)
is ann x n positive Hermitian matrix (fom = 2 proportional to1,), its square root is
well-defined. We also recall the gauge field is given by

Ap(x) =~ Y200 (1 () 8,(0)) 2 (x) + 912 (1) 3,92 (x), (6)
which can be shown to be self-dual provided the quadratic ADHM constraint is satisfied,

ATA+ (B —10)T(B — 14x) =00 /7L, @)

which implicitly definesf, as a Hermitiark x k Green’s function, thereby completing the
description of Eq. (4). A further simplication [9,23] will be helpful, which uses the fact
that AB,, — x,) = 8, f L andu’(x) = ¢ (x)Af (B — 11x)T, implying

1 _ 1

Au(0) = 5920 fer$Y2() + S[¢72), 9,0V 2(0],

ot =1-rfal, W0 = @0 Y eY20)ry i), (8)
with 77, = r’;,{uoj = oy,0v] the anti-selfdual 't Hooft tensor.

As mentioned above, calorons are obtained by arranging the instantatfstim be

periodic (up to a gauge rotation). The time interf@I1] will contain as many instantons
as the topological charge of the caloron. One splits the charge iredéx= pk + a, where
a labels thek instantons in the intervdD, 1] and p labels the infinite number of repeated
time-intervals, playing the role of the Fourier index. We find, suppressing the gauge and
spinor index (cmp. Refs. [12,13]),

1
i (x) = (2m) LY 2(x)d, f dz' (@) fP(Z, )oe, 9)
0

where the Fourier transforms of and f, are denoted by.,(z) and f**(z’,z). The
fermion zero-modes thus constructed are in the so-called algebraic gauge, for which
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W, (t + 1,%) = exp(—27iz)Poo®, (1, ¥). In this gauge all components of,, vanish at
spatial infinity and the non-trivial holonomy is encoded in the boundary condition, which
for the gauge field read,, (t + 1, X) = Poo A, (1, X) PLL. A simple time-dependent gauge
transformation allows one to transform to the periodic gauge, after wijchoes to a
constant at spatial infinity.

To encode the appropriate periodicity in the ADHM parameters we need to take
Apk+a = Phta [11]. Introducing the projections®, on the eigenvalues oP., i.e.,
Poo =3 1 €XP(2i ) Py, We find iy (z) = 3" _1 8(z — tm) Puia, Which makes the
expression for the zero-modes particularly simple,

n
WO (x) = 2m) 92 (x) D Pup6ued, f (m. 2).- (10)
m=1
The fact that we are dealing with higher charge calorons, is reflected in the presence
of the indicesa, b = 1, ..., k. Making use of the well-known identity [23-25] iR*,
w!, ()W (x) = —(27) =292 ™, Fourier transformation gives the appropriate expression
for the caloron zero-mode density

W 0T () = —(27) 7292 fb (2, 2). (11)

Using the fact that ling,_, o |£|f;"’(z,z) = 78, the zero-mode@za are seen to be
orthonormal.

We close this section by remarking that 83 (2) an alternative construction is possible,
as part of theJp(n) series (sincep(l) = SU(2)). The ADHM construction foiSp(n) is
based on quaternions. In particularis assumed to be a quaternion, whergasis now
real-symmetric. All formulae presented above remain valid, but it should be noted that the
transformatiorh. — AT", B, — T B, T", with T € U (k), leaving the gauge field and the
ADHM constraint untouched, has to be replacediby O (k).

3. Zero-modeand far field limit
As we have seen above, all physical quantities can be reconstructed, once we have found

the Green’s functiorf}‘b(z, 7). Here we review the necessary ingredients. We start with
the fact that the Green'’s function is defined through an impurity scattering problem [11]

2
{—d—z+V(z;?c)}fx(z,z/)=4n2]lk8(z—z/), (12)
dz
where f(z, ) is related tofx (z,7) by aU (k) gauge transformation
f@)=8@ frz. )8 @), &) =exp(2mi(go — xolp)z). (13)

The “potential” V', which includes “impurity” contributions, is determined by the (dual)
U (k) Nahm gauge fieldt , (z)

V(%) =4m?RA@ 5 + 21 Y 8 — wn)Sms Sm=2tm)Sn&" (1tm).
m

Rj(z: %) =x;1x — 2r) L8()A;(287 (), S =mtra(¢c] Puty). (14)
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Fourier transformation oB,, gives 2ri)~18(z — Z’)(Suollkd% + Zu(z)) and defines the
Nahm gauge field. We have further used the fact that one can chobgk)agauge in

which Zfo(z) = 2rwi&p is constant, which itself can be transformed to zerqgly). Note

that g(1) plays the role of the holonomy associated to the dual Nahm gauge?fjgk).

Crucial is that we can formulate the zero-mode and far field limits without specifying
the solutions of the Nahm equations. These Nahm equations, which are equivalent to the
ADHM constraint, are given by

A+ [A0(2), A;(2)] + Esjke[Auz), Av(2)] =2mi ;3(1 — L) Pin»

P8l = —m trp(¢] Pucs 7). (15)

This will be discussed in more detail in Section 6.
To solve the second order equation §rz, z') it is convenient to convert it to a first
order equation, involvingR x 2k matrices,

d (0 1 fo@2) N, e (0
(dz (V(z;?c) 0)) (d%fx(z,z’)>_ 4n®é(z Z)<Jlk>’ (16)
which can be solved as
@) N o N
(d%fx(z,z/)> = —47°W(z, 20){ M2k — F=o) 0(z' — 2)1}

x W7, z0) (f ) , (17)
k

wherezg can be arbitrary and

22
W(z2,21) = Pex;{/ (V(ZO, %) 15) dZ:|,
71

fzong(l)W(m*I-l, 20). (18)
In particular, one can show that [11]

—% Tr, FZ, (x) = ——azau log vy (x),

¥ = det(ie ™0 (1 — Fyp) /V/2). (19)
To isolate the exponential contributions in Eq. (18), one introduces two solutions of the
Riccati equation [11],
1d

= Y%t p2/..2
5 7z fn () = R*(@ %), (20)

SinceR(z; ¥) — X1y for |¥| — oo, we find in this limit thatR:t (z) — |X|1. Defining

RE(2)?+

f,f(z) = Pex;{:l:Zn / Ri(z) dz:|, Z € [tm, Um+1]s (22)
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we see thatf,ff(z) — exp(*27|X|(z — um)1x). These are the exponentially rising and
decaying solutions of Eq. (12), in terms of which we can rewritezfaf € (i, tm+1)

W(z,2) = Wu (W, '), Win (2) = Wi (2) Fiu (2), (22)

whereF), (z) contains all exponential factors,

~ . 1z 1
Wn(2) = <2nR,j;(z) —an,;(z)) ’

_ (@ 0

As an illustration let us assume(z; ¥)2 = (¥1; — &Y,,)2 = R2, independent of,
for z € [um, um+1], as is the case for charge one [9] and a class of axially symmetric
solutions [11] (see Section 4). We then firR)i(z) = R,,(z) = R, and f(z) =
exp(2r (z — um) Ry ). DiagonalizingR,, definesk locations (the eigenvalues &f,), which
are sharply defined and give rise to point-like constituents in the high temperature limit.
WhenR(z; X) is not piecewize constant, these locations are a priori not sharply defined. We
still expect the cores to be the regionstiwhere R (z; X) remains small (cmp. Eq. (14)).
The separations between the cores of monopoles of different type is controlled by the
discontinuity in ;fj (z), Eq. (15), and can in general be chosen large. This allows us to
define the zero-mode limit, whekds assumed to be far removed from any constituent core
not of typem. In technical terms it means thﬁﬁ, (z) is large for allm’ # m. Accordingly,
Sy (@) andfn’:, (z)~* are exponentially small for these valuesiofcmp. Eq. (21)). Results
that are valid up to these exponential corrections are denoted by a subscript “zm” for the
zero-mode limit and “ff” for the far field limit. In the latter cas@,is assumed to be far
removed fromall constituents.
In Appendix A we show that for,, <7/ <z < m+1
n
m

Mz, ) =m(ef () — e_(z)Z;_H)(
x (&4 = Z}te, @) RN, (24)
(for z/ > z one usesy (7', z) = fx (z,7)) with
@) = [T (s L
em=enlun),  E@=fF@7
Z =1 =25 R 1 (m),
Z =L — 25, R (im),

~Zrenzo )t

m-m“~m+1

R(m_lmﬂo+R(@)
Zm =Ry, (m) + R;,l(ﬂm) + S (25)

This result is valid up teexponential corrections as long as is far removed from all
constituents of type:’ # m. Note that in this limitzt = 1, however, only up talgebraic
corrections, which is why we have kept them. In Fig. 3 we give the zero-mode densities
for a charge 2 axially symmetric solution 88U (2), with well-separated constituents. We
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Fig. 3. Zero-mode densities for a typical chargesd(2) axially symmetric solution. For comparison the action
density (cmp. Fig. 2 of Ref. [11]) is shown in the middle. All are on a logarithmic scale, cutoff keidwon the
left is shown the two periodic zero-modes=£ 0) and on the right the two anti-periodic zero-modes-(1/2).

found no differences to 1 part in $®etween the exact result and the result obtained with
the zero-mode limit, Eq. (24). The choice of basis for the zero-modes involves the (dual)
gauge rotation that for each intervak [u,,, un+1] identifies the constituent locations,
cmp. Section 4 and Ref. [11]. This ensures that each zero-mode is localized to only one
constituent monopole.

It is now almost trivial to read off from this the far field limit fof, (z, z), wherex
is assumed to be far fromil constituents. As long as# w,, andz # w41, €,(z) and
é-(z) are exponentially small, anf (z, z) = e (2) (eh) 726} (2) R, 1 (z). But using the
definitions ofe,,j;(z) andé,,j;(z) all exponential factors precisely cancel and in the far field
limit we are left with

Mz, =aR ), 2 € (tms Hms1), (26)

which will play a very important role in Sections 5 and 6. We can also read off the far
field limit for fy(z, z’) evaluated at the impuritigs,, and u,,+1, noting that by definition

e (m+1) = &5 () = 1y,

S i1 1) = T — Zpy DR 1) = 27 5,14,
I ms om) = (W — ZH R um) = 270 2,2, (27)

and f{ (ums1, ttm) = 0 (as well asff (. wmr1) = 0, using fx(z,2) = £ (. 2),
verifying the results of Ref. [11]. Althougly;(z, z) is continuous at the impurities,
comparing Eqg. (26) with Eq. (27) we see, as anticipated, that in the high temperature limit
fx(z, z) is discontinuous at the impurities. At finite temperature, the transition across the
impurity has a “width” inversely proportional to the temperature.

Fork = 1, wheree: (z) = exp(&:27 (im+1 — 2)rm) andéE (z) = exp(£27(z — pm)rm)
one finds forz’, z € (m, m+1)

. 27 SN2 1y (1 — 2/ + yn;+l)) SiNN27 7y (z — wm + VnJ{))

2 2 : _ ., (28)
Fin SN2 1y (Vi + Vir + V1))

which agrees with the result of Ref. [13], where only the limit wjtlj = —% logZz,}

andy,,, = —3logZ, | neglected and’ = z was considered. We stress again that the
presence of implies a subtle algebraically decaying influence due to the constituents of
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typem — 1 andm + 1 (the influence of all other constituents is decaying exponentially,
although this is only relevant f@U(n > 3)). In terms of constituent radii, = |X — y,,|
and locationgj,, one has

_ |Yma1 = Ym| 4+ Fms1 —Tm

B |¥m+1 = Y| + rmsd 4 rm’

Zj,;= |):’:mfl_§’:m|+rm*l_rm-
|Ym—1— Ym| + rm—1+ Tm

Zm+l

(29)
ForSU(2), with ¥ +1 = ym-1, thereforeZf =7 ,, ory,f =y, ,, and the influence of
the other constituent is only felt by a renormalization of the mgss

COSP‘(anm (v + 2Vm)) - COSI’(ZTH’m (22 — m — Mm+1))
P SINN27T 71, (Vg + 2Ym)) .

VQ): fMz,2)=n

(30)
Note that forSU(2) 1 + 2 = 0 andu2 + 3 = 1. This leads to the well-know result for
the monopole zero-mode densiff™(z, z) = nr,;ltanr(nrm(vm + 2ym)), with z =0 for
m =1 (periodic zero-mode) angd= 1/2 for m = 2 (anti-periodic zero-mode).

4. Bipole zero-modes

In this section we discuss the zero-modes in the high temperature limit=for,,,
which means thaP.e~2"* has one of its eigenvalues equal to 1, which leads to one of
the components of the fermion to become massless. Indeed, using Egs. (11), (13), (27) we
find that in the far field limit

t= g B0 TP () = — 20 N2(SH) ",

fm EgT(//Lm)Emg(Mm)7 (31)

decays algebraically and has support on the constituents ofitypd andm, as is easy

to see fork = 1, whereX), = |X — Yiu—1| + |X — Y| + | Ym—1 — ¥m|. Here we will restrict
ourselves tdSU(2), particularly interesting for the axially symmetric caloron solutions,
since in the high temperature limit its gauge field has the form of the so-called bipole
ansatz (see Eg. (35)), which always has an integrable chiral fermion zero-mode [21]. In
the bipole ansatz all Dirac strings have to run in the same direction, but other than that,
the locations of the self-dual Dirac monopoles can be arbitrary. However, for the axially
symmetric caloron solutions the constituents have to alternate between opposite charges
on a line [11]. In this case, with the solution coming from a regular caloron, there are
always as many zero-modes as the number of constituents with a given charge (equal to
the topological chargk). By considering the case of solutions with topological charge 2,
we will find the expressions for the bipole zero-mode and the extra zero-mode, in terms of
the constituent locations only (which should be possible, since the Abelian gauge field has
this property in the high temperature limit). Remarkably, we will find that rearranging the
order of the constituents, so as to violate the constraint coming from the axially symmetric
caloron, the second zero-mode is no longer integrable (while the gauge field and bipole
zero-mode remain well defined).
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A patrticular class of axially symmetric caloron solutions is obtained by tal(jbgs

§(z)%§’r(z) to be piecewize constant. This can be shown to satisfy the Nahm or ADHM

equation when we take [11]

n
la = pa €XP2TiCa)E, g = ZaZle,
m=1

Troo, =0, ?m = Yma (32)
wherep, are positive, not to be confused with

Bt = ppb exp(2ri(ay — o)) AYm,

A¥m = Aymé = —mtrp(¢ TP, L 7). (33)

ForSU(2) one hasAy; = — Ay, (for U(n > 2) a constraint oi is required, to guarantee
that all Ay,, are parallel). We will take& = Ay2/|Ay2| = (0,0, 1) (henceAy, > 0) and
Poo = eXP(2riupt3) (therefores = \/Ay,/m 12). This can always be arranged to be the
case by a global gauge rotation, and a spatial rotation. We dgfinap to an irrelevant
overall shift, throughy,, = y,, — ¥,»_1. This fixesY,, to be

yab = (& + pgym)&,b +i(1—8ap)Papp

§ Z A exprile] — ol — (1) +5T)E — E)D
= 2sincr (€] — &)

(34)

The constituent locations are found from the eigenvalueg,ofAlthough constant, it is

not true in general that thg, can be diagonalized simultaneously, making this a non-
Abelian solution of the Nahm equation. Yet, as we remarked before, one easily computes
the Green’s function, SinCR (z) = R,y = /(X1 — e ¥y,) - (X1x — € Yy,) is constant ir.

Using that for the axially symmetric solutioig’? = $4%5,, /| A¥,,|, one shows [11] that

in the high temperature limit the (Abelian) gauge field can be written in the form of the
bipole ansatz [21]

_i det(R1+ R2+ S2)
2 det(R1+ Ry — S2)°

In the bipole ansatz, one splits, (x) in an isospin up and isospin down component (with
inverted Abelian charges). However, all that concerns us here is the fact thatyfgr,

A, (x) as given above is self-dual (and hence a solution of the Maxwell equations) provided
log¢ is harmonic away from Dirac string singularities (definedgoyt = 0). This always
gives rise to at least one normalizable zero-mode of the chiral Dirac equation

Gr (x) = (275) "2~ Y2(x) (226,,8)m1 8, l0g P (x), (36)

wherep is simply a normalization factor. Here corresponds to the isospin component
that survives fot = u,, (with the other component related f@(ul, wu2) vanishing in the
far field limit, see Eq. (9)).

We now work out the explicit form of all zero-modes for the axially symmetric caloron
solution, showing how the zero-mode in Eq. (36) is recovered from these. Using Egs. (10),

Au(x) = —7375,0, 1090 (), ¢ (x) = (x) = (35)
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(27), (33), together with the fact thak (u1, o) is exponentially small; is used for
picking out the surviving component), we find for the normalized zero-modes-at,,

(I¢1=+Ay2/)
G4 (x0) = ¢ 20121 06eZ 4 (1158 mr 9 (2,2) (37)
Using the fact that (cmp. Eq. (8))

ab

bt (x) =1 — 21|t |2 pge®™i (2, 1) e 2% py,, (38)

the following linear combination recovers the bipole zero-mode

pae” 21| o /% (x)
ha— -
2 p

pP=> P2l (39)

Gr (x) = (1168 m1 9 (1 — g *(x)),

By defining @(j)(x) = (pa”)’fwa,(x) with o) an orthonormal set of complex vectors,

with pSP = p.e?rie’|¢ | /5 we form a complete set of orthonormal zero-modes. That these

are solutions of Eq. (2) is guaranteed by the general formalism we developed, but one may
of course check this by substitution in the Dirac equation. This reqéicet® 9, @1 =0,
with @ = (1 — 25, =1L,
For axially symmetricSU (2) solutions with charge 2 we chooséz) = sab,oél) and find
for the two orthonormal zero-modeszat o

70 = o )(82+’81>¢5}( )
¢<7)1<x) =275%(p?) S5, (40)

with ¢(1)l =1- qbf;l, as shown in Ref. [11], only depending on the constituent locations

y,Sf) read off from the eigenvalues adf,. Many choices ofy,,, &, &§, af, pa and o

actually give rise to thesame constituent locations, and hence ttane expressions for

A, (x) and¥ D It is important for consistency that this will hold fér® as well. Apart

from an irrelevant phase, this is indeed the case (checked for many random choices of the
parameters). The explicit analytic formulae in terms of the 4 arbitrary constituent locations,

apart from the constraint on the orderiﬁﬁ) < yé y(z) y(z) read

2 0 4 00— [y 0
+ry =y =y
b =1-¢g'=1- H OINGITNGIE (i>|’

i=1T1 13

+1y1
2 1 1 2 2 l l 2
() ()
le_N] J

Pt =7 N 2 it (@D
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Fig. 4. The two zero-mode densitiexat uy = 1/4 (same configuration as Fig. 3). The bipole zero-mode (right)
is at 5 times the vertical scale of the second zero-mode (left). Top for the high temperature limit and bottom for
finite temperaturef = 1).

wherer”) = |3 — &y'”’| and the constant§, N/’ are given by

2 1 2 1
N = (yé)—yi))(yi)—yé))

1 1,2 2)\’
(yé ) — yi ))(y§ ) — yi )
0 =y =)

0T =P
The phase vanishes wheay' = &5 = 0, butis of course irrelevant for checkiﬁb‘z) to be
a properly normalized fermion zero-mode, orthogonéHb). In Fig. 4 we give an example
for the behavior of these zero-mode densities. We chpﬁ%e: —6.031,y§1) =-2.031,

yiz) =2031 andyéz) = 6.031. These are the constituent locations also found in Fig. 3,
based on the axially symmetric solution wjth = 1/4,a, = £, =0, = 3.5, Ay, =1 and
p1 = p2 = 2. Shown are the results for both zero-modes (bipole zero-mode on the right) at
finite temperatureg = 1 (bottom), and at infinite temperature (top). Note that these two
only differ in the cores of the constituents, regular at finite temperature, but singular for
the self-dual Dirac monopoles one is left with in the high temperature limit. The bipole
zero-mode density is shown on a scale enhanced by a factor 5. Its reduced height is due to
the fact that this zero-mode decays much slower than the other one, as can be read off from
the behavior ofp(j)l(x) in Eq. (41).

Crucial for the normalizability of both zero-modes is thapd, is constant on the Dirac
strings, where A¢5 vanishes

NV = N S (42)

_ y(2) _ y(2)
$50.0.x3 =1, ¢;/(0,0,x3) =—¢'” N x—-
( yéz) _ yil)

1 1
for y < x3 < ¥,
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Fig. 5. The two zero-mode densities for Eq. (41) with the ordeyi&% and yél) interchanged. The second
zero-mode (left) is at the same scale, whereas the bipole zero-mode (right) has its vertical scale magnified by a
factor 10, compared to Fig. 4.

1 1 ' yél) - yil)
- — - N |
¢(1) (0,0,x3) =1, ¢(2) (0,0,x3) =e VN(ﬁ)

Yo =M1
2 2
for yi ) <x3< yé ). (43)

We are now in a position to answer the question what happens when violating the constraint
on the alternating order of oppositely charged constituents, by smoothly deforming from
ysP < yiz) to ys? > yf). Under this deformation, botér» and¥ @ remain zero-mode
solutions of the Dirac equation, ad, remains a self-dual Abelian gauge field. We now
have a Dirac string foyiz) <x3< yél) of double the usual strengtl7bf'(l behaving asxi

as opposed t@i), where the second zero-mode density diverges, as illustrated in Fig. 5.
This is because, will no longer be constant on the double Dirac string. The bipole
zero-mode, on the other hand, remains well defined. It actually vanishes identically on the
double Dirac string (cmp. Fig. 1 of Ref. [21]), and no longer “sees” the two inner self-dual
Dirac monopoles.

It would be interesting if one could formulate an index theorem for these Abelian field
configurations with singularities, but this will not be straightforward as our analysis shows.
It is yet another subtlety in describing the monopole content of non-Abelian gauge fields.
Developing a better understanding of these constraints, that affect the long range properties
of configurations, is our main motivation for these studies.

5. Appearance of conserved quantities

Our analysis has shown that in all cases, as longstays away from the impurities, the
zero-mode density is exponentially localized to the cores of the constituents in the far field
limit. The sizes of the monopole cores shrink to zero in the high temperature limit (with
masses scaling proportional with the temperature), therefore we expect

Vn(3) = (4m) 1 Tr(R, 1 (2)), (44)

cmp. Egs. (11) and (26), to be harmonic almost everywhere except for singularities tracing
the cores of type: monopoles fot € (um, wm+1). Since the caloron gauge field does not
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depend ory, this interpretation requires,, not to depend on. The trace in Eq. (44) is
necessary to remove agylependence due to the fact that the basis of zero-modes is only
defined up to a possiblydependent unitary transformation. All this is obviously true when
R(z; %) is piecewize constant, as fbre= 1 and for the class of axially symmetric solutions
of Ref. [11]. In this case the zero-mode density in the high temperature limit reduces to the
sum ofk delta function, located at the appropriate constituent monopole locations.

To show thatV,, is independent of, even whenﬁ(z, X) is not piecewize constant we
solve the Riccati equation, Eqg. (20), iteratively if{i] and obtain the multipole expansion
for V,,(X). We can then use the Nahm equation }Y)Jr(z) to check if every moment of
this expansion is independentpfWe restrict our attention to the region betweggh and
um+1 and perform a rotatiody (x)

A
Yi(2) = Uij(2)§(2) zfﬁ)gﬁ(z),

sin(f) coge) sin@)sin(p) cogH)
U()?)=< )

cogP)codp) cogh)sin(p) —sin®)
—sin(p) cogyp) 0

(45)

with (6, ¢) defined such thal/1; = X; = x;/|x| (the dependence (ff(z) onx will always
be implicitly assumed). This leaves rotations arounéds a remaining freedom, which
we will make use of later. For the axially symmetric solutions discussed in Section 4,
Y(z) =U(x)Y,, cmp. Eq. (34).

The Nahm equation, which is invariant under rotations, is equivalent to (working in the
gauge wherel is constant, removed by the gauge transformation @th)

d
EYi(Z) = —migiji[Y; (@), Yi(2)]. (46)

We introduced (z) in Eq. (45) such that

R(z; %) = 14|3? — 27| Y1(2) + Y2(2), (47)
has a simple form. Writing

Roy (22 = 14l% [ = 1710 (2 1¥17Y), (48)

we can now formulate the Riccati equation, Eq. (20), in termﬁ(@ﬁ and Q.+ (z; |¥|7D),

C1z—1
G
x|
Y Y2 1 d 1%L
PP 162 B G S PO 2221 o) (49)
x| | x| 2m|x| dz | x|

which can be solved by iteration, expanding in powers ¢fcfl something that is
easily automated. We used the algebraic program FORM [26] for its superior memory
management and speed to push this calculation to a high order. We find for the first few
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terms (also easily obtained by hand),
RE(2)
x|

1 R
=1 — Y1/I%| + = (Y22~|—Y32ﬂ:i[Y3, Y1) /I%1?

+ §(Y2Y1Y2 + YaY1Y3 FiYaY1Ya£iYaV1Yo)/|X3 + -, (50)

where the; dependence df; (z) is suppressed for ease of notation and any derivatives with
respect toz are eliminated with the help of the Nahm equation, Eq. (46). We substitute
this expansion in Eq. (44), witl®,,(z) = %(R;;(z) + R;, (z)), from which we obtain its
multipole expansion. The first few terms are

. 1 Y1 13Y2-Y? 115v2-3r2
V =——Tr — + = - =
"= ] ("+| W2 RE T2 P
A number of checks can be performed on this result. First df alhnd Q1 are invariant

under any rotation amonip andYs, V,, is real andQ 4 are Hermitian, as should be. By
construction, cmp. Egs. (11), (26) and (44),

k
DT () = =0V (E), 2 € (s 1) (52)

(51)

in the far field limit, and one verifies that this integratesttaas required by the proper
normalization of the zero-modes. But most importantly, we verify with the help of
the Nahm equation, Eq. (46), thg%vm = 0 to the order given (whereas in general
neitherRi(z), nor Tr(R,,(z)) are constant). For the dipole term this is immediate, since
L Tryy = —27i Tt[Y2, Y3] = 0. For the quadrupole term we haye Tr(3Y7 — Y2 =

—4i Tr(3Y1[Y2, Y3l —€;1Y;Y;Y,) = 0, using the cyclic property of the trace, etc. Note
that TrA; (z) plays a special role It corresponds to thél) part of thelU (k) Nahm gauge
field, and therefore decouples in the Nahm equations. As is obvious from the definition of
R(z: %), Eqg. (14), it can actually be absorbed in a shift oTherefore, where this simplifies
matters we may assunf’e(z) to be traceless.

Finally we check, as conjectured above, that each of the terms is harmonic. For this
we have to note thak (z) depends orx through the rotatio (x), see Eq. (45). In the
expression fol,, (x) the x dependence is easily recovered sinceis independent of
andY1(z) = g(z)A (z)§T(z)xj/(2m |%]). Itis now stra|ghtforward to verify that each term
is harmonic. Whet = 1 we may use that; = x - y,, is no longer a matrix, and one indeed
finds V,,(¥) in Eq. (51) to be the multipole expansion f@tr |x — ¥,,|)~* for that case.
Since this is harmonic (fof # ym) each term in the multipole expansion1df (x) has to
be harmonic. For arbitrark andY (z) we have checked these properties to otder4 in
the multipole expansion.

From now on we take charge 2. In this case there are 5 independent conserved quantities
that characterize the solutions of the Nahm equation on a given inteevgl,,,, wm+1],
apart from the 3 translational degrees of freedom containedn (. They are given by
the entries of the traceless and symmetric ma¥fix

1 1
M =— 2<Tr(A (DA4;(2)) — 51, Tr(Ak(z)Ak(z))> (53)
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One easily checks with the Nahm equation that this is conserved, as for the quadrupole term
considered above. Although not needed here, it is known [7] that fok angolution to
the Nahm equation implies d@;A (z) — 2miy;x ;1) is constant, providedl C3, with

= 0. Indeed, fork = 2 andx =0, using that deﬁgv]A () =—-13 Tr(yjA 1(2))2, this is
equwalent toM being constant if and only |j;2 0. SinceM gives all the independent
invariants, it should be possible to expre$§(x) in terms of M and x. Considerable
simplifications occur, because we can write

A =iAj(28 (@)1 (54)

(absorbing the trace part in a shift 8§, and user,t, = d4p12 + igapc T t0 reduce the
matrix products to scalar productd;, (z)A;j.(z) = M;; + %SijA,fa (z). We do indeed find
thatV,,(¥) is a function ofM andx only,

R 1 3 _
Vi (x) = m(l E: |2M11(x)~|—(’)(|x| )) (55)
where for convenience we introduced
1 1 1 -
M (%) = (U<x>MU—1( )i =5 Tr(Yi (2)Y;(2) — §8i,~Y2(z)>. (56)

We performed tpe multipole expansion for charge 2 to ofder?L. Only the odd orders
appear, becausé(z) is assumed to be traceless. In Appendix B we give the term of order
21, and show how from this all lower order multipole coefficients can be recovered.

6. Exact resultsfor charge?2

In this section we will construcBU(2) charge 2 solutions for Whiclﬁ(z;fc) is not
piecewize constant and analyze the localization of the fermion zero-modes in the far field
limit. We already saw in Section 5 that on each inteiya),, u,+1) we have information
on the zero-mode density, Eq. (52), in terms of 8 parameters. Three of these are associated
with Tr Y (z), which give the center of mass coordinates for the constituents ofiiy @
the other 5, given by the 8 3 traceless symmetric matri, 3 are associated to a rotation
R that diagonalize3/, whereas the remaining 2 parameterize the eigenvaluks dhey
will give a scale D) and shapek) parameter, see below.

6.1. Solutionsto the Nahm equation

Explicit solutions in terms of Jacobi elliptic functions were first considered in the
context of SU(2) charge 2 monopoles [27,28]. These solutions can be adopted for
the calorons provided the appropriate boundary conditions, read off from Eq. (15), are
implemented. In terms of the 8 3 matrix.4;,(z) defined in Eq. (54), the Nahm equation
becomes (away from= ;)

1d o 1
5 dZA(z)—del(A(Z))A (@), (57)
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from which we find

1d
37 (ADA ) = 13detd(z) = 13,/ def(A) A 2)). (58)

The traceless part ofl(z) A’ (z) is therefore independent ef once again verifying that
M=A)A (z) — %113 Tr(A(z) A’ (z)) is constant. Here we are, however, interested in the
equation for the trace part

j—ZF(z) =4,/de(F(2)13+ M), F()= % Tr(A(z) A (2)). (59)

When we diagonalizé/ with a suitable rotatioR, M = Rdiag(c1, c2, c3)R!, fixing R
such thate; < c1 < ¢3 (note that in addition; + ¢2 + ¢z = Tr M = 0), this can be cast in
the form

d
TR = a4/(F@) +c1) (F&) +c2) (F(2) + ca). (60)

Defining F () + ¢; = 3 D? f2(Dz) and introducingD andk to parameterize the;,

1 —
DZEZ(C3—02), kzzcs “a

<1, (61)

~X
c3—C2
shows that the solution can be written in terms of the Jacobi elliptic funétions

f2)= drk(z), k' =+v1-Kk2.

Cnx(z) Cnk(z) 62)

The overall sign of the functiong; (z) is chosen such thatfi(z)/dz = f2(z) f3(z), and
cyclic, such that in terms of these the most general solution of the Nahm equation is given

by
Aj(z;d, R, h, D, k) =27i§T(2)h" (aj12+ DR f5(D2) W) hi (2),
D= (4n)"'D, (63)

!/ k/
fo(z) = K sfk(z)

i) = @’

whereR is the rotation that diagonalize® and# is a global gauge rotation (leaving
A(z) Al (z) invariant). In thesp(1) formalism for constructin@U (2) calorons one requires
Zf’j () = Aj(—z), a property shared by, (Dz)t;, for eachb. Arranging f2(z) to be odd
and f1,3(z) to be even iry was the reason for choosirg < ¢1 < c3.

We see thak’ = 0 (i.e.,k = 1) recovers the case wheRgz; ¥) is piecewize constant,
for which VE=1(x) = (4r|¥ — §)~' + (4z|x + ¥)~!, with j = (0,0, D) and +y
the two locations of the equal charge constituents (the center of mass assumed to be
zero), see Section 5. The combined zero-mode density in the far field limit is given by
—32V(X) = 8(X — ¥) + 8(¥ + ¥), the sum of two delta-functions at these constituent
locations. Actually, two point-like constituents necessarily imphes- 1. Comparing

1 The Jacobi elliptic functions are defined byyém) = sin(p(u)), crg(u) = cop(u)) and di(u) =
/11— K2sr (u), with u = fép(”) do (1—k2sin?9)~1/2. We use boldface fdk to avoid confusion with charge
One also encounters the notation [29{:8m) for sny (1), with m = k2,
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3M11/(1673|%3) = 32? 10X 2/(167r3|5c’|5) see Eq. (56), with the quadrupole term for
VE=L(%), (242 — x2 — xl)Dz/(47r|x|5) one finds that = c2, which forcesk = 1. It is

in this context that we defing= +(0, 0, D) as would-be constituent locations even when

k # 1. In which way we will approach point-like constituents wher> 1 will become

clear in Section 6.3. So far we have studied the Nahm equation away from the “impurities”.
We first want to convince ourselves that there are more general (not piecewize constant)
solutions to the Nahm equation that describe calorons with non-trivial holonomy, for which
we need to solve the boundary conditions at the “impurities”.

6.2. Matching at the impurities

We will consider here the case &U(2) charge 2 calorons in the symplectic
representation, for Whicﬁj(—z) = X]’.(z). This condition is preserved under the gauge
transformationg(z) defined in Eq. (13), but requires us to further constraiappearing
in Eqg. (63) to be generated by. It means that for € [w1, u2] the Nahm gauge field
is given by A;(z) = A;(z; a®, RWD, e™ 300 p), k™). For z € [u2, 1+ u1] we use
that per|od|C|tyofA (z) |mpI|esA (l—z)_A (— z)—At (z), such thatd ; j(2) = A jz—

%, i@ R®@ ¢~20%1 D@ k@) This was studied before by Houghton and Kraan for
trivial holonomy (2 = 0) [30], where one of the monopole types is massless. For general
holonomy, the Nahm equation reduces at 2 to (see Eqg. (15))

. 1. ,-
Aj (uz —5:a® R, 2" D@, k(2)>

—A; (uz ad rRD 7%9(1)TZ,D<1),k<l)) =2nipé. (64)

At 7z = u1 = —u2, using Aj(—Z) = ;fj(z)’, the same condition is found (one can
check [11] thafoy = —p5).

A particularly simple solution is obtained fqi, = 1/4 (equal mass constituents)
by taking the same parameters in both intervals, up to a 8hiR"™ = D, k™ =k,
R =13 andd™ =0, collapsing Eq. (64) to

1
zD
p2=Aaly — 20,1, 0)t2Dk/M
cry(zD)

This can be solved by takinB, = 5(12 + 12), {u = p EXP2Tia,T2), With a1 — a2 = 1/4,
which givesps? = —27p2P4%(0, 1, 0), such that

, Ada=a?®—aW. (65)

Dk’sm( D) . )
— = 7(0,1,0) =—-Aa = 0,1,0). 66
ZJTCFk(4D) ( ) = —Aa =mp( ) (66)

For increasingD, cn((%D) will reach zero at%D = K (k), the half-perioc? To keep|Ad|
finite, k’ has to approach zero as well.

2 (k)= f3/?d6 (1 K2sir?6)~Y/2, satisfyingk (k) = — log(1k') (1 + O(k'2)) [29].



216 F. Bruckmann et al. / Nuclear Physics B 666 (2003) 197-229
10

8

o

D

N

T ///

5 10 15 20

Fig. 6. Plotting| Ad| versusD, Eq. (66), fork =0, 0.9, 0.99, 0.999 and 0.9999 (left to right).

In Fig. 6 we plot|Aa| as a function ok and D, from which we confirm that, at fixed
|Aa|, k has to approach 1 to have well separated constituents. In this point-like limit,
monopole constituents of type 1 are Iocatectmt—%npz, +D) and those of opposite
charge (type 2) at0, %n’pz, +D) (choosing the overall center of mass at the origin). This
configuration has parallel magnetic moments and placing self-dual Dirac monopoles at the
mentioned locations would give a gauge field in the bipole ansatz, Eq. (35). However, the
Abelian component of the gauge field coming from the above caloron can at best take the
bipole form in the limit discussed. Fé&r= 1 andD finite, |Aa| = 0, and one is left with
two singular instantons (of zero size)(@t 0, £D).

For this reason we now consider a class of solutions which contegugar axially
symmetric solutions wittk = 1. Again we takeup = 1/4, D" =D, k™ =k, ¢, =
p eXP(2mia,T2), but now withas = —a1 = 7 1o, Po = %(1 +13),0@=—0D =9 and

cospy 0 sing
R® = (RW) ™ = ( 0 1 0 ) (67)
—sing 0 cosp
One finds
p8° = —mp?(— sinars, — sinat, 11 + cosaly)?, (68)

and Eq. (64) takes the following form
1 . 1 . 5 .
2D( f1 ZD siné cosy + f3 ZD cosfsing |3+ Aailo = mp“sSinars,
1 2 .
—2Df> ZD T2 + Aaxlly = mp“Sinaty,

1 1
-2D <f1<ZD> cosd sing + f3<ZD> sing cos<p> 71 + Aaszly

= —7p?(11 + cosx1y). (69)



F. Bruckmann et al. / Nuclear Physics B 666 (2003) 197-229 217

This can be simplified to

Dsin@ — @) 1D 1D _L2 1—sin
Aa=—mp COScx(O 0,1),
. 1 1 1 5 .

Dsin(@ + )| f3 é_lD + f1 é_lD = Enp (14 sina),

1 1 5.
sz(ZD) ==37P sina. (70)

It gives a three parameter family of solutions with would-be point-like constituents at

) = (( 1)/ Dsing, 0, (—1)" /D cosp — (— 1)’”%,0200&1). (71)

To have an exact point-like far field limit we need to impése 1, implying sine =0
and co® sing = 0. The first possibility is that cas= 0, for which| cosp|D = %,oz. One
finds two constituents of opposite charge to coincide. Such a solution describes a singular
(zero-size) instanton on top of a smooth caloron. Excluding this singular case we are left
with the choice sip = 0, for which |sinf|D = 2,02 We now find axially symmetric
solutions with constituent locations at

1 .
) = # 5m? (-1 + (-1 sing 1)(0,0,1), (72)

where the overall sign comes from the fact thatees+1. For co® # 0, all constituents
are now separated from each other, giving a regular solution. Both cases were already
studied in Ref. [11], based on assuming tpatis one-dimensional (cmp. Section 4). It
can be shown that fd8U(2) exact point-like constituentsx® = k@ = 1, forcesp, to be
one-dimensional foany choice of the remaining parameters.

Nevertheless, when sin# 0, insisting as before that equal charge constituents are well
separated, while keeping the centers of mass of these pairs at a fixed distefooesa,
one forcek — 1 while increasingD, and hence approximate point-like constituents. We
will illustrate this behavior fo® = z /4. In Fig. 7 we plot for a typical value g6 the
constituent locations as given by Eq. (71), varyingetween-z and 0 (giveno, a ando,
one can use Eq. (70) to solve for D andk). We also plok as a function ofp for some
values ofp, showing the rapid uniform approach ko= 1. The asymptotic behavior for
a = —m /2 is determined by

,_Aexp—D/4) 2 2.2 2
k NG (1+0(K'?), D=4v27%p?(1+0O(k'?)). (73)

It is also interesting to inspe&i (z) inthe limitk — 1 (or D — o0), to understand to
which extent we retrieve the piecewize constant behavidt(af X), on which the point-
like limit is based. For this we plof; (D(k)z) in Fig. 8, which apart from fixed rotations
and an overall facto® would represent the constituent locations. Sife)/ (7 p?)
approaches/2 for k — 1, it means we normalize the constituent locations with respect
to height of the jumps in the Nahm data. At the impurities=(+1/4) we therefore expect
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Fig. 7. On the left we plok versusp for « =0 (k = 1), « = —7/100 ande = —7/2 (giving the lower bound
for k at fixed p). On the right are shown the locations, Eq. (71), of monopoles and antimonopoles (fat vs. thin
curves) in the(1, 3)-plane forp = 1/4, by varyinga from —x (indicated by the arrows) to 0.

3 f3 +
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Fig. 8. Plots of f;(D(K)z) for z € [~ %, 31 atk =1 — 10~* (left) andk = 1 — 108 (right), illustrating the
approach to the point-like limit — 1 foro = —n/2.

fi(D(k)z) to go to a fixed value. The plotted cases; k = 104, D(k) = 15.53 (left)

and 1— k = 1078, D(k) = 33.95 (right), clearly demonstrate how in the bytk— 1 and

Jf1.2 — 0, but that they differ at = £1/4, to accommodate the discontinuities of the Nahm
equation at the impurities. The cross-over from bulk behavior to the impurity values scales
asD~1, and is only absent for axially symmetric solutions.

6.3. Extended structure

When R(z; ¥) is not piecewize constant, it is not clear what plays the role of the
constituent locations. We therefore do expect some extended structlresftr For this
reason we now come back to analyzidig(x) = (47) 1 Tr anl(z) in more detail. Quite
remarkably, the discussion in Section 5 implies that the resul fer0 can be obtained
from that atk = 1. For this we may use the symmetry <> c3, which leavesy,, (x)
invariant, apart from interchanging andxs (M is left unchanged when absorbing the
rotationR that interchanges andcz in U, see Eq. (56)). With the definitions &f = 47D
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andk in Eq. (61) one finds that this impli€8%2 — —D? andk — k’. Therefore,

ﬁ\/|z|2 D2y \/(|2|2 — D2)2 4 4D2y2

k=0: Vp(X)=
4r\[(7]2 — D)2 + 4D%3

(74)

For this we use that thi = 1 result,V,, (¥) = (47 |X — )1 + (4x|X + y))~1, with
y = D(0,0, 1), can be rewritten in the form of Eq. (74) by changing the sigriD8f
and interchanginge2 and x3. In some sense we may say that the result Koz 0
describes point-like constituents that have moved into a complex directisa.note
that Eq. (74) is singular on the ring = 0, |X|% = D?, i.e., on the circle of radiugD|
in the (1, 3)-plane. But there is more of a surprise: thederivative is discontinuous on
the disk bounded by the ring (away from the disc the function is smooth and harmonic),
V(%) = (21) 7Y Dx2| /(D? — r?)¥2(1 + O(x3)), with r2 = x2 + x2. This implies indeed
an extended structure, with singularities on the entire disk. Before showing how to deal
with this singularity structure we consider general valuels. of

As we have seen in Section 5,R,;1(z) is conserved as a consequence of the Nahm
equation. Using forR:(z) the Riccati equation, Eq. (20), the fact that R (z) =
2Tr(R} (2) + R*(z))*l is independent of imposes a severe constraint. We make use of
this by expandmg%i(z) as a Taylor series in. The Taylor coefficients can be expressed
in terms of the initial conditionk= (0), through the explicit solution of ; j(2), Eq. (63)
(we make use of the invariance under translations and rotations ﬁ):ptﬂl, h =13 and
R = 13, as in Section 5). We thus obtain the Taylor series foR;ﬁ‘(z), of which all
coefficients should vanish except for the Oth order. This gives a stgelfraic equations
for the initial conditions R (0), encoded inX,, and X, through

Rin(0) = 1(R+(0)~I—R (0)) =D(Xolz2 + X)),

1 ~ ~
E(R;(O) — R, (0)) =D(Xol2+ X,7)). (75)
Note thatD enters as an overall scale factor, cmp. Eq. (63), such that
1
Vn(X) = — —TrR,, L0 = —V(Dx)
~ 1 1 X
V:_Tr( >: 2o (76)
2 Xo+X;tj X5 — X5

Dependence on the coordinates anckda mostly left implicit. The system of equations
is of course hugely overdetermined, and some amount of good fortune was required in that
the first 11 orders in the Taylor expansion were sufficient to solv&fpand X,,. Quite

3 This was observed before in the monopole context [27]. It is also worthwhile to point out that the axially
symmetric monopole solutions discussed there can appear as such in the caloron context, as we réag 6ff for
from Eq. (66). In this case we expect to find another class of axially symmetric caloron solutionadnggiing
the symmetry axes, but since we are more interested here in the case of well-separated monopole constituents, we
did not analyze this in further detail.
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remarkably these imply thafg = X1 = X3 = X» = 0, which considerably simplifies the
task of solving for the remaining 4 variables. We found that

S=X5—-X2-x2-X?2 (77)
satisfies the cubic equation
(2—Kk?)k* + 4k?(x2 — x3) — k*(3x2 — x5 — x3)
+ ((2—k?)(3x2 — x5 + x8) + 2k?x3 — 4x?) |3
— [F1° = (K* + 2K2(x] — x3 — x5) + g + |F[%)s
+ (kK2 =2+ 13%)82 + 8% =0, (78)
whereasX1/ Xo, X3/ Xo andfz can be solved for in terms &f

X1 %1% — 82 4+ 2(K'2(8 — 2x2) 4+ x2 4 x5 — x3) + (2 — k?)k?

Xo 4x1k’k? ’
X3 X% =82 4+2(8 — 2x§ —K'2(x — x5 — x3)) — (2— kK2
Xo 4x3k? ’
|x|4 82 + 2k2(x1 — x2 — x3) + 4x2 + k4 (79)
4xok’
Therefore )2 is a rational function o8, X andk,
~ 1
V2= (80)

G+ X3 (1 - Xx2xX,2 - X3x,2)’

and the proper root of the cubic equation $oto use is fixed byﬁ — 1/|X|. Indeed, the
asymptotic expansion fa,

2(y2 _ 2 _
5= |)_é|2(1 +k (xl X2 .)C3) +. .>’ (81)

%4

reproduces the multipole expansion Yf This was verified to the 21 orders given in
Eqg. (B.3). On general grounds it can be argued, siheatisfies a cubic equation, that
V2 has to satisfy a cubic equation as well. Its coefficients (polynomiaksamd x) are
somewhat lengthy, and therefore not reproduced here, in part because we will shortly
present an exact integral equation ¥4 (x), valid for anyk. The exact results fdt =0
andk = 1 are most easily recovered from the cubic equationﬁ%,r but the integral
representation will be valid for these two cases as well.

Like for k = 0, we find thatV,,(¥) is harmonic everywhere except on a disk, now
bounded by an ellipse with major and minor ax@s respectivelyk’D. On this disk
the function vanishes, satisfying in the direction perpendicular to the disk the expansion
Vn (%) = (27) 71K/ |Dx2| /(D?k'% — x2 — k' %x5)¥/2(1+ O(x3)) (cmp. the discussion above,
for k = 0). By introducing the “polar” coordinatgs1, x3) = (k’r cosp, r sing), in terms
of which the ellipse at the boundary of the disk is characterized &yD, this can be
written asV,, (¥) = (2rk")~YDx2|/(D? — r$)¥2(1 + O(x2)). Care is required to deal
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correctly with the behavior at the edge of the disk when computing the Laplacian. We find
D 9 6(D—r)

—92V (¥) = — 2
07V (X) 5(xz)mk, or DT =,2 (82)
with (D — r) the step function, giving the following integral representation
- D r
Y=o m / ""’O/ N
(83)

\/(xl —k’r cosp)2 + (x3 — r sing)2 + x%-

Note thatk’, appearing in the denominator of Eq. (82), cancels due to the change of
variables to “polar” coordinates. By numerical evaluation, we checked this formula against
the exact results. It gives us confidence that we interpreted the singularity structure
correctly. Taking an arbitrary test functigi(x) we find

N(f)=— f @02V () d%x =27 (0)

e (84)

_/ / 0, f(k’rco&p 0, rSIn(p)

VD2 -2

The integral over is well defined for anyk’ and can be used to check the correct
normalization for the integrated zero-mode dendgifyl) = 2. Eq. (84) is also particularly
convenient for studying the limk’ — 0. Using the fact that/'( /) is even ink’, we may
write N'(f) = No(f) + K'2Na(f) + Ok, with in particular

D242
ya}f(c)’ 0’ y)
No() =27 O+ = / dy f Ty (85)
DZ 2

reintroducing Cartesian coordinates= r cosp andy = r sing. The integral over is
easily performed and we find favo( f)

D

No(f)=2f(0) + / dy sign(y)a, f(0,0,y) = f(0,0,D) + f(0,0,-D),  (86)
-D

whereas\>( f) gets contributions fromy on the line betweei0, 0, D) and (0, 0, —D).
Therefore, we conclude that in the linkit— 1 two point-like constituents are found, and
that this limit is approached in a smooth way (despite the behavior observed in Fig. 8). As
an illustration we plot in Fig. 9V'(f) as a function ok? for a Gaussian centered at one
of the would-be constituent locations, where it takes the value 1. We see that iNdg¢ed
reaches 1 (linear ik’2) for k — 1. We also recall that Eq. (73) implies the point-like limit
is reached exponentially in the constituent monopole separation (2



222 F. Bruckmann et al. / Nuclear Physics B 666 (2003) 197-229

0.2 0.4 0.6 0.8 1

Fig. 9.N(f), Eq. (84), as a function dé? for f(¥) = exp(—10(+7 + x5 + (x3 — 1)?)] andD = 1.

For anyk # 1 the core has an extended structure in the high temperature limit. One
might expect it to be extended along a line, sim@;{z) depends on a single parameter.
With R(z; ¥) not constant, the Riccati equation apparently “smears out” the core, but
surprisingly only to a disk. Note that inside this disk the singular zero-mode density
is negative. To guarantee the proper normalization, this is compensated by the singular
behavior at the ellipse which forms the edge of the disk. It should be noted, however, that
the singularity structure obtained in the high temperature limit will only tell us to which
region the core will be restricted. We will need to resolve the non-Abelian field components
inside the core to understand how this limiting behavior comes about.

7. Summary and discussion

We studied the zero-modes of higher charge calorons, in particular in the far field limit.
In this limit one considers the regions outside the cores of the constituents monopoles,
where the gauge field is Abelian. The constituent monopoles are most prominent when they
all have a non-zero mass, implying a non-trivial value of the holonomy. Since the holonomy
can be seen as a background Polyakov loop, these calorons are therefore more relevant
for the confined phase, where the average Polyakov loop is non-trivial. Lattice evidence
for the relevance of these configurations is steadily increasing [15,16], and much analytic
understanding of the charge 1 calorons has been gained [9]. Theseren@atituents
for SU(n), which when well separated become static BPS monopoles. To localize these
monopoles it is useful to consider the high temperature limit, for which the masses go to
infinity and the non-Abelian cores shrink to zero size. We note that the high temperature
limit is equivalent to the limit of infinite Higgs vacuum expectation value (recall #hat
plays the role of the Higgs field in the adjoint representation). Since also chiral fermions
in a caloron background generically have a mass, likewise going to infinity in the high
temperature limit, one finds these zero-modes to be localized entirely to the non-Abelian
cores. Indeed for charge 1, the zero-mode density becomes a delta function at the location
of one of the constituent monopoles. Which one of them, is uniquely determined by the
holonomy, and the phase up to which the zero-mode is chosen to be periodic in the
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imaginary time direction. We generalize away from anti-periodic boundary conditions

since this freedom in choosing the phase allows us to control on which constituent the
zero-mode localizes. It thus allows us to probe the underlying gauge field configuration,
see Fig. 1, as has been convincingly demonstrated in Monte Carlo studies as well [16].

For higher charg&U (n) caloronsk > 1, there will bekn constituent monopoles, or
more preciselyk constituent monopoles of given type. Within each type the magnetic
charge associated to the embeddinglif1(1), and the mass is fixed. In a previous
paper [11] we constructed axially symmetric solutions, which shared many of the
properties of the charge 1 solutions. In particular the high temperature limit gave point-
like constituents and we have verified here that the zero-mode density indeed localizes to
these constituents in the expected way, see Fig. 3. This, however, is not expected to hold for
higher charge calorons in general. The reason is that one constructs these solutions with the
help of the Nahm equation, described by a duét) gauge field?fj (z) on the circle, with
singularities at the eigenvalugg, of the logarithm of the holonomy. In case of the axially
symmetric solutions of Ref. [11] this Nahm gauge field is actually piecewize constant
(apart from some trivial/ (k) gauge rotation), and its value on the interya [ 41, tim+1]
directly determines the locations of the typanonopole constituents. However, in general
the Nahm gauge field will not be piecewize constant. In that case it remained to be seen if
the constituent locations are smeared out over all vaIué?{z)f, or worse.

Indeed in this paper we have found for charge 2 caloror&Ji(?) that in general the
location of the constituents is smeared out over a disk. To be more precise, we have shown
that the zero-mode density vanishes everywhere, except on a disk that is bounded by an
ellipse. We wish to stress that this result is found by solving the Nahm equation on an
interval, without imposing the boundary conditions. In other words, a disk is described by
the parameters of the solution for each interval, that is for each monopole type, namely the
center of mass, the orientation, a shape and a scale parameter (eight in total). These should
also be the building blocks for higher gauge groshkn) since their dual descriptions
differ only in the number of intervals. Moreover, only the boundary conditions distinguish
between calorons and monopole solutions, and we believe our result is of value in the
context of the latter as well.

In particular we want to draw attention to the fact that (the trace of) the chiral fermion
zero-mode density in the high temperature limit is the Laplacian of a funetigp(x)
that is determined in terms of the Nahm gauge field and turns out to be a constant of the
motion with respect to the Nahm equation. We have verified this property by computing
the multipole expansion of,, (x) to a high order, but we expect this can be proven from
the integrability of the Nahm equations, an interesting problem to be pursued in the future.
The fact tha¥,, (X) is conserved is a powerful result indeed, since it allowed us to calculate
this function exactly, on which we base the findings mentioned above.

This makes us conjecture that the cores of the constituent monopoles are in general
extended, collapsing to the disk in the high temperature limit. In itself this is not surprising,
since one knows from the study of monopoles, when two are closer together than the
size of their core, they show an extended structure, for charge 2 indeed in the shape of
a doughnut [31]. It should also be noted that we found, when approaching the disk from
above with a test function smaller than the ring, the resulting zero-mode density can be
negative. There are two reasons why we should not be too worried about this. If the
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core would collapse to points, the proper normalization of the zero-modes requires the
contribution from the singularity to be quantized, giving a delta function of unit strength.
When the core is extended, we have no such constraint. In addition, our equations are
derived by ignoring the exponentially small terms that occur in the core. Therefore our
result is only valid outside the core, where we indeed find the zero-mode density to vanish.
This means the cores have to lie within the disk, whereas the only thing we can say about
their contributions is that they have to integrate to 2 (sin@évm (¥) adds the two zero-

mode densities). Although this may seem to resemble a singularity like the Dirac string, it is
more subtle than that, because only like-charge monopoles are involved here. Nevertheless,
it does show that the non-Abelian fields inside the core have an intricate behavior.

It will therefore be interesting in the future to try and get access to the gauge field and
to see if the field strength shows further localization within the disks we have found on
the basis of the zero-modes. Another useful object is the Polyakov loop because it traces
the constituent monopoles [17] and is able to reveal extended structures in the context of
Abelian projection [6,32]. We believe to have gained sufficient information to get access
to the solutions at finite temperature, with a fully resolved core to answer these questions,
if necessary by numerical means. For this Ref. [34] will be particularly useful.

However, from the physical point of view, the most important result of this paper is our
demonstration that for well separated constituents, when the scale pardmistéarge,
the shape of the caloron zero-mode density leads to point-like constituents, i.e., the shape
parametek approaches 1. It does so exponentiallyirand we have shown no structure
is left on the disk bounded by the ellipse, collapsing to a line in this limit. Any trace left
over on this line is proportional to4 k2, and therefore vanishes exponentiallyiin This
comes about through the boundary conditiaris) has to satisfy at the “impuritiesi,,,
relating the size and shape parametérsandk. We leave it to a future publication to
more fully describe the moduli space of solutions, solving for these constraints. Also here
some remarkable simplifications seem to occur, related to the integrability of the Nahm
equations.

The results of this paper therefore provide one further step in establishing that non-
Abelian gauge field configurations can be described on a large distance scale in terms
of Abelian monopoles. Of course it is only a small step, because we use exact self-dual
solutions to establish these results. This has been in part because we discovered earlier [11],
somewhat to our surprise, that it is far from trivial to write down superpositions of these
monopole fields without having visible Dirac strings all over the place, that would carry too
much energy for comfort. In part this is due to the crudeness involved in the superposition,
instead requiring a fine-tuning of the non-Abelian tails with the exponential components
in the Abelian gauge field (to properly absorb the return flux). It has been this problem to
deal with Dirac strings that for so long has hampered attempts to describe an interacting
theory of magnetic monopoles [33].

In the light of this it would of course be welcome if more lattice studies are performed to
get a handle on the dynamics of these constituent monopoles. It should be pointed out that
instantons larger thag will no longer reveal themselves as lumps of sizeRather there
is a transition region beyond which should be interpreted to set the inter-constituent
distance (typically of orderrp2/8), whereas the size of the lumps is in this region set
by the mass of the constituent monopoles. This may lead to a natural infrared cutoff in
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the size distribution of instantons, provided by the temperature (rather than the spatial
volume). Because of this it may be worthwhile to reinvestigate the issue of the instanton
size distribution, also with the criticism presented in Ref. [35] in mind.
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Appendix A

We will derive in this appendix the zero-mode limit. Our starting point is the explicit
expression for the Green'’s function, Eq. (17). It is useful to note that this Green’s function
satisfiesf, (z,7/) = fxT(z’, 7). To show that Eq. (17) indeed respects this relation, one can
use (see Eq. (18))

0 -1 T / 0 Lk _w-1 /
(Jlk 0 )W(Z,Z)(_ﬂk O>—W (z,2),
0 -1 -1 0 1

= (1 — FY) = Ay — (i — Fop) (A1)

20
We will take zo = ., + 0, which leads to the following decomposition 57,,, in terms
of contributions coming from the impuritieq}) and from the propagation between the
impurities H,,),
fum = Tm Hmfl te TZHlTlgT(l)Hn Tan,]_ T Tm+le’
0 0 PN ~_
T, =exp o Hu = W) B () Wy (1) (A.2)
278, O

Note that by gafinitiorFm (um) = 1. Itis convenient to absorb the algebraic contributions
coming fromW,, in the “impurity” contributionsT,,, .

or, o7 ~_ =
6, — ( e OF ) = Wy 4t T W1 1)

P P (R,,: (tm) + Ry () + S Ry (tm) = Ry g () + S
= m _
2" R,j;(ll«m) - Rz_l(ﬂm) — Sm R%(Hm) + Rm_l(ﬂm) — Sm
The following identities are noteworthy
2R (H«m)gzﬂr =Xy, (A4)

! ) . (A3)
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as well as the fact tha,, * = W, (14,) T, * Wi (11,,) can be computed explicitly
9++ 9+7 om —_pm

o—1_ m m _p-1 - +-

0, = (9m+ 9,,,) = Rm_]_(Mm)Rm(Mm) (—Qer Q:,LF ) . (A.5)
Finally, introducing

Frm = W () F iy Won (tm)

= OnFu-1- O2F18" (VO Fy_1 -+ Opi1Fon, (A.6)

we find foru, <z’ <z < um+1 (cmp. Eq. (17))

t
fi(z.2) = —4n? (16‘) Wi (2) (Lot = Fpu, ) W () (fk ) : (A7)

It will be useful to Writefﬂ,n = F,,Il(“),;}rlLK@mﬂFm, with L = ©,,,1F,,®,,, because
K = F,_10,-1- -~@1§T(1)F,,@n .- Op+2Fp+1 contains the exponential factors in
terms of which we can take the zero-mode limit.

With (1 — Fp,,) "1 = F,;l@nj}rl(l — LK) 1©,,11F,, we reduce the problem to
approximating1y, — LK)~L. For this it is convenient to writé K = LK + LK, with

A: K++ K+_ "‘: 0 O
R=(5 50) =6 D)

i=(r7 o) E=(0 1) 9
after which we find

(A — LK) '=K YK 1-T-LKKH™" (A.9)
As we will show next, the advantage of all this is that terms contaiking are of the
formk 1, K7 1Ky, KK tor(K—)'=K__—K_,K;TK,_ andthatthese are

all exponentially decaying. For the first three this is easily seen usingtligbf the form
FOFO --- FOF,whereas for the last term we recall a well-known formula for the inverse
of a 2x 2 matrix with as entriesk(x k) matrices

-1
k-1— ( K++ Ki-
K.+ K__

— -1 _ —1
B ((K++ ~ K K7'K 1) (K-4—K__K;'Ki.) )
= - -1 - 1)
(K- —Ki4K“2K_) " (K- —K_4K;1K4+")
From this we find thatk ——)~1 = (K ~1)__ (hence the upper indices). Witti—1 having
the formF-10-1F-1e~t... F~1®~1F~1, which interchanges the role gf* and f—,

we conclude thatk —— behaves a,, and that thereforé K ——)~1 is exponentially
decaying as well. Using

-1 -1
1 (K++ _K++K+>
0 1 ’

1’51?1=< 0 0 1) (A.11)
Kok (k=) |

(A.10)
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and neglecting the exponentially decaying terms, we find the simple result

1
_ 1 0 O —Lyy O . 0 0
(Igy — LK) ™ — (0 ]1k> (—L_+ 1 = —L_+L__’__1~_ 1 ) (A.12)

or including subleading terms

O(k;t O(K:
(o — LK) 1= ( (71++) (Ki%) ) ’ (A13)
~L4 L7 +0(X) Li+0X)
whereO(X) = O(K 1K) + O(K,+K%i) +O(K)™Y.
Using Eq. (A.12) an®,,,+1 F,, = LO,,* we find
zm N 1k ' -1,5-1 0 0
iz, )=x (1k> Fn()F, 0,1, (—L—+LI~1+ Jlk)
x LO F () (‘f" ) R, (A.14)
k

This can be simplified further using = (L™%__ = (L__ — L_4 L7 L)~ (cmp.
Eqg. (A.10)), such that

: w @\ —1.-1 (00
fxzm(z,z)zn(fn:(z) le@mil(o (L“)_l>

+ =1

x O (_f’” @ ) R (A.15)
"\ fa@H )

With Egs. (A.4), (A.5), noting thaZ,, = —6;=(6,, ")t and Z} = (,,7)716,* (see

Eq. (25)), we find after some algebra the relatively simple result given in Eq. (24). We note

that it is not directly obvious that?™(z, z') = fZ™(z’, z)". Nevertheless, this is guaranteed

to be true from the fact that the exact Green'’s function respects this property. All we wish

to mention here, is that Eq. (A.1) implies rather non-trivial relations invol\ﬁ,ﬁ‘gz)T and

R*(2)T, which could be used to explicitly verify tha®?™(z, z’) = 2™z, 2)".

Appendix B
Using the invariance under a one-parameter set of rotations afoiend/, Eq. (53), or

equivalently around, 0, 0) for M), Eq. (56), we can for charge 2 express the multipole
expansion ol (x) in the following 4 independent parameters,

3~ 2 _ 172 (2 M2.(%
p=sMu@®),  w?=MHE) + M),

1~ ~ 2 1.,
qz = é(Mll(x) + 2M22(x)) + §M223(x)’

52 = AM12(R) Mia(R) Mos(R) + (MZ5(%) — MZ(3)) (M11(R) + 2Ma2(%)),  (B.1)

where|x|2p, |X|*w?, |¥|%¢? and|X|8s® can be written as monomials i This choice has
the particular advantage that for charge 2 the following remarkably simple form can be
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used

> 1 dn
V = S . a1 3 = -1, BZ
m(X) o HZ:% N pdn = Ndp_1 (B.2)

checked to ordei| 2%, but likely to be true to all orders. Therefore, the result to this order
can be read off from the= 2n = 20 multipole coefficient

+ 315p6(q4 —8¢%w? + 4w4) + 630p5s3(3q2 — 4w2)

525
+ 7p4(2q6 — 369*w? + 60g%w?* — 16w® + 35°)
+ 315Op3s3(q4 —4g%w? + 2u)4)

315
+ ?p2(5q8 — 160752 + 5607 *w* — 44872 4 40425

+80w® — 48w2s6)
105
+ 5 ps3(15¢° — 1207%w? + 1687%w* — 48w° + 25°)

63
+ — (¢ — 50¢%w? + 3007%w* + 5¢%(55° — 96w °)

8
+80g2(3w® — w?%s®) + 40w*s® — 32019). (B.3)
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