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Abstract

We use the fermion zero-modes in the background of multi-caloron solutions with non-
holonomy as a probe for constituent monopoles. We find in general indication for an ext
structure. However, for well separated constituents these become point-like. We analyze
detail for theSU(2) charge 2 case, where one is able to solve the relevant Nahm equation e
beyond the piecewize constant solutions studied previously. Remarkably the zero-mode den
be expressed in the high temperature limit as a function of the conserved quantities that clas
solutions of the Nahm equation.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

To describe regular monopoles in gauge theories a Higgs field is required. This d
the Abelian subgroup of the gauge field. Yet in the full non-Abelian theory there is no
string and a regular solution results, the well-known ’t Hooft–Polyakov monopole [1
the strong interactions no such Higgs field should be present, but nevertheless it ha
conjectured that a dual superconductor description, in which monopoles form the
charges that condense, could explain confinement [2]. This scenario receives some
from the studies in supersymmetric theories through Seiberg–Witten duality [3], alth
also the old center vortex picture is still under active study [4]. Lattice studies bas
Abelian and center projections, and their respective notions of dominance [5] are th
E-mail address: vanbaal@lorentz.leidenuniv.nl (P. van Baal).
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means through which one tries to address these issues. One relies on so-called gau
singularities to identify the relevant monopole [6] or center vortex degrees of freedo

A more recent alternative to study the monopole content of gauge theories, w
the need of addressing singular configurations, gauge fixing, nor introducing an
Higgs field, has been through calorons, which are instantons at finite temperat
has been found that calorons are actually made up from constituent monopoles
which becomes most apparent when the background Polyakov loop is non-trivial
the confined phase), and the size of the caloron is larger than the inverse temperat
extent of the euclidean time direction). The background Polyakov loop is defined
periodic gaugeAµ(�x, t)=Aµ(�x, t+β) by its asymptotic value, or the so-called holonom

(1)P∞ = lim
x→∞Pexp

( β∫
0

A0(�x, t) dt
)

= g† exp
(
2πi diag(µ1,µ2, . . . ,µn)

)
g,

whereg is the gauge rotation used to diagonalizeP∞, whose eigenvalues exp(2πiµj )

can be ordered on the circle such thatµ1 � µ2 � · · · � µn � µn+1, with µn+j ≡ 1 + µj

and
∑n

i=1µi = 0. The masses of the constituent monopoles are given by 8π2νj /β , with
νj ≡ µj+1 −µj , which add up to 8π2/β , consistent with the instanton action.

Solutions are known explicitly [10] forSU(n) charge 1 calorons. Then constituents can
have any spatial location, although all have the same location in time (they do, ho
become static when well separated), andn− 1 Abelian phases complete its 4n parameters
Chargek calorons can be viewed as composed ofkn monopoles, of which a class of axial
symmetric configurations was constructed explicitly [11].

The purpose of this paper is to study in more detail these higher charge cal
where the emphasis is on constructing the chiral fermion zero-modes. Charge 1 ca
have exactly one fermion zero-mode, which was shown for well separated const
to be supported on one and only one constituent [12,13]. We may change the con
that supports the zero-mode, by changing the fermion boundary conditions from
periodic, to being periodic up to a phase exp(2πiz) (from now on we will use the classica
scale invariance to setβ = 1). Forz ∈ [µj,µj+1] the zero-mode is localized to what w
will call type j constituent monopoles (with mass 8π2νj , and the appropriateUn−1(1)
charge associated to their embedding inSU(n)).

Lattice evidence has been gathered over recent years that these monopole con
are present in dynamical configurations in the confined phase of gauge theories forSU(2)
using cooling [14,15], and forSU(3) using fermion zero-modes [16] as a filter. It
somewhat of a puzzle that these constituent monopoles had not been seen in earlier
studies (apart from when using twisted boundary conditions [17]). That they rem
unnoticed when using fermion zero-modes as a filter is, however, simply a conseque
the fact that these studies were restricted to the use of fixed fermion boundary cond
Only when cycling through boundary conditions specified by periodicity up to a phas
SU(3) charge 1 instanton configurations will show three separate constituent monopo
Fig. 1 we show a typical example based on the exact solutions forSU(3), closely following
the observed behavior [16] based on actual lattice simulations in the confined phase

guarantees the background Polyakov loop to be non-trivial. In the high temperature phase,
where the Polyakov loop is trivial, two of the constituents are massless and only one peak
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Fig. 1. The logarithm of the properly normalized zero-mode density for a typicalSU(3) caloron of charge 1
cycling throughz. Shown arez = µj (for linear plots see Fig. 2) and three values ofz roughly in the middle of
each intervalz ∈ [µj ,µj+1]. All plots are on the same scale, cutoff for values of the logarithm below−5. The
zero-mode with anti-periodic boundary conditions is found atz= 30/60. For the action density of the associat
gauge field, see Refs. [13,19].

Fig. 2. The properly normalized delocalized zero-mode densities forz= µj , on alinear scale (cmp. Fig. 1).

will be seen. These massless constituents are interesting in their own right, giving
so-called non-Abelian clouds [18], but they will not concern us here.

We do not only study the fermion zero-modes for the higher charge caloro
compare with lattice simulations, but also as a tool to understand to which exten
constituent monopoles can be unambiguously identified in the caloron solutions.
high temperature limit the non-Abelian cores of the monopoles shrink to zero-size
one is left with Abelian gauge fields. Without taking the high temperature limit,
excluding the non-Abelian cores, the same physics describes what we called the f
region [11]. It would be desirable if the Abelian field in this region is described by p
like Dirac monopoles (actually dyons because of self-duality), when the constituen
well separated. For charge 1 calorons and the class of axially symmetric solutions s
before [11] the density of the fermion zero-modes become Dirac delta functions
locations of the constituent monopoles in the high temperature limit, for any const

separation. This infinite localization in the high temperature limit can be understood from
the fact that for mostz values there is an effective mass for the fermions. Therefore, by
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studying these zero-modes in the general case, we hope to learn more about the loca
of the monopoles.

It is not directly obvious that any higher charge caloron can be described by
like constituents in the far field limit. The tool to construct these solutions is the N
equation [7,20], which is a duality transformation that maps the problem of finding c
k calorons to that ofU(k) gauge fields on a circle with specific singularities atz = µj .
In the cases studied so far, the dual (Nahm) gauge field can be made piecewize c
from which one easily reads off the constituent monopole locations. In general, how
the Nahm gauge fields depend non-trivially onz, and it is important to understand wh
this implies for the localization of the constituents. Quite remarkably, we will neverth
find that in the high temperature limit the fermion zero-mode density does not de
on z and can be expressed in terms of the conserved quantities of the Nahm equat
compute it explicitly for charge 2, revealing in general an extended structure. How
the extended structure collapses to isolated points for well separated constituents.
so as long asz �= µj , which is the value where the localization of the zero-modes jum
We separately study in the high temperature limit the case wherez = µj , for which the
fermion zero-modes delocalize (decaying algebraically). Support of the zero-modes
on constituent monopoles of typesj − 1 andj . We analyze this in detail for the class
axially symmetric solutions of Ref. [11], in the light of some puzzles concerning so-c
bipole zero-modes [21].

This paper is organized as follows: first we describe the caloron zero-modes in Se
and set up the Green’s function calculation in Section 3, to be able to discuss the zero
and far field limits. Section 4 deals with the case wherez = µj , for which zero-modes
are delocalized. In Section 5 we relate the zero-mode density forz �= µj to conserved
quantities of the Nahm equation and study in Section 6 the general solution forSU(2)
charge 2 calorons. We conclude with a discussion of the implications of our resul
the problems that still need to be addressed. Two appendices provide the details
zero-mode and far field limit calculations.

2. Fermion zero-modes

We wish to construct the zero-modes of the chiral Dirac equation in the backgroun
self-dual gauge field at finite temperature. The Dirac equation in its two-component
form, with σ̄µ = σ †

µ = (12,−i �τ) (τi are the usual Pauli matrices), reads

(2)�DΨ̂z(x)≡ σ̄µDµΨ̂z(x)≡ σ̄µ
(
∂µ +Aµ(x)

)
Ψ̂z(x).

Assuming the gauge field is periodic in the imaginary time direction, with periodβ = 1,
we seek the zero-modes that satisfy the boundary condition

(3)Ψ̂z(t + 1, �x)= exp(−2πiz)Ψ̂z(t, �x).
A simple Abelian gauge transformation,Ψz(x)= exp(2πizt)Ψ̂z(x), makes the zero-mod
periodic. This gauge transformation replaces the gauge field byAµ(x)− 2πizµ1n, but it

does not change the field strength, such that existence of the appropriate number of zero-
modes is guaranteed by the index theorem.
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The caloron solutions are obtained by Fourier transformation, reformulating
algebraic ADHM (Atiyah–Drinfeld–Hitchin–Manin) construction [22] of multi-instant
solutions inR4, as the Nahm transformation [7]. For this the instantons inR4 periodically
repeat themselves in the imaginary time direction up to a gauge rotation withP∞. This
Fourier transformation also selects out of the infinite number of fermion zero-mod
R4, those that satisfy the correct periodicity.

In the ADHM formulation thek normalized fermion zero-modes for a chargek SU(N)

instanton are given by (ε ≡ iτ2 = σ2, i = 1, . . . , n is the color index,l = 1, . . . , k the charge
index andI = 1,2 the spinor index)

(4)Ψ l
iI (x)= π−1(φ−1/2(x)u†(x)fxε

)l
iI
, φ(x)= 1n + u†(x)u(x),

with u†(x) given explicitly in terms of the ADHM parameters by

(5)u†(x)= λ(B − 1kx)−1, B = σµBµ, x = xµσµ,

whereλ= (λ1, . . . , λk), with λ
†
i a two-component spinor in thēn representation ofSU(n)

(λ can be seen as an × 2k complex matrix), andBµ Hermitiank × k matrices. Asφ(x)
is ann × n positive Hermitian matrix (forn = 2 proportional to12), its square root is
well-defined. We also recall the gauge field is given by

(6)Aµ(x)= φ−1/2(x)
(
u†(x)∂µu(x)

)
φ−1/2(x)+ φ1/2(x)∂µφ

−1/2(x),

which can be shown to be self-dual provided the quadratic ADHM constraint is satis

(7)λ†λ+ (B − 1kx)†(B − 1kx)= σ0f
−1
x ,

which implicitly definesfx as a Hermitiank × k Green’s function, thereby completing th
description of Eq. (4). A further simplication [9,23] will be helpful, which uses the
that 2(Bµ − xµ)= ∂µf

−1
x andu†(x)= φ(x)λfx(B − 1kx)†, implying

Aµ(x)= 1

2
φ1/2(x)λη̄µν∂νfxλ

†φ1/2(x)+ 1

2

[
φ−1/2(x), ∂µφ

1/2(x)
]
,

(8)φ−1(x)= 1− λfxλ
†, Ψ l

iI (x)= (2π)−1(φ1/2(x)λ∂µfxσ̄µε
)l
iI
,

with η̄µν = η̄
j
µνσj = σ̄[µσν] the anti-selfdual ’t Hooft tensor.

As mentioned above, calorons are obtained by arranging the instantons inR4 to be
periodic (up to a gauge rotation). The time interval[0,1] will contain as many instanton
as the topological charge of the caloron. One splits the charge indexl asl = pk+ a, where
a labels thek instantons in the interval[0,1] andp labels the infinite number of repeat
time-intervals, playing the role of the Fourier index. We find, suppressing the gaug
spinor index (cmp. Refs. [12,13]),

(9)Ψ̂ a
z (x)= (2π)−1φ1/2(x)∂µ

1∫
0

dz′ λ̂b(z′)f̂ ba
x (z′, z)σ̄µε,
where the Fourier transforms ofλ and fx are denoted bŷλa(z) and f̂ ba
x (z′, z). The

fermion zero-modes thus constructed are in the so-called algebraic gauge, for which
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Ψ̂z(t + 1, �x) = exp(−2πiz)P∞Ψ̂z(t, �x). In this gauge all components ofAµ vanish at
spatial infinity and the non-trivial holonomy is encoded in the boundary condition, w
for the gauge field readsAµ(t + 1, �x)=P∞Aµ(t, �x)P−1∞ . A simple time-dependent gaug
transformation allows one to transform to the periodic gauge, after whichA0 goes to a
constant at spatial infinity.

To encode the appropriate periodicity in the ADHM parameters we need to
λpk+a = Pp∞ζa [11]. Introducing the projectionsPm on the eigenvalues ofP∞, i.e.,
P∞ ≡∑n

m=1 exp(2πiµm)Pm, we find λ̂a(z) =∑n
m=1 δ(z − µm)Pmζa , which makes the

expression for the zero-modes particularly simple,

(10)Ψ̂ a
z (x)= (2π)−1φ1/2(x)

n∑
m=1

Pmζbσ̄µε∂µf̂
ba
x (µm, z).

The fact that we are dealing with higher charge calorons, is reflected in the pre
of the indicesa, b = 1, . . . , k. Making use of the well-known identity [23–25] inR4,
Ψ l
iI (x)

∗Ψm
iI (x)= −(2π)−2∂2

µf
lm
x , Fourier transformation gives the appropriate expres

for the caloron zero-mode density

(11)Ψ̂ a
z (x)

†Ψ̂ b
z (x)= −(2π)−2∂2

µf̂
ab
x (z, z).

Using the fact that lim|�x|→∞ |�x|f̂ ab
x (z, z) = πδab, the zero-modeŝΨ a

z are seen to be
orthonormal.

We close this section by remarking that forSU(2) an alternative construction is possib
as part of theSp(n) series (sinceSp(1) = SU(2)). The ADHM construction forSp(n) is
based on quaternions. In particularλl is assumed to be a quaternion, whereasBµ is now
real-symmetric. All formulae presented above remain valid, but it should be noted th
transformationλ → λT †, Bµ → T BµT

†, with T ∈ U(k), leaving the gauge field and th
ADHM constraint untouched, has to be replaced byT ∈O(k).

3. Zero-mode and far field limit

As we have seen above, all physical quantities can be reconstructed, once we hav
the Green’s functionf̂ ab

x (z, z′). Here we review the necessary ingredients. We start
the fact that the Green’s function is defined through an impurity scattering problem [

(12)

{
− d2

dz2
+ V (z; �x)

}
fx(z, z

′)= 4π21kδ(z− z′),

wherefx(z, z′) is related tof̂x(z, z′) by aU(k) gauge transformation

(13)fx(z, z
′)= ĝ(z)f̂x(z, z

′)ĝ†(z′), ĝ(z)= exp
(
2πi(ξ0 − x01k)z

)
.

The “potential”V , which includes “impurity” contributions, is determined by the (du
U(k) Nahm gauge field̂Aµ(z)

V (z; �x)= 4π2 �R2(z; �x)+ 2π
∑

δ(z−µm)Sm, Sm = ĝ(µm)Ŝmĝ
†(µm),
m

(14)Rj (z; �x)= xj1k − (2πi)−1ĝ(z)Âj (z)ĝ
†(z), Ŝabm = π tr2(ζ †

a Pmζb).
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Fourier transformation ofBµ gives(2πi)−1δ(z − z′)(δµ01k d
dz

+ Âµ(z)) and defines the
Nahm gauge field. We have further used the fact that one can choose aU(k) gauge in
which Â0(z) ≡ 2πiξ0 is constant, which itself can be transformed to zero byĝ(z). Note
that ĝ(1) plays the role of the holonomy associated to the dual Nahm gauge fieldÂµ(z).
Crucial is that we can formulate the zero-mode and far field limits without specif
the solutions of the Nahm equations. These Nahm equations, which are equivalen
ADHM constraint, are given by

d

dz
Âj (z)+ [

Â0(z), Âj (z)
]+ 1

2
εjk1

[
Âk(z), Â1(z)

]= 2πi
∑
m

δ(z−µm)ρ
j
m,

(15)�ρabm ≡ −π tr2
(
ζ †
a Pmζb �τ ).

This will be discussed in more detail in Section 6.
To solve the second order equation forfx(z, z

′) it is convenient to convert it to a firs
order equation, involving 2k × 2k matrices,

(16)

(
d

dz
−
(

0 1k
V (z; �x) 0

))(
fx(z, z

′)
d
dz
fx(z, z

′)

)
= −4π2δ(z− z′)

(
0
1k

)
,

which can be solved as(
fx(z, z

′)
d
dz
fx(z, z

′)

)
= −4π2W(z, z0)

{
(12k −Fz0)

−1 − θ(z′ − z)12k
}

(17)×W−1(z′, z0)

(
0
1k

)
,

wherez0 can be arbitrary and

W(z2, z1)= Pexp

[ z2∫
z1

(
0 1k

V (z; �x) 0

)
dz

]
,

(18)Fz0 = ĝ†(1)W(z0 + 1, z0).

In particular, one can show that [11]

−1

2
Trn F 2

µν(x)= −1

2
∂2
µ∂

2
ν logψ(x),

(19)ψ = det
(
ie−πix0(12k −Fz0)/

√
2
)
.

To isolate the exponential contributions in Eq. (18), one introduces two solutions o
Riccati equation [11],

(20)R±
m(z)

2 ± 1

2π

d

dz
R±
m(z)= �R2(z; �x).

Since �R(z; �x)→ �x1k for |�x| → ∞, we find in this limit thatR±
m(z)→ |�x|1k . Defining[ z∫ ]
(21)f±
m (z)= Pexp ±2π

µm

R±
m(z) dz , z ∈ [µm,µm+1],
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we see thatf±
m (z) → exp(±2π |�x|(z − µm)1k). These are the exponentially rising a

decaying solutions of Eq. (12), in terms of which we can rewrite forz, z′ ∈ (µm,µm+1)

(22)W(z, z′)=Wm(z)W
−1
m (z′), Wm(z)≡ Ŵm(z)Fm(z),

whereFm(z) contains all exponential factors,

Ŵm(z)=
(

1k 1k
2πR+

m(z) −2πR−
m(z)

)
,

(23)Fm(z)=
(
f+
m (z) 0
0 f−

m (z)

)
.

As an illustration let us assume�R(z; �x)2 = (�x1k − �e Ym)2 ≡ R2
m, independent ofz,

for z ∈ [µm,µm+1], as is the case for charge one [9] and a class of axially symm
solutions [11] (see Section 4). We then findR+

m(z) = R−
m(z) = Rm and f±

m (z) =
exp(2π(z−µm)Rm). DiagonalizingRm definesk locations (the eigenvalues ofYm), which
are sharply defined and give rise to point-like constituents in the high temperature
When �R(z; �x) is not piecewize constant, these locations are a priori not sharply define
still expect the cores to be the regions in�x where �R(z; �x) remains small (cmp. Eq. (14)
The separations between the cores of monopoles of different type is controlled
discontinuity inÂj (z), Eq. (15), and can in general be chosen large. This allows u
define the zero-mode limit, where�x is assumed to be far removed from any constituent c
not of typem. In technical terms it means thatR±

m′(z) is large for allm′ �=m. Accordingly,
f−
m′(z) andf+

m′(z)−1 are exponentially small for these values of�x (cmp. Eq. (21)). Result
that are valid up to these exponential corrections are denoted by a subscript “zm”
zero-mode limit and “ff” for the far field limit. In the latter case,�x is assumed to be fa
removed fromall constituents.

In Appendix A we show that forµm � z′ � z� µm+1

f zm
x (z, z′)= π

(
e+
m(z)− e−

m(z)Z
−
m+1

)(
e+
m −Z+

me
−
mZ

−
m+1

)−1

(24)× (
ẽ+
m(z

′)−Z+
mẽ

−
m(z

′)
)
R−1
m (z′).

(for z′ > z one usesfx(z′, z)= f
†
x (z, z

′)) with

e±
m(z)≡ f∓

m (z)f∓
m (µm+1)

−1,

e±
m ≡ e±

m(µm), ẽ±
m(z)≡ f∓

m (z)−1,

Z−
m ≡ 1k − 2Σ−1

m Rm−1(µm),

Z+
m ≡ 1k − 2Σ−1

m Rm(µm),

Rm(z)≡ 1

2

(
R+
m(z)+R−

m(z)
)
,

(25)Σm ≡R−
m(µm)+R+

m−1(µm)+ Sm.

This result is valid up toexponential corrections as long as�x is far removed from al
constituents of typem′ �=m. Note that in this limitZ±

m = 1k, however, only up toalgebraic

corrections, which is why we have kept them. In Fig. 3 we give the zero-mode densities
for a charge 2 axially symmetric solution inSU(2), with well-separated constituents. We
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Fig. 3. Zero-mode densities for a typical charge 2,SU(2) axially symmetric solution. For comparison the acti
density (cmp. Fig. 2 of Ref. [11]) is shown in the middle. All are on a logarithmic scale, cutoff belowe−3. On the
left is shown the two periodic zero-modes (z= 0) and on the right the two anti-periodic zero-modes (z= 1/2).

found no differences to 1 part in 106 between the exact result and the result obtained
the zero-mode limit, Eq. (24). The choice of basis for the zero-modes involves the
gauge rotation that for each intervalz ∈ [µm,µm+1] identifies the constituent location
cmp. Section 4 and Ref. [11]. This ensures that each zero-mode is localized to on
constituent monopole.

It is now almost trivial to read off from this the far field limit forfx(z, z), where �x
is assumed to be far fromall constituents. As long asz �= µm andz �= µm+1, e−

m(z) and
ẽ−
m(z) are exponentially small, andf ff

x (z, z)= πe+
m(z)(e

+
m)

−1ẽ+
m(z)R

−1
m (z). But using the

definitions ofe±
m(z) andẽ±

m(z) all exponential factors precisely cancel and in the far fi
limit we are left with

(26)f ff
x (z, z)= πR−1

m (z), z ∈ (µm,µm+1),

which will play a very important role in Sections 5 and 6. We can also read off th
field limit for fx(z, z′) evaluated at the impuritiesµm andµm+1, noting that by definition
e±
m(µm+1)= ẽ±

m(µm)= 1k ,

f ff
x (µm+1,µm+1)= π(1k −Z−

m+1)R
−1
m (µm+1)= 2πΣ−1

m+1,

(27)f ff
x (µm,µm)= π(1k −Z+

m)R
−1
m (µm)= 2πΣ−1

m ,

and f ff
x (µm+1,µm) = 0 (as well asf ff

x (µm,µm+1) = 0, using fx(z, z′) = f
†
x (z

′, z)),
verifying the results of Ref. [11]. Althoughfx(z, z) is continuous at the impurities
comparing Eq. (26) with Eq. (27) we see, as anticipated, that in the high temperatur
fx(z, z) is discontinuous at the impurities. At finite temperature, the transition acros
impurity has a “width” inversely proportional to the temperature.

For k = 1, wheree±
m(z)= exp(±2π(µm+1 − z)rm) andẽ±

m(z)= exp(±2π(z− µm)rm)

one finds forz′, z ∈ (µm,µm+1)

(28)f zm
x (z′, z)= 2π sinh(2πrm(µm+1 − z′ + γ−

m+1))sinh(2πrm(z−µm + γ+
m ))

rm sinh(2πrm(νm + γ+
m + γ−

m+1))
,

which agrees with the result of Ref. [13], where only the limit withγ+
m ≡ −1

2 logZ+
m− −
andγm+1 ≡ −1

2 logZm+1 neglected andz′ = z was considered. We stress again that the
presence ofγ implies a subtle algebraically decaying influence due to the constituents of
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typem − 1 andm + 1 (the influence of all other constituents is decaying exponenti
although this is only relevant forSU(n > 3)). In terms of constituent radiirm = |�x − �ym|
and locations�ym one has

Z−
m+1 = |�ym+1 − �ym| + rm+1 − rm

|�ym+1 − �ym| + rm+1 + rm
,

(29)Z+
m = |�ym−1 − �ym| + rm−1 − rm

|�ym−1 − �ym| + rm−1 + rm
.

For SU(2), with �ym+1 = �ym−1, thereforeZ+
m =Z−

m+1, or γ+
m = γ−

m+1, and the influence o
the other constituent is only felt by a renormalization of the massνm,

(30)

SU(2): f zm
x (z, z)= π

cosh(2πrm(νm + 2γm))− cosh(2πrm(2z−µm −µm+1))

rm sinh(2πrm(νm + 2γm))
.

Note that forSU(2) µ1 +µ2 = 0 andµ2 + µ3 = 1. This leads to the well-know result fo
the monopole zero-mode densityf zm

x (z, z)= πr−1
m tanh(πrm(νm + 2γm)), with z = 0 for

m= 1 (periodic zero-mode) andz= 1/2 form= 2 (anti-periodic zero-mode).

4. Bipole zero-modes

In this section we discuss the zero-modes in the high temperature limit forz = µm,
which means thatP∞e−2πiz has one of its eigenvalues equal to 1, which leads to on
the components of the fermion to become massless. Indeed, using Eqs. (11), (13),
find that in the far field limit

z= µm: Ψ̂ a
z (x)

†Ψ̂ b
z (x)= −(2π)−1∂2

i

(
Σ̂−1
m

)ab
,

(31)Σ̂m ≡ ĝ†(µm)Σmĝ(µm),

decays algebraically and has support on the constituents of typem− 1 andm, as is easy
to see fork = 1, whereΣm = |�x − �ym−1| + |�x − �ym| + |�ym−1 − �ym|. Here we will restrict
ourselves toSU(2), particularly interesting for the axially symmetric caloron solutio
since in the high temperature limit its gauge field has the form of the so-called b
ansatz (see Eq. (35)), which always has an integrable chiral fermion zero-mode [2
the bipole ansatz all Dirac strings have to run in the same direction, but other tha
the locations of the self-dual Dirac monopoles can be arbitrary. However, for the a
symmetric caloron solutions the constituents have to alternate between opposite c
on a line [11]. In this case, with the solution coming from a regular caloron, ther
always as many zero-modes as the number of constituents with a given charge (e
the topological chargek). By considering the case of solutions with topological charg
we will find the expressions for the bipole zero-mode and the extra zero-mode, in te
the constituent locations only (which should be possible, since the Abelian gauge fie
this property in the high temperature limit). Remarkably, we will find that rearrangin
order of the constituents, so as to violate the constraint coming from the axially symm

caloron, the second zero-mode is no longer integrable (while the gauge field and bipole
zero-mode remain well defined).
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A particular class of axially symmetric caloron solutions is obtained by takingY
j
m ≡

ĝ(z)
Âj (z)

2πi ĝ
†(z) to be piecewize constant. This can be shown to satisfy the Nahm or AD

equation when we take [11]

ζa = ρa exp(2πiαa)ζ, αa ≡
n∑

m=1

αma Pm,

(32)Trn αa = 0, �Ym = Ym�e,
whereρa are positive, not to be confused with

�ρ ab
m = ρaρb exp

(
2πi

(
αmb − αma

))
@�ym,

(33)@�ym =@ym�e≡ −π tr2
(
ζ †Pmζ �τ).

ForSU(2) one has@�y1 = −@�y2 (for SU(n > 2) a constraint onζ is required, to guarante
that all@�ym are parallel). We will take�e = @�y2/|@�y2| = (0,0,1) (hence@y2 > 0) and
P∞ = exp(2πiµ2τ3) (thereforeζ = √

@y2/π 12). This can always be arranged to be
case by a global gauge rotation, and a spatial rotation. We define�ym, up to an irrelevan
overall shift, through@�ym ≡ �ym − �ym−1. This fixesYm to be

Y ab
m = (

ξa + ρ2
aym

)
δab + i(1− δab)ρaρb

(34)×
n∑

j=1

@yj
exp(2πi[αjb − α

j
a − (µj + smj )(ξ

b
0 − ξa0 )])

2 sin(π[ξb0 − ξa0 ]) .

The constituent locations are found from the eigenvalues ofYm. Although constant, it is
not true in general that theYm can be diagonalized simultaneously, making this a n
Abelian solution of the Nahm equation. Yet, as we remarked before, one easily com
the Green’s function, sinceR±

m(z)= Rm =√
(�x1k − �e Ym) · (�x1k − �e Ym) is constant inz.

Using that for the axially symmetric solutions�ρ ab
m = Ŝabm �ym/|@�ym|, one shows [11] tha

in the high temperature limit the (Abelian) gauge field can be written in the form o
bipole ansatz [21]

(35)Aµ(x)= − i

2
τ3η̄

3
µν∂ν logφ(x), φ(x)= φff (x)≡ det(R1 +R2 + S2)

det(R1 +R2 − S2)
.

In the bipole ansatz, one splitsAµ(x) in an isospin up and isospin down component (w
inverted Abelian charges). However, all that concerns us here is the fact that forany φ,
Aµ(x) as given above is self-dual (and hence a solution of the Maxwell equations) pro
logφ is harmonic away from Dirac string singularities (defined byφ−1 = 0). This always
gives rise to at least one normalizable zero-mode of the chiral Dirac equation

(36)Ψ̂mI (x)= (2πρ̃)−1φ−1/2(x)(τ1σ̄µε)mI ∂µ logφ(x),

whereρ̃ is simply a normalization factor. Herem corresponds to the isospin compon
that survives forz= µm (with the other component related tôfx(µ1,µ2) vanishing in the
far field limit, see Eq. (9)).
We now work out the explicit form of allk zero-modes for the axially symmetric caloron
solution, showing how the zero-mode in Eq. (36) is recovered from these. Using Eqs. (10),
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(27), (33), together with the fact that̂fx(µ1,µ2) is exponentially small (τ1 is used for
picking out the surviving component), we find for the normalized zero-modes atz = µm

(|ζ | = √
@y2/π )

(37)Ψ̂ a
mI (x)= φ

1/2
ff (x)|ζ |ρbe2πiαmb (τ1σ̄µε)mI ∂µ

(
Σ̂−1
m

)ba
.

Using the fact that (cmp. Eq. (8))

(38)φ−1
ff (x)= 1− 2π |ζ |2ρae2πiαma

(
Σ̂−1
m

)ab
e−2πiαmb ρb,

the following linear combination recovers the bipole zero-mode

Ψ̂mI (x)= ρae
−2πiαma |ζ |
ρ̃

Ψ̂ a
mI (x)= φ

1/2
ff (x)

2πρ̃
(τ1σ̄µε)mI ∂µ

(
1− φ−1

ff (x)
)
,

(39)ρ̃2 ≡
∑
a

ρ2
a |ζ |2.

By defining Ψ̂ (j)
mI (x) = (ρ

(j)
a )†Ψ̂ a

mI (x) with ρ(j) an orthonormal set of complex vecto

with ρ
(1)
a ≡ ρae

2πiαma |ζ |/ρ̃ we form a complete set of orthonormal zero-modes. That t
are solutions of Eq. (2) is guaranteed by the general formalism we developed, but on
of course check this by substitution in the Dirac equation. This requires∂i detΦ∂iΦ

−1 = 0,
with Φ ≡ (1k − 2ŜmΣ̂−1

m )−1.

For axially symmetricSU(2) solutions with charge 2 we chooseρ(2)a = εabρ
(1)
b and find

for the two orthonormal zero-modes atz= µ2

Ψ̂ (i) = 1

2πρ̃
φ

1/2
ff (x)

(
∂2 + i∂1
−i∂3

)
φ−1
(i) (x),

(40)φ−1
(i) (x)≡ 2πρ̃2(ρ(i))†Σ̂−1

2 ρ(1),

with φ−1
(1) = 1 − φ−1

ff , as shown in Ref. [11], only depending on the constituent locat

y
(a)
m read off from the eigenvalues ofYm. Many choices ofym, ξa , ξa0 , α2

a , ρa andµ2

actually give rise to thesame constituent locations, and hence thesame expressions fo
Aµ(x) andΨ̂ (1). It is important for consistency that this will hold for̂Ψ (2) as well. Apart
from an irrelevant phase, this is indeed the case (checked for many random choice
parameters). The explicit analytic formulae in terms of the 4 arbitrary constituent loca
apart from the constraint on the orderingy(1)1 < y

(1)
2 < y

(2)
1 < y

(2)
2 , read

φ−1
(1) (x)= 1− φ−1

ff = 1−
2∏

i=1

r
(i)
1 + r

(i)
2 − |y(i)1 − y

(i)
2 |

r
(i)
1 + r

(i)
2 + |y(i)1 − y

(i)
2 |

,

−1 iγ (y
(2)
1 − y

(1)
1 )(r

(1)
2 − r

(2)
2 )+ (y

(2)
2 − y

(1)
2 )(r

(1)
1 − r

(2)
1 ) −1
 (41)φ(2) (x)= e N ∑2

i,j=1N
(j)
i r

(j)
i

φ(1) ,
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Fig. 4. The two zero-mode densities atz= µ2 = 1/4 (same configuration as Fig. 3). The bipole zero-mode (ri
is at 5 times the vertical scale of the second zero-mode (left). Top for the high temperature limit and bot
finite temperature (β = 1).

wherer(j)i = |�x − �ey(j)i | and the constantsN,N
(j)
i are given by

N ≡
√√√√ (y

(2)
2 − y

(1)
1 )(y

(2)
1 − y

(1)
2 )

(y
(1)
2 − y

(1)
1 )(y

(2)
2 − y

(2)
1 )

,

(42)N
(j)

i ≡ (y
(j)

i′ − y
(j ′)
i′ )(y

(j)

i′ − y
(j ′)
i )

(y
(j)

2 − y
(j)

1 )
, j ′ �= j, i ′ �= i.

The phaseγ vanishes whenαma = ξa0 = 0, but is of course irrelevant for checkinĝΨ (2) to be
a properly normalized fermion zero-mode, orthogonal toΨ̂ (1). In Fig. 4 we give an exampl
for the behavior of these zero-mode densities. We choosey

(1)
1 = −6.031,y(1)2 = −2.031,

y
(2)
1 = 2.031 andy(2)2 = 6.031. These are the constituent locations also found in Fi

based on the axially symmetric solution withµ2 = 1/4,αa = ξ0 = 0,ξ = 3.5,@y2 = 1 and
ρ1 = ρ2 = 2. Shown are the results for both zero-modes (bipole zero-mode on the rig
finite temperature,β = 1 (bottom), and at infinite temperature (top). Note that these
only differ in the cores of the constituents, regular at finite temperature, but singul
the self-dual Dirac monopoles one is left with in the high temperature limit. The b
zero-mode density is shown on a scale enhanced by a factor 5. Its reduced height is
the fact that this zero-mode decays much slower than the other one, as can be read
the behavior ofφ−1

(i) (x) in Eq. (41).
Crucial for the normalizability of both zero-modes is that 1/φ(i) is constant on the Dira

strings, where 1/φff vanishes

φ−1
(1) (0,0, x3)= 1, φ−1

(2) (0,0, x3)= −eiγN

(
y
(2)
2 − y

(2)
1

y
(2)
2 − y

(1)
1

)

for y(1)1 � x3 � y

(1)
2 ,
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Fig. 5. The two zero-mode densities for Eq. (41) with the order ofy
(2)
1 and y(1)2 interchanged. The secon

zero-mode (left) is at the same scale, whereas the bipole zero-mode (right) has its vertical scale magni
factor 10, compared to Fig. 4.

φ−1
(1) (0,0, x3)= 1, φ−1

(2) (0,0, x3)= eiγN

(
y
(1)
2 − y

(1)
1

y
(2)
2 − y

(1)
1

)
(43)for y(2)1 � x3 � y

(2)
2 .

We are now in a position to answer the question what happens when violating the con
on the alternating order of oppositely charged constituents, by smoothly deforming
y
(1)
2 < y

(2)
1 to y

(1)
2 > y

(2)
1 . Under this deformation, botĥΨ (1) andΨ̂ (2) remain zero-mode

solutions of the Dirac equation, andAµ remains a self-dual Abelian gauge field. We n

have a Dirac string fory(2)1 < x3 < y
(1)
2 of double the usual strength (φ−1

ff behaving asx4⊥
as opposed tox2⊥), where the second zero-mode density diverges, as illustrated in F
This is becauseφ(2) will no longer be constant on the double Dirac string. The bip
zero-mode, on the other hand, remains well defined. It actually vanishes identically
double Dirac string (cmp. Fig. 1 of Ref. [21]), and no longer “sees” the two inner self-
Dirac monopoles.

It would be interesting if one could formulate an index theorem for these Abelian
configurations with singularities, but this will not be straightforward as our analysis sh
It is yet another subtlety in describing the monopole content of non-Abelian gauge
Developing a better understanding of these constraints, that affect the long range pro
of configurations, is our main motivation for these studies.

5. Appearance of conserved quantities

Our analysis has shown that in all cases, as long asz stays away from the impurities, th
zero-mode density is exponentially localized to the cores of the constituents in the fa
limit. The sizes of the monopole cores shrink to zero in the high temperature limit
masses scaling proportional with the temperature), therefore we expect

(44)Vm(�x)≡ (4π)−1 Tr
(
R−1
m (z)

)
,

cmp. Eqs. (11) and (26), to be harmonic almost everywhere except for singularities tracing
the cores of typem monopoles forz ∈ (µm,µm+1). Since the caloron gauge field does not
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depend onz, this interpretation requiresVm not to depend onz. The trace in Eq. (44) is
necessary to remove anyz dependence due to the fact that the basis of zero-modes is
defined up to a possiblyz dependent unitary transformation. All this is obviously true wh
�R(z; �x) is piecewize constant, as fork = 1 and for the class of axially symmetric solutio
of Ref. [11]. In this case the zero-mode density in the high temperature limit reduces
sum ofk delta function, located at the appropriate constituent monopole locations.

To show thatVm is independent ofz, even when�R(z, �x) is not piecewize constant w
solve the Riccati equation, Eq. (20), iteratively in 1/|�x| and obtain the multipole expansio
for Vm(�x). We can then use the Nahm equation forÂj (z) to check if every moment o
this expansion is independent ofz. We restrict our attention to the region betweenµm and
µm+1 and perform a rotationU(x̂)

Yi(z)≡Uij (x̂)ĝ(z)
Âj (z)

2πi
ĝ†(z),

(45)U(x̂)=
( sin(θ)cos(ϕ) sin(θ)sin(ϕ) cos(θ)

cos(θ)cos(ϕ) cos(θ)sin(ϕ) −sin(θ)
−sin(ϕ) cos(ϕ) 0

)
,

with (θ,ϕ) defined such thatU1j = x̂j ≡ xj/|�x| (the dependence of�Y (z) on x̂ will always
be implicitly assumed). This leaves rotations aroundx̂ as a remaining freedom, whic
we will make use of later. For the axially symmetric solutions discussed in Secti
�Y (z)=U(x̂) �Ym, cmp. Eq. (34).

The Nahm equation, which is invariant under rotations, is equivalent to (working i
gauge wherêA0 is constant, removed by the gauge transformation withĝ(z))

(46)
d

dz
Yi(z)= −πiεijk

[
Yj (z), Yk(z)

]
.

We introduced�Y (z) in Eq. (45) such that

(47)�R(z; �x)2 = 1k|�x|2 − 2|�x|Y1(z)+ �Y 2(z),

has a simple form. Writing

(48)R±
m(z)

2 ≡ 1k|�x|2 − |�x|Q±
(
z; |�x|−1),

we can now formulate the Riccati equation, Eq. (20), in terms of�Y (z) andQ±(z; |�x|−1),

1k − Q±(z; |�x|−1)

|�x|

(49)= 1k − 2
Y1(z)

|�x| + �Y 2(z)

|�x|2 ± 1

2π |�x|
d

dz

√
1k − Q±(z; |�x|−1)

|�x| ,

which can be solved by iteration, expanding in powers of 1/|�x|, something that is

easily automated. We used the algebraic program FORM [26] for its superior memory
management and speed to push this calculation to a high order. We find for the first few
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terms (also easily obtained by hand),

R±
m(z)

|�x| = 1k − Y1/|�x| + 1

2

(
Y 2

2 + Y 2
3 ± i[Y3, Y2]

)
/|�x|2

(50)+ 1

2
(Y2Y1Y2 + Y3Y1Y3 ∓ iY2Y1Y3 ± iY3Y1Y2)/|�x|3 + · · · ,

where thez dependence ofYj (z) is suppressed for ease of notation and any derivatives
respect toz are eliminated with the help of the Nahm equation, Eq. (46). We subs
this expansion in Eq. (44), withRm(z) = 1

2(R
+
m(z) + R−

m(z)), from which we obtain its
multipole expansion. The first few terms are

(51)Vm(�x)= 1

4π |�x| Tr

(
1k + Y1

|�x| + 1

2

3Y 2
1 − �Y 2

|�x|2 + 1

2

Y15Y 2
1 − 3�Y 2

|�x|3 + · · ·
)
.

A number of checks can be performed on this result. First of allVm andQ± are invariant
under any rotation amongY2 andY3, Vm is real andQ± are Hermitian, as should be. B
construction, cmp. Eqs. (11), (26) and (44),

(52)
k∑

a=1

Ψ̂ a
z (x)

†Ψ̂ a
z (x)= −∂2

i Vm(�x), z ∈ (µm,µm+1)

in the far field limit, and one verifies that this integrates tok, as required by the prope
normalization of the zero-modes. But most importantly, we verify with the help
the Nahm equation, Eq. (46), thatd

dz
Vm = 0 to the order given (whereas in gene

neitherR±
m(z), nor Tr(Rm(z)) are constant). For the dipole term this is immediate, s

d
dz

TrY1 = −2πi Tr[Y2, Y3] = 0. For the quadrupole term we haved
dz

Tr(3Y 2
1 − �Y 2) =

−4πi Tr(3Y1[Y2, Y3] − εijkYiYjYk) = 0, using the cyclic property of the trace, etc. No
that TrÂi(z) plays a special role. It corresponds to theU(1) part of theU(k) Nahm gauge
field, and therefore decouples in the Nahm equations. As is obvious from the definit
�R(z; �x), Eq. (14), it can actually be absorbed in a shift of�x. Therefore, where this simplifie
matters we may assume�Y (z) to be traceless.

Finally we check, as conjectured above, that each of the terms is harmonic. F
we have to note that�Y (z) depends on�x through the rotationU(x̂), see Eq. (45). In the
expression forVm(�x) the �x dependence is easily recovered since�Y 2 is independent of�x
andY1(z)= ĝ(z)Âj (z)ĝ

†(z)xj /(2πi|�x|). It is now straightforward to verify that each ter
is harmonic. Whenk = 1 we may use thatY1 = x̂ · �ym is no longer a matrix, and one inde
findsVm(�x) in Eq. (51) to be the multipole expansion for(4π |�x − �ym|)−1 for that case
Since this is harmonic (for�x �= �ym), each term in the multipole expansion ofVm(�x) has to
be harmonic. For arbitraryk and �Y (z) we have checked these properties to order|�x|−14 in
the multipole expansion.

From now on we take charge 2. In this case there are 5 independent conserved qu
that characterize the solutions of the Nahm equation on a given intervalz ∈ [µm,µm+1],
apart from the 3 translational degrees of freedom contained in TrÂi(z). They are given by
the entries of the traceless and symmetric matrixM,( )
(53)Mij ≡ −1

2
Tr
(
Âi(z)Âj (z)

)− 1

3
δij Tr

(
Âk(z)Âk(z)

)
.
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One easily checks with the Nahm equation that this is conserved, as for the quadrupo
considered above. Although not needed here, it is known [7] that for anyk a solution to
the Nahm equation implies det(yj Âj (z)− 2πiyjxj1k) is constant, provided�y ∈ C3, with
y2
j = 0. Indeed, fork = 2 and�x = �0, using that det(yj Âj (z)) = −1

2 Tr(yj Âj (z))
2, this is

equivalent toM being constant if and only ify2
j = 0. SinceM gives all the independen

invariants, it should be possible to expressVm(�x) in terms ofM and �x. Considerable
simplifications occur, because we can write

(54)Âj (z)≡ iAja(z)ĝ
†(z)τaĝ(z)

(absorbing the trace part in a shift of�x), and useτaτb = δab12 + iεabcτc to reduce the
matrix products to scalar products,Aia(z)Aja(z)=Mij + 1

3δijA
2
ka(z). We do indeed find

thatVm(�x) is a function ofM and�x only,

(55)Vm(�x)= 1

2π |�x|
(

1+ 3

2|�x|2M̂11(x̂)+O
(|�x|−4)),

where for convenience we introduced

(56)M̂ij (x̂)= 1

4π2

(
U(x̂)MU−1(x̂)

)
ij

= 1

2
Tr

(
Yi(z)Yj (z)− 1

3
δij �Y 2(z)

)
.

We performed the multipole expansion for charge 2 to order|�x|−21. Only the odd orders
appear, because�Y (z) is assumed to be traceless. In Appendix B we give the term of o
21, and show how from this all lower order multipole coefficients can be recovered.

6. Exact results for charge 2

In this section we will constructSU(2) charge 2 solutions for which�R(z; �x) is not
piecewize constant and analyze the localization of the fermion zero-modes in the fa
limit. We already saw in Section 5 that on each interval(µm,µm+1) we have information
on the zero-mode density, Eq. (52), in terms of 8 parameters. Three of these are ass
with Tr �Y (z), which give the center of mass coordinates for the constituents of typem. Of
the other 5, given by the 3× 3 traceless symmetric matrixM, 3 are associated to a rotatio
R that diagonalizesM, whereas the remaining 2 parameterize the eigenvalues ofM. They
will give a scale (D) and shape (k) parameter, see below.

6.1. Solutions to the Nahm equation

Explicit solutions in terms of Jacobi elliptic functions were first considered in
context of SU(2) charge 2 monopoles [27,28]. These solutions can be adopte
the calorons provided the appropriate boundary conditions, read off from Eq. (15
implemented. In terms of the 3× 3 matrixAia(z) defined in Eq. (54), the Nahm equati
becomes (away fromz= µm)
(57)
1

2

d

dz
At (z)= det

(
A(z)

)
A−1(z),
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from which we find

(58)
1

4

d

dz

(
A(z)At (z)

)= 13 detA(z)= 13

√
det
(
A(z)At (z)

)
.

The traceless part ofA(z)At (z) is therefore independent ofz, once again verifying tha
M =A(z)At (z)− 1

313 Tr(A(z)At (z)) is constant. Here we are, however, interested in
equation for the trace part

(59)
d

dz
F (z)= 4

√
det
(
F(z)13 +M

)
, F (z)≡ 1

3
Tr
(
A(z)At (z)

)
.

When we diagonalizeM with a suitable rotationR, M = Rdiag(c1, c2, c3)Rt , fixing R
such thatc2 � c1 � c3 (note that in additionc1 + c2 + c3 = TrM = 0), this can be cast i
the form

(60)
d

dz
F (z)= 4

√(
F(z)+ c1

)(
F(z)+ c2

)(
F(z)+ c3

)
.

DefiningF(z)+ ci = 1
4D

2f 2
i (Dz) and introducingD andk to parameterize theci ,

(61)D2 ≡ 1

4
(c3 − c2), k2 ≡ c3 − c1

c3 − c2
� 1,

shows that the solution can be written in terms of the Jacobi elliptic functions1

(62)

f1(z)= k′

cnk(z)
, f2(z)= k′ snk(z)

cnk(z)
, f3(z)= dnk(z)

cnk(z)
, k′ ≡

√
1− k2.

The overall sign of the functionsfi(z) is chosen such thatdf1(z)/dz = f2(z)f3(z), and
cyclic, such that in terms of these the most general solution of the Nahm equation is
by

Âj (z; �a,R, h,D,k) ≡ 2πiĝ†(z)h†(aj12 +DRjbfb(Dz)τb
)
hĝ(z),

(63)D ≡ (4π)−1D,

whereR is the rotation that diagonalizesM andh is a global gauge rotation (leavin
A(z)At (z) invariant). In theSp(1) formalism for constructingSU(2) calorons one require
Ât
j (z) = Âj (−z), a property shared byfb(Dz)τb for eachb. Arrangingf2(z) to be odd

andf1,3(z) to be even inz was the reason for choosingc2 � c1 � c3.
We see thatk′ = 0 (i.e.,k = 1) recovers the case where�R(z; �x) is piecewize constan

for which Vk=1
m (�x) = (4π |�x − �y|)−1 + (4π |�x + �y|)−1, with �y = (0,0,D) and ±�y

the two locations of the equal charge constituents (the center of mass assume
zero), see Section 5. The combined zero-mode density in the far field limit is give
−∂2

i Vm(�x) = δ(�x − �y) + δ(�x + �y), the sum of two delta-functions at these constitu
locations. Actually, two point-like constituents necessarily impliesk = 1. Comparing

1 The Jacobi elliptic functions are defined by snk(u) = sin(ϕ(u)), cnk(u) = cos(ϕ(u)) and dnk(u) =√ ∫ ϕ(u)
1− k2 sn2
k(u), with u= 0 dθ (1− k2 sin2 θ)−1/2. We use boldface fork to avoid confusion with chargek.

One also encounters the notation [29] sn(u|m) for snk(u), with m= k2.
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3M̂11/(16π3|�x|3) = 3
∑3

j=1 cjx
2
j /(16π3|�x|5), see Eq. (56), with the quadrupole term

Vk=1
m (�x), (2x2

3 − x2
2 − x2

1)D2/(4π |�x|5), one finds thatc1 = c2, which forcesk = 1. It is
in this context that we define�y = ±(0,0,D) as would-be constituent locations even wh
k �= 1. In which way we will approach point-like constituents whenk → 1 will become
clear in Section 6.3. So far we have studied the Nahm equation away from the “impur
We first want to convince ourselves that there are more general (not piecewize co
solutions to the Nahm equation that describe calorons with non-trivial holonomy, for w
we need to solve the boundary conditions at the “impurities”.

6.2. Matching at the impurities

We will consider here the case ofSU(2) charge 2 calorons in the symplec
representation, for whicĥAj(−z) = Â t

j (z). This condition is preserved under the gau
transformationĝ(z) defined in Eq. (13), but requires us to further constrainh appearing
in Eq. (63) to be generated byτ2. It means that forz ∈ [µ1,µ2] the Nahm gauge field

is given byÂj (z) = Âj (z; �a(1),R(1), e− i
2θ

(1)τ2,D(1),k(1)). For z ∈ [µ2,1 + µ1] we use
that periodicity ofÂj (z) impliesÂj (1− z)= Âj (−z)= Ât

j (z), such that̂Aj(z)= Âj (z−
1
2; �a(2),R(2), e− i

2θ
(2)τ2,D(2),k(2)). This was studied before by Houghton and Kraan

trivial holonomy (µ2 = 0) [30], where one of the monopole types is massless. For ge
holonomy, the Nahm equation reduces atz= µ2 to (see Eq. (15))

Âj

(
µ2 − 1

2
; �a(2),R(2), e− i

2θ
(2)τ2,D(2),k(2)

)
(64)− Âj

(
µ2; �a(1),R(1), e− i

2θ
(1)τ2,D(1),k(1)

)= 2πiρj2 .

At z = µ1 = −µ2, using Âj (−z) = Âj (z)
t , the same condition is found (one c

check [11] thatρ1 = −ρt2).
A particularly simple solution is obtained forµ2 = 1/4 (equal mass constituent

by taking the same parameters in both intervals, up to a shift�a, D(m) = D, k(m) = k,
R(m) = 13 andθ(m) = 0, collapsing Eq. (64) to

(65)�ρ2 =@�a12 − 2(0,1,0)τ2Dk′ snk
(1

4D
)

cnk
( 1

4D
) , @�a ≡ �a(2) − �a(1).

This can be solved by takingP2 = 1
2(12 + τ2), ζa = ρ exp(2πiαaτ2), with α1 − α2 = 1/4,

which gives�ρ ab
2 = −2πρ2Pab

2 (0,1,0), such that

(66)
Dk′ snk

(1
4D
)

2π cnk
( 1

4D
) (0,1,0)= −@�a = πρ2(0,1,0).

For increasingD, cnk(
1
4D) will reach zero at14D =K(k), the half-period.2 To keep|@�a|

finite, k′ has to approach zero as well.
2 K(k)= ∫ π/2
0 dθ (1− k2 sin2 θ)−1/2, satisfyingK(k)= − log( 1

4k′)(1+O(k′2)) [29].
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Fig. 6. Plotting|@�a| versusD, Eq. (66), fork = 0, 0.9, 0.99, 0.999 and 0.9999 (left to right).

In Fig. 6 we plot|@�a| as a function ofk andD, from which we confirm that, at fixe
|@�a|, k has to approach 1 to have well separated constituents. In this point-like
monopole constituents of type 1 are located at(0,−1

2πρ
2,±D) and those of opposit

charge (type 2) at(0, 1
2πρ

2,±D) (choosing the overall center of mass at the origin). T
configuration has parallel magnetic moments and placing self-dual Dirac monopoles
mentioned locations would give a gauge field in the bipole ansatz, Eq. (35). Howev
Abelian component of the gauge field coming from the above caloron can at best ta
bipole form in the limit discussed. Fork = 1 andD finite, |@�a| = 0, and one is left with
two singular instantons (of zero size) at(0,0,±D).

For this reason we now consider a class of solutions which containsregular axially
symmetric solutions withk = 1. Again we takeµ2 = 1/4, D(m) = D, k(m) = k, ζa =
ρ exp(2πiαaτ2), but now withα2 = −α1 ≡ π−1α, P2 = 1

2(1+ τ3), θ(2) = −θ(1) ≡ θ and

(67)R(2) = (
R(1))−1 =

( cosϕ 0 sinϕ
0 1 0

−sinϕ 0 cosϕ

)
.

One finds

(68)�ρab2 = −πρ2(−sinατ3,−sinατ2, τ1 + cosα11)
ab,

and Eq. (64) takes the following form

2D
(
f1

(
1

4
D

)
sinθ cosϕ + f3

(
1

4
D

)
cosθ sinϕ

)
τ3 +@a112 = πρ2 sinατ3,

−2Df2

(
1

4
D

)
τ2 +@a212 = πρ2 sinατ2,

−2D
(
f1

(
1

4
D

)
cosθ sinϕ + f3

(
1

4
D

)
sinθ cosϕ

)
τ1 +@a312
(69)= −πρ2(τ1 + cosα12).
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This can be simplified to

D sin(θ − ϕ)

(
f3

(
1

4
D

)
− f1

(
1

4
D

))
= 1

2
πρ2(1− sinα),

@�a = −πρ2 cosα(0,0,1),

D sin(θ + ϕ)

(
f3

(
1

4
D

)
+ f1

(
1

4
D

))
= 1

2
πρ2(1+ sinα),

(70)Df2

(
1

4
D

)
= −1

2
πρ2 sinα.

It gives a three parameter family of solutions with would-be point-like constituents a

(71)�y(j)m =
(
(−1)jD sinϕ,0, (−1)m+jD cosϕ − (−1)m

1

2
ρ2 cosα

)
.

To have an exact point-like far field limit we need to imposek = 1, implying sinα = 0
and cosθ sinϕ = 0. The first possibility is that cosθ = 0, for which|cosϕ|D = 1

2ρ
2. One

finds two constituents of opposite charge to coincide. Such a solution describes a s
(zero-size) instanton on top of a smooth caloron. Excluding this singular case we a
with the choice sinϕ = 0, for which |sinθ |D = 1

2ρ
2. We now find axially symmetric

solutions with constituent locations at

(72)�y(j)m = ∓1

2
πρ2((−1)m + (−1)j |sinθ |−1)(0,0,1),

where the overall sign comes from the fact that cosα = ±1. For cosθ �= 0, all constituents
are now separated from each other, giving a regular solution. Both cases were a
studied in Ref. [11], based on assuming that�ρ2 is one-dimensional (cmp. Section 4).
can be shown that forSU(2) exact point-like constituents,k(1) = k(2) = 1, forces�ρ2 to be
one-dimensional forany choice of the remaining parameters.

Nevertheless, when sinα �= 0, insisting as before that equal charge constituents are
separated, while keeping the centers of mass of these pairs at a fixed distanceπρ2 cosα,
one forcesk → 1 while increasingD, and hence approximate point-like constituents.
will illustrate this behavior forθ = π/4. In Fig. 7 we plot for a typical value ofρ the
constituent locations as given by Eq. (71), varyingα between−π and 0 (givenρ, α andθ ,
one can use Eq. (70) to solve forϕ, D andk). We also plotk as a function ofρ for some
values ofϕ, showing the rapid uniform approach tok = 1. The asymptotic behavior fo
α = −π/2 is determined by

(73)k′ = 4 exp(−D/4)

3+ 2
√

2

(
1+O

(
k′2)), D = 4

√
2π2ρ2(1+O

(
k′2)).

It is also interesting to inspect̂Ai(z) in the limit k → 1 (orD → ∞), to understand to
which extent we retrieve the piecewize constant behavior of�R(z; �x), on which the point-
like limit is based. For this we plotfi(D(k)z) in Fig. 8, which apart from fixed rotation
and an overall factorD would represent the constituent locations. SinceD(k)/(πρ2)√

approaches 2 for k → 1, it means we normalize the constituent locations with respect
to height of the jumps in the Nahm data. At the impurities (z= ±1/4) we therefore expect
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Fig. 7. On the left we plotk versusρ for α = 0 (k ≡ 1), α = −π/100 andα = −π/2 (giving the lower bound
for k at fixedρ). On the right are shown the locations, Eq. (71), of monopoles and antimonopoles (fat v
curves) in the(1,3)-plane forρ = 1/4, by varyingα from −π (indicated by the arrows) to 0.

Fig. 8. Plots offj (D(k)z) for z ∈ [− 1
4 ,

1
4 ] at k = 1 − 10−4 (left) and k = 1 − 10−8 (right), illustrating the

approach to the point-like limitk → 1 for α = −π/2.

fi(D(k)z) to go to a fixed value. The plotted cases, 1− k = 10−4, D(k) = 15.53 (left)
and 1− k = 10−8, D(k)= 33.95 (right), clearly demonstrate how in the bulkf3 → 1 and
f1,2 → 0, but that they differ atz= ±1/4, to accommodate the discontinuities of the Na
equation at the impurities. The cross-over from bulk behavior to the impurity values s
asD−1, and is only absent for axially symmetric solutions.

6.3. Extended structure

When �R(z; �x) is not piecewize constant, it is not clear what plays the role of
constituent locations. We therefore do expect some extended structure fork �= 1. For this
reason we now come back to analyzingVm(�x) = (4π)−1 TrR−1

m (z) in more detail. Quite
remarkably, the discussion in Section 5 implies that the result fork = 0 can be obtaine
from that atk = 1. For this we may use the symmetryc2 ↔ c3, which leavesVm(�x)

invariant, apart from interchangingx2 andx3 (M̂ is left unchanged when absorbing the
rotationR that interchangesc2 andc3 in U , see Eq. (56)). With the definitions ofD = 4πD
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andk in Eq. (61) one finds that this impliesD2 → −D2 andk → k′. Therefore,

(74)k = 0: Vm(�x)=
√

2

√
|�x|2 −D2 +

√
(|�x|2 −D2)2 + 4D2x2

2

4π
√
(|�x|2 −D2)2 + 4D2x2

2

.

For this we use that thek = 1 result,Vm(�x) = (4π |�x − �y|)−1 + (4π |�x + �y|)−1, with
�y = D(0,0,1), can be rewritten in the form of Eq. (74) by changing the sign ofD2

and interchangingx2 and x3. In some sense we may say that the result fork = 0
describes point-like constituents that have moved into a complex direction.3 We note
that Eq. (74) is singular on the ringx2 = 0, |�x|2 = D2, i.e., on the circle of radius|D|
in the (1,3)-plane. But there is more of a surprise: thex2 derivative is discontinuous o
the disk bounded by the ring (away from the disc the function is smooth and harm
Vm(�x)= (2π)−1|Dx2|/(D2 − r2)3/2(1+O(x2

2)), with r2 ≡ x2
1 + x2

3. This implies indeed
an extended structure, with singularities on the entire disk. Before showing how to
with this singularity structure we consider general values ofk.

As we have seen in Section 5, TrR−1
m (z) is conserved as a consequence of the Na

equation. Using forR±
m(z) the Riccati equation, Eq. (20), the fact that TrR−1

m (z) =
2 Tr(R+

m(z)+R−
m(z))

−1 is independent ofz imposes a severe constraint. We make us
this by expandingR±

m(z) as a Taylor series inz. The Taylor coefficients can be express
in terms of the initial conditionsR±

m(0), through the explicit solution of̂Aj(z), Eq. (63)
(we make use of the invariance under translations and rotations to put�a = �0, h = 12 and
R = 13, as in Section 5). We thus obtain the Taylor series for TrR−1

m (z), of which all
coefficients should vanish except for the 0th order. This gives a set ofalgebraic equations
for the initial conditions,R±

m(0), encoded inXµ andX̃µ through

Rm(0)= 1

2

(
R+
m(0)+R−

m(0)
)≡D(X012 +Xjτj ),

(75)
1

2

(
R+
m(0)−R−

m(0)
)≡D(X̃012 + X̃j τj ).

Note thatD enters as an overall scale factor, cmp. Eq. (63), such that

Vm(�x)= 1

4π
TrR−1

m (0)= 1

2πDṼ(D�x),

(76)Ṽ = 1

2
Tr

(
1

X0 +Xjτj

)
= X0

X2
0 −X2

j

.

Dependence on the coordinates and onk is mostly left implicit. The system of equation
is of course hugely overdetermined, and some amount of good fortune was required
the first 11 orders in the Taylor expansion were sufficient to solve forXµ andX̃µ. Quite

3 This was observed before in the monopole context [27]. It is also worthwhile to point out that the a
symmetric monopole solutions discussed there can appear as such in the caloron context, as we read offk = 0
from Eq. (66). In this case we expect to find another class of axially symmetric caloron solutions, with@�a giving

the symmetry axes, but since we are more interested here in the case of well-separated monopole constituents, we
did not analyze this in further detail.



e

in
at

hortly

l

ow

nsion
e,
220 F. Bruckmann et al. / Nuclear Physics B 666 (2003) 197–229

remarkably these imply that̃X0 = X̃1 = X̃3 = X2 = 0, which considerably simplifies th
task of solving for the remaining 4 variables. We found that

(77)δ ≡X2
0 −X2

1 −X2
3 − X̃2

2

satisfies the cubic equation(
2− k2)k4 + 4k2(x2

1 − x2
3

)− k4(3x2
1 − x2

2 − x2
3

)
+ ((

2− k2)(3x2
1 − x2

2 + x2
3

)+ 2k2x2
3 − 4x2

1

)|�x|2
− |�x|6 − (

k4 + 2k2(x2
1 − x2

2 − x2
3

)+ 4x2
2 + |�x|4)δ

(78)+ (
k2 − 2+ |�x|2)δ2 + δ3 = 0,

whereasX1/X0, X3/X0 andX̃2 can be solved for in terms ofδ,

X1

X0
= |�x|4 − δ2 + 2(k′2(δ − 2x2

1)+ x2
1 + x2

2 − x2
3)+ (2− k2)k2

4x1k′k2 ,

X3

X0
= |�x|4 − δ2 + 2(δ− 2x2

3 − k′2(x2
1 − x2

2 − x2
3))− (2− k2)k2

4x3k2 ,

(79)X̃2 = |�x|4 − δ2 + 2k2(x2
1 − x2

2 − x2
3)+ 4x2

2 + k4

4x2k′ .

Therefore,̃V2 is a rational function ofδ, �x andk,

(80)Ṽ2 = 1

(δ + X̃2
2)(1−X2

1X
−2
0 −X2

3X
−2
0 )

,

and the proper root of the cubic equation forδ to use is fixed bỹV → 1/|�x|. Indeed, the
asymptotic expansion forδ,

(81)δ = |�x|2
(

1+ 2x2
2 + k2(x2

1 − x2
2 − x2

3)

|�x|4 + · · ·
)
,

reproduces the multipole expansion ofṼ . This was verified to the 21 orders given
Eq. (B.3). On general grounds it can be argued, sinceδ satisfies a cubic equation, th
Ṽ2 has to satisfy a cubic equation as well. Its coefficients (polynomials ink and �x) are
somewhat lengthy, and therefore not reproduced here, in part because we will s
present an exact integral equation forVm(�x), valid for anyk. The exact results fork = 0
and k = 1 are most easily recovered from the cubic equation forṼ2, but the integra
representation will be valid for these two cases as well.

Like for k = 0, we find thatVm(�x) is harmonic everywhere except on a disk, n
bounded by an ellipse with major and minor axesD, respectively,k′D. On this disk
the function vanishes, satisfying in the direction perpendicular to the disk the expa
Vm(�x)= (2π)−1k′|Dx2|/(D2k′2−x2

1 −k′2x2
3)

3/2(1+O(x2
2)) (cmp. the discussion abov

for k = 0). By introducing the “polar” coordinates(x1, x3) = (k′r cosϕ, r sinϕ), in terms

of which the ellipse at the boundary of the disk is characterized byr = D, this can be
written asVm(�x) = (2πk′)−1|Dx2|/(D2 − r2)3/2(1 + O(x2

2)). Care is required to deal
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correctly with the behavior at the edge of the disk when computing the Laplacian. W

(82)−∂2
i Vm(�x)= −δ(x2)

D
πrk′

∂

∂r

θ(D − r)√
D2 − r2

,

with θ(D − r) the step function, giving the following integral representation

Vm(�x)= 1

2π |�x| + D
4π2

2π∫
0

dϕ

D∫
0

dr√
D2 − r2

(83)× ∂r
1√

(x1 − k′r cosϕ)2 + (x3 − r sinϕ)2 + x2
2

.

Note thatk′, appearing in the denominator of Eq. (82), cancels due to the chan
variables to “polar” coordinates. By numerical evaluation, we checked this formula a
the exact results. It gives us confidence that we interpreted the singularity str
correctly. Taking an arbitrary test functionf (�x) we find

N (f )≡ −
∫

f (�x)∂2
i Vm(�x) d3x = 2f (�0)

(84)+ D
π

2π∫
0

dϕ

D∫
0

dr
∂rf (k′r cosϕ,0, r sinϕ)√

D2 − r2
.

The integral overr is well defined for anyk′ and can be used to check the corr
normalization for the integrated zero-mode density,N (1)= 2. Eq. (84) is also particularl
convenient for studying the limitk′ → 0. Using the fact thatN (f ) is even ink′, we may
write N (f )=N0(f )+ k′2N2(f )+O(k′4), with in particular

(85)N0(f )= 2f (�0)+ D
π

D∫
−D

dy

√
D2−y2∫

−
√

D2−y2

dx
y∂yf (0,0, y)

(x2 + y2)
√
D2 − x2 − y2

,

reintroducing Cartesian coordinatesx = r cosϕ and y = r sinϕ. The integral overx is
easily performed and we find forN0(f )

(86)N0(f )= 2f (�0)+
D∫

−D

dy sign(y)∂yf (0,0, y)= f (0,0,D)+ f (0,0,−D),

whereasN2(f ) gets contributions fromf on the line between(0,0,D) and(0,0,−D).
Therefore, we conclude that in the limitk → 1 two point-like constituents are found, a
that this limit is approached in a smooth way (despite the behavior observed in Fig.
an illustration we plot in Fig. 9N (f ) as a function ofk2 for a Gaussian centered at o
of the would-be constituent locations, where it takes the value 1. We see that indeedN (f )
reaches 1 (linear ink′2) for k → 1. We also recall that Eq. (73) implies the point-like limit
is reached exponentially in the constituent monopole separation (2D).
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Fig. 9.N (f ), Eq. (84), as a function ofk2 for f (�x)= exp[−10(x2
1 + x2

2 + (x3 − 1)2)] andD = 1.

For anyk �= 1 the core has an extended structure in the high temperature limit.
might expect it to be extended along a line, sinceÂj (z) depends on a single paramet
With �R(z; �x) not constant, the Riccati equation apparently “smears out” the core
surprisingly only to a disk. Note that inside this disk the singular zero-mode de
is negative. To guarantee the proper normalization, this is compensated by the s
behavior at the ellipse which forms the edge of the disk. It should be noted, howeve
the singularity structure obtained in the high temperature limit will only tell us to w
region the core will be restricted. We will need to resolve the non-Abelian field compo
inside the core to understand how this limiting behavior comes about.

7. Summary and discussion

We studied the zero-modes of higher charge calorons, in particular in the far field
In this limit one considers the regions outside the cores of the constituents mono
where the gauge field is Abelian. The constituent monopoles are most prominent whe
all have a non-zero mass, implying a non-trivial value of the holonomy. Since the holo
can be seen as a background Polyakov loop, these calorons are therefore more
for the confined phase, where the average Polyakov loop is non-trivial. Lattice evi
for the relevance of these configurations is steadily increasing [15,16], and much a
understanding of the charge 1 calorons has been gained [9]. These revealn constituents
for SU(n), which when well separated become static BPS monopoles. To localize
monopoles it is useful to consider the high temperature limit, for which the masses
infinity and the non-Abelian cores shrink to zero size. We note that the high tempe
limit is equivalent to the limit of infinite Higgs vacuum expectation value (recall thaA0
plays the role of the Higgs field in the adjoint representation). Since also chiral ferm
in a caloron background generically have a mass, likewise going to infinity in the
temperature limit, one finds these zero-modes to be localized entirely to the non-A
cores. Indeed for charge 1, the zero-mode density becomes a delta function at the l

of one of the constituent monopoles. Which one of them, is uniquely determined by the
holonomy, and the phase up to which the zero-mode is chosen to be periodic in the
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imaginary time direction. We generalize away from anti-periodic boundary condi
since this freedom in choosing the phase allows us to control on which constitue
zero-mode localizes. It thus allows us to probe the underlying gauge field configur
see Fig. 1, as has been convincingly demonstrated in Monte Carlo studies as well [1

For higher chargeSU(n) calorons,k > 1, there will bekn constituent monopoles, o
more preciselyk constituent monopoles of given type. Within each type the magn
charge associated to the embedding inUn−1(1), and the mass is fixed. In a previo
paper [11] we constructed axially symmetric solutions, which shared many o
properties of the charge 1 solutions. In particular the high temperature limit gave
like constituents and we have verified here that the zero-mode density indeed loca
these constituents in the expected way, see Fig. 3. This, however, is not expected to
higher charge calorons in general. The reason is that one constructs these solutions
help of the Nahm equation, described by a dualU(k) gauge fieldÂj (z) on the circle, with
singularities at the eigenvaluesµm of the logarithm of the holonomy. In case of the axia
symmetric solutions of Ref. [11] this Nahm gauge field is actually piecewize con
(apart from some trivialU(k) gauge rotation), and its value on the intervalz ∈ [µm,µm+1]
directly determines the locations of the typem monopole constituents. However, in gene
the Nahm gauge field will not be piecewize constant. In that case it remained to be
the constituent locations are smeared out over all values ofÂ(z), or worse.

Indeed in this paper we have found for charge 2 calorons inSU(2) that in general the
location of the constituents is smeared out over a disk. To be more precise, we have
that the zero-mode density vanishes everywhere, except on a disk that is bounde
ellipse. We wish to stress that this result is found by solving the Nahm equation
interval, without imposing the boundary conditions. In other words, a disk is describ
the parameters of the solution for each interval, that is for each monopole type, nam
center of mass, the orientation, a shape and a scale parameter (eight in total). Thes
also be the building blocks for higher gauge groupsSU(n) since their dual description
differ only in the number of intervals. Moreover, only the boundary conditions disting
between calorons and monopole solutions, and we believe our result is of value
context of the latter as well.

In particular we want to draw attention to the fact that (the trace of) the chiral fer
zero-mode density in the high temperature limit is the Laplacian of a function−Vm(�x)
that is determined in terms of the Nahm gauge field and turns out to be a constant
motion with respect to the Nahm equation. We have verified this property by comp
the multipole expansion ofVm(�x) to a high order, but we expect this can be proven fr
the integrability of the Nahm equations, an interesting problem to be pursued in the
The fact thatVm(�x) is conserved is a powerful result indeed, since it allowed us to calc
this function exactly, on which we base the findings mentioned above.

This makes us conjecture that the cores of the constituent monopoles are in g
extended, collapsing to the disk in the high temperature limit. In itself this is not surpr
since one knows from the study of monopoles, when two are closer together th
size of their core, they show an extended structure, for charge 2 indeed in the sh
a doughnut [31]. It should also be noted that we found, when approaching the disk

above with a test function smaller than the ring, the resulting zero-mode density can be
negative. There are two reasons why we should not be too worried about this. If the
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core would collapse to points, the proper normalization of the zero-modes requir
contribution from the singularity to be quantized, giving a delta function of unit stren
When the core is extended, we have no such constraint. In addition, our equatio
derived by ignoring the exponentially small terms that occur in the core. Therefor
result is only valid outside the core, where we indeed find the zero-mode density to v
This means the cores have to lie within the disk, whereas the only thing we can say
their contributions is that they have to integrate to 2 (since−∂2

i Vm(�x) adds the two zero
mode densities). Although this may seem to resemble a singularity like the Dirac strin
more subtle than that, because only like-charge monopoles are involved here. Never
it does show that the non-Abelian fields inside the core have an intricate behavior.

It will therefore be interesting in the future to try and get access to the gauge fiel
to see if the field strength shows further localization within the disks we have foun
the basis of the zero-modes. Another useful object is the Polyakov loop because it
the constituent monopoles [17] and is able to reveal extended structures in the con
Abelian projection [6,32]. We believe to have gained sufficient information to get a
to the solutions at finite temperature, with a fully resolved core to answer these que
if necessary by numerical means. For this Ref. [34] will be particularly useful.

However, from the physical point of view, the most important result of this paper i
demonstration that for well separated constituents, when the scale parameterD is large,
the shape of the caloron zero-mode density leads to point-like constituents, i.e., the
parameterk approaches 1. It does so exponentially inD and we have shown no structu
is left on the disk bounded by the ellipse, collapsing to a line in this limit. Any trace
over on this line is proportional to 1− k2, and therefore vanishes exponentially inD. This
comes about through the boundary conditionsÂ(z) has to satisfy at the “impurities”µm,
relating the size and shape parameters,D and k. We leave it to a future publication t
more fully describe the moduli space of solutions, solving for these constraints. Also
some remarkable simplifications seem to occur, related to the integrability of the
equations.

The results of this paper therefore provide one further step in establishing tha
Abelian gauge field configurations can be described on a large distance scale in
of Abelian monopoles. Of course it is only a small step, because we use exact se
solutions to establish these results. This has been in part because we discovered ear
somewhat to our surprise, that it is far from trivial to write down superpositions of t
monopole fields without having visible Dirac strings all over the place, that would carr
much energy for comfort. In part this is due to the crudeness involved in the superpo
instead requiring a fine-tuning of the non-Abelian tails with the exponential compo
in the Abelian gauge field (to properly absorb the return flux). It has been this probl
deal with Dirac strings that for so long has hampered attempts to describe an inte
theory of magnetic monopoles [33].

In the light of this it would of course be welcome if more lattice studies are perform
get a handle on the dynamics of these constituent monopoles. It should be pointed
instantons larger thanβ will no longer reveal themselves as lumps of sizeρ. Rather there
is a transition region beyond whichρ should be interpreted to set the inter-constitu

distance (typically of orderπρ2/β), whereas the size of the lumps is in this region set
by the mass of the constituent monopoles. This may lead to a natural infrared cutoff in
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the size distribution of instantons, provided by the temperature (rather than the
volume). Because of this it may be worthwhile to reinvestigate the issue of the inst
size distribution, also with the criticism presented in Ref. [35] in mind.
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Appendix A

We will derive in this appendix the zero-mode limit. Our starting point is the exp
expression for the Green’s function, Eq. (17). It is useful to note that this Green’s fun
satisfiesfx(z, z′) = f

†
x (z

′, z). To show that Eq. (17) indeed respects this relation, one
use (see Eq. (18))(

0 −1k
1k 0

)
W†(z, z′)

(
0 1k

−1k 0

)
=W−1(z, z′),(

0 −1k
1k 0

)(
12k −F†

z0

)−1
(

0 1k
−1k 0

)
(A.1)= (

12k −F−1
z0

)−1 = 12k − (12k −Fz0)
−1.

We will take z0 = µm + 0, which leads to the following decomposition ofFµm in terms
of contributions coming from the impurities (Tm) and from the propagation between t
impurities (Hm),

Fµm = TmHm−1 · · ·T2H1T1ĝ
†(1)HnTnHn−1 · · ·Tm+1Hm,

(A.2)Tm = exp

(
0 0

2πSm 0

)
, Hm = Ŵm(µm+1)Fm(µm+1)Ŵ

−1
m (µm).

Note that by definitionFm(µm)= 1k . It is convenient to absorb the algebraic contributio
coming fromŴm in the “impurity” contributionsTm.

Θm =
(
θm++ θm+−
θm−+ θm−−

)
≡ Ŵ−1

m (µm)TmŴm−1(µm)

(A.3)= 1

2
R−1
m (µm)

(
R−
m(µm)+R+

m−1(µm)+ Sm R−
m(µm)−R−

m−1(µm)+ Sm

R+
m(µm)−R+

m−1(µm)− Sm R+
m(µm)+R−

m−1(µm)− Sm

)
.

The following identities are noteworthy

m m m m −1
θ+± + θ−± = 1k, θ±+ − θ±− = ±Rm (µm)Rm−1(µm),

(A.4)2Rm(µm)θ
m++ =Σm,



in

o

e

erse
226 F. Bruckmann et al. / Nuclear Physics B 666 (2003) 197–229

as well as the fact thatΘ−1
m = Ŵ−1

m−1(µm)T
−1
m Ŵm(µm) can be computed explicitly

(A.5)Θ−1
m =

(
θ++
m θ+−

m

θ−+
m θ−−

m

)
=R−1

m−1(µm)Rm(µm)

(
θm−− −θm+−

−θm−+ θm++

)
.

Finally, introducing

F̂µm =W−1
m (µm)FµmWm(µm)

(A.6)=ΘmFm−1 · · ·Θ2F1ĝ
†(1)ΘnFn−1 · · ·Θm+1Fm,

we find forµm � z′ � z �µm+1 (cmp. Eq. (17))

(A.7)fx(z, z
′)= −4π2

(
1k
0

)t
Wm(z)(12k − F̂µm)

−1W−1
m (z′)

(
0
1k

)
.

It will be useful to writeF̂µm = F−1
m Θ−1

m+1LKΘm+1Fm, with L ≡ Θm+1FmΘm, because
K ≡ Fm−1Θm−1 · · ·Θ1ĝ

†(1)FnΘn · · ·Θm+2Fm+1 contains the exponential factors
terms of which we can take the zero-mode limit.

With (12k − F̂µm)
−1 = F−1

m Θ−1
m+1(1 − LK)−1Θm+1Fm, we reduce the problem t

approximating(12k −LK)−1. For this it is convenient to writeLK ≡ L̂K̂ + L̃K̃ , with

K̂ ≡
(
K++ K+−

0 1k

)
, K̃ ≡

(
0 0

K−+ K−−

)
,

(A.8)L̂≡
(
L++ 0
L−+ 0

)
, L̃≡

(
0 L+−
0 L−−

)
,

after which we find

(A.9)(12k −LK)−1 = K̂−1(K̂−1 − L̂− L̃K̃K̂−1)−1
.

As we will show next, the advantage of all this is that terms containingK±± are of the
formK−1++, K−1++K+−, K−+K−1++ or (K−−)−1 ≡K−− −K−+K−1++K+− and that these ar
all exponentially decaying. For the first three this is easily seen using thatK is of the form
FΘFΘ · · ·FΘF , whereas for the last term we recall a well-known formula for the inv
of a 2× 2 matrix with as entries (k × k) matrices

K−1 =
(
K++ K+−
K−+ K−−

)−1

(A.10)=
((

K++ −K+−K−1−−K−+
)−1 (

K−+ −K−−K−1+−K++
)−1(

K+− −K++K−1−+K−−
)−1 (

K−− −K−+K−1++K+−
)−1

)
.

From this we find that(K−−)−1 = (K−1)−− (hence the upper indices). WithK−1 having
the formF−1Θ−1F−1Θ−1 · · ·F−1Θ−1F−1, which interchanges the role off+ andf−,
we conclude thatK−− behaves asK++ and that therefore(K−−)−1 is exponentially
decaying as well. Using

K̂−1 =
(
K−1++ −K−1++K+−

0 1k

)
,( )
(A.11)K̃K̂−1 = 0 0

K−+K−1++
(
K−−)−1
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and neglecting the exponentially decaying terms, we find the simple result

(A.12)(12k −LK)−1 →
(

0 0
0 1k

)(−L++ 0
−L−+ 1k

)−1

=
(

0 0
−L−+L−1++ 1k

)
,

or including subleading terms

(A.13)(12k −LK)−1 =
( O

(
K−1++

)
O
(
K−1++

)
−L−+L−1++ +O(X) 1k +O(X)

)
,

whereO(X) ≡O(K−1++K+−)+O(K−+K−1++)+O((K−−)−1).
Using Eq. (A.12) andΘm+1Fm = LΘ−1

m we find

f zm
x (z, z′)= π

(
1k
1k

)t
Fm(z)F

−1
m Θ−1

m+1

(
0 0

−L−+L−1++ 1k

)
(A.14)×LΘ−1

m Fm(z
′)
(−1k

1k

)
R−1
m (z′).

This can be simplified further usingL−− ≡ (L−1)−− = (L−− − L−+L−1++L+−)−1 (cmp.
Eq. (A.10)), such that

f zm
x (z, z′)= π

(
f+
m (z)

f−
m (z)

)t
F−1
m Θ−1

m+1

(
0 0
0

(
L−−)−1

)
(A.15)×Θ−1

m

(−f+
m (z′)−1

f−
m (z′)−1

)
R−1
m (z′).

With Eqs. (A.4), (A.5), noting thatZ−
m = −θ+−

m (θ−−
m )−1 andZ+

m = (θ−−
m )−1θ−+

m (see
Eq. (25)), we find after some algebra the relatively simple result given in Eq. (24). We
that it is not directly obvious thatf zm

x (z, z′)= f zm
x (z′, z)†. Nevertheless, this is guarante

to be true from the fact that the exact Green’s function respects this property. All we
to mention here, is that Eq. (A.1) implies rather non-trivial relations involvingf±

m (z)† and
R±
m(z)

†, which could be used to explicitly verify thatf zm
x (z, z′)= f zm

x (z′, z)†.

Appendix B

Using the invariance under a one-parameter set of rotations aroundx̂ for M, Eq. (53), or
equivalently around(1,0,0) for M̂(x̂), Eq. (56), we can for charge 2 express the multip
expansion ofVm(�x) in the following 4 independent parameters,

p ≡ 3

2
M̂11(x̂), w2 ≡ M̂2

12(x̂)+ M̂2
13(x̂),

q2 ≡ 1

8

(
M̂11(x̂)+ 2M̂22(x̂)

)2 + 1

2
M̂2

23(x̂),

(B.1)s3 ≡ 4M̂12(x̂)M̂13(x̂)M̂23(x̂)+ (
M̂2

12(x̂)− M̂2
13(x̂)

)(
M̂11(x̂)+ 2M̂22(x̂)

)
,

where|�x|2p, |�x|4w2, |�x|4q2 and|�x|6s3 can be written as monomials in�x. This choice has
the particular advantage that for charge 2 the following remarkably simple form can be
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used

(B.2)Vm(�x)= 1

2π

∑
n=0

an

|�x|2n+1 , ∂pan = nan−1,

checked to order|�x|−21, but likely to be true to all orders. Therefore, the result to this o
can be read off from thel = 2n= 20 multipole coefficient

a10 = p10 + 45p8(q2 − 2w2)+ 180p7s3

+ 315p6(q4 − 8q2w2 + 4w4)+ 630p5s3(3q2 − 4w2)
+ 525

2
p4(2q6 − 36q4w2 + 60q2w4 − 16w6 + 3s6)

+ 3150p3s3(q4 − 4q2w2 + 2w4)
+ 315

8
p2(5q8 − 160q6w2 + 560q4w4 − 448q2w6 + 40q2s6

+ 80w8 − 48w2s6)
+ 105

2
ps3(15q6 − 120q4w2 + 168q2w4 − 48w6 + 2s6)

(B.3)

+ 63

8

(
q10 − 50q8w2 + 300q6w4 + 5q4(5s6 − 96w6)
+ 80q2(3w8 −w2s6)+ 40w4s6 − 32w10).
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