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Abstract

We discuss the construction of multi-caloron solutions with non-trivial holonomy, both as
approximate superpositions and exact self-dual solutions. The ch&é:) moduli space can be
described byn constituent monopoles. Exact solutions help us to understand how these constituents
can be seen as independent objects, which seems not possible with the approximate superposition.
An “impurity scattering” calculation provides relatively simple expressions. Like at zero temperature
an explicit parametrization requires solving a quadratic ADHM constraint, achieved here for a class
of axially symmetric solutions. We will discuss the properties of these exact solutions in detail, but
also demonstrate that interesting results can be obtained without explicitly solving for the constraint.
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1. Introduction

The last four years more understanding has been gained of the interplay between
instantons and monopoles in hon-Abelian gauge theories, based on the ability to construct
exact caloron solutions, i.e., instantons at finite temperature for wiichpproaches a
constant at spatial infinity [1,2]. This last condition is best expressed by specifying the
Polyakov loop to approach a constant value at infinity, also called the holonomy. It is the
finite action that demands the field strength to go to zero at infinity, and guarantees the
Polyakov loop to be independent of the direction in which we approach infinity. One can
parametrize this Polyakov loop in terms of its eigenvalueg2xjyu ;) and a gauge rotation

E-mail addressvanbaal@lorentz.leidenuniv.nl (P. van Baal).

0550-3213/02/$ — see front mattér 2002 Elsevier Science B.V. All rights reserved.
PIl: S0550-3213(02)00834-9


http://www.elsevier.com/locate/npe

106 F. Bruckmann, P. van Baal / Nuclear Physics B 645 (2002) 105-133

g, such that

B

0

which can be arranged such that’_; u; =0, andug < w2 < -+ < un < fpt1, With

Un+k = 1+ ug. This is in the gauge where the gauge fields, assumed to be anti-
hermitian matrices taking values in the algebr&tkn), are periodic in the time direction
Au(X,t) = Au(X, 1t 4+ B). In our conventions the field strength is given By, (x) =

O Ay(x) — A (x) +[Apu(x), Ay(x)].

We will find it convenient to construct the multi-caloron solutions from the ADHM-
Nahm Fourier construction [1-4] based on taking instantoriirwhich periodically re-
peatin the time direction (see also Ref. [5] which uses directly the Nahm transformation [4,
6] as the starting point for the charge 1 construction). To allow for non-trivial holonomy,
the periodicity is only up to a constant gauge rotation (which is the holonomy). In this so-
called algebraic gauge, all gauge field components vanish at spatial infinity, and we may
approximately superpose these calorons by simply adding the gauge fields. When each
gauge field is periodic up to the same constant gauge transformation, the sum satisfies the
same property. It should be noted that we are not allowed to add gauge fields with differ-
ent holonomy; in annfinite volume the holonomy is fixed by the boundary condition. As
to the topological charge, we recall that in the Atiyah—Drinfeld—Hitchin—Manin (ADHM)
construction [3] it is supported by gauge singularities (the algebraic gauge is for this rea-
son also called the singular gauge), as opposed to at infinity being a pure gauge with the
gauge function having the appropriate winding number. To deal with the gauge singularity
of one instanton, when adding the field of the others, one has to smoothly deform the gauge
field of the latter to vanish near the gauge singularity. As long as the singularities are not
too close, this can be done without a significant increase in the action. On the lattice this
problem does not occur, when hiding singularities between the meshes of the lattice.

Calorons, however, have an additional feature. When squeezed in the imaginary time
direction (the sizep becoming bigger than the perioff), they split in constituent
monopoles with masses:r@vj /B (v;j = wjy1 — puj). Outside the cores of these
monopoles the gauge field becomes abelian. Ignoring the charged components, which
decay exponentially outside the cores of the constituent monopoles, the field is described in
terms of self-dual Dirac monopoles. The singularity of a Dirac string can only be avoided
by not neglecting the contributions coming from the charged components, even when far
away from the constituents. For a single caloron we would not care, since the Dirac string
is not seen in gauge invariant quantities. It does, however, involve a rather subtle interplay
between the charged and neutral components of the gauge field in the vicinity of the would-
be Dirac string [1]. It is this subtle interplay that is disturbed when we add gauge fields of
various calorons together. Unlike for the gauge singularity, the combined field will not
diverge, but it shows a narrow and steep enhancement at the location of the would-be
Dirac string as illustrated in Fig. 1, where we added 8Id(2) calorons. Also here one
may shield the Dirac strings from these tails. But one always pays the price that the Dirac
string no longer can be hidden, and carries energy. Let us stress again that these are genuine
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Fig. 1. Approximate superposition of tw8U(2) charge 1 calorons with its pairs of equal mass constituents at
X=(2,0,2), (2,0,8) andx = (8,0, 2), (8,0, 8). The logarithm of the action density is plotted as a function of
andz. The plot on the right shows one of the would-be Dirac strings, zooming in by a factor 40 on the transverse
direction.

Fig. 2. Comparing the logarithm of the action density (cutoff for(gbelow -3 and above 7) as a function of

x andz for the exactSU(2) solution o = 711) with charge 2 (left) with the approximate superposition of two
charge one calorons (middle) and the Abelian solution based on Dirac monopoles (right), all on the same scale.
The two pairs of constituent monopoles are located at (0, 0,6.031), (0,0,2.031) andx = (0, 0, —2.032),

(0,0, —6.031).

gauge invariant non-singular features in the configuration, even though they are of course
a consequence of our particular way of constructing a superposition.

A visible would-be Dirac string presents a formidable obstacle to considering the
constituents as independent objects; they remember to which caloron they belong. Insisting
the Abelian field far from the constituents to be exactly additive under the approximate
superposition leaves us little room for considering other possible superpositions, apart from
carefully fine-tuning the charged components of the configuration. Solving for the exact
self-dual caloron solutions of higher charge we wish to show that a visible Dirac string is
an artifact of the particular procedure to construct approximate caloron solutions. For the
exact chargé caloron solutions we expekt constituents and from the point of view of
the parameter space these can be expected to be independent (as long the constituents do
not get too close together).

In this paper we develop the formalism and give exact solutions for a class of axially
symmetric solutions. FoBU(2) an example of such an exact solution with charge 2 is
presented in Fig. 2. We compare the exact solution (left), with the one obtained by adding
two charge 1 calorons, showing the would-be Dirac strings (middle) and with the exact
Abelian solution determined from (self-dual) Dirac monopoles placed at the location of the
constituents (right). Indeed, the would-be Dirac strings are no longer visible for the exact
non-Abelian solution. This gives us good reasons to expect that moving away from the
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requirement of axial symmetry, the exact solutions will exhibit the constituent monopoles
as independent objects. This is an important prerequisite for attempting to formulate the
long distance features of QCD in terms of these monopoles. Non-linearities will remain
important when constituents overlap, like for instantons at zero-temperature, as will be
illustrated through suitable examples.

Our results can also be used to extract information on multi-monopole solutions. In the
charge 1 case it has been shown [1] that sending one of the constituents to infinity one is
left with exact monopole solutions. Perhaps somewhat surprisingly, it has been notoriously
difficult to construct approximate superpositions of magnetic monopoles in such a way
the interaction energy decreases with their separation. Within our approach this is due to
the difficulty (particularly when sending some constituents to infinity) in keeping Dirac
strings hidden. It would therefore still be important to find approximate superpositions that
achieve this. Nevertheless, it shows how subtle it is to consider Abelian fields as embedded
in non-Abelian ones. There is much more to 't Hooft's Abelian projection [7] than meets
the eye at first glance.

The rest of the paper will be organized as follows. In Section 2 we formulate the Fourier
analysis of the ADHM data for calorons of higher charge. This allows us in Section 2.1 to
relate to the Nahm equations, providing the connection between the ADHM and Nahm
data. The Nahm equation for chargealorons [4] expresses self-duality of d&l(k)
gauge fields on a circle, but with singularities. In Section 2.2 we introduce the “master”
Green'’s function in terms of which the gauge field (Section 2.3) and the action density
(Section 2.4) can be explicitly computed, relying heavily on some beautiful results [8,9]
derived in the context of the ADHM construction.

This can all be achieved without explicitly solving the Nahm equation. In Section 3
we will, however, solve it for some special cases with axial symmetry. There we also
illustrate some interesting features that appear when constituents overlap, similar to what
was observed at zero temperature [10].

Section 4 is devoted to the far-field limit (related to the high-temperature limit), where
up to exponential corrections only the Abelian component of the field survives. Again,
expressions can be derived without explicitly solving the Nahm equation. We apply the
formalism to the exact axially symmetric solutions in Section 4.3.1, where we prove that
in the far-field region they are in a precise sense described by (self-dual) Dirac monopoles,
which is conjectured to be the case for any exact solution.

We end in Section 5 with a discussion of lattice results that have been obtained by
various groups, some open questions and suggestions for future studies.

2. Construction

In constructing the higher charge caloron solutions similar steps are followed as for
charge 1. We distinguish two constructioBgn) based on quaternions, aBdl(n) based
on complex spinors. WitlsU(2) = Sp(1), this implies that forSU(2) two constructions
are possible. Fok = 1 it was easily shown these are identical, butior 1 this is more
complicated due to the quadratic ADHM constraint [3] which cannot be solved in all
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generality. Since the essential part of the construction that employs the impurity scattering
technique is identical in both approaches, we will give a unified presentation.

The SU(n) ADHM formalism for chargek instantons [3] employs &-dimensional
vectori = (A1, ..., Ar), wherexj is a two-component spinor in therepresentation of
SU(n). Alternatively, » can be seen as @ x 2k complex matrix. In addition one has
four complex Hermitiank x k matricesB,,, combined into a 2 x 2k complex matrix
B =0, ® By, using the unit quaternions, = (1, i7) ands, = (12, —iT), wherer; are
the Pauli matrices. With some abuse of notation, we often Brites, B,,. Togethen and
B constitute then + 2k) x 2k dimensional matrixA (x), to which is associated a complex
((n + 2k) x n)-dimensional normalized zero mode vectqr),

A(x):(B?x)>, B(x) =B — x, ATx)vx) =0, VT ow) =1,.

)
Here the quaterniom = x,0,, denotes the position (ax k unit matrix is implicit) and
v(x) can be solved explicitly in terms of the ADHM data by

v(x)=<_1")¢%, u@) =BT —xH W @) =1, FuTOun).
u(x)
(3)

As ¢ (x) is ann x n positive Hermitian matrix, its square roapé (x) is well-defined. The
gauge field is given by

A () =0T ()3, = ¢72(0) (1T ()0, ()2 () + 2 () 2(x).  (4)

The Sp1) ADHM formalism for chargek instantons [3] employs also /adimensional
vectorh = (A1, ..., Ax), where nowk; is a quaternion (4 real parameters). Agairtan be
seen as an 2 2k complex matrix (but with 4 real, as opposed to complex, parameters).
Now the fourk x k matricesB,, are required to be real and symmetric, still to be combined
into a Z x 2k complex matrixB = o, B,,. The (2+ 2k) x 2k dimensional matrixA(x)

is constructed as before. It is immediately obvious that gaw) is proportional tooyg,
simplifying the expression for the gauge field to

Ap() =01 (@), 00x0) = (1" () duu(x)) /¢ (x). (5)
For A, (x) to be a self-dual connectiord(x) has to satisfy the quadratic ADHM
constraint, which states thatT(x)A(x) = BT(x)B(x) + ATA (considered as & x k
complex quaternionic matrix) has to commute with the quaternions, or equivalently
AT A =00 71, (6)
defining f, as a Hermitian (resp. symmetri¢)x k Green’s function. The self-duality
follows by computing the curvature
_1 t ~1
F;w =2¢"2(x)u (x)ﬂuvfxu(x)¢ 2(x), (7)

making essential use of the fact thfgtcommutes with the quaternions, angl, = oy,6,
being self-dualf,,, = 07,0, is anti-self dual). The quadratic constraint can be formulated
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asIm(AT(x)A(x)) =0, whereSmW = W — %aotrZW, and one obtains

1
il ® BBy + 574 ® tra(zaA"2) =0, @8)

where tp is the spinorial trace. Note that this implies that(t;2T1) is traceless for
a=1,2, 3.

To count the number of instanton parameters we observe that the transformation
A — ATT, B, — TB,T", with T € U(k) (respectivelyT e O(k)) leaves the gauge field
and the ADHM constraint untouched. Taking this symmetry into account, one checks the
dimension of the instanton moduli space to be 4limensional. We havek4 and 42
real parameters from and B,,. The U(k) symmetry removes? real parameters and
finally the quadratic ADHM constraint givesk3 real equations. On the other hand, for
the quaternionic construction there akeahd 4- %k(k + 1) parameters from andB,,, of
which %k(k — 1) are removed by thé (k) symmetry, and the quadratic ADHM constraint
gives 3 %k(k — 1) equations. Global gauge transformations are realized-bygA, with
g € SU(n) and are here included in the parameter count. For calorons with non-trivial
holonomy the dimension of the gauge invariant parameter space is minimally reduced by
n — 1 (maximal symmetry breaking) and maximally b$/— 1 (trivial holonomy).

We note that foiSU(2) the quadratic ADHM constraint and symmetry of the ADHM
data for high charge differ considerably. For the caloron we have to deal in a sense with
infinite topological charge, but finite within each (imaginary) time interval of legggthhis
infinity is resolved by Fourier transformation, relating it to the Nahm formalism [4], but the
difference between th& (k) and O (k) symmetries (the infinity is moved to making these
gauge symmetries local) remains, as well as of course the nature of the Nahm data (the
Fourier transformation of the ADHM data). Henceforth we put 1, which can always
be achieved by a rescaling.

Like for charge one [1,2] the caloron with Polyakov IoBg, at infinity is built out of a
periodic array of instantons, twisted B4,. This is implemented in the ADHM formalism
by requiring (suppressing color and spinor indices, respectively, quaternion indices)

Upkthta (X + 1) = ttprya (V)P ©)
with p € Z (the Fourier index), and =1, ..., k (associated to the non-Abelian nature of
the Nahm data). Using that=Z (x + 1) = Poodp™2 (x)PL, Eq. (4) leads to the required
periodicity. Demanding

kpk+k+a = 7)<>o)\pk+aa Bpk+a,qk+b = Bpkkara,qkkarb + 003pq5ab, (10)

suitably implements Eq. (9) and is partially solved by imposing

)”kara = Pgo;aa Bpk+a,qk+b = paoapqﬁab + A?)b—q9 (11)

with A still to be determined to account for Eqg. (8). It is useful to introduce rthe
projectorspP,, on themth eigenvalue 0P, such thatPs, =", e?itm p andi piyq =
Zm ezn[pﬂm Pm é‘a_
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2.1. Nahm setting

We now perform the Fourier transformation to the Nahm setting [4], which &t
a Weyl operator and A into a singularity structure osi,

- L8z —7) ~
Z Bpk+a,qk+b(x)62”’<“"ﬂ) = L.Z)Dab(z/)’
27i
P
27i ZezmpZA;’)b = A%(z),
P
Z)\Lk+a6271i(PZ*qZ/))qu+b =8(z — Z/)Aab(Z), Zeiznipz)‘pk%»a _ ia(Z)
P >
(12)
With B = o, B#, we can writeD (z) = oy D"(z) andA(z) = oA, (2), where
~ - d R
Dfﬁ”(z) = D%(z) — 2mixs%b = 5% (o'od_ _ 271ix> + A (),
b4
Aap (@)= 8(z— um)&) Putp. ha@ =8 — pm) Puta (13)
n m

It should be noted thag,, Hermitian, implies thaﬁu(z) is Hermitian (as & x k matrix),
whereas a real symmetrk, in addition impliesA’, (z) = A, (—2).
The 2x 2 matrix A% can always be decomposed as

1, = - -
£ Puty = (0082 — T 520). (14)
2
On the diagonalone can show, as foe 1, that§;,‘;’ =|p,2|, but in general the relation
betweeng,, ands,, is more complicated,
S Sl + SIS =Bl - B + - B (15)

Furthermore, t(7ATA) is traceless implies thap*_, > _, 5% = 0. Both these
conditions are equally valid for th&p1) construction. But in the latter case, since
through the Nahm equatiqs), determines the discontinuities i(z), compatibility with
A;(z) = A, (—2) requiresp; + p, =0, which will be verified below Eq. (19). The Nahm
equation is obtained by Fourier transforming the quadratic ADHM constraint

1 —~~ o~ ~
5[Du (@), Do (@) iy = 4m23mA(2), (16)

or in more familiar form (as & x k matrix equation)

d - . . 1 . A . .

2 Ai@ + Ao, A @1+ Se el k@), Ac()] = 2mi ;a(z — W) O

P Py P PPl

: - (17)
z = H2  [3 Ma—2  fn-t  fin  Poyr =pp+ 1
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where the figure illustrates the jumps ,&§~ at each of the singularities (an overall factor

of 27i is not shown). Th& symmetry in the ADHM construction translates intd/&k)

gauge symmetry 0%, which allows one to sefig = 27i&o to be constant, wherg) is

a Hermitian matrix which can be made diagonal by a constant gauge transformation. Its
trace part can be absorbedig

2.2. Green'’s function
Central to the ADHM construction is the Green’s functign, which when Fourier

transformed tof?’(z,z') = > friraaktb 2ni(pz=47) s g solution to the differential
equation

=~ 2
{(Dx (Z)) +%Zm:g(z_umﬁm}ﬁ((z,zl)=]lk8(z—z’),

2mi
d A 511 32 33 2mlly 372—2 $’n—1 Sn 31
e T i T e e e (18)
de ; t 1 ) S )
Z z=w Mo 3 z M-z [fn-1 fn Hopr=p1+1

where the figure illustrates the jumps for tterivativeof £, (itself being continuous) at
each of the singularities, which now includes- 7’ (an overall factor of 2 is omitted).
With help of the impurity scattering formalism we will be able to express the solution in
a simple form, without assuming explicit knowledgeA(z). As a bonus this also gives

a more transparent derivation fboe= 1. The equation for the Green'’s function is valid for
the SU(rn) andSp(1) formulations alike. In general the matri is complex Hermitian,

but for Sp(1) it is real symmetric, which implies that

fe 2,2y = fP,2)*, andforSpd)only f%(z,7)= fP4(~z,—z). (19)

ForSp(1) consistency requireﬁ —3} = 0, which is to be compared with the condition we
found in the previous sectio@y + o5 = 0. To demonstrate the validity of these relations

we make use of the fact that = ¢/'o,,, with ¢/ real (such thagj =¢,). Furthermore, we
note that withPo, = exp(2ié - 7), u2 = —u1 = o = |&|, whereasPy = (12— &-7) and
Py = %(]lz +&-T). Introducing2 = & -6 =id - T, which is an imaginary unit quaternion
(i.e., 2 = —£2, 28 = op), we find with the help of Eq. (14)
008t — 7. pab

=nilo, (O’Q - i(—l)m.Q)g‘l‘;av

= JTC#C};)([(;'{#UV} - i(—l)m&[ﬂ.Qou]] + [&[uau] — i(—l)m(;'{#QO'V}])

=oor[¢lel —i(=D"d - Huntle) |+ m [l el + (Db - Ten ], (20)

for which we used thaip, 20, is a real quaternion, therefore, given by

1 _ 1 R
EUOUZ(U[M-Q%]) = antrz(.QnW) =00® - Nyuv-
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We directly read offS,, and3,, and verify that indeed; = S} and 51 = —54. We wrote
the result so as to easily make contact withkhe 1 results [1] (for which the 2nd term in
§m and the 1st term i, do not contribute).

In formulating the impurity scattering we note that #iék) gauge transformation

§(z) = exp(2mi(§o — x0lk)z) (21)
turnsﬁg(z) into the ordinary derivative and conjugates all other objects in Eq. (18), such
that

2
{_d_2+V(z;7€)}fx(z,z/)=4ﬂ211k3(2—1/)’ (22)
dz

with £, (z,z’) andV (z; X) given by

fe(z.2) =8 fe (2. 2)ET (@),
V(s %) =4r?RA@ ) + 21y 8(z — ttm) S, (23)

whereR (z; ¥) ands,, are defined by

. 1. . . S
Rj(z %) =xjlk = 5—4()A i@08'@, S =8m)Sm (um). (24)

Periodicity is now only up to a gauge transformation. Note t®Rat; X) is a Hermitian
k x k matrix, and that/ (z; X) doesnotdepend onxg. By combining f; and its derivative
into a vector,

f_-;c(Z7 Z/) = ( dfx(Z, Z/) ) , (25)

=Sz 2)

we can turn the second order equation in to a first order equation

d 0 1y r N ’ pod 20

Its solution is

fiz ) =WE[EE) —0E — W )],

d 0 1y
e W(z) = (V(z; 50 ) W(z2) (27)
whereW is a 2x 2 matrix, whereas is a two-component vector (Iiké), all components
being Hermitiank x k matrices. The theta function takes care of the inhomogeneous part
of the equation. However, we have to restrictt@ [z — 1, z + 1] since the delta function
is periodic. The solution can be extended beyond this range using the periodicity, which
when imposed, as we will see, also determip@s).

The solution forW (z) can be (formally) written as a path ordered exponential integral
in the usual way. To show that this, indeed, makes sense, we should specify how to deal
with the delta functions irV. From the definition of the path ordered exponential integral
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we find W (i, + 0) = T,, W (u,, — 0) with

m+0

B 0 ]lk . 0 0 _ ]lk 0
Tm:Pexp[ / (V(z;)'c’) 0>dz]_eXp<2nSm 0>_(271Sm Jlk>,

ﬂm_o
(28)
which correctly reflects the matching conditions due to the “impurity? at u,,, since
fx(z,Z') is continuous across= u,,, whereas the derivative jumps withr &, fx (wm, z')
and both conditions can be summarizedﬂ;)yum +0,7) =Ty, fx (um — 0, 7"). Note that
fx evolves withz asfx (z2,7)=W(z2)W™ (zl)fx (z1, 2'), with

22
W(z2)W(z1) = P exp[/ (V(g 3 16‘) dz:| = W (z2, 21). (29)

<1

In particular, whenzy = u,, andzz = u,,+1 this gives the “propagation” between two
neighboring impurities and we can write

Mm+1
0 1
H, = W(Hm-i—l -0, Km + 0) =P eXp|: / (47.[2132([ )_é) S) dZ:| . (30)
Mm

Neither 7, nor H,, require us to specify a boundary condition ff(z). A change
in boundary condition, however, affeciz’). To avoid such ambiguities, we define
C0(z') = W(z0)¢(Z) such that

fe(z,2) = W(z,20)[¢4,(2) — 0(z' — )WLz, 20)C]. (31)

We determine,(z’) by scattering “around” the circle determined from the boundary con-
ditions of /. Using Eq. (23), the fact thaf (2., ') is strictly periodic and thag(z + 1) =
2(D)§(2), onefindsf(z.2'+ 1) = fi(z. )87 (D) and f, (z + 1. 2') = g(1) f2 (2. 2') (where

the order of thematrix multiplication, defined componentwise, is important). The latter
condition can be used to fix,(z') over the range of one period, € [z, 1+ z] (the use

of fx(z, z’) requiresz’ € [z — 1,z + 1], that of fi(z + 1,z/) further restricts the range
for 7/ to 7/ > z). With the help of the periodicity properties ¥ it gives ¢,y (z') =
(L2x — 8T (VW (20 + 1, 200) "W L(z, 20)C. We thus find forrbitrary zo

filz, ) =W, 20{a — Frp) T =0 — 912} W (2, 20)C, (32)
where we introduced the “holonomy?,,
1+z0
=5t _,t 0 L
Foo=8 DW(o+1lz00=¢ (DP exp[ / (V(z; 0 ) dZ]- (33)

20

The equation forf; is valid for 7’ € [z, z + 1], but can be extended with the appropriate
periodicity specified above. We note thidt(1) plays the role of a cocycle, in the gauge
whereAo(z) — 2mixgly is transformed to O, witl¥#, the full circle “scattering” matrix.
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Thezo-independence oﬁc follows from
Fuo=8"MW(zo+1, 25+ DW(zh + 1. 20) = W(z0, z0)g (VW (25 + 1, z0)
= W(zo, Zé)fsz_l(zo, 20)- (34)
Putting things together we, therefore, find

frz )= @M. 0) - fr(z. )8,
D2%2) fi(z.2) = 810, 10) - f(z, 2)8(2), (35)
satisfying all required conditions as can be checked explicitly.
Interestingly, Eq. (34) implies, 1 = g(l)fmgT(D as should of course be the case.
In the light of this we also note that (choosing= u,, + 0)
Fum = gT(l)Tm+nHm+n—1Tm+n—1Hm+n—2 < Tn+1Hm
=Ty Hyp-1- ToH1T18 (D H, Ty Hy 1+ T2 Hin,

T/n H. Tm—l TléT(l) H Tn, Tmﬁ-l H
T e Tty ot e (36)
2=14pm 14+pm 14w fhn fo 41 T

using for the second identity tha,., = (1) T,,27(1) and Hyt = $(1) H,n 2T (1). We
will use these ingredients further on to relate to the earlier results forl, where the
positioning of3 (1) is of course irrelevant.

2.3. Gauge field

The central role of the Green'’s functi(fm(z, 7’) becomes clear when one appeals to the
fact that it can be used to find the gauge field (working out Eq. (4)), whereas its determinant
gives a simple expression for the action density. This follows from the general ADHM
construction [8,9], and can be directly taken over for the caloron [1,2,11]. For the gauge
field one finds

Ap(x) = %qsl”(x)xﬁwavfoT¢l/2<x) + %[qu/Z(x), 9,0Y%(x)]

1 . 1
= 5012000000 (09200 + S[072 (), 0,87 2)], (37)
whereg (x) andg; (x) aren x n matrices defined by
p() =L, —rfixD7Y ¢y =ho; fidl. (38)

To apply this to the caloron all we have to do is perform the Fourier transformation,

¢(x)_1 =1, - Z Pm{af,}lb(ﬂma /’Lm’)ngPm’v

m,m’
¢j = ZngaO’jffb(Mma Hm’){b-er’- (39)
m,m’

For theSp(1) constructiony (x) is a real quaternion, and hence a multiplesgf after
which the gauge field simplifies to
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1 .
Ap(x) = §¢(x)ﬁ1w8u¢j (). (40)

To simplify ¢(x) and ¢;(x) we use Eq. (19), together witp; = —u2, such that
f e,y = P2, 12) and £7P(u1, n2) = £7(u1, p2) = £7%(u2, p1)*. We note
that¢(x) and¢;(x) involve the combinationg,, oug“,,T = £,0,.¢p, Which can be split in
symmetric and anti-symmetric combinations (cf. Eq. (20))

a008p = 0L CL 4+ nu ey £a0j8p = 00711, S0 ) + L1aTj ). (41)

No contributions fromf;’b(ul, u2) and fg’b(uz, 11) can appear i (x) since these are
symmetric ina andb, selecting front,o0¢, the term proportional teg, but P1og P2 and
P>og P1 vanish. Therefore (cf. Eq. (20))

2
$() =00~ F (2, 12) Y (Putl h P+ (=" Punyun 0L G P

m=1
=001 — fo(ua, u2) (E1E) +idd - fuwcle))]
=oo[1— 7 1 Tre(fe (12, 12)S2)]. (42)

Similarly we can simplify the expression fgr (x), which we split in a charged component
and Abelian, or neutral, componesit(x) = ¢°h(x) + ¢abe'(x) with

¢Jc-h= F98 (11, p12) P1L1a0jEpy P2 — h.C. (43)
and

2
¢ ) = fEP(u2. 12) D (Pntta0i oy P + (1™ P}, 614 P
m=1

~

1
ZiG)'T (MZv M2)|: trZ(CU Té‘{afj;b}) _lnuuca Cbi|

= —id- T T (A2, n2)pd), (44)

where we used thaftra (& - T4t 8p) = 5 tra(Ep@ - T¢a75) to correctly identifyss?, see
Eqg. (20). We may of course expregséx) andq&j‘be'(x) also in terms of the first impurity,
¢~ 1(x) = ool 1 — 7 " Tre(fi(ua, )S1)] andp?*®x) = id>- T~ Tri(fo (pa, n1)py), @s
is easily verified.
Like for k = 1 we will show further on thap?;’b(ul, w2) decays exponentially, away
from the cores of the constituent monopoles, where only the Abelian component survives,

AP0 = =50 F[1— 7 M T (fr (w2, 12 $)]
x i1, 0 [0 T o (fr (2, 102)03)]- (45)
Note that fork = 1 we are able to writeA3"®(x) = —& - Ze;ii}d, 109 (x), with

¢ = p2/|p2|, making use of the fact thal, = lom |, but that this is no longer true for higher
charge, despite the fact that on the diagonal we still Iﬁﬁe: |5,24|. This seems to allow
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for the dipoles ok well-separated calorons to point in different directions. We will discuss
this issue further when studying the limiting behavior far from the cores of the constituents,
where the field becomes algebraic and constituent locations are readily identified.

2.4. Action density
Within the ADHM formalism the action density is given by [9],

1
=5 T F2,(x)= —Eagau logy (x), (46)

where ¢ (x) equals Ydet(f,) after regularization to extract an irrelevant overall and
for calorons divergent constant. We will be able to find a simple expressioff oy

at any k, generalizing the result for charge 1 calorons. We use éh&igdet( f,) =
—Tr({d, £ Y ) = nl[Tr(D”fx) where in the last step we performed the Fourier
transformation, and includes an integration with respect4oThe case = 0 is treated
separately, due to the discontinuity in thederivative of f,(z,z') at z = z/, which we
regularize using point-splitting:

i

e—0

1
1 d d
=| — dT -5 Jx 7/ -5 Jx _7/
|m2 / z rk(dzf(z+s z)+dzf(z Sz)>
0

'=z
1
. —1 0 0 a1 1
=4m/dzTr<W (z, z0) (0 ]lk> W(Z,Zo)[(Jle—JTzo) - 512k:|>
0
1 1 d
=2ni/dz|:Tr<(12k—}"ZO)_l— 512"> y Tri(fe(z, z))] (47)

0

The Tr without an index or hat indicates the full trace over thex2k matrix involved.
To see how the total derivative term appears (not contributing to the integral due to the
periodicity of Tr.[ £ (z, z)]) we use that

d .
e Tre(f2(z.2))

d
= —471'2d_Z Tr(W—l(z, 20) (]lok 8) W(z, z0) |:(]12k — sz)—l _ sllzk:|>

- 2 -1 0 0 ° )
=—4r Tr(W (ZaZO)[(]lk o)’(V(z;i) 0)]

x W(z, z0)[(Lax — Frp) t = sllzk]>

= —47r2Tr<Wl(z, 20) (_(])1" Iﬁ) W(z. 20)[(Tak — Frp) 1 — sllzk]>, (48)
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with s = 1/2 (as for point-spitting, although one checks thatslikependent term actually
vanishes). We note théf;, depends ong only throughg (1), and thatog (1) = 27ig(1),
such thatoF, = 2mi F,. With this we find

dologdet fv) = —dplogy, Y =detlie ™01y — Frp)/V2), (49)

which is independenbf zg. The factori/+/2 in the argument of the determinant was
inserted just s@r agrees with the definition introduced earlier fo& 1.
Next we compute; log det f,),

1

i./dzTrk(Z)\){ﬁ((z,z))

Tl
0
1
= _Z/dzTrk(Rj(z;i)fx(z,z))
0

1
=8n2/dzTr(W_l(z,zo)( 0 ) 8) W (z, z0) [ (L2x —EO)_l—SJle])
0

Rj(z: X

1+z0

- Tr((JIZk — Fao) Fop / dz Wz, 20)9; (V(z0~ %) %) W(z, Zo)>, (50)

<0

where agairy can take any value, but for convenience is best set to 1 here. Finally noting
thatF;, only depends o throughR(z; X) and using that

1420
WLz, 20)9; W (z, 20) = / dZW_l(Z,ZO)aJ'(

<0

0 1
V(Z, )—C’) 0 ) W(Z7 ZO), (51)

we verify thatd,, log det fy) = —d, logy for all © andk. It is amusing to note that this
implies the remarkable formula

1
1 2 _ 1. Al 0 Ly
_ETrnFW(x)_—Eauavlogdet<]12k—g(1)Pexp/ Ved 0 dz ||,
0

(52)
even though explicit evaluation can be quite cumbersome. Not so for some special cases,
including the single caloroh = 1, whereR(z; X) is piecewise constars we will discuss
next.

3. Special cases

Considerﬁ(z; ilto be piecewise constant, fare [, nm1] defined to bex — ?m
(cf. Eq. (24)), withY,,, constant Hermitiai x k matrices related to the Nahm potential by
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Aj(z) = 2ni§T(z)Y,{;§(z). In this case we can easily deal with the path ordered exponential
integrals. To be specific, the “propagation” from, to w11 defined throughH,, in
Eq. (30), is given by

H — cosh(2r vy, Ry) (27 Ry) "L sinh(27 v, Ry) (53)
"™\ 27 R, SiNN27 v, Ryy) cosh(27 v Rin) ’

Wherev, = fim 41— tan (With s+ = 1+ 1y SUch thal™, v, =1) andR,, = (R - Rn)?
(a Hermitiank x k matrix). Since costy) andy*!sinh(y) are both quadratic in, actually
no square root is involved in this expression ffy,.

3.1. The known charge 1-caloron

For charge 1 the Nahm equation (Eq. (17)) has no commutator termg @nd) is
always piecewise constant. It reduces to #f8 constituent radius fot € [, tm+1l,
Ry, =1y = |Fn|, Wwhereas the prefactor at the impurity becorfigs= |7, — Fn_1| = | ol
With

_—1("m | Ot cosh2r vy ry) SN2 vy 1)
An =1, (0 rm+1><sinh(2nvmrm) cosi2rv,rm) )’ (54)

a link to the earlier charge 1 results [2] is established by noting that

-1
0 1 0 1
An = <2nrm+1 0) T 1 Hom <2nrm O) : (55)

With the placing of¢ T(1) irrelevant, and the possibility of absorbiggin xo, we therefore
find

-1
fk:1=< 0 1>eznionm_lAm_2_..AlAn...Am+1Am( 0 1) ,

K 2ry, O 2nry, O
(56)
cf. Eg. (36). In particular this shows théat = —%e*z’”xo dei(1, — F,,) agrees with the

result found earliery = Lir(A4,A,_1- - - A1) — cog27x0). The Green’s functions can be
shown to agree as well, usirig, — fﬂ,n)‘l =(1p— 52]:;5m‘72)/ dei(ly — F,,,).

3.2. Exact axially symmetric solution

Arranging ﬁ(z;?c) to be piecewise constant when> 1 requires one to fulfill

some constraints. To solve the Nahm equation, Eq. (17), in terms on,tfh&

%g(z)ﬁj(z)y(z), the commutator term should vanish. One way to achieve this, is by

choosing?m = Y,,¢. The Nahm equation relates the discontinuitiesig)(z) t0 O,
8T () Y — Y08 (m)é = pm, (57)

which imposes constraints @p, see Eq. (14). To seek a solution we choose @alto be
parallel in group space,” = p,¢ (p, @ positive real number). This reduces the problem
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to k = 1, sincec, Py = pappt T Puc is proportional toc T P,,¢. For SU2) this already
solves the constraint, since fbr= 1 one hass; =:ﬁz. Forn > 2 it has been shown [2]
that 5,, can take any value, provided,, _; 5» = 0O, in particular we may choose &},
to be proportional t@ (by properly choosing). Fork = 1 it is convenient to parametrize
tYPue = (1pml — T pm)/(27) in terms of constituent locationg, = A ¥, = Ym — Ym—1.
As in Section 2.3 we will také = 52/|02|.

We obtain a larger class gf for which theg,, are parallel, by taking“ to be parallel
up to a gauge rotation with an element of the unbroken subgiap*—* ¢ SU(n) which
leaves the holonomy unchanged,

n

Lo = pa EXP2Tiag)L, oy = Z oy Pp,  Trye,=0. (58)
m=1
This leads to
layzb = Papb eXIO(ZJTi(OéZl - a?))Aim, Sab ab Aym/|Aym| (59)

Note that forSp(1) we verify thatpy + o5 = 0 andS; — Sg =0 (usinga} = —a?). With
AY, = Ayyé for all m (by definitionAy, > 0) we may solve Eq. (57),
Yab (ga + paym) ab +1(1— 8ab) pa i

XZA exp(Zm[ab—aa (1 +Sm)(~§0 £])
=™ 2sinCrle] — &3 |

(60)

where thet, are arbitrarym = 1,...,n ands”" = lforj=1,2,....m ands”" = —3 for
j=m+1,...,n. The eigenvalues of these Hermitian matrices determine the constituent
locations, all lined-up along. It should be noted that there is no reason to expect that all
the Y,, can be diagonalized simultaneously. We will come back to this in the following
section. _

Returning to the simplest case of parallel gauge orientations, i.e., putling0, we
may take the limito — O (related to vanishing time separations) to find

n
Yal = (& + YepZ)Sab + Om = Y)Pabb: Y=Y _ Vm¥m. (61)

The k = 1) “center of mass” coordinatg. can be freely chosen and thé play the role
of “center of mass” of each constituent caloron. How exactly this is realized becomes
clear when we diagonalizg,,. Let us first consider Eq. (61) fd8U(2) and charge 2,
k=n =2, with &1 = —& = £. Without loss of generality we choose = 0, such that

the two eigenvalues df,, are given byy\/) = Symp? + (= 1)1\/52 + 3204 + ymE Ap2?,

where p2 = p2 + p2 and Ap? = p2 — p2. For large and positive we find y\/ =
(-1)JE + ym,ojz. + O, representing two charge 1 calorons centeredaatd—&, with
separations between their constituents monopoles given in termyzmifz. We plot the
constituent locations as a function®fn Fig. 3fory, = —y1 =v; = % and,oj =2.
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P

Fig. 3. Constituent Iocationy,(,f) based on Eq. (61) (i.eq, = 0 and&y — 0) as a function ok =& = —&»
foryp=—y1=vi=vp= % and p1 = pp = 2. Dashed versus full lines distinguish the magnetic charge of the

constituents. The dotted lines represent the four cases shown in Figs. 2 and 4.

Fig. 4. The aqtion density (cutoff for I@§) below -3) as a function of andz for the SU(2) solution with charge
2 (u2 = ;11, a) = & =0, pj = 2) and increasing values gf=&; = —&, (see Fig 2 (left) fort = 3.5), with
& =1.6 (left), £ = 1.0 (middle) anct = 0.5 (right). Compare Fig. 3 for the corresponding constituent locations.

Action density profiles are shown in Fig. 2 (left) fgr= 3.5 and in Fig. 4 for
&£ =1.6,1.0,0.5. From the dotted lines in Fig. 3 one reads off the associated constituent
locations. Note that the magnetic moments of the two calorons are pointing in the same
direction and that we cannot freely interchange constituent monopole locations within our
axially symmetric ansatz. However, whénis small it is more natural to interpret the
configuration as a narrow caloron (i.e., instanton) with inverted magnetic moment in the
background of a large caloron. This is the proper setting to understand the non-trivial time
dependence far = 0.5 illustrated in Fig. 5 (left).

For& — 0 a singular caloron arises due to the fusion of two constituents (with opposite
magnetic charge). This singularity is avoided wiggn# 0, which can be understood by

observing that the eigenvalues &f parametrize time-locations. i, £ 0, with & and

& made small, one will find two calorons (and their constituents) to be pushed far from
each other. This can be understood as well, in terms of a short-to-long distance duality
in the ADHM data for an instanton pair with non-parallel group orientation [10], but
can also be read off from the eigenvalues¥yf defined in Eq. (60). As an example

we take againSU(2) and charge 2, but now witlp = £} = —£2 and a? = —a3 =

—a% = a% = « in general non-zero. For the cage= 1/8 (perpendicular relative color

orientations),p1 = p2 = p and u = ‘—11 (equal mass constituents), the eigenvalues are

v =y p? + (—1)/'\/‘52 + 3(Ay2)2p*sin~2( &), whereas forr = 0 one findsyy) =
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S
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Fig. 5. The action density (cutoff for Ig§) below -3) as a function af andr (doubling the time-period) for the
SU(2) solution with charge 2/(, = ;11, &= % a) =0, pj = 2) and increasing values &, with &g = 0 (left),

&0 = 0.2 (middle) andsg = 0.25 (right), for the top row all on the same scale, zooming in on the middle region
on the bottom row (not to scale). See Fig. 4 (right) for the casg ef 0 shown as a function of andz.

Ymp2+ (—1)/\/52 + %(Ayz)zp“ cos2(m&p). Inthe light of this it is interesting to observe,

as shown in Fig. 5, that witee = 0 andincreasingép the constituents are pushed out

in the z direction as well. Whergg — 0.5 the constituents would otherwise come close
together through the periodicity in the time direction. Effectively these constituents thus
have perpendicular color orientations (due to our choice of holonomy itk %). The
transition from constituents separating in the time directiontfonear O to constituents
separating in the direction for&g near% occurs forp = 2 at approximatelgy = 0.2.

With a little imagination one detects the ring-shaped structure also observed [10] in
the case of instantons at zero temperature, see Fig. 5 (middle). A more direct analogy of
course occurs when two calorons (wittsmall, i.e., instantons with unresolved constituent
monopoles) approach each other. We checked that ferw = 0 andéy — 0 a singular
caloron forms due to the overlap of two calorons with parallel gauge orientations, whereas
for& — % the two calorons are pushed away (to infinity) in thdirection as is appropriate
for the non-parallel group orientation due to the non-trivial holonomy. At an intermediate
value &g = 0.25 for p1 = p2 = 0.1) one observes a small ring in the plane. Choosing
& large one may check thaté&p indeed gives the time location for each caloron. When,
however &g approache% they can no longer keep parallel gauge orientations due to the
non-trivial holonomy. As noted before, this may be described by a solutionavi#h0
and&y — 0. Computing the eigenvalues &f, therefore allows one to easily predict the
behavior of the exact solution.

For charge 1 it had been shown [2] that as soon as one of the constituents is far removed
from the others the solution becomes static. For the “dimensional reduction” to take place
at higher charge this is no longer sufficient. We have seen (generalizati®b(i0 is
straightforward) that any magnetically neutral cluster of constituents, when small with
respect to3, will behave like an instanton that is localized in time. For the special case
with parallel group orientations, putting &} = 0 in Eq. (61) one would even be left with
k — 1 singular instantons on top of one regular caloron, whose scale parameter is set by
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p?=Y"*_, pZ, which can be understood from the fact that the matsix, has rank 1.

It does, however, give us one opportunity to go beyond the axial symmetry considered
so far. Wheng, = 0 we could solve the Nahm equation for parallel gauge orientations
by 17,5‘,” = Ympapp Withoutinsisting all they,, line-up. This still describes — 1 singular
instantons on top of one regular caloron, except that now the singular instantons can have
arbitrary locations.

Even though our ansatz to obtain exact solutions has been restrictive (as is clear
from the axial symmetry), we stress that the solutions for the Nahm equation we found
provide genuine multi-caloron solutions, which revéalisolated lumps for each of its
constituent monopoles (with suitably chosghso the constituents do not overlap). This
is not only illustrated in Fig. 2, but can also be understood analytically for any charge
k and SU(n) as follows. We diagonalize eadty, with (in generaldifferen) similarity

transformationg/,,,, or ¥,,, = U dlag(y(l) <k))UT These bringr,, to the diagonal
form R3%9 — diagr'Y, ..., )y, with i) = |x v | the constituent radii, such that
H, = U,:ZHmUm (U acting componentW|se) simplifies to (cf. Eq. (53))
B ( COSI'(ZJTva (27'[RdIa SIﬂl‘(vadela ) (62)
" 271Rd|agS|nl‘(2nvm d|ag) COSI'(ZJTvm f,jl'ag) )

The action density can now be explicitly expressed in terms of the constituent radii

—% Tr, FZ, (x) = —%azav log vy (x), ¥ = def(ie 01y — F)/V2),

F= exp(Zni(onlk — Eo))U,, ITI,, Tnﬁn—lfn—l .. FllUITl (63)

cf. Egs. (36), (46), (49), (53), whef®, = U,I, T,nUnm—1 (U, again acting componentwise).

The size of the constituent monopoles is read off taev,,) 1 (or B(27v,)~ 1 when

B # 1), and one concludes that the action density will contaifumps for sufficiently

well separated constituents. The figures were produced by computing the action density
using precisely this method.

4. Far-field limit

The non-trivial value of the Polyakov loop at spatial infinity (holonomy) leads to a
spontaneous breaking of the gauge symmetry, but without the need of introducing a Higgs
field. One may viewAq as the Higgs field in the adjoint representation. This is one way
to understand why constituent monopoles emerge. The best way to describe the caloron
solutions, in case of well separated constituents, is by analyzing the field outside the
cores of these constituents, where only the Abelian field survives. Since in our case the
asymptotic Polyakov loop value defines a global direction in color space the Abelian
generator in terms of which we can describe the so-called far-field configuration is fixed,
giving rise to a global embedding in the full gauge group. Extrapolating the Abelian fields
back to inside the core of the constituents leads to Dirac monopoles. Such an extrapolation
is well defined in terms of théiigh temperature limjtwhich makes the core of the
constituents shrink to zero size and the field to become a smooth Abelian gauge field
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everywhere except for the singularities of the Dirac monopoles. Thus we anticipate that
in this limit the self-dual Abelian field is still described by point like constituents, despite
the fact thatR(z, ¥) is no longer piecewise constant. Any “fuzziness” of the constituent
location that may result from this, would be confined to the non-Abelian core, and not
visible from afar.

4.1. Green’s function

Despite the somewhat formal expression for the Green’s fungfign, z’), one can
extract information about the long-range fields from it. In the following we will show how
to neglect the exponentially decaying fields in the cores of the monopole constituents,
being left with the Abelian components of fields which decay algebraically. We only need
to consider the “bulk” contribution#,,,, Eqg. (30), which contain all the dependencexon
Our starting point is Eq. (22) restricted to thth interval,z € (i, m+1)

2
{—j—zz +4n21$2(z;£)}fm(z) =0. (64)

To distinguish between exponentially growing and decreasing contributions for this
homogeneous equation we take as a basigifdr) functions f:5(z) with the following
asymptotic behavior

%] = 0o fif(z) — exp(£27 %] (z — wm) L), (65)

relying on the fact thaR?(z; ¥) — ¥ 21y. This prompts us to introduce on each interval
the matrix valued function® (z) (we suppress the dependencemsuch that

Z
f,ff(z) = Pexp[iZn / Rnﬂj(z)dz:| (66)
H’Wl
from which it follows thatR%(z) is a solution of the Riccati equation
v, 1 d | 52, .=
R, (2)*+ ——R,,(z) = R“(z; X). (67)
27 dz

We note that forl¥| — oo, R (z) — |X| and that for piecewise constaRt(z; ¥) both
R} (z) andR,, (z) are constant and equal &,, introduced in Eq. (53).

We can write forz, 2’ € (um, um+1) the “propagatorw(z, z’) defined in Eq. (29) in
terms of f5(z) asW(z, ') = Wi (2) W, 1(2) with

_ far @ S @)
Wn (@)= (ZnRZ(z)fnf(z) —27TRm(Z)fm(Z)> . >

Using that H, = Wy (um+1) W, (um) and £ (um) = 1, we find by neglecting the
exponentially decreasing factofs (u.,+1) the required limiting behavior fol,,,. Paying
special attention to the ordering of thex k matricesR=, observing that

2 R, (m) g )

—1 _ -1
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1 _
we find well outside the cores of the constituents
1k 0\ .+ 1 2n R, (wm) 1

The sparse nature of the matrices involved will be of considerable help to simplify the
limiting behavior of the Green’s function. A crucial ingredient is the combination

2R, () 1i 1 0 1x 0\ (2rX, O
0 0/)\27Sy 1k )\27R' ;(uw) 0) 0 0)’

X = Rnt,]_(ﬂm) + R;(Mm) + Sm, (71)
for clarity summarizing the various ingredients in the following picture
Tm=
Ym—1 R;_l(ﬂm)+sm+R;(Mm) Em+1
R Rm= R
: (Rit (s )+ Rim (1m)) /2 o
- + - -
Z =lm—1 Ri_l(z)’ 7:5—1(2) Mo, Ri(z),fi(z) Hm+1
This leads to the following far-field approximation f&i,,, (cf. Eq. (36)),
At 1k 0 27 R, (km) Lk
Fum = 87D (2n<R,,t+nlwm+n> + Sin) 0) G ( 0 o) (2

whereG,, = Gy4n.m and
G = £ 1)) @Ry —1) F Zr 1 5t —1) @Ry —2) ™

X Xt f,:_,_l(ﬂm-Q—Z) (ZRm-ﬁ—l)_lEm—ﬁ—lf,;:_(ﬂm-ﬁ—l) (4r Rm)_l- (73)

One might have expected a factor ,,, on the right, but this is contained in the remaining
terms of Eq. (72). For example &) = Tre(T(DGn 2 E)).

As we have seen in Egs. (37) and (39), the gauge field only requires us to know the
Green'’s function at the impurities. Without loss of generality we may assume- w,,
and takezo = ., + 0, such that (see Egs. (23), (32), (35))

Fe Qs i) = _47T2(]]-ka 0) - W, om +0) (Lo — fum)il (E{) . (74)

The matrix(1 — F,,,) has a 2< 2 block structure, and one can verify that in general
(a b)l_ ((a—bdlc)l (c—dbla)l> (75)
c d N (b — acild)il (d — cailb)fl '
Identifying the blocks, in the high temperature limit we find
a= (Lo — Fu)11— L — 208 D Gu R, (wm),
b=z — Fu)12—> =& (DG,
¢ = Lok — Fup)21— =472 (R (um) + Sm)E DG Ry, (m),
d= Lok — Fup)2z— Lk = 20(RY_ 1 () + Sw)&T (DG, (76)
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where we used that,, 1 (tmin) + Suin = 8 (R 1 (1tm) + Sn)2T(D), cf. Egs. (34),
(36). Evaluating the Green’s function at tekemeimpurities, u,,, = un,, is simplified by
the fact thatW (w,,, i) = 12. This gives the following remarkably simple result in the
far-field limit,

FeGms i) = =472k — Fpup )14 — 4m2(21 B — G 18(D) " > 20(E) L

(77)

For the Green’s function evaluated different impurities, u, # w,, we need to
determineW (w,,y — 0, w» + 0), for which we can follow the same method as fy,,

W (bt — O. s +0) = (27TR+]1k o 8) G <2an6(Mm) 11(,;> a8

m'—1

with G, ,, as defined in Eq. (73). This leads to

FeCtms ttm) = —=4702Gt i ((L2k — Frun) 2z + 27 Ry (1) L2k — Fpu) 1)
= G mGn 28 D) fr (W o), (79)

which is exponentially suppressed singg' ,, grows as exg27z |X|(m — fAm)). This
cannot compensate for the decayf*, provided allw,, are unequal, i.e., all constituents
have a non-zero mass. Massless constituents have a so-called non-Abelian cloud [12],
which has no Abelian far-field limit.

4.2. Total action

To determiney in the expression for the action density, Eqs. (46), (49), we need to
compute detly, — F,,). Using Eq. (76) we find

a b 0 b _
detly — F,,) = det(c d) = det(c -l d) = detb) def(ab™1d — ¢)

- det(gT(l)gm) det(g,;l(é(l) -2 Em) — det(—2ﬂ§T(1)gm Em),
(80)
such that

¥ — detw Gy Zn) = 27F [ [ {det( £} (um+1)) deXZ,)/ det2R,)}. (81)

m=1

For [X| — 00, fif (Wmt1) — exp2rvy,|3[1x) (see Eq. (65) and %, Ry — |¥|L,
which implies thaty — 2% [T, _; det[exp(2v,,|¥|1x) ]| = 27* exp(2k|x|) (recall that
> _1vm = 1). Therefore, the action is given Isy= —3 [ d*x 3282logy (x) = 87 %, as
should be the case for a self-dual chakgslution.
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4.3. Gauge field

Without the off-diagonal components of the Green'’s function contributing to the far-
field region, the functiong andg; in Egs. (37), (39) can be further simplified to

S 1= Y F G, tm) Putal) P,
¢j_>2fab(ﬂma /fLm)nga&jé‘JPm’ (82)

and only the Abelian components of the gauge field survive. Particularly the c8gelpf
discussed in Section 2.3 is easy to deal with. Using Egs. (23), (40), (42), (44), (77) we find

¢~ (x) = 00(1— Tre[255152]) = o0gg (),
$(x) = -3 T[225 8 (12) 28" (102)],

Ap(x) > IE“’ T(1- T[22, 182]) Yl 00 T [255 Y8 (ua)pg 6T ()], (83)

where we recall (see Eq. (71)) thab = (Rf(uz) + R, (n2) + S2). This is in perfect
agreement with the earlidr= 1 results [1]. Note that the gauge rotation which relates
fr(z.7) 10 fi(z,7) also relatesS,, to S, (see Egs. (23), (24)) and therefore does not
appear in the final expression forx).

Itis interesting to note that the dipole moment of the Abelian gauge field is particularly
simple and does not require us to solveRjj‘(z), since limz|_, o X2 = 2|X|1; such that

. i oo Trn(pd
dm A, =507 n,gvav%. (84)
Hence the dipole momerjt= %Trk (p2) only involves¢,, and we do except it allows for
configurations with a vanishing dipole moment. For higher multipole moments, through
R (z), we need to deal with the full quadratic ADHM constraint, or equivalently with the
Riccati and Nahm equations. Nevertheless, it is remarkable that in the high temperature
limit the ¥ dependence is restrictedmf(,ug) andR; (u2) only. We would like to prove
that each of its eigenvalues vanish at an isolated point, as one way to identiff the 2
constituent locations. We will defer the study of this interesting issue, and its generalization

to SU(n), to a future publication.

4.3.1. Axially symmetric case

The far-field approximation further simplifies when considering the axially symmetric
solutions discussed in Section 3.2. We restrict ourselves heBg(19. Sincel_é(z; X)is
piecewise constant, the Riccati equation is trivial to solve,

RE(2) =Ry =+/(FLk —€Yp) - Rk — € Yry). (85)

The square root involves a positikex k matrix, and is well-defined. Due to the fact that
S =8 (m)Sm& T (tm) = &(m) AV - B /1 Aym 18T () (s€€ EQS. (24), (59)), the Abelian



128 F. Bruckmann, P. van Baal / Nuclear Physics B 645 (2002) 105-133

component of the gauge field is of the simple fods=p>/|62|, see Section (2.3)

i oL .
Aibel(-x) — _Ew . -,;ejnl/wav |Og¢(X) (86)

In the far field limit ¢ (x) — ¢ (x) (see Eq. (83)). Since, has rank 1, the matrix
M= 222_152 has only one non-vanishing column with respect to a suitably chosen basis,
which implies that 1— Tr, (M) = det(1; — M). This allows us to write in the far-field
region

det(R1+ R2+ S2)
det(R1+ Ry — S2)°

from which we immediately read off the result [1] fore= 1, in which case it is easy to show
thates (x) = (r2+¢ - 72)/(r1+ ¢ - 71), revealingA, (x) to be a linear superposition of two
oppositely charged self-dual Dirac monopoles. We woulddikéx) to similarly factorize

for k > 1 in 2k Dirac monopoles, but sinc®1, Rz and S in general do not commute,
some care is required in demonstrating the factorization. We will rely on the fact that
(R —&- Rp)(Ry +&- Rpp) = (R + & Ry) (R — €+ Riy) = R2 — (G Ry)? = (¥ x 8)°1

and hence independentmf Since by definitiorAy, > 0 (see Section 3.2), one finds that

Pt (x) = (87)

det(Ry — 2- R1) 4+ (Ro+ ¢ - Ro))

oif (x) = > = —. (88)
det((Rp —¢- R2) + (R1+¢€- R1))
This can now be reorganized according to
() = det(((Ry —é- R1) + (R2+é- R2))(R1+&- R1)) det(Ra + & - Ry)
det(Rz2+&- R2)(R2— - Ro) + (RL+ - Ry))) det(Ry + & - Ry)
det R, +é- R
_ det 2+(i f), (89)
det(R1+e¢- Ry)
after which we can separately diagonaleand R> to find
I A Y (Y, (RN o0
¢ﬁ(x)_l_[ @, 5 =@ _H @) (i) (@) (O (90)
i rtery ire =y =y

whereyf,i)é give the locations of the constituent monopoles, vyf}fﬁthe eigenvalues df,,
and7\) =% — y\¢ (the indexm distinguishing their charge). The second expression for
the factorized version afs (x) uses the fact that the constituent locations can be ordered
according to
1 1 2 2 k k

yi)<y§)<yi)<yé)<~-~<y§)<yé). (91)
It should be noted that this prevents the constituents to pass each other while varying the
parameters for the axially symmetric configuration, see also Fig. 3 and the discussion in
Section 3.2. We need to go beyond this simple axially symmetric configuration to allow for
the constituents to rearrange themselves more freely.
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5. Discussion

We have presented the general formalism for finding exact instanton solutions at finite
temperature (calorons) with any non-trivial holonomy and topological charge. In an infinite
volume holonomy and charge are fixed. The solution is describedkbypdrameters
of which 3kn give the spatial locations of the: constituent monopoles. The remaining
parameters are given liytime locations andn — 1)k phases associated to gauge rotations
in the subgroup that leaves the holonomy unchanged. Of thesel, can be considered
as global gauge rotations. The dimension of the moduli space, i.e., the number of gauge
invariant parameters, is therefore equal k@ 4- (n — 1). Our subset of axially symmetric
solutions has 2k + 4 parameters of which there are— 1 global gauge rotations, or
2nk — n + 5 gauge invariant parameters.

Explicit solutions were found for the case of axial symmetry, an important limitation
being the difficulty of solving the Nahm equation, or equivalently the quadratic ADHM
constraint. We certainly expect more progress can be made on this in the near future.
Nevertheless, we already found a rich structure that bodes well for being able to consider
the constituent monopoles as independent objects. This is surprisingly subtle, as we have
illustrated by the fact that an approximate superposition of charge 1 calorons tends to give
rise to avisible Dirac string. This is also related to the difficulty of finding approximate
multi-monopole solutions, which can be obtained from the caloron solutions by sending
a subset of the constituent monopoles to infinity, as has been well studied in the charge 1
case [1,13].

An important tool has been our study of the far-field limit, describing the Abelian gauge
field far removed from any of the constituent monopoles. This allows for a description
of the long distance properties in terms of (self-dual) Dirac monopoles. Much could be
extracted concerning its properties without the need to explicitly solve the Nahm equation.
We conjecture in general to be able to identify the Dirac monopole location, but some work
remains to be done here.

It may seem that all these results are somewhat academic since until recently none of
these constituent monopoles were found in dynamical lattice configurations. First of all
one would be tempted to search for them at high temperature, but it should be noted that
above the deconfining phase transition the average Polyakov loop takes on trivial values,
associated to the center of the gauge group, which is not the environment in which a
caloron will reveal its constituents. This would give the well-known Harrington—Shepard
solution constructed long ago [14]. With our present understanding this solution can be
seen as having — 1 massless constituents which cannot be localized. Only when sending
all these to infinity one is left with a monopole [15]. Furthermore, at high temperature
classical configurations will be heavily suppressed due to their Boltzmann weight. Rather,
the hope is that the constituent monopoles play an importantedtavthe deconfining
temperature, where the average of the Polyakov loop is non-trivial, and tends tedaxdr
mass constituents. This is why in this paper our examples were for that case, see Figs. 2,
4, 5 and the discussion in Section 3.2. Nevertheless, the formalism developed here gives
results for any choice of the holonomy, and a sample of unequal mass constituents is given
in Fig. 6. In general the constituent monopoles can be characterized by their magnetic
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Fig. 6. The logarithm of the action density (cutoff for (6§ below -3) for anSU(2) charge 2 caloron with one
type of constituent three times more massive than the othe=(1/8, o} = &6 =0,p; =2, =35).

(= electric) charge. Fa8U(n) there are: different types of Abelian charges involved [1],
and allk constituents of a given type have the same mass.

We will discuss briefly the lattice evidence for the presence of constituent monopoles
that has accumulated the last few years. A first numerical study using cooling was
performed with twisted boundary conditions, which implies non-trivial holonomy [16].
Good agreement was found with the infinite volume charge 1 analytic results, in particular
so for the fermion zero-modes [17,18] which are more localized than the action density.
A charge 2 solution was also found, shown in Fig. 8 of Ref. [16]. Fermion zero-modes
played an intricate role in an extensive numerical study of Nahm dualities on the torus [19].

As suggested in Ref. [1] one may also enforce non-trivial holonomy on the lattice by
putting at the spatial boundary of the box all links in the time direction to the same constant
valueUp, such thaiUév’ = Pwo (N; the number of lattice sites in the time direction). This
has been implemented BU(2) lattice Monte Carlo studies as well, wheRg, was set
to the average value of the Polyakov loop, appropriate for the temperature at which the
simulations were performed [20,21]. Cooling was applied to find calorons, including those
at higher charge. Apart from the configurations that in the continuum would be exactly
self-dual, the lattice allows one to also consider configurations in which both self-dual and
anti-selfdual lumps appear. This revealed constituent monopoles that seem not directly
associated to calorons, callddD (as opposed ta>D). Both objects in such @D
configuration have fractional topological charged, but opposite in sign. Perhaps these arise
when two near constituent monopoles, one belonging to a caloron, the other to an anti-
caloron, “annihilate”. Our analytic methods cannot directly address this situation due to
the lack of self-duality. The same holds for configurations that seem to only carry magnetic
fields, which were already seen long ago [22].

One point of criticism that applies to both methods is that the choice of boundary con-
ditions may force the “dissociation” of instantons into constituent monopoles, particularly
since volumes cannot yet be chosen so large that many instantons are contained within a
given configuration. A recent study [23] has done away with the fixed boundary condi-
tions that enforce the non-trivial holonomy. Nevertheless, still one finds in many cases that
calorons “dissociate” into constituent monopoles below the deconfinement transition tem-
perature. A particularly useful tool has turned out to be the fermionic (near) zero-modes
to detect the monopole constituents when they are too close together to reveal themselves
from the action density [23]. This relies on the observation that the zero-mode is localized
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Fig. 7. Fermion zero-mode densities as a functiom ahdz for a charge 1 caloronu} = ;11 andp = %) with
periodic (right) and anti-periodic (left) boundary conditions, compared to the action density (middle) (see also
Fig. 5 in Ref. [26]). Based on Ref. [25]; produced with Ref. [27]).

ononlyone of the constituent monopoles, determined by the boundary conditions imposed
on the fermions in the time direction [17,18]. FdU(2) this is particularly simple, with pe-
riodic and anti-periodic boundary conditions of the fermions making the zero-mode switch
from one constituent to the other, as is illustrated for a close pair of constituents in Fig. 7.
In addition one may use the Polyakov loop for diagnostic purposes [20,21,23Uft@)
taking the valued, and—1, near the respective constituent locations (at these points the
gauge symmetry is restored, providing an alternative definition for the center of a con-
stituent monopole).

Fermion eigenfunctions with eigenvalues near zero have also been used as an alternative
to cooling, to filter out the high frequency modes and identify topological lumps. For
a recent lattice study, including some discussion of calorons with non-trivial holonomy,
see Ref. [24] and references therein. Using the near zero-modes as a filter, constituent
monopoles have even been identified recently $&(3) well below the deconfining
temperature [25], resembling Fig. 7 (see also Fig. 14 of Ref. [24]).

For the exact axially symmetric multi-caloron solutions constructed in this paper the
k associated fermion zero-modes (for chakgdewill be derived in the near future. We
anti-cipate that one can choose a basis where each is localized on one of the constituent
monopoles, the type of which is determined by the choice of fermionic boundary conditions
in the time direction. Analyzing these zero-modes is particularly interesting in the light
of some puzzles that were presented in a recent study [28] of the normalizable fermion
zero-modes in the background of a collection of so-called bipoles, i.e., pairs of oppositely
charged (but self-dual) Dirac monopoles, which are of interest in a wider context as well.
This will be one of the many topics we have access to with our analytic tools. But ultimately
our main aim is to develop a reliable method to describe the long distance features of non-
Abelian gauge theories in terms of monopole constituents to understand both confinement
and chiral symmetry breaking. The results of this paper, and in particular the recent lattice
results, provide some encouragement in this direction.
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