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Abstract

Ž . 3We give a unified description of self-dual SU 2 gauge fields on tori of size l = l , based on at s

mixture of analytical and numerical methods using the Nahm transformation, extended to the case
Ž .of twisted boundary conditions. We show how torus calorons l rl small are Nahm dual to thet s

Ž .torus instantons l rl large . Holonomies are dual to the locations of constituents, this dualityt s

becoming exact in the limiting cases l or l ™`. Implications for the moduli spaces ares t

discussed. q 2000 Elsevier Science B.V. All rights reserved.

PACS: 11.15.-q; 11.15.Kc
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1. Introduction

Ž . Ž w xThe study of SU N gauge fields on the torus has a long history see Ref. 1 for a
. w xrecent account . It was initiated by ’t Hooft 2,3 who pointed out additional non-trivial

Ž .topological features, associated to what is known as twisted boundary conditions tbc ,
describing the presence of centre-valued conserved fluxes for non-abelian gauge fields.
In particular, the study of self-dual gauge field configurations on the torus has become a
challenging problem. Both within the finite volume Hamiltonian and the finite tempera-
ture formulations of non-abelian gauge theories they play an important role, and the
main result of this paper is a rather surprising detailed dual relationship between these
solutions.

For non-zero twist, numerical methods based on the lattice formulation of gauge
theories strongly suggested the existence of non-abelian self-dual solutions for all torus
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w x Ž .sizes 4,5 . Indeed, existence of smooth solutions with one unit of topological charge Q
w xand any non-trivial twist has been established rigorously 6 , even though one can prove

w x Žnon-existence for zero twist 7 . For higher topological charges existence has been
w x .proven by Taubes 8 earlier . To date, however, no analytic expressions have been

found for these non-abelian solutions on the 4-torus. This contrasts with the situation for
4 Ž 4. w xR or S , where one has the algebraic ADHM construction 9 .

1.1. Nahm transformation

An important technique for studying self-dual gauge fields is the Nahm transforma-
w x Ž .tion 10,11 , which is particularly simple for the torus. It maps SU N self-dual

Ž .solutions of charge Q on the torus to SU Q self-dual solutions of charge N on the dual
torus. The mapping is an involution, i.e. applying the Nahm transformation again brings
one back to the original gauge field configuration. The only analytically known example

w xof the Nahm transformation on the torus, based on a particular abelian solution 12,13 ,
w xmaps it onto itself 14 . Nevertheless, the Nahm transformation is believed to be an

important ingredient in leading to analytical results for the self-dual solutions.
A few strategies have been used to improve our understanding of this problem. One

follows from the consideration of mixed compact and non-compact directions T n =R4yn.
Under the duality transformation the non-compact directions collapse and the dual space
is an n-dimensional torus, thereby achieving a dimensional reduction. The most
dramatic example is that of ns0, where the dual space collapses to a point, being the

w xreason that the ADHM construction 9 is algebraic. The ns1 case is relevant at finite
w x 3 1temperature 15–17 for which the associated geometry is R =S . The case ns3 was

considered as a way to circumvent the no-go theorem on Qs1, zero-twist configura-
w xtions 18,19 . This geometry is relevant for the Hamiltonian formulation of gauge fields

on the spatial torus, with the non-compact direction identified with time. The possibility
of having Qs1 configurations introduces an important additional simplification, since
its Nahm-dual connection is an abelian gauge field.

Applying Nahm’s transformation in the non-compact case demands some modifica-
w xtions 14 . In particular, there appear a finite number of singularities where the Nahm

transformed gauge field is non-self-dual. These occur when the holonomy of the original
Ž Ž .self-dual gauge field extended to U N by adding a curvature free abelian gauge field,

.which parametrises the coordinates of the dual torus has a trivial eigenvalue. The
holonomy is defined by the Wilson loops winding non-trivially in the compact direc-
tions, when taken to infinity in the non-compact directions.

1.2. Instantons and calorons

An important example of the appearance of these singularities in the Nahm transfor-
w xmation is the case of calorons 15–17 , instantons at finite temperature. It was already

w x Ž .known from the early work of Nahm 10,11 that the dual formulation involves a U 1
gauge field on the circle with suitable singularities. It was only recently that explicit
expressions for the Qs1 self-dual configurations on R3 =S1 with non-triÕial holon-

w xomy were obtained 20–25 . In particular it was shown how the location of the
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Žsingularities in the dual field is related to the holonomy the Polyakov loop at spatial
. Ž .infinity . With non-trivial holonomy the charge one, SU N caloron exhibits N lumps

w xin its action distribution, which can be shown to be constituent BPS monopoles 20–25 .
The masses of these monopoles are determined by the eigenvalues of the asymptotic

Ž .Polyakov loop, such that for the trivial case all eigenvalues equal to 1 , Ny1
constituents are massless. Therefore, the trivial holonomy case supports only one lump
Ž w x.this is the Harrington-Shepard solution 15,16 .

Another example recently analysed in detail is the Qs1 instanton configuration for
3 w xT =R with twisted boundary conditions in time 26 . There the location of the

Žsingularities is determined by the holonomies Polyakov loops in the three directions of
3.T at infinite time. Away from these singularities, the abelian Nahm transformed field

is self-dual and therefore satisfies Maxwell equations. The singularities act as sources
Ž .and can be interpreted as point-like dyons carrying equal electric and magnetic charge.

It is interesting to ask oneself how these R3 =S1 caloron and T 3 =R instanton
configurations are approached from configurations on a torus, l = l 3, when sendingt s

either l or l to infinity. On a finite torus, these configurations will be referred to ass t
Ž . Ž .torus calorons for l < l and torus instantons for l < l . Both types of configura-t s s t

w xtions have been analysed in the past by means of numerical methods. In 18 it was seen
how some of the T 3 =R configurations are the limit of self-dual configurations on the

w x4-torus with twisted boundary conditions in time, which are known to exist 6 . The
Qs1 solution tunnels between vacua where some of the holonomies have opposite
signs. The non-existence of the Qs1 solution without twist was understood as an
obstruction for tunnelling between two vacua with the same holonomy. The situation

Ž .seems quite similar to the O 3 model on the cylinder, which turned out to be tractable
w xanalytically 27 .

The case of non-zero spatial twist was studied numerically even earlier. The basic
building block is a lump –the twisted instanton– carrying fractional topological charge

1Ž Ž .. w xQs for SU 2 and which is well localised in time 4,5,28 . Single twisted instanton2

Ž .configurations arise for non-zero so called non-orthogonal twist, both in space and
time, and they have a well-defined limit as l ™`. Only their overall position is a freet

Ž .parameter, so that in particular their scale is fixed to l . Higher topological charges

configurations look as superpositions of these twisted instantons, distributed in the
1w xtime-direction 29,30 . These Qs lumps also feature prominently in numerical studies2

that address how 4-torus configurations approach the non-compact geometries of
2 2 w xT =R 31 .

w xFinally, caloron configurations on a torus have been recently studied 32 on lattices
typically having l rl s4 or higher. These torus calorons fitted extremely well to thes t

infinite volume analytic results. Interestingly, twist in the time direction enforces the
constituent monopoles of the caloron to have equal mass. For spatial twists, however,

w xthe numerical analysis of Ref. 32 suggests that the constituent monopoles are forced to
Žsit at fixed relative positions on the torus, but can have arbitrary masses only

.constrained by the total topological charge . One can also study one constituent
1monopole in isolation by having non-orthogonal twists such that it supports the Qs 2

Ž .twisted instanton mentioned before. Indeed in the high temperature limit l rl ™0 thist s

solution becomes time independent and thus has to approach a single BPS monopole.
Hence also in this limit the twisted instanton - as the BPS monopole - is the basic
building block, but now arbitrarily placed in space.
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1.3. Nahm transformation reÕisited

For the present work two existing tools play an important role. One is that for T 4

w xlattice techniques have been developed 33 that allow us to study the Nahm transforma-
Ž .tion numerically. This was tested in a non-trivial example for SU 2 with charge 2,

which maps to itself. This demonstrated that the method is precise enough to become a
useful tool in numerically analysing the properties of the Nahm dualities. This charge 2

1configuration was actually composed from four Qs twisted instantons. As we will2

see, it is these twisted instantons that are mapped on to themselves as they only have
their position as a free parameter.

The other tool is the recent formulation of the Nahm transformation in the presence
w x Ž .of twisted boundary conditions 34 . The Nahm transform of an SU N , charge Q

ˆŽ .self-dual configuration is an SU N Q configuration with topological charge QsNrN ,0 0

where N is an integer depending on the twist. If the original twist is non-trivial the0

Nahm transform lives on a torus with non-trivial twist. In essence the construction is
Ž Ž ..related to recognising twist as for SU 2 half-periods for a larger periodic torus, to

which the usual Nahm transformation can be applied. Remarkably, the dual configura-
tion admits ‘‘half-periods’’ as well, and the dual gauge field can thus be formulated in
terms of gauge fields with twisted boundary conditions. It is this that allows us to

1 Ž .demonstrate that the Qs SU 2 twisted instanton is mapped to itself under the Nahm2

transformation.
Alternative to the formulation in terms of ‘‘doubling’’, one can introduce a suitable

w xflavour group to compensate for the twist 35 , with which the Nahm transformation can
then be performed. Again one might study half-periods in the resulting dual torus and

Ž .reach a self-dual configuration in a smaller torus the Nahm-dual torus and with
Ž . w xnon-zero twist the Nahm-dual twist 34 . Furthermore, it was shown that both

formulations agree. From the analytical point of view this method is more general and
allows a simple and compact characterisation of the Nahm-dual torus and twist. This
will be presented in Appendix A.

1.4. The duality - a preÕiew

Ž . 3In this paper we study SU 2 self-dual gauge fields on a torus of size l = l , byt s
w xexploring the connections provided by the Nahm transform 10,11 . In particular, we

investigate how this information fits with what was known previously about the moduli
space of these configurations. We combine this with previous results on configurations
defined on non-compact manifolds T n =R4yn and their Nahm transforms. The last
point suggested us to concentrate upon the small and large aspect ratios l rl , which cans t

be thought as approximating the T 3 =R and R3 =S1 cases respectively. The latter have
Ž 3 1.been studied in the past through their connection to finite temperature R =S field

Ž 3 .theory and the Hamiltonian formulation on the torus T =R . Our study has analysed
Ž .the lowest values of the topological charge Qs1r2,1 for which the corresponding

moduli space is simpler. On the torus this forces the use of twisted boundary conditions
w x w x7 , for which the Nahm transform has been extended recently 34 .

For l rl small the configurations describe finite volume instantons seen as lumps ins t

the action density, that for l ™` describe vacuum-to-vacuum tunnelling. The vacua att
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Ž .either end t™"` are characterised by the Polyakov loops that close by the boundary
conditions in each of the three spatial directions. They measure the holonomies of the
asymptotic vacuum configurations.

On the other hand, when l rl is large, the self-dual gauge fields describe finites t

volume calorons, instantons at finite temperature. At fixed l and l ™` they tend to thet s
3 1 w xordinary calorons of R =S as has been recently studied 32 . The zero field strength

configuration at spatial infinity can be non-trivial due to the periodicity in time, and is
Ž .characterised again by the Polyakov loop or holonomy . Non-trivial holonomy was

w xshown 20–25 to be related to the appearance of two constituent BPS monopoles,
whereas only one lump appears for the trivial holonomy case.

In this paper we will show that indeed these two sets of self-dual gauge fields are
w xmapped onto each other by the Nahm transformation 10,11 . This is a T-duality which,

Ž . 3in the absence of twist, relates charge Q, SU N self-dual gauge fields on a torus l = lt s
Ž . y1 y3to charge N, SU Q self-dual gauge fields on the dual torus l = l . Naively thet s

Ž .duality can be understood by noticing that, at fixed l , the Hamiltonian l ™` ands t
Ž .high temperature l ™0 limits are dual to each other. A non-zero twist value, ast

explained in the previous subsection, only modifies the value of the Nahm dual rank and
charge, preserving its main properties.

One of the nice implications of this result, is that it allows us to understand the
3 1 w x 3 w xsingularities of the Nahm transform of the R =S 20–22 and T =R 26 configura-

tions as singular limits of the finite volume instantons and BPS monopole constituents of
calorons, respectively. In the latter case, it was known that the position of the
singularities in the Nahm transform is dictated by the holonomies of the original T 3 =R

self-dual configuration. We have seen that the connection extends to finite volume and
that, even at finite l , under the T-duality mapping the holonomies of the finite volumet

Ž .instanton are mapped accurately to the relative positions of the constituent monopoles
for the finite volume caloron, dual to the instanton. The holonomies can still be defined
at finite l due to the fact that the instanton is well localised in time.t

The finite volume imposes restrictions on the moduli spaces of finite volume
instantons and calorons. These restrictions depend on the value of the twist. In particular

w xfor torus calorons, as studied in Ref. 32 , a twist in time forces the two constituent
Ž .monopoles to have equal mass, whereas a twist in space forces the relative locations of

the constituent monopoles to be fixed, but allows them to have arbitrary masses. Most of
the features of these moduli spaces were up to now only known through numerical

w xstudies 18,32 . Our work provides a non-trivial connection between the moduli spaces
of the two types of self-dual configurations of the torus. Remarkably, the information
provided by the Nahm transform fits nicely with all the previous work on the subject.
Most of the restrictions alluded to previously can be understood on the basis of our
holonomy-position dual relation.

Ž .Essential is that the Nahm transformation for SU 2 with only twist in the time
Ž .direction or, with twist in only the space direction maps charge one to charge one,

preserving the twist. We recall that at finite volume twist is essential for the existence of
Qs1 self-dual configurations. With both twist in space and time, such that the charge is
a half, the Nahm transformation also preserves the charge and twist. Since non-orthogo-
nal twist solutions are characterised completely by their position, this leaves little

1freedom for the Nahm transformation. The Qs instanton at l s` is mapped to at2
3 Žsingle BPS monopole on T its existence made possible by the twisted boundary
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.conditions . Section 3.1 confirms with great numerical accuracy the extension of this
dual relationship at finite l .t

Twist in the time direction does not affect the spatial boundary conditions, but
implies that the Polyakov loops at either end in the time direction are equal up to a

Ž Ž ..factor "1 for SU 2 , with y1 occurring at least once. In Section 3.2 we show
numerically how the value of these loops at either end fix the positions of the BPS
constituent monopoles of the Nahm dual. We see how in the limit l ™` these lumpst

Ž . w xbecome infinitely narrow, turning into singular abelian BPS monopoles 26 .
Ž .Finally, we discuss charge one SU 2 instantons with twisted boundary conditions in

w xthe space directions only. These have been shown 29 to be described by two
1consecutive tunnellings with Qs instantons, that is these configurations are charac-2

terised by two lumps whose separation in time can be arbitrary. Resolving the configura-
1tion in two Qs instantons also fixes the values of the spatial Polyakov loops uniquely2

Ž .in terms of the choice of spatial twist. Since these are mapped to the relative locations
of the constituent monopoles for the dual caloron configuration, it explains the fixed

Žpositions of these constituent monopoles with twist in the space directions preserved
. w xunder the Nahm transformation , as was observed earlier from numerical studies 32 .

More interesting, is that with the same principle we have also been able to show that the
1separation in time of the two Qs instantons is dual to the holonomy of the related2

caloron configuration. This holonomy can be determined from the constituent monopole
mass ratios, and does not require one to take the spatial volume of the caloron to infinity

Žto define it properly. Again in this infinite volume limit l ™0 for the instanton dual tos
1.the caloron , these Qs instantons become pointlike in space and with distance in time2

matching the singularities of the Nahm transform of the R3 =S1 calorons. In Section 3.3
this dual relationship is verified again numerically, with remarkable precision.

One conclusion one can draw from these considerations is that the holonomies of
finite volume instantons and calorons are part of the moduli of the charge one
instantons. This is because they are dual to constituent positions, and because the Nahm
transformation allows one to naturally identify the moduli spaces of these dual configu-

w xrations 7 .

1.5. Organisation of the paper

This paper aims at making a synthesis of the many results reviewed in the introduc-
tion. Section 2 sets up the formalism, whereas Section 3 shows how the torus calorons
and torus instantons are related under the Nahm transformation, illustrated explicitly by

1numerical examples. Section 3.1 deals with the simple case of the twisted Qs 2

instanton. Subsections 3.2 and 3.3 form the detailed justification of our claim that for
charge one instantons, holonomies and constituent locations are dual to each other,
respectively for temporal and spatial twist. We show that taking the appropriate limits,
as discussed qualitatively in this introduction, reproduces the known analytic results.

The synthesis leads to additional insight in self-dual gauge fields on the torus and
their moduli spaces, in particular the dual relationship between holonomies and con-
stituent locations. Although intrinsically simple, as we hope to have made clear in the
preview above, some of the detailed justification tends to be rather technical, also in part
because we used numerical lattice technology to establish the dualities in the compact
case. Nevertheless, we have structured the paper such that Subsections 3.2 and 3.3 can
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be skipped on first reading, with the essentials summarised in the preview above.
Section 4 concludes the paper with a short summary and outlook.

2. The Nahm transformation with twist

Let us consider a four-dimensional torus. This can be defined as R4rL where L is a
Ža . Ž � 4.rank-four lattice of points. Let e stand for four vectors ag 0,1,2,3 which can be

chosen as generators of L. We will take in general a hypercubic torus l = l = l = l ,t 1 2 3
Ž0. Ž . Ž1. Ž . Ž2. Ž . Ž3. Ž .for which e s l ,0,0,0 , e s 0,l ,0,0 , e s 0,0,l ,0 and e s 0,0,0, l . Oftent 1 2 3

we will take l s l s l ' l . For obvious physical reasons we will refer to the direction1 2 3 s

with length l as time and to the other three as space.t
Ž . Ž .Now consider SU N self-dual gauge fields A x defined on this torus. They can bem

looked at as fields defined on R4, periodic modulo gauge transformations under
Ž . Ža .translations by vectors a in the lattice L. Given any element of L, a'e s ss ea

Ž . Ž Ž . .s gZ , we have our convention throughout this paper is that A x is hermitiana m

w x † †A xqa s V A x 'V x A x V x q i V x E V x , 1Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .n a n a n a a n a

Ž . Ž .where V x form a family of SU N matrices, known as twist matrices. Since thea
Ž .lattice L is abelian, the matrices V x must satisfy the following consistency condi-a

tions:

V xqb V x se2p i NN Ža ,b. V xqa V x . 2Ž . Ž . Ž . Ž . Ž .a b b a

Ž . Ž Ž ..Because the matrices belong to SU N , the factor exp 2p i NN a,b must be an element
Ž .of the centre Z . Hence, NN a,b is an antisymmetric bilinear form defined by its actionN

on the generators
nabŽa . Ž b .NN e ,e s , 3Ž . Ž .
N

where n is an antisymmetric matrix of integers defined modulo N, known as the twistab

tensor. We will frequently refer to its elements in the form of two 3-vectors of integers:
1k sn and m s ´ n .i 0 i i i jk jk2

An important role in what follows will be played by the lattice L , a sublattice of L.0

This is given by the elements agL, such that the associated gauge transformation
Ž . Ž Ž .. Ž .V x commutes in the sense of the composition in Eq. 2 with all other V x .a b

Equivalently
<L ' agL NN a,b gZ, ;bgL . 4� 4Ž . Ž .0

The quotient group LrL is a finite abelian group. Using the freedom to select a basis0

of L such that n has the canonical Frobenius form, one can show that the order ofab

this group is the square of some integer, N 2. The integer N plays an important role in0 0

what follows and depends only on the form NN. It is clear that for trivial twist vectors
Ž Ž . .ksms0 mod N NN a,b gZ one has L sL and N s1.0 0

w xNow let us proceed to introduce Nahm’s transformation 7,10,11 . For that purpose
add a 4 parameter family of curvature free abelian gauge fields to the original self-dual

Ž . Ž .gauge field, A x q2p z I. This family of U N gauge fields is still self-dual, as them m

curvature is not affected by the addition. The zero-modes of the Weyl equation in this
background satisfy

aDy2p iz C x s0. 5Ž . Ž .Ž . z
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In this notation we associate to each four-vector C a 2=2 matrix CsC I q iCPsm 0 2=2
Ž . Ž .with s the Pauli matrices . The covariant derivative D is given by E y iA x . In thek m m m

Ž .absence of twist ksms0 , the Weyl spinors satisfy the boundary conditions:

C a xqa sV x C a x , 6Ž . Ž . Ž . Ž .z a z

w x Ž . Ž .and the index theorem 36 implies that the number of solutions satisfying Eqs. 5 – 6
Ž .labelled by a is given by the topological charge Q. Then the Nahm transformed gauge
field is given by

E†a b 4 a bÂ z s i d xC x C x . 7Ž . Ž . Ž . Ž .Hm z zE zm

Ž .Quite miraculously this is an SU Q self-dual gauge field with topological charge N.
˜ 4 ˜ ˜Furthermore, the gauge field is defined on a dual torus R rL, where L is the dual

lattice of L.
Ž . Ž .With non-trivial twist k,m/0 the boundary conditions shown in Eq. 6 are no

a Ž . Ž .longer valid, since C x takes values in the fundamental representation of SU N ,z

which transforms non-trivially under the centre of the gauge group. Two strategies were
w xdeveloped in Ref. 34 to deal with this. One involves adding flavour and the other

replicating the original torus. Both methods were shown to lead to the same Nahm
transformed gauge field.

Ž .For the flaÕour construction one introduces the U N N self-dual gauge fieldf
Ž .A x m I . The enlargement of the colour space allows us to modify the twistm N =Nf f

Ž . Ž . ) Ž . Ž .matrices as follows: V x ™V x mG a . The N =N constant matrices G aa a f f

satisfy

G a G aX se2p i NN Ža ,aX . G aX
G a . 8Ž . Ž . Ž . Ž . Ž .

Ž . Ž .In this way the new U N N matrices V x have no twist, and the standard formalismf a
Ž .can be applied to them. The existence of solutions to Eq. 8 , known as twist-eaters, was

w x Ž .studied in the past 37–39 . The constant matrices G a are known to exist provided Nf
Ž .is a multiple of N , the twist-dependent integer defined below Eq. 4 . The solutions0

form an irreducible set provided the matrices are precisely N =N . Furthermore, the0 0

solution is unique modulo similarity transformations and multiplication by constants
w x Ž .1,37–39 . If we restrict to matrices belonging to U N these constants are necessarily0

Ž Ž . .phases a U 1 representation of the lattice L . Hence, we will consider N sN andf 0
Ž .make a particular choice of solutions G a . In Appendix A we show how different

choices of the twist eaters correspond to translations in z of the Nahm transformed field.
Ž .We have reduced the problem to the situation without twist, for a U N N self-dual0

4 ˆgauge field defined on the torus R rL with topological charge NsN Q. One can then0
ˆŽ .construct the Nahm transformed gauge field in the standard way. It will be a U N

4 ˜self-dual gauge field with topological charge N N, living on the dual torus R rL. The0

construction is in terms of the solutions of the Weyl equation in the background of the
Ž . Ž .U N N gauge field adding 2p z I . However, given the tensor product form of this0 m

Ž .gauge field, these zero-modes are seen to be solutions of the original U N Weyl
Ž . Ž .equation 5 . But the boundary condition, Eq. 6 , is replaced by

C ia xqa sV x G ) a C ja x , 9Ž . Ž . Ž . Ž . Ž .z a i j z

Ž .where i, j are flavour indices taking N values . The index theorem tells us that the0
ˆlabel a , running over the linearly independent solutions, takes NsN Q values.0
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Choosing these solutions to form an orthonormal set, we can express the dual gauge
field as follows:

N0 E†a b 4 i a i bÂ z s i d xC x C x . 10Ž . Ž . Ž . Ž .Ý Hm z zE zmis1

4 ˜ w xAlthough this field is in principle living on the torus R rL, in Ref. 34 it is shown that
it possesses additional periodicities. Hence, one can define the Nahm transform of the
original gauge field with non-trivial twist as the restriction of the gauge field given in

Ž .Eq. 10 to the minimal torus, in which case it has non-trivial twist as well. It can be
4 ˆ ˆ ˜shown that this minimal torus is precisely R rL, where LsL , the dual lattice of L0 0

Ž Ž ..see Eq. 4 . This definition preserves the property that the Nahm transformation is an
involution, and reduces to the standard construction for trivial twist. Proofs are given in

w xRef. 34 . A more elegant, basis independent derivation is given in Appendix A.
Now we will explain briefly what is the essence of the alternative construction, which

is directly related to our numerical implementation of the Nahm transform. We can view
Ž . 4A x on R rL as being defined on the 4 dimensional hypercube formed by the unitm

Ž Ž m ..cell spanned by e of L, with appropriated twisted boundary conditions. Consider
now a sublattice L

X whose unit cell is obtained by duplicating the original hypercube in
Ž .various directions, in such a way that the net twist vanishes. So one defines A x onm

R4rL
X, such that its boundary conditions do no longer carry twist. A trivial way to

achieve this is by taking L
X sL , whose unit cell contains N 2 unit cells of L, but this0 0

is not a minimal choice.
To determine L

X it is simplest to make a choice of generators for L such that nab

takes the Frobenius standard form with non-zero entries defined by n syn sq02 20 1

and n syn sq . We introduce p and p as the smallest positive integers such31 13 2 1 2
Ž .that q p rNgZ. One duplicates the hypercube p y1 times in either the 0 or 2i i 1

Ž .direction and p y1 times in either the 1 or 3 direction such that N sp p . Further2 0 1 2

freedom arises in case p has non-trivial prime factors. The new gauge field on R4rL
X

i

has topological charge N Q and no twist. Now one can apply the Nahm transformation,0
Ž .which maps to a SU N Q self-dual gauge field of topological charge N, defined on0

4 ˜X
R rL .

Each choice of L
X will lead to a different set of zero-modes. This can only mean that

the resulting dual gauge fields are related by gauge transformation. Gauge invariant
quantities have to agree when derived from the various choices of L

X. But this means
that the smallest unit cell in terms of which these gauge invariant quantities can be

˜X ˆ ˜reproduced, is the intersection of the unit cells of all L , which is precisely LsL , the0
Ždual of L in the same way the unit cell of L is the intersection of the unit cells of all0

X.L . Note that L is the smallest sublattice of L, that is also a sublattice of all possible0
X Ž X 2choices of L the unit cell of L consists of N unit cells of L and therefore of N0 0 0
.unit cells of L . With the twist in the standard form given above, L is obtained by0

4 Ž .duplicating the hypercube that defines the original torus R rL, p y1 times in both1
Ž .the 0 and 2 directions and p y1 times in both the 1 and 3 directions. In Fig. 1 we2

elucidate this for the 0-2 plane with q s1 and p s2.1 1
ˆ 4 ˜Ž . w xThis shows that A can be defined as an SU N Q gauge field on R rL 34 and has0 0

topological charge NrN . Nevertheless, as is obvious in particular for NrN not an0 0
ˆinteger, the unit cell of L cannot be without twist, i.e. A is also a gauge field with0
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Fig. 1. We present a cross section through the 0-2 plane of the various lattices that appear in the Nahm
14 2 2transformation with twisted boundary conditions n sy n s1 on R rL. Units are such that l s l s ,02 20 0 2 2

4 ˜for which R rL is of the same size as the original torus. In this case N s2 and the two choices for the0 0

minimal lattices without twist are denoted by L
X and L

XX. The dual of the lattice L gives the torus on which0

the Nahm transformed gauge field lives, with the same twist. Duplications on the dual side are identical,
Ž X XX .except for interchanging the roles of L and L and less importantly L and L . When a symbol overlaps0

with different cells it belongs to all of those cells as a whole.

Ž .twisted boundary conditions. For SU 2 in the case that the original twist is already in
Žthe Frobenius standard form where the situation of Fig. 1 applies in the 0–2 andror the

.1–3 planes , the dual twist can be read off from the minimal number of duplications
˜ ˜Xrequired to go from L to any of the choices L .0

( ) ( )3. The case of SU 2 twisted instantons

Having presented the general formalism, let us now concentrate on the study of
Ž .SU 2 gauge field configurations for spatially symmetric tori. From the previous

formulas one can deduce that the symmetric structure of the torus is not always
preserved by the Nahm transform. Nonetheless, the dual torus is always contained

4 ˜within the symmetric torus R rL. Furthermore, if a given torus has l rl 41, its Nahms t

transform corresponds to l rl <1. Thus, the Nahm transform of the torus instantons t

configurations are the torus caloron configurations. The space of gauge inequivalent
solutions defines the moduli space. Its dimension is given through an index theorem to

ˆ ˆŽ .be 4NQ for SU N gauge fields of charge Q on the torus. Note that QNsQN so that
w xthe dimensionality is preserved by the Nahm transform. Indeed, in Ref. 7 it is proven

that the Nahm transformation induces an isometry between the moduli spaces.

13.1. The twisted instanton Qs 2

1Ž .We start with the smallest value of the topological charge, for SU 2 this is Qs .2

The dimension of the moduli space is 4, so that the set of solutions is discrete up to
translations. The value of the topological charge is related to the twist by the formula
w x2,3,40

kPm
Qsny , 11Ž .

N

where n is an integer. Fractional values of the topological charge are attainable for
Ž . Ž .non-orthogonal twists, i.e. kPm/0 mod N. For SU 2 we choose ksms 0,1,0 , with

Ž .kPms1. We deduce N s4 and therefore the Nahm transformation is again an SU 20
1self-dual gauge field with topological charge . Furthermore, it lives on a torus with2
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1Ž m . Ž m . Ž m . Ž0. Ž .generators e s e , where e are the dual basis vectors e s 1rl ,0,0,0 ,ˆ ˜ ˜ ˜ t2
Ž1. Ž . Ž2. Ž . Ž3. Ž .e s 0,1rl ,0,0 , e s 0,0,1rl ,0 , e s 0,0,0,1rl . The corresponding twist is˜ ˜ ˜s s s

unchanged.
Now we will explain how this works for configurations with l rl <1. This wills t

serve to illustrate the precision of our numerical techniques. One can generate self-dual
w xconfigurations numerically by employing the method described in Ref. 4 . To minimise

the errors due to lattice artifacts we actually make use of the improved cooling technique
w xdescribed in Ref. 18 , with the parameter ´s0. One can implement twist by the

w xmethod of Ref. 41 . We have generated self-dual configurations with the twist men-
tioned above on lattices of size 4=163 and 32=83. Notice that in the former case

1l rl s4 and in the latter case . They correspond to Nahm-dual tori for this twist. Ins t 4

both cases the action density of the configuration has a lumpy profile with a single
maximum in space. The position of the maximum does not coincide with a lattice point,
but can be estimated by interpolation. Then, given the interpolated position of the
maximum, one can determine the coordinates corresponding to each lattice point with
respect to it.

What we did next was to apply the numerical Nahm transformation introduced in
w xRef. 33 . The values of z, where the Nahm transformation was calculated, were those

corresponding to the lattice points of the dual configuration. In this way the Nahm
transformation can be compared with the lattice configuration obtained on the dual torus.
Fig. 2 shows the result of such a comparison for the action density along a line on the
torus. The agreement is remarkable. It shows the way in which our expectations work
and gives us confidence on the precision of our numerical methods to investigate other

1w xmore complicated situations. Note that in fact Ref. 33 dealt with the case of four Qs 2

Ž .instantons with l rl s1 on a 12=6=12=6 lattice, finding that the configuration iss t
1Ž .mapped to itself up to a shift . In terms of the Qs twisted instantons this can be2

understood from the fact that only its position is a free parameter. Since the work in Ref.
w x33 the numerical methods have been greatly improved, details of which will be
reported elsewhere.

3.2. Temporal twist Qs1

Let us recall what is known about Qs1 configurations with ms0 and k/0, for
Ž . Ž .the cases l rl ™0 torus calorons and ` torus instantons . These will be mapped ontot s

each other by the Nahm transformation and we are interested in establishing how the 8
dimensional moduli spaces are related.

Ž .The torus caloron configurations l < l have been studied recently by ´-coolingt s
w xtechniques 32 . As l rl ™0 these configurations approach some of the non-trivialt s

1w xholonomy calorons 20–25 , namely those associated with vs . The parameter4

< <vs v is defined through the holonomy that in the infinite volume is defined by the
value of the Polyakov loop at infinity

ltexp 2p iv Pt s lim P exp yi A t , x dt . 12Ž . Ž . Ž .H 0ž /< <x ™` 0

1These calorons with vs correspond to equal size constituent monopoles located at4

two different points. For finite l rl the periodic boundary conditions in space slightlys t
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1 Ž .Fig. 2. Comparison between the action densities of a numerical Qs instanton with twist ks ms 0,1,0 ,2
13 Ž .living on a 32=8 lattice, and the Nahm transformation of a Qs caloron BPS monopole with the same2

twist, living on a 4=163 lattice. The depicted values correspond to points in the 32=83 lattice, along the
Ž .lattice direction n s 8,4,8 ; the peak of the action density of the lattice instanton being interpolated, inlatt

1 1 1Ž . Ž .lattice coordinates, to ns 15.809,3.741,3.979,4.162 and shifted to , ,0, where the maximum of the4 16 16

Nahm transform of the caloron sits. The continuum time period has been set to l s1 for the caloron andt&
1hence l s for its Nahm transformed instanton.t 2

modify the action density profiles without changing the qualitative features. Already for
w xl rl s4 the agreement is excellent 32 .s t

Recently also the Weyl-Dirac zero-mode for the infinite volume caloron with
w xnon-trivial holonomy was determined analytically 42 . The zero-modes are more

localised than the action density and the agreement between the numerically determined
zero-mode for the torus caloron is therefore expected to be even better. This is illustrated
in Fig. 3, where we compare these exact infinite volume zero-modes with those that are
numerically constructed. Since the zero-modes are the ingredients for performing the

Ž . 3Fig. 3. Zero-mode density profiles for the two zero-modes of the lattice caloron left on a 4=16 lattice for
Ž . Ž .ks 1,1,1 , created with improved cooling ´ s0 . The profiles fit well to the two zero-modes for the infinite

1Ž .volume analytic caloron solution shown on the right at ys ts0 with v s and constituents at y s14
1Ž . Ž . Ž .2.50,0.12,0.95 and y s 1.38,y0.24,2.67 , in units where b s l s1 or as and the left most lattice2 t 4

point corresponding to xs zs0. The plots give the added densities of the two zero-modes.
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Nahm transformation, the present comparison shows the numerical accuracy that was
achieved. For convenience we have taken for this comparison the parameters that were

w xused in Fig. 1 of Ref. 32 , where one can find the action density profiles. In this
Ž .particular case ks 1,1,1 and we duplicate the initial torus in the time-direction, to

reach a situation without twist. This gives a charge 2 configuration with two zero-modes,
w xof which one is periodic and the other is anti-periodic. From Ref. 42 one knows that

each is localised on one of the constituents. The numerical procedure was to combine
the two zero-modes of the doubled lattice in two orthonormal modes, each maximising
the overlap with one of the two constituents. Using the large degree of localisation, we
have simply added the zero-mode densities together to show the result in one figure, but
we stress each lump corresponds to the density of one of the zero-modes. There are no
free parameters involved in this comparison and the agreement for the zero-modes is
indeed impressive.

In the infinite volume the parameters of the caloron are described by the spatial
Ž . Ž .positions of the two constituents 6 parameters , one overall time position and a U 1

phase rotation that can be undone by a gauge transformation. For large separations of the
constituents the caloron becomes static with the two constituent monopoles showing up
as separate lumps. On the other extreme when the constituent monopoles are close to
each other they fuse into a single lump that looks like an ordinary instanton in R4.

Ž . w xTorus instanton configurations l < l were studied a few years ago 18,19 . Ass t

l rl ™0 the configurations evolve into well-defined solutions on T 3 =R. One features t

shared by all these torus instanton solutions is that they are local in time. At large times
the configurations have to approach a pure gauge, to guarantee the action stays finite.
The gauge fields with zero curvature on T 3 at ts"` are characterised by their

Ž .holonomies spatial Polyakov loops

l j"P s lim P exp yi A t , x dx . 13Ž . Ž .Hj j jž /t™"` 0

In the presence of a temporal twist k, the holonomies at both ends are related

Pqse2p i k j r N Py. 14Ž .j j

When we consider l rl finite, the instanton has 8 parameters, but the holonomies cant s

not be rigorously defined. In the limit l rl ™` they would, however, be related by thet s

twist factors. It is likely that in this limit the three holonomies are part of the moduli that
Ždescribe the solution for the infinite volume caloron, gauge zero-modes associated with

.a variation of v are not normalisable and v is not a moduli parameter . There are
w xindications that the holonomies fix the scale of the torus instanton 19,26 . In addition

there are of course the four position parameters, and presumably a phase that describes
the colour orientation relative to the twist matrices.

Dressing of the singularities for the Nahm dual of T 3 =R instantons
The dual gauge field for instantons on T 3 =R with temporal twist was shown to be a

w x Žsolution of the abelian Bogomolny equations with point sources 26 that have due to
.the self-duality equal magnetic and electric charges. From this one computes the

Maxwell field analytically by summing over the periodic copies of these charges.
Essential is that the location of the point charges is determined by the holonomies P ".j



( )M. Garcıa Perez et al.rNuclear Physics B 564 2000 159–181´ ´172

At these specific points on the dual torus the Nahm transformation is modified due to
boundary terms in the non-compact directions. This leads to four singularities, whose

Ž . " Žlocations are determined by requiring exp y2p il z P to have a unit eigenvalue thisj j j

leads to a zero-energy state in the Weyl-Dirac Hamiltonian at ts"` and therefore to
.non-exponential decay of the zero-mode . The charges are all equal in absolute value,

w xdue to Dirac quantisation 26 , and opposite in sign for those associated to the
holonomies at either end. With temporal twist, the location of the sources with one sign

1 Ž .of the charge are displaced by k rl ,k rl ,k rl with respect to the location of the1 1 2 2 3 32

two sources with the opposite sign.
We illustrate in Fig. 4 how the singularities arise as l increases. The results aret

based on a charge 1 instanton on an 20=83 and 40=83 lattice with temporal twist
1 1y qŽ . Ž . Žks 1,1,1 and holonomies defined by TrP sy TrP s 0.86,0.76,0.082 chang-j j2 2

ing l and making sure the holonomies stay fixed can be achieved by cooling with opent
w x.boundary conditions, introduced in Ref. 19 . We choose units such that l s1, so thats

Ž .the sources with positive charge are located at zs 0.415,0.387,0.263 and zs
Ž . Ž .0.585,0.613,0.737 and the ones with negative charge at zs 0.915,0.887,0.763 and

Ž .zs 0.085,0.113,0.237 . Fig. 4 is plotted in the plane defined by z s0.263, which is3

through the position of the first source and still close to the position of the last source.
Shown is the ratio of the action density for the 40=83 lattice over the action density for
the 20=83 lattice.

The nature of the singularities is illuminated by the observation, made before, that the
Nahm transformation of the torus instantons are the torus calorons. Thus, the action
density peaks correspond to the location of the BPS constituent monopoles. Their mass

1 2Ž . Ž .associated to vs should be given by 8p l in units where l s1 . The result ist s4

compatible with the fact that the peak heights of these BPS monopoles scale as l 3. Awayt

from the core of these BPS monopoles the field becomes abelian and should become
independent of l , as the charge is fixed. Fig. 4 shows that indeed the ratio becomes onet

outside of the core of the monopoles. The non-abelian core of the BPS monopole shrinks
to a point in the limit l ™`, and one is left with the resulting abelian field. This ist

illustrated in Fig. 5, where we plot the square of the electric field in the plane defined by
z s0.5. The numerical result is based on the 40=83 lattice, for which the plane3

z s0.5 is far enough away from all sources not to be affected by their non-abelian3
Ž . 2 Ž .dressing as SU 2 BPS monopoles of mass 40p in units where l s1 . The agree-s

ment, that involves no free parameters, is indeed very good.

Fig. 4. Ratio of the action densities of the Nahm transformed gauge field for a l =83 lattice, dividing thet
1 1y qŽ .l s40 result by that of l s20. The approximate holonomies are given by TrP sy TrP st t j j2 2

Ž .0.86,0.76,0.082 .
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Fig. 5. Comparison of E 2 in the plane z s0.5 for the Nahm transformation of the 40=83 instanton3

configuration described in the caption of Fig. 4. On the left is the numerical result and on the right the analytic
result for T 3 =R.

The Nahm transformation was constructed by doubling in time, such that at finite lt

this corresponds to a charge-2 torus instanton, which is mapped to a charge-2 torus
1 y1 3w x w xcaloron defined on the hypercube 0, l = 0,1 . Our general formalism tells us thatt2

this is formed by duplicating the Nahm-dual torus, which is half the size. The latter
corresponds to a skew lattice, since the twist is not in the Frobenius standard form. The

1 Ž .additional lattice generator is precisely the vector 0,k rl ,k rl ,k rl giving the1 1 2 2 3 32

displacement of the two positive versus the two negative sources.
In summary, we have illustrated how the Nahm transformation maps torus instantons

Ž .into torus calorons, and how the approximate holonomies are mapped into the
positions of the constituent BPS monopoles. This relation is exact in the limit that

Ž .l ™` respectively 0 . To test its validity at finite l rl we studied the case witht t s
Ž . Ž Ž ..temporal twist ks 0,1,0 ms 0,0,0 . One cannot have both the original and

Nahm-dual torus to be spatially symmetric, due to the asymmetric twist, but that is not
important for the general conclusion about the mapping we are studying. If our original

1 1 1 13 ˆ ˜torus has size l = l , LsL has size = = = . The twist vectors for thet s 0 2 l l 2 l lt s s s

Nahm transform are the same as the original ones.
Ž .By means of improved cooling ´s0 we have generated a lattice torus caloron

w xconfiguration 32 . The relative distance between the two constituent monopoles can be
w xtuned by using different values of the parameter ´ 32 . On the other hand, it is possible

w x Žto use a modified version of cooling 19 fixing the field to have zero colour magnetic
.fields at ts0 and ts l in terms of prescribed holonomies in order to produce torust

instanton configurations with fixed holonomies. If we choose these to be the ones
determined by the location of the monopole constituents of the torus caloron, then the

w xnumerical Nahm transformation 33 can be applied to each of these configurations and
has to give back the other configuration, up to a translation. This is illustrated in Fig. 6.
The somewhat larger numerical differences are in part due to the not sufficiently large
ratio for l rl which, for the required values of the holonomies, enforces a rather narrowt s

instanton which is not easily stabilised on the lattice. Results for a smaller value of l rlt s
Ž .not shown confirm this improvement with increasing l rl . Going to even a largert s

ratio is however computationally too expensive. The comparison confirms that the
holonomies of the time-twisted torus instanton are part of the moduli.

3.3. Spatial twist Qs1

Ž .We will conclude by discussing the case of spatial twist ks0 , for which we take
Ž . 3ms 0,1,0 . If our original torus has size l = l , the Nahm dual torus for this twist hast s
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Ž .Fig. 6. Comparison between the action densities of a numerical Qs1 instanton with twist ks 0,1,0 and
ms0, living on a 32=8=4=8 lattice, and the Nahm transformation of Qs1 torus caloron with the same
twist, living on a 4=323 lattice. The constituent locations were used to fix the holonomies in generating the
torus instanton. Depicted values correspond to points in the 4=323 lattice, along the x direction. The
continuum units are such that l s1 for the caloron.t

1 1 1 1 Žsize = = = to obtain instead a spatially symmetric dual torus we shouldl 2 l l 2 lt s s s
1 1 .apply the Nahm transformation to a torus with size l = l = l = l . As before, thet s s s2 2

dual gauge field has the same spatial twist as the original gauge field. The phenomenol-
ogy of these configurations, for the large aspect ratios we are interested in, is different to
the previous case with temporal twist. But there are also quite interesting analogies that
may be important for the case l s l , where from the Euclidean point of view theret s

should be no essential difference between twist in space or time.
w xThe analysis of Ref. 32 shows that for l rl large, torus calorons with spatial twists t

are given by configurations that approximate the infinite volume caloron with arbitrary
1w xholonomy, parametrised by vg 0, , such that the two constituent monopoles have in2

2 2Ž .general differing masses, 16p vrl and 8p 1y2v rl . But now their relativet t

positions are fixed and determined by the spatial twist. This contrasts with the situation
for temporal twists for which the value of v is fixed, but the relative position is
arbitrary.

Torus instantons with twisted boundary conditions in space, and l rl small, haves t
w xbeen studied extensively in relation to the Hamiltonian formulation in a twisted box 29 .

w xThe outcome of these studies 30 showed that the configurations can be described in
1 Žterms of two Qs twisted instantons 2Q twisted instantons in the case of higher2

.charges , that have both twist in space and time. The net twist in time, however,
1vanishes. We can view the Qs constituents of the Qs1 instanton in very much the2

same way as the monopole constituents for the caloron. It was found that the space-time
locations of these twisted instanton lumps can be arbitrary. Only when they are very
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close to each other, they merge into a single lump. In that region, when the size of the
lump becomes small compared to l , the configuration behaves like the ordinarys

instanton in R4. There are two very simple specific examples where this constituent
1nature of the torus instantons with spatial twist is apparent. Take a Qs instanton with2

Ž .twist msks 0,1,0 and duplicate either in the 0 or 2 direction to remove the time
twist. The result is a Qs1 instanton with spatial twist. Either the two lumps have the
same spatial positions and are separated maximally along the time direction, or they
have equal time positions and are maximally separated along the space direction.

We now turn our attention to studying how the Nahm transformation relates these
1torus instantons and calorons. For the above example built from two Qs instantons,2

this can directly be understood in terms of the results of Section 3.1, where it was shown
1 Ž .that the dual of such a Qs instanton is a BPS monopole, with twist ksms 0,1,0 .2

Duplication of the instanton in the 0 direction is dual to duplication of the BPS
monopole in the 2 direction, and we do get a caloron with maximal separation of the

1Ž .vs constituents in the direction of the spatial twist. On the other hand, duplication4

of the instanton in the 2 direction is dual to duplication of the BPS monopole in the 0
direction. This doubles the mass of the constituent monopole and corresponds to a

1 Žcaloron with trivial holonomy vs0 or the other constituent is massless and therefore2
1.absent . This establishes that, with twist in space, v need not be .4

Dressing of the singularities for the Nahm dual of R 3 =S1 calorons
To deal with a more general case, we consider the Qs1 instanton with spatial twist

1 Ž Ž . Ž ..being made out of two Qs ms 0,1,0 , k arbitrary such that kPms1 mod 2 with2

an arbitrary time separation, i.e. no longer obtained by duplication in the time direction.
To study some of the properties of its Nahm transform, we consider the limit l ™0. Ins

1this limit all spatial dependence is removed and the two Qs instantons shrink to two2

points, specified by their positions in time. In one dimension curvature can be non-trivial
only at point-like singularities, so the curvature vanishes everywhere, except at the

1locations of the Qs instantons, where the field strength becomes singular. The2
ˆcurvature free regions are described by a constant abelian gauge field A , making aj

1 1jump at the positions of the Qs instantons. In this limit, for a single Qs instanton,2 2
ˆ Žthe twist determines the jump in the constant gauge field to be D A sp k rl relevantj j s

Ž .for the case of space twist, so as to assure that Eq. 14 is satisfied. In the general case,
Ž .where the values of the Polyakov loops are not fixed see below , there is more

.freedom . The Qs1 instanton is therefore described by

1Â s2p j q k x t rl , 15Ž . Ž .Ž .j j j w t , t x s2 a b

ˆŽ . Ž . Ž .where j and A are arbitrary constants fixed for spatial twist, see later and x tj 0 w t , t xa b

w xis the characteristic function of the interval tg t ,t . This result agrees exactly witha b
w xthe Nahm transformed gauge field of the infinite volume caloron 20–22 . We can

1 2Ž . Židentify krl sapr with the distance vector between the two constituents in unitsˆs2
1. Ž . Ž w x Ž . Ž .set by l s1 and vs t y t with its holonomy see Ref. 21 , Eqs. 41 and 65 ,t b a2

.for the precise definitions of r and a .ˆ
It may seem that for the Nahm gauge field of the caloron t syv and t sv area b

ˆfixed, but one should of course realise that A is still self-dual, away from the
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singularities, when t is shifted over a constant. We conclude that the holonomy of the
1caloron fixes the relative locations of the Qs instanton lumps under the Nahm2

transformation, whereas the holonomies of the instanton, determined in each of the two
Ž .flat regions for l ™0 , fix the relative locations of the constituent monopoles of thes

1caloron. Their difference vector mrl , remarkably, agrees with maximal separation ons2

the dual torus along the direction determined by the spatial twist1. This derivation is as
3 w xrigorous, in the limit l ™0, as the one for T = 0,l , in the limit l ™` and has givens t t

a beautifully consistent picture of the dual relationship between the moduli spaces of the
calorons and finite volume instantons.

To test this picture at finite l we have made use of our numerical methods. Wes
1started with a configuration on an 80=4=8=4 lattice containing two Qs torus2

Ž Ž ..twisted instantons with msks 0,1,0 separated in time by a distance d . In units0
Ž . Ž .where l s1 so l s1r10 , the lattice L is generated by e s 1,0,0,0 , e st s 0 1

4 ˜Ž . Ž . Ž .0,l r2,0,0 , e s 0,0,l ,0 and e s 0,0,0, l r2 . The dual torus R rL has as units 2 s 3 s 0
w x w y1 x3cell 0,1 = 0,l . This configuration is constructed in several steps. First one startss

1 Ž .with a Qs configuration on a 40=4=8=4 lattice with twist ksms 0,1,0 .2
1Using a time reversal and parity transformation one obtains a second Qs instanton2

with the Polyakov loops at tf"` interchanged. One can glue the two configurations
together at arbitrary time separation d and transform them appropriately to trivial twist0

matrices in time. If d 4 l this procedure gives an approximate self-dual solution on0 s

the required torus and with spatial twist. The small deviations from self-duality induced
by the procedure can be eliminated by cooling with ´s0. We end up with a Qs1
configuration with the desired properties.

A few remarks are in order, concerning the values of the Polyakov loops for the
Ž . Ž .space twisted instantons. Eqs. 12 and 13 are only valid in the gauge where the

Ž .appropriate V x are trivial. Such a gauge was assumed for the discussion ina

Subsection 3.2. The general formula for a Wilson loop that closes by the shift over a
w xperiod reads 43

lm
Ž m .P x sP exp yi A x dx V x . 16Ž . Ž . Ž . Ž .Hm m m ež /0

ŽIn the presence of a space twist the P are not arbitrary, but uniquely determined up toi
.some discrete transformations by the twist. This can be seen as follows. Since the

configuration is exponentially localised in time, it goes to a pure gauge at "`. Now one
Ž . Ž .can choose a gauge in which A ts` s0, fixing j s0 in Eq. 15 , for which thei i

twist matrices V Ž i. are constant and the holonomy is given precisely by these matrices.e
Ž .Ž1. Ž3.The fact that V and V anticommute as a result of the twist , implies they can bee e

brought to the form is and is , respectively. On the other hand, the constant twist1 3

matrix for the 2 direction has to commute with these Pauli matrices and therefore must
be "I. This fixes the Polyakov loops for the Qs1 space twisted instanton at both

1 1 1ts` and tsy` to be TrP s TrP s0 and TrP s"1, depending on whether1 3 22 2 2

we choose the twist matrix in direction 2 to be "I. The location of the caloron

1 1Note that on the dual torus a displacement by along directions 1 and 3 corresponds to a shift by a full2 l s
1 1 Ž .torus period. Hence, a shift by kr l is identical to mr l , for any k with kPms1 mod2 .s s2 2
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Fig. 7. Comparison between the action densities of the numerical Nahm transform of a torus instanton and the
appropriate infinite volume analytic caloron solution. The original field lives on a 80=4=8=4 lattice with

1Ž . Ž .twist ks 0,0,0 , ms 0,1,0 . Units are set by l s1. The temporal distance between the two Qst 2

constituents for the instanton corresponds to a caloron with v s d r2s0.311. The plot is along the line0

connecting the centres of the two constituent monopoles, defined by z s z s5 as determined by the spatial1 3

holonomies of the instanton.

Fig. 8. The same as in Fig. 7, but for a temporal distance corresponding to d s0.786.0
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Ž .constituents are determined by the holonomies to be at zs 5,0,5 , and the one
1 Ž .displaced by mrl from it, i.e. zs 5,5,5 .s2

1We have generated two such configurations with time separations between the Qs 2

instanton constituents given by d s0.622 and d s0.786. In Figs. 7 and 8 we compare0 0

the Nahm transformed results with the infinite volume analytic caloron solutions and the
holonomy fixed to vsd r2. Plotted is the action density along the line joining the two0

monopoles. The comparison is very good taking into account that there are no free
parameters. The mismatch at the peaks can be attributed to the fact that the data points
correspond to a finite ratio l rl s1r10, which is zero for the analytic result. A directt s

comparison with numerical data at this fixed ratio is difficult due to its small value, and
seems unnecessary given the agreement shown in Figs. 7 and 8.

4. Conclusions

By now our knowledge of self-dual configurations on the torus has come from
various sources. Apart from general existence proofs and consequences of the index
theorem, information in this field has arisen from both numerical studies based on lattice
gauge theories and analytical results obtained on manifolds having compact and
non-compact directions. Most of the interest and information refers to self-dual configu-
rations on spatially symmetric tori of size l = l 3 for large and small aspect ratios,t s

Ž . Ž .known as torus instantons l rl <1 and torus calorons l rl 41 . In this paper wes t s t
Ž .have studied the Nahm transformation that relates SU N self-dual gauge fields of

Ž .charge Q with twisted boundary conditions on a torus, to SU N Q self-dual gauge0

fields of charge NrN on the dual torus. Here N is determined by the twist. We found0 0

that torus calorons and instantons are dual to each other. This provides information on
their respective moduli spaces, which is fully consistent with the structure suggested by

w xnumerical studies. In particular, it allows us to understand the findings of Ref. 32 . The
most notable result is the duality observed between holonomies and the location of

Ž .constituent structures BPS monopoles or twisted instantons , as suggested by analysis
of the Nahm transformation of configurations living in T 3 =R and R3 =S1. We showed
how the abelian Nahm connections with singularities obtained in this case, result from
the collapse of the non-abelian core of the constituents into point-like singularities,
which act as sources of the surviving abelian field. Thus, all the information fits nicely
into a unified picture.

Ž .Our results might be of help in different respects. Recently the T dualities discussed
here have played important roles in D-brane and string compactifications and our
findings concerning the relation between holonomies and constituent positions is an
interesting one also in this context. For the low charges studied here we saw that the

1 Ž .basic constituent is a twisted instanton, with charge Qs in SU 2 , which shows up as2

a BPS monopole at finite temperature. We have shown that this fractional instanton
maps onto itself under the Nahm duality transformation, a property guaranteed by the

Ž .fact that for SU 2 the twist is preserved under the duality transformation and the only
freedom is the position of these twisted instantons. It would be interesting to see in
which sense these constituents do continue to play an important role at higher charges.
Finally, we hope that the work presented here will lead to a more complete analytic
understanding.



( )M. Garcıa Perez et al.rNuclear Physics B 564 2000 159–181´ ´ 179

Acknowledgements

´We are grateful to Tamas Kovacs and Alvaro Montero for useful discussions. This´ ´
work was supported in part by a grant from ‘‘Stichting Nationale Computer Faciliteiten
Ž .NCF ’’ for use of the Cray Y-MP C90 at SARA. A. Gonzalez-Arroyo and C. Pena´
acknowledge financial support by CICYT under grant AEN97-1678. We acknowledge
Centro de Computacion Cientıfica at UAM for the availability of computer resources.´ ´
M. Garcıa Perez acknowledges financial support by CICYT and warm hospitality at the´ ´
Instituut Lorentz while part of this work was developed.

( )Appendix A. Appendix A

In this appendix we will provide the proofs of the basic ingredients of the flavour
Žconstruction of Nahm’s transformation for non-trivial twisted boundary conditions k,

.m/0 . In particular, we will present in a basis independent way the derivation of the
characterisation for the Nahm-dual torus and its corresponding dual twist. This comple-

w xments the results of Ref. 34 .
i a Ž .Our starting point is the set of Weyl zero-modes C x satisfying the boundaryz

Ž .conditions of Eq. 9 . Consider now the behaviour of these zero-modes under translation
Ž .of the variables z. It is easy to see that given a solution C x of the Weyl equation onez

can construct a new solution of the Weyl equation as follows:

x Ž y. x 'ey2 p i yŽ x .C x , A.1Ž . Ž . Ž .z zqy

˜ 4 ˜ 4Žfor any element ygR as usual the space of linear forms R can be identified with
4 Ž . .R , and y x 'yPx . Applying this to an orthonormal set of solutions of the Weyl

equation one obtains a new set. This set satisfies different boundary conditions, obtained
Ž . Ž .from Eq. 9 by replacing the twist eating matrices G a ,

G a ™G
X a se2p i yŽa. G a . A.2Ž . Ž . Ž . Ž .

We thus see that there is a correspondence between translations in z and different
choices of twist-eating solutions.

XŽ .In general the matrices G a constitute an inequivalent set of solutions to the
Ž .original G a . However, for special values of y the two sets are unitarily equivalent

Ž .related by a similarity transformation . For those values of y, denoted by a, there existˆ
˜Ž . Ž .U N matrices G a satisfyingˆ0

2p i âŽa.˜ ˜G a G a se G a G a . A.3Ž . Ž . Ž . Ž . Ž .ˆ ˆ

Ž .This formula shows a nice duality between both sets of U N matrices. Before0

investigating for which a these equations have solutions, we want to discuss itsˆ
Ž .consequences. For all values a, for which Eq. A.3 has solutions, we can construct theˆ

functions

y2 p i âŽ x . ja ji˜e C x G a A.4Ž . Ž . Ž .ˆzq â
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which form a new orthonormal set of solutions of the Weyl equation with the same
Ž .boundary conditions Eq. 9 . Thus, they can be expressed as a unitary combination of

the original set of zero-modes. We arrive at the main formula:

ba
ia 2p i aŽ x . ) j b †ˆ ˜ ˆC x se G a C x V z . A.5Ž . Ž . Ž . Ž . Ž .ˆ Ž .zqa i j z aˆ ˆ

From this one can deduce that for all a the Nahm transformed gauge field satisfiesˆ

ˆ ˆ ˆA zqa s V z A z A.6Ž . Ž . Ž . Ž .ˆm a mˆ

ˆOne easily sees that the set of a define a lattice L, which we will call the Nahm-dualˆ
˜lattice. It is a sublattice of L, the lattice dual to L. We define the Nahm transformation

ˆof the original self-dual gauge field with twist as the restriction of A to the Nahm-dual
4 ˆ ˆŽ .torus R rL. This is a U N Q self-dual gauge field with topological charge Qs0
˜ ˆ ˜ ˆ ˆ< < < <N Nr LrL , where LrL stands for the number of unit cells of L that fit in a unit cell0

˜ ˆ ˜ ˆŽ . Ž .of L, or the number of elements in L mod L . The matrices V z are the correspond-â

ing twist matrices.
ˆŽ .Now let us investigate the solutions to Eq. A.3 and the characterisation of L. For

w xthat it is essential to use some properties of the twist eating solutions. One can prove 1
Ž . 2that the set of matrices G a contains a set of N linearly independent matrices, which0

form a basis of the space of all N =N matrices. Actually, to construct this basis one0 0

has to select a representative of the quotient lattice LrL . Its order is precisely N 2. The0 0
Ž .sublattice L can also be defined as the one associated to the matrices G a commuting0

Ž X. Xwith all other G a for any a gL. We call it the centre lattice. Using this fact one can,
˜ Ž .after some effort, prove that indeed the matrices G a do coincide, up to a phase factor,ˆ

Ž .with the original matrices G a . In more mathematical terms, we can say that there
ˆexists a mapping f from L to L such that

iw Ž â.G̃ a se G f a . A.7Ž . Ž . Ž .Ž .ˆ ˆ

ˆŽ .where w a is an arbitrary phase. From this we can identify L. Let a be an element ofˆ
Ž X. X

L , then it commutes with all matrices G a for any a gL, this includes the matrices0
˜ Ž . Ž . Ž .G a . Inspecting Eq. A.3 we conclude that a a gZ for any agL . Thereforeˆ ˆ 0
ˆ ˜LsL , the Nahm dual lattice coincides with the dual lattice of the centre lattice. One0

ˆ ˜can also see that the centre lattice of L coincides with L. From here it is immediate to
see that the Nahm-dual of the Nahm-dual gives back the original lattice.

There is one extra ingredient which has to be worked out, namely what is the Nahm
Ž . Ž .dual twist. This follows from Eq. A.7 and Eq. 8 . We have

ˆ XX Xy2p i NN Ža ,a . .ˆ ˆ˜ ˜ ˜ ˜G a G a se G a G a A.8Ž . Ž . Ž . Ž . Ž .ˆ ˆ ˆ ˆ

with

ˆ X X
NN a,a syNN f a ,f a . A.9Ž . Ž . Ž . Ž .Ž .ˆ ˆ ˆ ˆ

ˆŽ . Ž .Eq. A.5 is only consistent provided the Nahm-dual twist matrices V z satisfyâ
Ž .twisted boundary conditions analogous to Eq. 2 with the skew symmetric form NN

ˆreplaced by NN, the dual twist form.
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