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Abstract

We describea new cooling algorithm for SU(2) lattice gaugetheory. It has any critical point
of the energyor actionfunctional as a fixed point. In particular,any numberof unstablemodes
may occur. We also provide insight in the convergenceof the cooling algorithms. A number
of solutions will be discussed,in particular the sphaleronsfor twisted and periodic boundary
conditionswhich areimportant for the low-energydynamicsof gaugetheories.For a unit cubic
volume we find a sphaleronenergyof resp.~ = 34.148(2) and~ = 72.605(2) for the twisted
andperiodiccase.Remarkably,the magneticfield for the periodic sphaleronsatisfiesat all points
TrB~= TrB~= TrB~.

1. Introduction

Saddlepoints of theenergy functional canplay an importantrole in non-perturbative
dynamics, as they describethe minimal barrier to be taken to go from one to the
next minimum energyconfiguration. In a heatbath it determinesthecritical tempera-
ture wherebarrier crossingis no longer suppressed.In a strongly interacting theoryit
determinesthe coupling (or volume) where barriercrossing— quantummechanically
always allowed — is no longer exponentiallysuppressed.The saddlepoint we havein
mind here is the sphaleron[1], which haspreciselyone unstablemode. This comes
aboutsinceonedeterminestheminimal barrierheightfrom a mini-max procedure[211.
When onehasa path in field spacefrom oneminimum to theother,onefirst finds the
maximal energy alongthepath. Then one minimizesthis maximumover thespaceof
all such paths.The unstablemodewill correspondto thedecreasealongthe path that
goesthroughthis mini-max configuration.Givensuchasaddlepoint, it is oftendifficult
to prove in all rigour that it is theonewith lowest energy,as theremay be local minima
whenvarying over thespaceof paths.
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Quite often a sphaleronlies on a particularinstantonpath (i.e. the action associated
to thepathis also minimal), but this is by no meansguaranteed.Whentheinstantonhas
non-trivial parameters(moduli), mini-max with respectto thoseparametersprovidesa
candidatesphaleron.For S3 onecan analyticallyverify that this candidateis a saddle
point of the energy functionalwith one unstablemode [3]. For T3 this was studied
numerically [4,5]. It was not entirely conclusivefrom that study if the sphaleronwas
indeedassociatedto the top of an instantonpath.With the newalgorithm wehavebeen
ableto addressthis issuemoredirectly and concludethat it is thecasefor bothperiodic
and twisted [6] boundaryconditions.

We will only considerthecaseof pureSU(2) gaugetheories.In an infinite volume
the mini-max procedureis easily seento lead to zero sphaleronenergy,as instantons
canhavean arbitrarily largescaleparameter.In a finite volume,the scaleparametercan
not be larger than the volume, which stabilizesthe mini-max procedureat a non-zero
energy.In thepresenceof a Higgs field, like in the standardmodel [1], the scaleis set
by the Higgs mass.

Beforediscussingthenumericalresultswewill first describethealgorithmfor finding
saddlepoints and discussthe convergence.This study is specific for SU(2), but the
principleof taking the squareof the equationsof motionas the actionto be minimized
will work equallywell for SU(N) gaugetheories,with or withoutscalar fields.We also
stress that the samemethodallows one to find saddlepoints of the action functional,
which motivated us to give a description in an arbitrary numberof dimensions.In
Section 4 we will discussresults for the class of analytically known solutions with
constantfield strength,to testthe variousaspectsof themethod.Surprisingly,this study
revealesthat in somevery specialcasestheredo exist non-trivial constantfield strength
solutionsthat haveno unstablemodes(see thediscussionbelowEq. (37)). In Section
5 the results for the sphaleronsare presentedin detail. We end the paper with some
concludingremarks.Readersonly interestedin the resultsshoulddirectly go to Section
5, perhapsafter Section 2.

2. The algorithm

Considerthe square of the equationsof motion summedover its variables as a
functional. Its absoluteminimaare by constructionsolutionsof the equationsof motion.
Stability is now obvious, but also follows from the fact that at such a solution the
Hessianof the new functional is (twice) the squareof the Hessianof the energy (or
action) functional. In the n-dimensionalcontinuumwe havethe following expressions
for thetwo functionals

S~”~=_~fd~x Tr(F~~(x)) , (1)

~~_2fdnx Tr((V~F~~(x))2), (2)
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with F,5~(x)=.c9,~A~(x)— c9~A~(x)+ [A,L(x),AV(x)] the Yang-Mills field strengthin
termsof theanti-hermitianvectorpotentialA,2(x) andV,2 = ~ +adA,2 (x) thecovariant
derivative.

This wasconsideredin thepast for constructingmonopolesolutionsin threedimen-
sions [7], but the processof finding the minimumof ~ wasnot gaugeinvariant. Like
for theWilson action [8]

~(n) = N
4~ Tr (i —

X,/2,P ~

~ , (3)

a gaugeinvariant lattice action for the squareof the equationsof motion is not too
difficult to write down [9]

= N6~~ReTr(U,2(x)U~(x) — (U,2(x)U~(x))2), (4)

where U,2(x) is a group elementon thelink that runs from x to x + /2 (/2 is the unit
vectorin the~ direction), N is thenumberof latticepoints in oneof thedirectionsand
U,2(x) is the sumover 2(n — 1) staples

U,~(x) = ~ ~ +~U)
= UP(x)U,2(x+P)U~(x+/2)+U~(x—i)U,2(x—D)UP(x+/2—i’)).(5)

We would like to stressthat theseequationsare for arbitrarydimensions,and that the
Wilson action in threedimensionsis equivalentwith the lattice approximationof the
energyfunctional. As we are interestedin the classicalsolutionswe can simply set the
physical length L 1, such that the lattice spacing will be a = 1/N. The result for
otherphysicalvaluesof L is retrievedby a simpledimensionalargument(e.g.the four
dimensionalaction is L independentand the (potential or static) energyscalesas 1 /L,
i.e. for N —÷ 00 onehas ~(4) —* ~~4) and~(3) —~ S L). From now on we wish to avoid
indicatingtheexplicit referenceto thedimension,as it shouldbe clearfrom the context.
To be specific, in this and the next sectionthe dimensionn is mostly arbitrary,whereas
theresultsin Sections4 and 5 are for threedimensions,whereS is understoodto be S
(at L= I).

To derive the lattice equationsof motion, we observe that S dependson U,,.(x)
throughtheexpression

S(U,,(x)) =2N4”ReTr(l —U,2(x)U~(x)). (6)

As U,,.(x) is independent of U,2(x), it follows that

U,2(x)U~(x)— U,2(x)U~,.(x)=0. (7)
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Its square,summedover the lattice, yields ~. For SU(2) onecan also usethe fact that
theequationsof motion are solvedby

U,2(x) =±U,2(x)/IIU,2(x)I~, IU,,.(x)II2~ ~Tr(U,2(x)U)~(x)), (8)

whereonly thepositivesign will allow for solutionsthat havea smoothcontinuumlimit.
We can now introducean “error functional” [51

(9)

which vanishesif andonly if the link variablessatisfy the equationsof motion (with
the positive sign), andwhosevalueis a direct measureof how far one is from sucha
solution. In the continuumlimit one finds ~= ~(n — 1)_2~.This follows in theusual
way [4] from expandingthe links in a= 1/N, defining the relationbetweenthevector
potential in the continuumand the link variableson the latticeby

U,2(x) =PexP(fA~(x+s/2)ds). (10)

Onefinds after some algebra

U,2(x)U~(x)/I~U,2(x)~I=exp(_
2(l1)~3 ~DvF,2V(x) +O(N-5)).

(11)

We can insteadof the standardWilson actionuse any improved action, containing
n x m Wilson loopswith appropriatecouplings,suchas the over-improvedactionswe
have used in Ref. [4]

5(e) =~—~—~ ~Tr(1 —PD) +~j~>Tr(1 ~ ~). (12)

All that needsto be modified in the aboveis the definition of (1,2(x), which will now
also containthe staplesassociatedwith the larger Wilson loopsappearingin Eq. (12)

_ _ (13)

Like for 5(e), the c dependence drops out in the continuum limit for 5(e). However,
forSonefindsinthislimitS(e) =36((n—1)(31—7e)~

2S.
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The ordinarycooling algorithm [10] for both of theseactions is basedon the obser-
vation that the replacement

U,~,.(x)= U,L(x)/I~U,2(x)II, (14)

minimizes S(U,,.(x)). Note that for S (resp. 5(e)) cooling we should require the
lattice to be at least two (resp. three) sites in each direction. To completely specify
the algorithm one also should prescribe in what order every link is being updated. One
sweep is the process of updating each link precisely once in that particular order. This
defines a mapping (U {U,,.(x)})

U’=T(U), T=Tp,,-oT~_Io••~oT2oT1, (15)

where T, is the single-link update of Eq. (14) and the label i stands for the order in
which the .A1 = nN~different links are being updated. It is actually not difficult to
compute exactly by which amount the action is decreasing. For the single-link update
we find

S(U~,.(x))~ IU~(x)—U,2(x)~
2, (16)

where we made use of Eq. (14). To find the change of the action after one sweep,
one has to simply add the contributions of each single-link update keeping in mind,
however, that the value of (1,2(x) depends on which links had been updated before.
In the continuum limit ~U,,.(x)II—÷ 2(n — 1) and to a good accuracy the action changes
from one sweep to the next by the amount

S(T(U)) — S(U) ~ —4(n — 1)N4’~T(U) — UU2

—4(n—1)N4”~tIU~,.(x)—U,2(x)~I2. (17)

For saddle points, which are fixed pointsof this algorithm,onecanof courselower the
action further and the algorithm is necessarily unstable.

For the functional S any solution corresponds to the absolute minimum S = 0, and
cooling with this functional should hence not lead to any instability for the saddle
points of the original action, Eqs. (3,12). Unfortunately, it can be proven that one
cannot analytically minimize ~ as a function of one of its links. All that is required,
however,is that the functional is loweredif andonly if we are not at a fixed point. We
will see,as our intuitiontells us, that this is a sufficientconditionfor convergenceof the
algorithm (necessityshouldbe obvious).Let us neverthelesswrite down the necessary
ingredientsto minimize thesingle-link dependenceof 5, which wasalreadyconsidered
by Van der Sijs [9]. We restrict ourselvesin this paper to the version of ~ derived
from the Wilson action,as the analysis is prohibitivelymorecomplicatedfor improved
actions (for S the situation is in eithercase intractable,becauseof the appearanceof
IjU,2(x) in the denominatorof Eq. (9)). The analogueof Eq. (6) becomes
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= N6~ReTr(U~(x)W,2(x)

2(n—1)

—3 > (U~(x)~(x))2_(U~(x)U,2(x))2), (18)

where the index a runs over the 2(n — 1) different staples of Eq. (5), such that
(1,2(x) = >a V,~’(x).The expressionfor W,2(x) is a complicated combination of planar

and non-planar Wilson loops, which are best exhibited in terms of unit vectors a, ~E

{±1,...,±h}

IL

W,2 (x) = 2 a~b ;F’~— aJ~b

a,b#±,2
,a a /2 a ~ IL
lip-

+2 ~ bf ~jbfl~+bU t-~fl~
x x a x ax

b~±,2.+a

or in explicit form, usingthe conventionthat Ua(X) U~t(x —

W,2(x)= 2~ab#+IVa# b {Ua(x)Ub(x+â)U,2(x+à+1)

xU~(x+à+/2)U~(x+/2)

Ua(x)U.,,.(x + â)Ub(X + a + ft)U)~(x + â+ b)

xU~(x+â)U,2(x +â)U~(x+/2)}

{Ub(x)U,2(x+1)Ua(x+i’+ft)
b#+,2,+a;a#—,2

xU,~(x+â+/2)U,.~(x+/2)

—Ub(X)U,2(X + ~)U~(x + /2)Ua(X + /2)
XUb(X +à+/2)U~(x+h-j-/2)U~(x +/2)

+U~(x—â)Ub(x—â)Ua(x+b—à)U,2(x+b)U~(x+ft)

xUb(x)U,2(x+b)U~(x+/2)}. (19)

The sum in this expression is restricted to those combinations of a and ~ that do not
leadto any backtrackingin the Wilson loopdefinedby theproductsof the links. If one
tries to minimize ~(U,2(x)) with respect to (1,2(x) underthe constraintIIU,2(x)II = 1,
one finds

AU,,.(x) =M(U,2(x)) —W,2(x). (20)
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Note that the lattice should now be at least three sites in each direction. The operator M,
whose 1a andx dependence was suppressed, is defined for SU(2) throughtheequation

M(U,2(x)) ~6~Tr(U,2(x)V(x)t)V,~(x)+2Tr(U/2(x)U~(x))U,2(x).

(21)

An attempt to solve for A, using the conditionthat U,2(x) is unitary, leadsto a compli-
catedeighth orderpolynomial,andsolving it numericallyfor each updatewould be too
costly. Instead,we defineour updateby the simpleequation

U’( )— M(U,2(x))—W,2(x) (22),2 x - IIM(U,2(x)) —W,2(x)II

The new feature is that the r.h.s. still depends on (1,2(x) and that we do not obtain a
minimum of Eq. (18). Nevertheless, this is harmless since some algebra will show that
our update does lower ~ and as we argued above, and shall show in some more detail
in the next section, this is sufficient. One finds

ô~(U,2(x))= _N6_n(IIM(U,2(x)) - W/L(x)II ~&1,2(x)~~2

+ (8U,2(x),M(ÔU,2(x)))), (23)

where, of course, SU,2(x) U,~,.(x)— (1,2(x), &~(U,2(x)) ~(U~,.(x)) —

and

(6U,2(x),M(MJ,2(x)))=3~ITr(ôU)~(x)V,~(x))I
2+ITr(ôU)j(x)U,2(x))I2.

(24)

In the continuum limit one has IM(U,2(x)) — W,,.(x)I~ —p 8(n — 1)(2n+ 1).
Wenote that lattice artefact solutions for ~ will not be eliminatedby Eq. (22). For

example, putting one link to minus the identity (while keeping all others equal to the
identity) is a fixed point of Eq. (22). It is, however, not a fixed point for Eq. (14). In
practise we first use S cooling to bring the energy (or action) down to values not too
much above where we expect a saddle point to occur, after which the ~ cooling will in
general bring it to a smoothsolution.One can also combine the S and S cooling, by
replacing (1,2(x) on the r.h.s. of Eq. (22) with U,2(x)/~~U,2(x)~I.We have not proven
that this always lowers S (although it did in all cases we considered).

3. Convergence

We will study the convergence of the algorithm by considering the linear approxima-
tion for the mapping T in Eq. (15). For S (or 5(e)) cooling, T, will correspond to
Eq. (14), while for S cooling it will correspond to Eq. (22). To warm up we first con-
sider the single-link convergenceof the latter, while keepingall links (except(1,2(X))
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fixed. For notational convenience we drop the 1a and x dependence. Let us assume that
(1~ is a fixed point, and X is a small element of the SU(2) Lie-algebra.We now consider
U = e”U0 and compute X’ to linear order in X from U’ eX’Uo. After some algebra
one finds

X’ = j~M((J0)— W~’(6~Tr(XY~~)Ya+2Tr(XPt)P), (25)

where Pm>~1~, and Ya = Im(U~V0) ~(U~V0 — V~U0).In the continuum limit this
is easily seen to imply that IIX’II/~IXII= O(N

4) and we have verified that the single-
link iteration is indeed extremely efficient. One iteration typically brings (1already very
close to the minimum of Eq. (18) (although we would like to emphasize again that this
is not really important, as the other links that contribute to ~ will be changed during the
sweep).

With respect to the SU(2) Lie-algebra basis irk/2 (r,,. the Pauli matrices) Eq. (25) is
symmetric, but this is in general no longer true for the linear approximation of T, which
we will denote by dT. The latter is determined exactly as above by evaluating (1’ =

T(eA’Uo) and extracting X~(x)to linear order in Xfromexp(X~,.(x)) = U,~,.(x)U~(x)t,
where (1~ is the fixed point. Numerically this is easily achieved by first obtaining the
fixed point to a high accuracy, assuming the last value of (1 can be equated to U

0, and
then looking at the response of one complete sweep to U = eXLT0, if necessary doing
extrapolation in X —~ 0 to extract the part linear in X. One might be tempted to prove that
T is a so-called contraction, for which it is required that j~T(V)—T(U)JI < ,c~V—U~,
with K < 1. The contraction theorem asserts that in such a case there is a unique fixed
point of the mapping T. At the linear level, near the fixed point, this would imply that
dT’dT (which is symmetric and positive definite) has no eigenvalues bigger or equal
to one. We know, however, that the fixed point is neither globally nor locally unique.
Indeed, for all cases we studied there are plenty of eigenvalues bigger than one. If dT
would have been symmetric, there would have also been eigenvalues of dT that are
bigger (in absolute value) than one, which would clearly be in contradiction with the
fact that the action is lowered with each update.

As dT is not a symmetric matrix, we can not diagonalize it. Still, it can over the
complex numbers be brought to the so-called Jordan-normal form by a non-singular
(complex) transformation A

dT=A~JAmA’ ( . )A, (26)

ii

where J is the smallest Jordan block, of the form

A, I e

(27)

e A,
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with A, the eigenvalues.Whencomplex,they occur in conjugate blocks. Different blocks
in our conventions may have the same A,, andblocks of dimension 1 correspond to
eigenvalues with equal left and right eigenvectors. As dT”~= A~J”~A,any block with
A,~< 1 will approachzero. Blocks with IA,I > 1 would grow without boundand can

never be consistent with the fact ~ is a decreasing functional as a function of the sweeps.
What remainsare the eigenvalues A,~= 1. They can,and will, occur for the following
reason. Suppose X is a zero mode for the Hessian of S at the fixed point U~,then
S(e-”U0) — ~(U0) = 0(X

4). On the other hand using Eq. (23), S(eX’Uo)— ~(e”~U
0)=

0 ( X’ — X~
2),which can only be consistent if X’ = X. Consequently X is an eigenvector

of dT with eigenvalue1. Theconverseis also true, i.e. an eigenvector with eigenvalue 1
is a zero-mode of the Hessian. Consequently, there are at leastas many unit eigenvalues
asthereare gaugedegreesof freedom.To beprecise,thereare 3N0 minusthedimension
of Stab(L/o) unit eigenvalues.(Stab(Uo)is the stabilizerof U~,which is the subgroup
of thegaugegroup that leavesU

0 unchanged.It will only for very specialconfigurations
be non-trivial). It is slightly more subtle to argue that A,I = 1 is only compatible with
Eq. (22) if A, = 1 (oneuses the fact that therecan be no linear relation among the
eigenvectors,becauseA is non-singular,which impliesthat after each sweepthe amount
by which S is lowered is boundedaway from zero if A, * 1). It is moreeasyto rule
out that A, = 1 can occur in blocks J, of dimensiongreaterthan 1. In otherwords,left
andright eigenvectorsfor the eigenvalueequal to 1 always will coincide.

Clearly, the fixed point is only uniqueup to the gaugedegreesof freedomand the
moduli of the fixed point (by moduli we mean the gaugeinvariant parameterspace
alongwhich S = 0 andconsequentlyalong which S is degenerate),and thereis a one to
onerelation with the A, = 1. Thesedo not influencethe convergenceof the algorithm.
But it is importantto realize that one has no control over which fixed point will be
obtained.(The gaugein which the fixed point is obtainedwill entirely be determined
by the startingconfiguration,as T commuteswith applying a gaugetransformation,i.e.
T(~U) = ~T(U).) It can happenthat thereare zero-modesof theHessianthat are not
associatedto a moduli parameterof the fixed point, i.e. S is no longerdegenerateto
fourth (or higher) order. In that caseoneneedsto go beyondthe linear approximation
of T andconvergenceis worsethan exponential.In the genericcase,however,the ratein
which ~ decreasesis determinedby the gap ,& in IA, — i~,or after k sweeps~ decreases
the next sweepby an amount ~ exp(—2k/2). The sameargumentholds of course
for S cooling to a (local) minimum, replacingthe gap/2 by its appropriatevalue (,u)
obtainedfrom the mappingT for S cooling.

We can find a relation between the values of these gaps and the minimal non-
trivial curvatureof S at the fixed point if we assumethat the gap is due to a real
eigenvalueand its eigenvectorcoincideswith the fluctuation along the direction of
minimal curvature.The associatedzero-pointfrequencywill be denotedby w (scaledso
as to havethe appropriatecontinuumlimit). At a fixed point U0 onehas for X,2(x)

i5A~,.(x)ra/(2N)

S(eXU0)= S(U0) + ~ ~ 5A~,.(x)H(xy)6A~(y)+ 0(M
3) (28)

xf2a;vvb
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which providesthedefinitionfor the HessianH(x, y) as a3nN~squarematrix, whose
eigenvalueswill scaleto theappropriatecontinuumlimit for N —p oo. Hence, w2 equals

the lowest non-zeroeigenvalue(A~~)of theHessian.It canbe easily shown that for any
saddlepointof 5, suchthat S((1~)= 0, the functionalShas the expansion

~(eXUo)= ~ ~ 5A~(x)Et(xy)SA~(y)+ 0(M3)
xp.a;yvb

11=2H2, (29)

where by H2 we meanof course the matrix multiplication of the Hessianof S with
itself. In the sameshorthandnotation(i.e. droppingtheindices), weassumethat under
the S cooling H~X = AmXand X’ dT~X = (I —

1u)X, which allows us to calculate
the changein the actionboth from Eq. (28), giving SS= —4w

2,u(1 —

and from Eq. (17), giving ÔS = —4(n — 1)~u2N4”IIXII2.Equatingtheseresults gives

(n — 1)~ (n — 1)~ (30)

Similarly, usingEqs. (23,29) one finds for cooling with thefunctional ~

____________ = A~ (31
~ (n—l)(2n+l)N4 — (n—l)(2n+l)N4

This is of course in accordancewith onesintuition that the algorithmcan slow down
considerablyif the functionalhas directionsin which it is very shallow. Note that our
results indicate that slowing down of the algorithm goes proportional to N2~~for S
cooling andproportionalto N4+I1 for ~ cooling (in both casesa factorN’~comesfrom
the numberof links to be updatedin a single sweep).

Finally, mostof the moduli for a continuumsolution are removedby lattice artefacts,
althoughwe will discussin the nextsectionthat in somecasesa fewof themcan survive
on a lattice. An importantexampleof moduli that are removedby lattice artefactsare
thosethat are relatedto thetranslationalinvarianceof thecontinuumtheoryon a torus.
As this breakingis due to the fact that integrals in the continuumare replacedby sums
on the lattice, onecan easily argue, as in Ref. [4], that the breakingis very mild and
goesas exp(—pN) wherep is thetypical scaleof thecontinuumsolution in unitsof the
lengthL of thetorus.For smalllattices thesetranslationalmodescancausesometrouble,
but thoselattices are usually anyhowtoo small to extract reliable information aboutthe
continuumlimit. In Ref. [4] we madejudicious use of the dependenceof the lattice
action on the moduli parameters,by using the over-improvedaction S(e= —1) (see
Eq. (12)) so as to ensurethat the instantonwith the maximal scaleparameterallowed
by the finite volume is obtainedas a local minimumfor theaction.With Scooling we
could then find ratheraccuratelattice solutions,whosescaling to a continuumsolution
was studiedin detail. Oneof the advantagesof the S cooling is that onecan verify if
the fixed point hasbeenreached,as ~ shouldapproachzero.This can,of course,alsobe
used as a checkunderS cooling. For example,weperformedfor an instanton(in which
casen = 4) on an 8~x 24 lattice cooling for about6600 sweeps,which allowedfor a
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very precise exponential fit to thedecayof theaction. Theeffectivevalue for p. deduced
from this fit is 9.8 x l0~ (seeFig. 3 of Ref. [4]). We find for the bestconfiguration
of this four dimensionalinstanton (seeTable I of Ref. [4]) ~(e = —1) = 4.8 x l0~
and for ~(e = —1) = 1.3 x 10—6. The results obtainedwith S(e = 0) cooling on
this configuration(see the same table), leadto S(e = 0) = 2.0 x 10_6, ~(e = 0) =

8.2 x iO~,andeffectively p. ~ 10—6 (which can be understoodsincefor S(e = 0) the
0(a2) correctionsto the actionare canceled,removingto this order the dependenceof
the action on the scale parameter.Using the heuristic estimatesof p. discussedabove
we find ,a w2/(3N2). Sincew(e ~ 0) = 0(N’), whereasw(e = 0) = 0(N2),
oneobtainswith N = 8 theright ordersof magnitudefor p.). In the remainderwe will
discussthe new resultsfor n = 3, i.e. results for the Yang-Mills energyfunctional.

4. Results: Constantsolutions

We will first describe the case of constantcurvaturesolutions, which are known
analytically both on the lattice and in the continuum. We take from Ref. [11] the
following results.If we introducethe so-calledtwist tensorn~

1,which is antisymmetric
and takesintegervalues (equivalentlyspecifiedby themagneticflux m1 = ~e,3knJk), the
following configuration is a solution on a symmetric threetorus of length L = 1, or a
symmetriclattice with N

3 sites

A~(x)=i(—7rnJkxk+CJ)T~, (1~(x)=exp(A~(x/N)/N). (32)

Thesefields are periodicup to a gaugetransformation,to be specific [12]

A
1(x+~)=fl~(x)(A1(x)+~1)fl~’(x),

U1(x+N~)=11t(x/N)Uj(x)fl~’((x+))/N), (33)

where

flk(x) =exp(~i1rx3n3kr3). (34)

If someof thecomponentsof thetwist matrix are odd, quantitiesthat transformin the
fundamentalrepresentationof SU(2) are anti-periodic,which can be mosteasily seen
from the Polyakovline

Pj(x)=~Tr{Pexp(f dsA~(x+s)))flJ(x)}=cos(~CJ—~nfkxk). (35)

The identical resultfollows on the lattice,after replacingx by x/N. Forthe continuum
Yang-Mills and lattice Wilson actions (energies)we find

S=rr
2~n~, S=4N4~sin2(~~), (36)
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which are constantand independentof C. The latter form the gaugeinvariant moduli
of these solutions,both on a lattice and in the continuum. If the action is non-zero,
i.e. the twist is non-trivial, two of the moduli can also be identified with translational
invariance,whereastranslationin the other independentdirection (which forms a zero
eigenvectorof the twist matrix) leavesthe configurationinvariant (on the lattice there
is of courseno continuoustranslationinvariance).The stabilizerof this configurationis
the subgroupof constantabeliangaugetransformations,which is onedimensional.On
the lattice this meansthat the Hessianhas 3N3 + 2 exact zero-modesand that dT has
thesamenumberof unit eigenvalues(which we verified numerically).In thecontinuum
we can evencomputethe Hessianexactly [11]. The eigen modesare products of a
thetafunction (comparethe study in the context of the “Copenhagenvacuum” [13])
and a planewave (purely planewavesfor abelianfluctuations).Oneeasily shows that
the gaugefield is (anti) periodicin the m direction, i.e. A(x + m/e) = r~A(x)r~,
with e Ig.c.d.( m,) I and ~ (m) = 0 or 1, its value being determinedfrom (repeated
useof) Eq. (33). The spectrumis now given by

A~(n,~)= 2ITIImII(2n+ I ±2) + e2((2~+~)ir+ C m/e)2/11m112,

A
0(k) = (2rrk)

2, (37)

The multiplicities are 2Ie1 for A±and 2 for A
0. The parameters(n, £, k) run over

(N,Z,Z
3). On the lattice A

0(k) will be replacedby 4N
2 ~,sin2(rrk,/N), but the

effect of the lattice on A±is not expectedto admit an analyticexpression.In Fig. la—c
we plot the first few eigenvaluesof the Hessianfor resp. m = (0,0,1), m = (0,0,2)
andm = (1, 1, 1), computednumericallyfor N = 4 and 6 in comparisonwith theexact
continuumresult as a function of C, of which only the componentalong m is relevant.
Only for m = (1, 1, 1) is ~ non-trivial.

A new feature that we believe not to have beenobservedso far, is that thereare
constant(* 0) curvaturesolutionson a torus that are marginally stable.To be precise,
for IImII = 1 and IC m — — \/~ (using the 2ir periodicity of the spectrum
in C. m we can restrict to C. m E [0, 2ir]) thereare no negativeeigenvaluesfor the
Hessian.We call this marginalstability, as onecan first bring C m outsidethe above
range withoutchangingthe energy,and then let the configurationdecay along oneof
the two unstablemodes. For IlmIl # 1 onecan easily seethat this effect doesn’toccur.

Nevertheless,in all casesconsideredin Fig. 1 the Hessiancan haveaccidentalzero
eigenvaluesfor particularvaluesof C, suchthat potentiallythealgorithmcanslowdown
dramatically. In Table 1 we compare the gap /1 (the distanceof the largest non-unit
eigenvalueof dT to 1) with thepredictedvalue /2 = A~/( 14N4), determinedfrom the
smallestnon-zero(absolute)eigenvalue~ of the Hessianfor S (seeEq. (31)). The
agreementis (perhapssurprisingly) very good. The eigenvaluesof the linearizedalgo-
rithm andHessianweredeterminedusingthe EISPACK [16] routines.For a discussion
on thenumericalaccuracywe refer to the literature.The numberof digits listed should
all be significant.For m = (1, 1, 1) and N = 4 thereis considerableslowingdown.What
is called slowing down is of coursedependenton the availablecomputerpower. We
considersomethingsloweddown considerablyif (several) 10.000or moresweepsare
requiredto half the valueof ~. In the easeof slowing down,we could generallyachieve
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Fig. I. The low-lying eigenvaluesof the Hessiansfor the constantcurvature solutionsspecified by (a)
in = (0,0,1), (b) in = (0,0,2) and (c) m = (1,1,1) at N = 4 (dotted lines), N = 6 (dashedlines)
and N = oo (i.e. thecontinuum).Eachlevel is two-fold degenerateexceptfor m = (0,0,2) andthe levels
indicated by the arrow in (a). which are all four-fold degenerate.

good results by performinga small numberof Scoolings,when the ~ cooling is being
“stuck”, sometimesaftera (very) small randomupdateon the links. That Scooling can
sometimeshelp can he arguedfor the case that A

5, > 0 as follows. We haveseenthat
IC) some degreethe A,, eigenvectoris also an eigenvectorof dT, correspondingto the
cigenvaluc A I — /2. This shouldbe the dominantmodealong which theconfiguration
dilThrs from thetrue fixed point. All othermodes,in particular theunstableones,should
havedecreasedsignificantly under the S cooling. If we don’t cool too long with 5, the
unstablemodedoesnot get a chanceto grow, whereasthedirectionof the stablemode
keepson contracting(fasterby a factor 14N

2/A
5,).With 5~cooling onecanre-contract

the unstablemode,which might havebeengrown during theS cooling. We expectthat
the extracomputationaleffort will not exceedby much what one would haveto spend
in trying to acceleratethe algorithm, e.g. using fast-Fourier[14,7] or multi-grid [15]
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Table 1
Resultsfor theconstantcurvaturesolutionon a N

3 latticewith magneticflux m. Sth is thevalueobtainedfrom
theexact latticeresultgiven in Eq. (36),whereasftth = A~,/(14N4), the predictedvaluefor the distanceof
thelargest non-unit eigenvalueof dT to unity. The smallest(in absolutevalue)non-zeroeigenvaluefor the
Hessianof S is indicatedby A,,,. This, as well as ,â, was obtainedfrom theexactlattice solution with the
tabulatedvaluesof C- m extractedfrom thedata.

N m C- m S(= E) A,,, /2 ,2th

4 (1,1,1) 3.472 2.90- i04 59.02774641 59.02761860 0.051 6.49- lO~ 7.31 - l0~
6 (1,1,1) 2.517 1.60- l02 59.17251733 59.18005528 —0.574 1.74- l0~ 1.82- 1O~
8 (1,1,1) 3.175 2.65- 10—6 59.20573728 59.20573660 1.906 6.34- iO~

6 (0,0,2) 4.229 5.24- l0~ 78.75660845 78.75660838 4.084 8.58- 10”’ 9.19- l0~

methods.
Not only ~ itself is a good indication for how far one is from the fixed point. Also

dT can, and usuallydoes,have an eigenvaluebigger than 1 if one is not closeenough
to the fixed point (the gaugemodesalwayscorrespondto unit eigenvalues),whereas
only at a fixed point will the gauge modes be exact zero-modesfor the Hessian.All
this providesus with more than enoughcriteria to be sure that we have an accurate
lattice solution of the equationsof motion. In Table 1 we also comparethe energy of
the constantcurvaturesolutionswith theexact latticeresultof Eq. (36). The agreement
is excellent, except perhaps for N = 6 andm = (1, 1, 1), but in that casewe did not try
to cool the configurationdown to a very small valueof ~. Nevertheless,theerror in the
energy is smaller than one part in 6000.Also quantitieslike the Polyakovloops agree
very well with the exact lattice expressions,Eq. (35).

5. Results:The sphaleron

We now discussthe resultsfor the new sphaleronsolutions.Someof the resultsare
collected in Table2. Also here we see that convergenceof the ~ cooling algorithm
can be well predictedin terms of Am. In Figs. 2a—c we show scatter plots for the
(complex) eigenvaluesof dT for the m = 0 sphaleron,using a checkerboardupdating
for Fig. 2a (to allow for vectorizationof thealgorithm) and a sequentialupdatingfor
Fig. 2b, both at N = 4. We see that the checkerboardupdatingmakesthe bulk of the
modescontractmuch faster (in additionto thegain of computationalspeeddue to the
vectorization). This remains true on larger lattices. In Fig. 2c we showfor comparison
the checkerboard result for N = 8. The eigenvaluesthat are responsiblefor the slowing
downof thealgorithmnear thefixed point, in particulartheeigenvalueclosestto 1, will
only very weakly dependon theorder in which oneupdatesthe links. Table 2 shows
that the sphaleronwith periodic boundaryconditions(m = 0) where Am ‘~‘ 1.3, has
considerable slower cooling than the sphaleron with twisted boundary conditions, for
which A,,, —10.8. Nevertheless,wemanagedto obtainratheraccurateresults.In Table
2 we also list 5, ~‘ and the blocked Wilson action 52x2, for which the lattice spacing
is effectively twice as large.Like the instantonsof maximal size studiedin Ref. [4,5],
the sphaleronis a very smoothsolution. We do not require huge lattices to approach
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Fig. 2. The scatterplots for the complex eigenvaluesof dT for the periodic sphaleronat N = 4 (a,b) and
N = 8 (c), for the latter we also showthe blown-upregionnear A = 1. Figs. (a,c) weregeneratedwith a
checkerboardupdating,whereasFig. (b) wasgeneratedwith sequentialupdating.

the continuumlimit. Togetherwith easily obtainableexpansionsin the lattice spacing
a = 1/N, we have a large enoughwindow (available values for N) to get accurate
results.We can extract,as for the instantons(seeRef. [4] for details),the continuum
actionby fitting to the formula

Snxn = So (1 — an2/N2— (/3n4 + yn2 + 8)/N4) + 0(n6/N6). (38)

We find for thetwistedcontinuumsphaleron(m = (1,1,1)) an energy E = 34.148(2)
and for the periodic one (m = 0) we find S = 72.605(2),with conservativeerror
estimates.

The evidencethat these configurationsare sphaleronsfollows from a study of the
eigenvaluesfor the Hessianof 5, whoselow-lying values are listed in Table 3 for
N = 4, 6 and 8. We haveverified that thereare exactly 3N3 + 3 zero-modesfor both
sphalerons,correspondingto the gaugemodes and the three translationalmoduli (for
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Table 2
Resultsfor the sphaleronson a N

3 lattice with twisted andperiodic boundaryconditions.The smallest (in
absolutevalue) non-zeroeigenvaluefor the Hessianof S is indicatedby Am. The predictedvalue for the
distanceof the largest non-unit eigenvalueof dT to unity is givenby /%,~= A~,/(I 4N4) - We also give the
value of the Wilson action, its blockedvalue S

2x2 and .~.

N m Am /

2th S(E) S2x2 -~

4 (1, 1,1) —11.128 2.73- 10_2 3.46-102 33.24878 29.77153 7.90- 10—6
6 —10.900 8.74- l0~ 6.55- l0~ 33.77789 32.49357 2.28- l0~
8 —10.817 2.04- lO~ 33.94548 33.28093 1.20- lO°

12 4.03- 1O~ 34.05973 33.78353 2.34- 10—6

4 (0,0,0) 1.704 7.33- l0~ 8.10- l0~ 68.13887 52.59651 2.73-
6 1.415 1.08- l0~ 1.10- 10” 70.70174 64.36296 2.11 - lO~
8 1.301 2.41 - iO~ 2.95- 10~ 71.55060 68.16790 6.93 - l0~

12 5.83- 10_6 72.14095 70.70631 4.13 - l0~

N > 6 the latter are indistinguishablefrom the gaugezero-modes,for N = 4 their
eigenvaluesare not bigger than 0.01). Most importantlywe have verified that there is
preciselyoneunstablemode.Furthermore,wehavenotbeenableto find any othersaddle
point with a lower (non-zero) energy than the energiesof the presentconfigurations.
For all practicalpurposeswe thusconsiderthenewly found solutionsto be sphalerons.

We now wish to show that like on ~3 [3], thesesphaleronsare at the top of a tun-
nelling path.For the caseof twistedboundaryconditionsthis is the easiestto demon-
strate,sincetheinstantonwith a continuumaction of 4ir2, which was extensivelystudied
on the lattice in Ref. [6], has only the trivial translationaland some discretemoduli.
This meanswe only haveto demonstratethat the top of the instantonpath is identical
to the sphaleron.There are two reasonswhy the top of an instanton path might not
correspondexactlyto a sphaleron.First, the lattice has a finite resolution andsecond,
the extentin the time direction is finite. In particularthe finite resolutioncausesprob-
lems becauseoneneedsto extrapolatealong the tunnellingpaththe valueof the energy
and of ~. In particular the latter has a sharp dip near the top. A very large valueof
N would be requiredto obtain a sufficientresolution.The effectof thefinite extentin
time is expected to be small since the instanton path approachesthevacuaexponentially
in time [6]. In Fig. 3 we plot S ‘—s ~/64 for each time-slicealong thetunnellingpath,
cmp.Ref. [5]. -

We take the configuration at the top of the instanton path, where S is minimal,
and cool it with ~. This way we easily obtain the sphaleronsolution. As S decreases
monotonicallyunderthe S cooling, and as S is alreadysmall at the top of the instanton
path, we expect that the instanton path goes through a sphaleron. Further evidence is
providedby calculatingthe quantity

DN(t) =4IIU
1_U~II2/N~fd3x(8A~(x))2, (39)

where the latter expression is obtained in the continuum limit. U, is the configuration
at the time t along the instanton path and U~is the sphaleron configuration, obtained
after cooling from the configuration U, (for this, t should be chosennot too far away
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Fig. 3. The value of .~(t)j—’ .~(t)/64 (ate= 1) for the twisted instanton[6] with continuumaction4~2on
a 8~>< 24 (triangles)and a l2~x 36 (squares)lattice. The strongdip in .~(t) at t = 0 indicatesstationarity
of the energyfunctionaldueto the tunnellingthrougha sphaleron.

Table 3
The lowestlying eigenvaluesfor the Hessianof S for the twisted andperiodic sphaleronon a N

3 lattice for
N = 4, 6 and 8. Also is given the spectrum for the periodic solution with two unstablemodes(index2),
closein energyto thesphaleron,discussedin thetext (seealso Table4).

m= (1,1,1) sphaleron m = 0 sphaleron index2

N=4 N=6 N=8 N=4 N=6 N=8 N=8

—11.1280 —10.9003 —10.8174 —13.1960 —13.3935 —13.4432 —13.1170
0.0074 0.0001 0.0000 0.0073 0.0006 0.0000 — 0.7466
0.0091 0.0001 0.0000 0.0124 0.0010 0.0000 0.0000
0.0101 0.0001 0.0000 0.0139 0.0011 0.0000 0.0000

13.1667 13.3371 13.3934 1.7041 1.4151 1.3009 0.0000
13.1667 13.3371 13.3934 1.7070 1.4303 1.3012 3.2618
13.1667 13.3372 13.3934 7.9677 8.0984 8.1260 5.8733
16.0475 16.8663 17.1597 7.9682 8.1008 8.1261 5.8807
16.0478 16.8663 17.1597 7.9684 8.1279 8.1266 6.1738
16.0484 16.8663 17.1597 8.9984 10.2977 10.6604 8.5986
21.4686 22.9444 23.4481 9.0189 10.3306 10.6611 8.6069
21.4747 22.9444 23.4481 9.9919 10.8287 11.0701 15.0281
21.8119 23.6594 24.2198 10.0256 10.8312 11.0701 16.7321
21.8260 23.6594 24.2198 10.0354 10.8594 11.0707 19.7489
25.0998 26.1760 26.4962 24.6675 26.4047 26.9618 20.6039
25.1050 26.1760 26.4962 24.6703 26.4205 26.9621 21.3605
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from the top of the barrier, as otherwisecooling will bring the configuration to the
vacuum).As the cooling algorithmcommuteswith gaugetransformations,this gives a
gauge invariant measure for the distance of the two configurations. Indeed, computing

lILT, — (1,’II gives huge values, as the gaugebetweendifferent time slices will differ
randomly.For the configurationsof Fig. 3 we find D8(0) = 0.0246, D8(1/8) = 1.162,
Dg(—1/8) = 1.5713and D12(0) = 0.0340. Wehave indicated also the values at either
side of the top of the barrier for N = 8 to show that, not being exactly at the top can
havea sizableeffect on DN(0) (andon S(t= 0)). We believethe numerical evidence is
sufficiently convincing to conclude that the instanton path does go through a sphaleron.
In Fig. 4 we give for N = 12 the two dimensional cross sections of SB(X, y,z) at the
twelve lattice values of x. Because of the cubic symmetry of the sphaleron, the other
cross-sectionshave identicalprofiles (modulotranslations).

For the case of periodic boundary conditions the instantons have additional moduli.
Wedid provide evidence in Ref. [4] that for T —p oo the moduli are described by the
scale, translationaland vacuumparameters.The latter being specified by thePolyakov
loops P,(t = oo) = —P,(t = —~) (we havenot yet provenor disprovçnif this relation
at t = ±~can be relaxed).In particularwe probedthe dependenceof the tunnelling
path on P3 P3(t = —oo), keepingtheother two equalto unity. In practise we can of
coursenot reach ti = oo, andthis is a problemfor P3 = ±1.In that caseonecan show
that the approach to the vacuum for large t is no longerexponentialdue to the quartic
behaviour of the potential in thezero-momentumsector.We demonstratethesensitivity
of the instantonpath on the extentin the time direction for N = 8 and N, = 24, 48
in Fig. 5. We seethat for large N, the tails in the electric energy [4,5] are lowered
considerably,while the magnetic energy at the top of the barrier (not visible at the
scaleof Fig. 5) is lowered from S(e= —1) = 74.041 at N, = 24 to 73.465 at N, = 48,
actuallybelow the valueof 73.923obtainedfor P3 = 0.5 in Ref. [5] (for which wedid
notobservesucha sensitivityin N,). It meansthat thereis neardegeneracyin energyat
the top of the barrier as a function of P3. The variation of the energy as a function of P3
canbe so small, becausetheenergyfunctionalnear the sphaleronhas two rathershallow
directions (associatedto the two eigen modeswith Am ‘~.‘ 1.3). To investigateif our
sphaleronindeedcorrespondsto the top of a tunnellingpath,presumablythe one with
P3 = 1, we took the configurationat the top of the energy barrier for the valuesof P3
that were considered in Ref. [5] and applied Scooling for 8000 sweepson each,such
that the energyand~ stabilized, and furthercooling would makethe configurationonly
move (very slowly) along the slowestmodein the cooling algorithm. We discovered
a very useful set of parametersto distinguishthe variousconfigurationsthusobtained.
It turns out that the energy profile is almost identical for each configuration, that the
profiles for the Polyakov lines only vary weakly, but that the vector

bm ~ (40)

averaged over the lattice ((b)), clearly differentiatesthe various configurations.The
sphaleronsolution distinguishesitself by a symmetric valueb = (1, 1, 1) at each point
independently.In all othercasesthe varianceof the parameterb is non-zero.To a good
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Fig. 4. The profile for themagneticenergydensitiesEB for thetwisted sphaleronon a l2~lattice at fixed values
of x as a function of y andz.The lattice is represented by the grid-lines (all coordinatesareinterchangeable)-

The verticalaxesrunsfrom 0 to 110, in units of the inverse physical volume of the box.

degree(bi) = (b
2), which is of course a direct consequenceof the symmetryof the

lattice andof thefact that P1 = P2. We alsocomputeD~,which is definedas in Eq. (39)
but with U, the configurationobtainedafter the S cooling. For this it is important to
note that the instantonsin Table 4 were all generatedfrom the samerandomstart at
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Fig. 5. The electricand magneticenergiesobtainedafter coolingwith S(e= —1) for a periodic 8~lattice in

the space directions and for boundary conditions fixed in the time direction of N, sitesto P
1 = —1at one end

and P1 = 1 at the other end, for N, = 24 (squares for ~ and crosses for E~)and N, = 48 (triangles for E~
and stars for eB). The time-tails are plotted at a blown-up scale to show the electric tails [41 that distort the
instanton solution at small N,.

P3 = 1 (or C3 = 0; seeRef. [5]). This meansthat each is in the same gaugeandD~
is a good gauge invariant measure for the distance of the various cooled configurations
to the sphaleron. In Table 4 we collect the results thus obtained, and see that after 8000
cooling sweepsS is dramaticallylowered also for P3 = 0. If we computethe Hessian
for this configuration we find a Morse index of two, i.e. there are two unstable modes
(seeTable 3 for the low-lying eigenvalues).Note that S for this configurationis only
slightly higher than for the sphaleron, and that A,,, = —0.74655will causean evenslower
cooling than for the sphaleron.We haveperformed8000 extra Scooling sweepsbefore
computing the Hessian, but the quality of its zero modeswere sufficiently good to trust
the cooled configurationfor P3 = 0 to be close enough to a solution. We notice that
except near P3 = 1, thevalueof i~b)at the top of the barrier (denotedby (b,) in Table
4) is changed after 8000 ~ cooling sweeps. We conclude that the index 2 solution is
not at the top of any of the instanton paths we considered here.

Finally, we calculated DN(t) from the configurationin Table 4 with C3 = 0 (P3 = I)
afterfurther S(& = —1) cooling on the instanton,as representedin Fig. 5 (at N, = 24).
We find D8(0) = 0.0496, D8(—l/8) = 2.212, D8(1/8) = 3.369 and D12(0) = 0.0368
(not represented in Fig. 5). Let us summarize our arguments why DN(0) does not
exactlyvanish. The most importantreasonis that for the instantoncalculationthe four
dimensionallatticeis also discretein thetime directionand the topof theenergybarrier
can only be found by interpolation.Also the finite extent of the time direction has
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Fig. 6. The profile for the magneticenergy densities~ for the periodic sphaleronon a 12~lattice at
fixed valuesof x as a function of y and z. The lattice is representedby the grid-lines (all coordinatesare
interchangeable).The verticalaxesruns from 0 to 110, in units oftheinverse physicalvolume of thebox.



472 M. Garcia Perez,P vanBaal/NuclearPhysicsB 429 (1994) 451—473

Table 4
Resultsfor N = 8 associatedto thetopof theinstantonpath (obtainedwith S(e = —1) cooling, seeRef. [5])
that interpolatesfrom the vacuumspecifiedby Pt = P

2 = 1 and P3 = cos(C3/2)at t = —cx, to the vacuum
specified by P1 = P2 = —1 and P3 = — cos(C3/2) at r = oc. The vectorb is the parameterdefinedin
Eq. (40). From the third column on are tabulatedthe resultsafter 8000 .~cooling sweeps.D~is definedas
in Eq. (39), with U, the cooledconfiguration.Both from the first and last caseone finds solutionsof the
equationsof motion,resp. the sphaleronandthe index2 saddlepoint. SeeTable 3 for their Hessians

C3 (F,,) (b) S(=E)
52x2 S

0 (1.01,1.01,0.98) (1.01,1.00,0.99) 71.5507 68.1680 2.08 l0~ 0.000
ir/5 (1.02,1.02,0.95) (1.03,1.02,0.95) 71.5547 68.1732 9.77- IO~ 0.056

2ir/5 (1.06,1.06,0.87) (1.08,1.07,0.83) 71.5913 68.2205 7.53 10—2 0.100
2ir/3 (1.11, 1.11,0.72) (1.14,1.14,0.62) 71.7569 68.4322 1.58- 10—’ 0.560
4ir/5 (1.12,1.12,0.69) (1.16,1.15,0.56) 71.8301 68.5250 1.18- 10_i 0.894

IT (1.13,1.13,0.63) (1.17,1.17,0.50) 71.9318 68.6537 2.60- i0~ 2.186

someinfluence.Finally, the instantonpathwas generatedwith S(~= —1) cooling (that
is using a modified lattice action), whereas~ cooling was performed at ~ = 1 (the
ordinary Wilson expressionfor the energy functional). Given thesefacts we believe
the distance of the configuration at the top of the barrier is sufficiently close to the
sphaleronconfigurationto conclude that this sphalerondoeslie on the instantonpath
that has P

1(t = —oc) —P1(t = oc) = ±1.In Fig. 6 we give theresults for theenergy
distributionon a 12~lattice.

6. Conclusions

The main motivation for this paperwas to find thesphaleronsolutionfor pureSU(2)
gaugetheoriesin a finite volume and to show that it is at the top of the barrier that
separatestwo classicalminima, connectedby an instantonsolution with minimal action.
We studied both the case of twisted and periodicboundaryconditions.For the latter
the situation wasrathersubtlebecauseof the many additionalmoduli in the instanton
parameterspace.Furthermore,at thesphalerontherearetwo very flat directionsfor the
energyfunctional, andwe found a saddlepoint with two unstablemodesnot more than
ÔS = 0.5 abovethe sphaleron.The sphaleronsolution for the periodic casehas some
very special properties.Like for the twisted case [6] only low Fourier components
seemto dominate,but especiallythe property that locally Tr(B1)

2 is independentof
i is intriguing. There is good hope that in the future this problemmight be tractable
analytically. In any case it presentsan interestingchallenge.We were also surprisedto
find that there are very special non-zero constantmagneticfield strengthconfigurations
which aremarginally stable (in the sensedefinedbelow Eq. (37)).

To achieveall theseresults we built on the ideathat onecan find unstablesolutions
to the equationsof motion by minimizing the functionalobtainedby squaringthefield
equations[7,9]. What we haveaddedis a specific algorithmfor SU(2) to minimize this
functional in a deterministicway. This allowedus to analysein detail theconvergenceof
the algorithm,also providingresults for the standardcooling algorithm[101. It is likely
that the algorithmcan be extendedto includea scalarsectorso that we can also study
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thesphaleronin the standardmodel [1]. In any caseonecanalwaystry to minimize the
functional by doing randomupdates.Onecan easily think of many more applications
worthwhile pursuingwith thesemethods.
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