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Abstract

For SU (2) gaugetheorieson thethree-spherewe analysethe Gribov horizonandthe
boundaryof the fundamentaldomain in the 18-dimensionalsubspacethat containsthe
tunnellingpath andthe sphaleronand on which the energyfunctional is degenerateto
secondorderin thefields. We provethatpartsof thisboundarycoincidewith theGribov
horizonwith the help of boundson the fundamentalmodulardomain.

Dedicatedto thememoryofDick Cutkosky

1. Introduction

From aperturbativepoint, thehamiltonianformulationof gaugetheoriesis
cumbersome,andthecovariantpathintegralapproachofFeynmanisvastlysupe-
rior. Thisremainstrue for certainnon-perturbativefeatures,like instantoncon-
tributions,whichvanishto all ordersin perturbationtheory,andaredetermined
by expandingaroundeuclidean (classicallyforbidden)solutionsby meansof
semiclassicalor steepestdescentapproximations.Whennon-perturbativeeffects
will beimportantandstartto affect quantitiesthatdo not vanishperturbatively,
themethodbreaksdowndramatically[1,21.Whenthishappens,thehamiltonian
formulationbecomessuperior,especiallyas long asonly for a limited setoflow-
lying energymodesnon-perturbativeeffectsbecomeappreciable.This hasbeen
ourstrategyin dealingwithgaugetheoriesin afinite volume.Dueto asymptotic
freedom,keepingthe volumesmallallowsus to keepthe numberofmodeswhich
behavenon-perturbativelylow. An essentialfeatureof the non-perturbativebe-
haviouris thatthe wavefunctionalspreadsout in configurationspaceto become
sensitiveto its non-trivial geometry.If wave functionalsarelocalizedwithin re-
gionsmuch smallerthanthe inversecurvatureof the field space,the curvature
hasno effect on the wave functionals.At the otherextreme,if the configuration
spacehasnon-contractiblecircles,the wave functionalsaredrasticallyaffected
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by thegeometry,or topology,whenthe supportextendsovertheentirecircle (i.e.
bitesin its owntail). We know from Singer [31that the topology of the Yang—
Mills configurationspaceA/Q (A is thecollectionof connections,~ thegroupof
localgaugetransformations)is highly non-trivial. It alsohasariemanniangeom-
etry [4] that can bemadeexplicit, onceexplicit coordinatesarechosenon A/c.

The geometryof the finite volume,which will be consideredin this paper,is
the oneof a three-sphere[5]. Thegeneralargumentsareof courseindependent
of thisgeometry,in which casewewill denote(compactified)three-spaceby M.
Nevertheless,thedetailsof thewayA/~isparametrizedwill cruciallydependon
M. This is alreadyevidentfromSinger’sargument[31asthetopologyofA/~does
dependon M. We will comebackto theconsequencesofthisfor thephysicsof the
problemattheendofthispaper.Thephysicalinterpretationofahamiltonian[6]
is clearestin theCoulombgauge,~9~A1= 0. Butit hasbeenknownsinceGribov’s
work [7] that thisdoesnot uniquelyfix the gauge.Furthermore,therearecoor-
dinate“singularities” wherethe Faddeev—Popovdeterminantvanishes.Herethe
mappingbetweenA/~andthetransversevectorpotentialsbecomesdegenerate.

2. Gribov and fundamental regions

Like usingstereographiccoordinatesfor a sphere,which leadsto a coordi-
nate singularity at one of the poles, coordinatesingularitiescan be removed
at the price of having differentcoordinatepatcheswith transitionfunctionsat
the overlaps.In gaugetheory,thesedifferentcoordinatepatchescansimply be
seenas differentgaugechoices[2,8]. But this is somewhatcumbersometo for-
mulate andmost, but (as we shall see) not all coordinatesingularitiescanbe
avoidedif onerestrictsthe set of transversevectorpotentialsto a fundamental
region which constitutesa oneto one mappingwith A/c. This is achievedby
minimizingthe L

2 norm of the vectorpotentialalongthe gaugeorbit [9,10]

1~A1I~ _fd3x tr ((g_lAig + (1)

wherethe vectorpotentialis takenanti-hermitian.For SU (2), in termsof the

Pauli matricesTa, one has

A1(x) =

g(x) =exp(X(x)), X(x) = iXa(x)~. (2)

Expandingaroundthe minimumof eq. (1), oneeasilyfinds

= hAil
2 + 2f tr (Xa~A~)+ f tr (XtFP(A)X)
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+~ftr (X[A~,X},01X]) + ~Jtr ([D1X,X][0~X,X]) +0(X
5), (3)

where FP(A) is the Faddeev—Popov operator (ad(A)X [A,X])

FP(A) = —0
1D1(A) = —0~—5~ad(A1). (4)

At the absolute minimum the vector potential is hence transverse, 0A, = 0,
and FP(A) is a positive operator.Theset of all transversevectorpotentialswith
positive Faddeev—Popov operator is by definition the Gribov region Q. It is a
convexsubspaceof thesetoftransverseconnectionsF,with aboundaryOQ that
is calledthe Gribov horizon.At the Gribovhorizon,the lowesteigenvalueof the
Faddeev—Popovoperatorvanishes,andpointson 0Q arehenceassociatedwith
coordinatesingularities.Any point on DQ hasa finite distanceto the origin of
field spaceandin somecasesevenuniform boundscan be derived[11,12].

TheGribov region is the setof local minimaof the normfunctional (3) and
needsto be furtherrestrictedto the absoluteminima to form a fundamental do-
main,whichwill bedenotedby A. The fundamentaldomainis clearlycontained
within the Gribov region andcaneasilybe shownto alsobe convex[9,10]. Its
interior is devoidof gauge copies, whereas its boundary OA will in generalcon-
tain gaugecopies,which areassociatedto thosevectorpotentialswherethe ab-
soluteminimaof the norm functionalaredegenerate[13]. If this degeneracyis
continuousone necessarilyhasatleast onezero eigenvaluefor FP(A) andthe
Gribov horizonwill touchtheboundaryof the fundamentaldomainattheseso-
calledsingularboundarypoints.By singularwemeanherea coordinatesingular-
ity. Thereareso-calledreducibleconnections[141,andA = 0 is the most im-
portantexample,which areleft invariantby a subgroupof c. As herec doesnot
act transitively,A/~hascurvaturesingularitiesatthesereducibleconnections.
They canbe“blown up” by not dividing by their stabilizer.For S

3 onecanproof
A = 0 is the only suchreducibleconnectionin A. (Note c is the setof all gauge
transformations,includingthosethatarehomotopicallynon-trivial.)The stabi-
lizer of A = 0 is the group G (= SU(2)) of constantgaugetransformations.
This gaugedegreeof freedomis not fixed by the Coulombgaugeconditionand
thereforeone still needsto divideby G to get the properidentification

A/G = A/c. (5)

HereA is consideredto be the setof absoluteminimamodulothe boundary
identifications,wherethe absoluteminimum might be degenerate.It is these
boundaryidentificationsthat restorethe non-trivial topology of A/c. Further-
more,the existenceof non-contractiblespheresallows oneto prove thatsingu-
lar boundarypointscannotbe avoided[13]. However,not all singularbound-
ary points, eventhoseassociatedwith continuousdegeneracies,needto be as-
sociatedwith non-contractiblespheres.Notethatabsoluteminimaof the norm
functionalaredegeneratealongthe constantgaugetransformations,thisis atriv-
ial degeneracy,alsogiving riseto trivial zero-modesfor the Faddeev—Popovop-
erator, which we ignore.The actionof G is essentialto removethe curvature
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singularities mentioned above andalso greatlyfacilitatesthe standardhamilto-
nianformulationof the theory [6]. There is no problemin dividing out G by
demandingwave functionalsto begaugesinglets(colourlessstates)with respect
to G. In practicethis meanseffectively thatoneminimizesthe norm functional
overc/G.

3. Gauge fields on the three-sphere

We will now specializeto the caseof S3, for which we will summarizethe
formalismthatwasdevelopedin [1]. We embedS3 in ll~by consideringtheunit
sphereparametrizedby a unit vectorn

14. We introducethe unit quaternions~
andtheir conjugatesi~= a~by

= (id,i~), ã~= (id,—i’r). (6)

Theysatisfythe multiplication rules

= ~ ã~ci~= ~ (7)

wherewe usedthe ‘t Hooft n-symbols [15], generalisedslightly to include a
componentsymmetricin ~ and ii for a = 0. We can use~ and ~ to define
orthonormalframingsof S

3, which were motivatedby the particularlysimple
form of the instantonvectorpotentialsin theseframings.The framingfor S3 is
obtainedfrom theframingof ~ by restrictingin the following equationthe four-
indexa to athree-indexa (seealsoref. [22]; for a = 0 oneobtainsthe normal
on S~):

e~= ~ = ~ (8)

The orthogonalmatrix V that relatesthesetwo framesis givenby

17 = ë~e~= ~tr((n.a)a~(n.â)a
1). (9)

Notethateandëhaveoppositeorientations.Eachframingdefinesa differential

operator
3! = ~ l~’= ~ (10)

to which belongSU(2) angularmomentumoperators,which for historicalrea-
sonswill bedenotedby L1 andL 2:

L~= 3’, L~= 8’. (11)

Theyareeasilyseento satisfythe condition

L~=L~. (12)
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The (anti-)instantons [16] in these framings, obtained from those on l~by
interpretingthe radiusin R4 as the exponential of the time t in the geometry
S3 x R, become(e and A are defined with respect to the framinge~for instantons
and with respect to the framing ë~for anti-instantons)

______ aAe—(u-~-e.n)a

A
0 = 2(1 +c.n)’ Aa = 2(1 +e.n) ‘ (13)

where

2s
2 2sb~,

U__lb22~ ~ s=2e. (14)

The instantondescribestunnellingfrom A = 0 at t = 00 to Aa = Ua at
t = oc, overa potentialbarrier that is lowestwhenb~, 0. This configuration
(with b~= 0, u = 1) correspondsto a sphaleron[171,i.e. the vectorpotential
Aa = aa/2 is a saddle point of the energyfunctionalwith one unstablemode,
correspondingto the direction (u) of tunnelling.At t = ~, Aa = cJa haszero
energyand is agaugecopy of Aa = 0 by a gaugetransformationg = ii . ~ with
winding numberone, since

fl78afl~7aa. (15)

We will beconcentratingourattentionon the modesthataredegeneratein en-
ergyto lowestorderwith themodesthatdescribetunnellingthroughthesphaleron
and“anti-sphaleron”.Thelatter correspondsto the configurationwith the mini-
mal barrierheightseparatingA = 0 from its gaugecopy by agaugetransforma-
tion g = . a with winding number—1. The anti-sphaleronis actuallya copy
of the sphaleron under this gauge transformation, as can be seen from eq. (13),
since

n•öe~aan~a= —ë~aa, (16)

(with whichwe correctatypoin eq. (12) of ref. [1]. Thisalsoaffectedthesignof
eq. (83) of this reference. Westick to the present more natural conventions.) The
two-dimensional space containing the tunnelling paths throughthe sphaleronsis
consequentlyparametrizedby u andv through

A ‘~uv’ — ( a —a\ aa — At \ I

— I’ — — ,~u,
1ev,

A,(u,v) = (_uof~_vJ/~2)~= —u~+v n~ö~n•a. (17)

Thegaugetransformationwith windingnumber—1 is easilyseento map(u,v) =

(w,0) into (u,v) = (0,2 — w). In particular, as discussed above, it mapsthe
sphaleron(1,0) to the anti-sphaleron(0, 1).

The Gribov and fundamental regions will be discussed in the next section.
After that we will investigatethe 18-dimensionalspacedefinedby
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A~,(c,d)= (c?e,~,+ d7e~)~ = A1(c,d)e,~,

A1(c,d)= (c? + d7J’y) ~. (18)

Oneeasily verifiesthat the c andd modesare mutually orthogonalandthat
A (c,d) satisfiesthe Coulombgaugecondition

8~A1(c,d)= 0. (19)

This spacecontainsthe (u,v) planethroughc,” = —uô~anddf’ = —vó,”. The

significanceof this 1 8-dimensionalspaceis that the energyfunctional [1]

V(c,d)~_f~-tr(F,~)

= V(c) + V(d) + ~ {(c~)2(d~)2- (c~d7)2}, (20)

V(c) = 21r2 {2(c?)2 + 6detc+ ~[(c~c~)2 - (c~c~)2J} (21)

is degenerate to second order in c andd. Indeed,thequadraticfluctuationoper-

atorM in the Coulombgauge,definedby

—f~tr(1~)=_ftr(AiMiiAj) + 0(A
3),

= 2L~ô
11+ 2 (L1 + ~ S~j=

1Faij (22)

hasA (c, d) as its eigenspacefor the eigenvalue4. Contraryto what wasclaimed
in ref. [1] thisisthelowesteigenvalue.The 12-fold degenerateeigenvalue3 turns
out to existof purely longitudinalmodes,ratherthantransversemodes.

4. Gribov andfundamentalregionsfor A(u, v)

Let usanalysethecondition for j~Aj~2to be minimal a little closer. We can
write

— hAil2 = f tr (At) — f tr ((g_lAig + g’ajg)2)

= f tr (gtFPi
12(A) g) (g,FP112(A)g), (23)

whereFP112(A) is the Faddeev—Popovoperatorgeneralisedto the fundamental
representation:

FP1(A) = —3~— ~A~Tf~31. (24)
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Here T~are the hermitian gauge generators in the spin-t representation:

T~2= ~., Tf’ = ad(~). (25)

They are angularmomentumoperatorsthat satisfy T~= t(t + 1 )id. At the
critical pointsA e F of the norm functional, (recall F = {A e Ai3~A1= 0}),
FP~(A) is an hermitianoperator.Furthermore,FP1(A) in that casecoincides
with the Faddeev—Popov operator FP(A) in eq. (4).

In eq. (23) FP112(A) is definedasan hermitianoperatoractingon the vector
space£ of functionsg over~3 with values in the spaceof the quaternionsI-fl =

{q~a~,iq~E EJ~}.To be precise,weshouldrequire g e 1472’ (5~,1-il), with W~’(M, V)
the Sobolev space of functions on Mwith valuesin thevectorspaceV, whosefirst
derivative is continuous and square integrable. Weusethestandardisomorphism
betweenthe complexspinorsyi (on which T112 actsin the standardway) and
the quaternions,by combining yi’ and ö.2W*. To be specific, if ~ii~ = q0 + iq3
and W2 = iq, —q2,theng= (W,O~W*)= q.aisaquaternion(onwhichT112
now actsby matrix multiplication). Chargeconjugationsymmetry,C~,ii=
implies that [FP112(A),C] = 0 andguaranteesthat the operatorpreservesthis
isomorphism. Also note that this symmetry implies that all eigenvaluesaretwo-
fold degenerate.The gaugegroup c is containedin £ by restrictingto the unit
quaternions: c = {g e£ig = gpap,g~,e~ = l}.

We candefine A in terms of the absolute minima (apartfrom the boundary
identifications)over g E c of(g,FP112(A) g)

A = {A E Flmin(g,FP,12(A)g) = 0}. (26)
gE~

When minimizing the same functional over the larger space £ one obviously
should find a smallerresult, i.e.

ccl:=~min(g,FP,,2(A)g)~min(g,FP,12(A)g). (27)

gE~ gel:
Writing

A = {A eFhmin(g,FP1,2(A)g) = 0}, (28)
gel:

it follows directly from eq. (27) that A cA. Since A is related to the minimum
of a functional on a linear space, it will be easierto analyseA than A. Wewere
inspiredby appendixA of ref. [18] for this consideration. Remarkably, we will
be able to prove that the boundary 9A will touch the Gribov horizon OQ. This
establishes the existence of singular points on the boundaryof the fundamental
domaindueto the inclusionA c A c Q.

In the (u, v) planeoneeasilyfinds that

22 2FPt(A(u,v)) = 4L, + 7uL,~T~+-~-vL2.T~ (29)
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Fig. 1. Location,for the (u, v) planeof theclassicalvacua(largedots), sphalerons(smallerdots),
bounds on theFaddeev—Popovoperatorfor / = and/ = 1 (short—longdashedcurves),zeros
of the adjoint determinant(solid lines for ! = ~, dashedlines for I = 1) andthe Gribov horizon
(fat sections).

For fixedangularmomentumI ~ 0 (whereL~= L ~= 1(1+ 1)),the eigenvalues
of La~T,12 (which is a kindof spin-orbitcoupling)are—(1 + 1)/2and1/2. This

is easily seen to imply that for g with L~g= 1(1 + 1)g (1 ~ 0)

— I + 1 ugh
2 ~ (g, La~T

112g) ~ llghi
2 (30)

and hence

(g,FP
112 (A(u, v)) g) ~ ugh

2 [41(1+ 1) — (21 + 1) (hub + bvh) — U —

(31)

whereasof coursefor 1 = Owe have (g,FP
112(A)g) = 0. Now let A1 be the

region in the (u,v) planewherethe right-handsideof eq. (31) is positive:

A1 = {(u,v)b [41(1+ 1)— (2! + l)(!ul + hvh)-u-vl ~ 0}. (32)

Then one easily verifiesthat A1 C 4i+ 1/2 for I ~ 0. For illustration we have
drawn the boundaries of A112 and A1 in Fig. 1 (the two nestedtrapeziums).
Consequently,restrictedto the (u,v) planeA112,the trapeziumspannedby the
four points (1,0), (0,1), (—3,0) and (0, —3), is contained in A. As oneeasily
checks,the vector potentials belonging to the sphalerons at (1,0) and (0, 1) have
the samenorm. Sincetheyarerelatedby agaugetransformation(aswasproved
earlier) and lie on the boundaryof A112, these sphalerons have to be on the
boundary of the fundamental domain OA.Hence,A112 is seento providealready
quite a strong bound.
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BeforeconstructingA in the (u,v) plane, it is instructive to considerfirst the
Gribov horizon,which is givenby the zerosof the Faddeev—Popovdeterminant
det(FP,(A)).The operatorFP~(A(u,v))as given by eq. (29) not only com-
muteswith L~= L~,but also with Jt, where

J,=L1+L2+T1 (33)

Using the quantumnumbers(I, j~,jf) onecaneasilydiagonalizeFP~(A (u,v))
for low valuesof 1. Notethatthe eigenvaluesareindependentof jf. Defining the
scalarandpseudoscalarhelicity combinations

s=u+v, p=u—v, (34)

we take from ref. [19] the results

det(FP1(A(u,v)) hI1/2) = (3—2s) (9_3s_2p2)
3(3+s)5, (35)

det(FP
1(A(u,v))h11)=512(8—2s)((8—2s)

2—s2+p2(2s—7))3

x(64—s2—3p2)5(8 + 2s)7, (36)

the zerosof which are also exhibitedin Fig. 1 (solid lines for 1 = ~, dashed
lines for I = 1). The Gribov horizonin the (u,v) planeis indicatedby the fat
linesandis completelydeterminedby the 1 = ~ sector,a fact thatwewill now
prove.Notethat the setof infinitesimalgaugetransformationsLg = {X: 53 ~
su(2)}, wheresu(2)is theLie algebrafor SU(2) (i.e. thetracelessquaternions),
is containedin £. It is easyto verify that for X ~ Lg, we havefor all vector
potentialsA

(X,FP
1(A) X) = (X,FP112(A)x). (37)

Thisfact will enableus to usethe sameboundsfor FP, andFP112 (cf. eq. (27)):

LgCl:~rnin(X,FP,(A)X) ~min(g,FP112(A)g). (38)
Eg gel:

Henceall zerosof the Faddeev—Popovdeterminantwith 1 ? 1 lie outsidethe
trapeziumA1, spannedby the four points (2,0), (0,2), (—4,0), (0,—4).

This proves that FP1(A) ? 0 within the region boundedby the zerosof
eq. (35).We seefrom Fig. 1 thatalongtheline s = u + v = 3,for I~h = h U — v
3, the Gribov horizon coincideswith DA andconsequentlytheseare singular
boundarypoints.Note thatthereforeit is necessarythatthe term third order in
X in eq. (3) hasto vanishif FP(A) X = 0. As on the Gribov horizonany non-
trivial zero-modehas1 = ~, whereasA (u,v) has1 = 0 or 1 = 1, thisthird order
term vanishesalongthewholeGribov horizonin the (u,v) plane(all its points
arethereforebifurcationpoints [13]). It can,however,alsobeshownthat these
singularboundarypointsare not associatedwith non-contractiblespheres(see
appendix A).
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2 / / I

i:,_
Fig. 2. Location of the classical vacua (large dots), sphalerons(smallerdots), bounds on the
Faddeev—Popovoperatorfor! = ~ (short—longdashedlines), the Gribov horizon (fat sections),
zerosofthe fundamentaldeterminantin thesector! = ~ (dashedcurves)andpartof theboundary
of the domain (full curves).Also indicatedarethe lines of equal potential in units of 2’~times
the sphaleronenergy.

Next we will constructA in the (u, v) plane to get an even sharper bound on
A. It is by now obviousthat this will follow from finding det(FP112(A(u,v)) in
the I = sector. A straightforward computation yields

det(FP112(u,v)111/2) = 9(3+s)4(3_25_p2), (39)

wherethe multiplicity of 4 comesfrom the j = 4 stateandthe multiplicity 2
from the two j = statesin thedecomposition~ ® = ~ 4. In Fig. 2
the borderingparabolagoing throughthe points (O,—3), (1,0), (~, ~), (0,1)
and (—3,0),cutoff by the line s = —3, formsthe boundaryof A. As in the case
of theGribov horizon,A iscompletelydeterminedby the1 = ~ sector,sincealso
the zeros of det (FP112 (A (u, v))) with 1 ~ 1 lie outside the trapeziumA1. Notice
that we havenow alsoshownthat (u, v) = (~, ~) is a singularboundarypoint.

Werecall that in ref. [19] part of OA in the (u,v) plane was constructed by
expanding around the sphalerons, which are known to be on OA. One solves for
fixed (u,v) near (0, 1) for the extremumof (g,FP112(A (u,v)) g) with respect
to g = n ö~exp(X), where it can be shown thatX = —n af(n0). This leads
to a second-orderdifferentialequation,solvedby

i—i

f(x) =x~~af,k(v)u~x
21’, (40)

j=1 k=O

with
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2 —2(v2+6v—l6)
al,o(v)=

2+~ a2,o(2+)3(lO+)~

4(6 + v)

a2,1(v)—~(v+2)
2(v+lO)’ ... (41)

Substituting this now back in eq. (23) and demanding equality of norms yields
v(u)

1 2 2 ~ 25 ~ 1238 ~
v(u)=1—~u _~-j-U ~ —

264627u

172442 6 687429956 7 8

______ — 457339760361u+O(u ), (42)

giving the part of OA in the (u,v) plane going through the anti-sphaleron at
u = 0. Wehave drawn the maximal extension to the Gribov horizon, but not all
of it is expected to coincide with OA. Interchanging the two coordinates gives the
part of OA going through the sphaleron. Both parts are indicated by the curves
in Fig. 2. They areconsistentwith the inclusionA C A. In thisfigure alsolines
of equalpotential (eq. (20)) aredrawn.

5. Gribov and fundamental regions for A(c,d)

We will now generalize our discussion to the 18-dimensional field space,
parametrized by A (c, d) in eq. (18). For this caseonehas

FP,(A(c,d)) = 4L~—?~c~’TfL~— ~ (43)

This still commuteswith L~= L~,but for arbitrary (c, d) therearein general
no other commuting operators (except for the charge conjugation operatorC for

= ~).
We first calculatethe analoguesof theregionsA1, as definedin eq. (32). We

decompose

9 9

c?=~c~(b1)7, d~=~d1(b1)7, (44)
j=l 1=1

with c1 andd1 coefficientsandtheset{b1} abasisof~ consistingof orthogonal
matrices (bT = b7’) with unit determinant.We thenhave

FP~(A(c,d)) = 4L~—~c1T~°(b1)7L~— ~djT~a(b~)~L~

= 4L~— ~c1T~.L ~ ~d~T~•L 2,j~ (45)
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with ~ (b1)~L~(k = 1,2) properangularmomentumoperators.As in

eq. (31), for g an eigenfunction ofL~with eigenvalue 1(1 + 1) (1 � 0),we find

the bound

[41(1+ 1) - (21 + 1) (H +

(46)
j= I

As before, we define A1 as the polyhedra where the right-handsideof eq. (46)
is positive. They are nestedpolyhedra, i.e. A1 c Ai+ 1/2. Hence we have the
inclusionA112 c A c A c Q. If we restrictourselvesto the two-dimensional
subspacewhereall but oneof the c~(—u) and all but oneof thed~(—v) are
zero, we precisely recover the situation of the previoussection.Theboundswill,
however, depend on the particular choice of the b3 matrices.The sharpestbound
is obtainedby forming the union of all A1 obtainedby thesevariouschoices.

We now turn to the computationof the Faddeev—Popovdeterminants.In
the sector1 = ~, which is 4(2t + 1) dimensional,the problem of computing
det(FP~(A(c,d))) is still manageable.A suitable basis is given by hsi,s2,s3),
with s~the eigenvaluesof the third componentof the threeangularmomentum
operatorsL1, L2 andT ~. For t = 1 it is actually more convenientto consider
hSl,S2)a, wherea is the vector component. Using

L~ISI,S2)a= (~ ~si)l 51,52)a , L~IS1,S2)a= (~ FS2)bSl,S2)a

L?hSl,52)a = SIIS1,S2)a, T~hS1,S2)a = iebOCISl,52)C , (47)

where as usual L~= L~±iL~,one easily writes down the matrix for M

FP1 (A(c,d)) in this sector(c~ c~±ic~and d~ d~’~

M151,s2)b= —i~{(~— aSI)c~e0bCl — S1,S2)c + (~— as2)d~0bChs1,_S2)c}

+ (3ô6~—
2iEabc(51c

3°+ s2d~))lsi,s2)~. (48)

In particular for the choice

= X1Ô,° , d,°= Yiö~, (49)

one can, with the help of Mathematica [211,check that the following holds:

det(FP1(A(c,d))h1 i~ =F(x1 +y1,x2 +y2,x3+Y3)
2J

xF(xi —y1,x2—y2,x3+y3)

xF(x1 —y1,x2 +y2,x3—y3)
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xF(x1 +y1,x2—y2,x3—y3),

F(z) E2[Jzj_3>z~+27. (50)

To obtain the result for general (c, d) we firstobservethatwehaveinvariance
under rotations generated by L1 and L2 and under constant gauge transforma-
tions generated by T~,implying thatdet(FP~(A (c, d) ) hi = 1/2) is invariant under

c?—* (ScR,)~, d,”—~(SdR2)~, (51)

with R1, R2 and S orthogonal matrices with unit determinant (note that the
Lk,J, introduced in eq. (45), are nothing but the Lk generators,rotatedby R1 =

R2 = by). This alsoallows us to understandthe largeamountof symmetryin
eq. (50), as a permutation of the x, (yj) and a simultaneous change of the sign
of two of the x1 (y,) is the remnantof this symmetry,when restrictedto the
diagonal configurations of eq. (49). The result for the generalization of eq. (50)
to arbitrary (c, d) is presentedin appendixB. Herewewill treatthe cased = 0.
Using eq. (51) we first diagonalize c? andthenexpressF (x) in terms of the
complete set of rotational and gauge invariant parameters of c~’

detc = fJx~, Tr(cc
t) = ~x,2, Tr(cctcct) = ~ (52)

which implies F(x) = 2detc— 3Tr (cct) + 27 and

det(FP
1(A(c,0)) b/1/2) = (2detc_3Tr(cct)+ 27)~. (53)

This can also be easily derived by constructing the threedimensionalinvariant
subspace for (c~= ~ d = 0), spanned by the threevectorsn~a1(no sum
over i), with respectto which the matrix for M takes the form

/3 x3x2\ /niai\
~i4(n1a1,n2a2,n3a3)= ( x3 3 x, ( n2a2 , (54)

\x2x1 3) \n3a3)

whose determinant coincides with F(x). It is not too difficult to constructthe
three other three-dimensional invariant subspaces with identical determinants.

Two special cases in this class were first considered by Cutkosky [201:

I: c~=diag(—u+y,—u+y,—u—2y),

II: c? = diag(—u + x, —u — x, —u). (55)

For F, whichdeterminestheFaddeev—Popovdeterminantat1 = ~, we find [20]

Fj=(u+2y+3)[(u+3)(3—2u)+2(2u—3)y—2y
2],

F
11 = (u + 3)2(3 — 2u) + 2(u— 3)x

2. (56)
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The associated zeros are drawn respectively in Figs. 3 and 4. Notethatthe (u,y)
plane admits a global gauge symmetry (u,y) —f ~ (4y — u,y + 2u) generatedby
S = diag(—1, —1, 1), which mapsthevacuumat (u,y) = (2,0) to a vacuum
at (— ~, 4). To concludethat thesezeroscoincidewith the Gribov horizon, we
have to show that the Faddeev—Popov operator for all 1 ? 1 is positivewithin
the region bounded by these zeros. Using eq. (38), it is sufficient to showthat
these zeros lie within A1, the region obtainedfrom the bound on FP112 (A) in
eq. (46). Clearly we should try to constructthis boundby taking for b~the
diagonal orthogonal matrices diag(l, 1,1), diag(l,—l, —1), diag(—l,—1, 1) and
diag(—1, 1, —1). It turns out to be sufficient to consider the union of the bounds
obtainedby applyingeq. (46) for the four triplets of possiblechoiceof diagonal
b1. In terms of general x1, this leads to the four bounds

41(1 + 1)— ~(21+ 1)(lxi + x2j + Ixi + x31 + hx2 + x31) —x1—x2—x3 ~ 0,

41(1 + 1)— ~(2l + l)(hxi —x21 + lxi —x31 + hx2 + x31) —x1 + x2 + x3 ~ 0,

41(1 + 1)— ~(2l + l)(Ixi + x21 + hxi —x3j + hx2 —x3h) + x1 + x2 —x3 ~ 0,

41(1 + 1)— ~(2! + l)(hxi —x2j + lxi + x3l + 1x2 —x31) + x1 —x2 + x3 ~ 0.

(57)

Theunion of thesepolyhedrarespectsthe gaugeandrotationsymmetryandwe
takeit as the definitionsof A1 for d = 0. They areagainnested,such that it is
sufficientto showthatthe convexregionsboundedby thezerosof theFaddeev—
Popovoperatorin the 1 = sectorarecontainedwithin A1. FromFigs. 3 and4
weseethat thisis indeedthe case,allowing the identificationof 39 (fat curves)
andOA (dashedor full lines) with the zerosof respectivelydet(FP1(A)hi= 1/2)

and det(FP112(A)l1112).
We now turn to the calculationof det(FP112(A(c,d))h1112)which will allow

us to constructA andto find possiblefurthersingularpointson the boundary
of the fundamental domain. In this case the basis isi,~2, s3),which was defined
earlier,is aconvenientoneforthe1 = ~ invariantsubspace.Usingtheinvariance
asgiven by eq. (51),we cantake c,a diagonalanddf’ symmetric:

/xi 0 0 \ fyi z1
c~=~0x20), d~=(z1y2z3). (58)

\0 Ox3) \z2z3y3)

With L~as beforeandT~2= T1
1

112 ±iT~2,we obtainthe following expression:

FP112(A(c,d))= 3 + 2iz1 (T~2L~— T~2L~)

—2(z2— iz3) (T~2L~+ T,~2L~)

—2(z2 + iz3) (T~pL~+ T~2L~)
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—4x3T~2L~— (xi + x2) (T~2Lj+ T~2L~)

I \I’r+ ~

— x21 ~ 1/2~1 + 11/2 1

—4y3T~2L~— (y, + Y2) (T~2L~+ T~2L~)

-(Yi y2) (T~2L~+ T~2L~). (59)

In order to express the final result in invariants, we introduce the matrices X
and Y via

= (cc
t)g, Y~= (ddt)~. (60)

UsingMathematica[211andexpressingtheresult in termsoftracesof products

of X andY,weobtainan expressionwhich is manifestlyinvariant:
det (FP

112(A(c,d))h1112) = F
2 (61)

Fm 81—l8Tr(X + Y) + 24(detc+ detd)

—(Tr(X— Y))2 + 2Tr((X— Y)2).

With this, one easily reproduces the result of eq. (39) (x
1 = —u, y1 = —v, S =

u + v,p = u — v). Notethe overall square,which is a consequenceof the two-
fold degenerationof the eigenvaluesdueto the fact that FP112commuteswith
the chargeconjugationoperatorC. Such a non-trivial commuting operator does
not exist for FP1, whosedeterminantdoesnot factoriseand was hencemuch
more difficult to calculate (see appendix B).

For d = 0 wefind

det(FP112(A(c,0)) l/1/2) = F
2

= {8l — 18TrX + 24detc— (TrX)2 + 2Tr(X2)}. (62)

In Figs. 3 and4 we havedrawn OA obtained from the zeros of eq. (62) for the
two casesof eq. (55):

F
1 = 3(3 + u + 2y)

2(u—l)(4y—3—u),

F
11 = 3(u + 3)(u— l)[4x

2— (3 + u)2], (63)

which indeed provides further singular boundary points (since OA n 39 is not
empty).AlsothepartofOA thatcontainsthesphaleronis easilyderivedfrom the
fact that the gauge transformation with winding number —1, g = n - a, leads to

~A(x,,O) = —(2 + x,)n - &~n- a, (64)

for arbitrary diagonal configurations. Equality of norms implies the equation
> x

1 + 3 = 0. This means,sinceA c A, that in Fig. 3 the edges of A passing
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~ -~ -~ ~ól 2

Fig. 3. Location, for the (u,y) plane of the classical vacua (largedots), sphalerons(smaller
dots),boundson the fundamentalFaddeev—Popovoperatorfor! = 1 (short—longdashedcurves),
boundaryof the fundamentaldomain (solid lines) andthe Gribov horizon (fat curves),as well
asthe lines of equalpotential.

HW ~
2

1 -

-2

Fig. 4. Location, for the (u, x) plane of the classicalvacua (largedots), sphalerons(smaller
dots), boundson the fundamentalFaddeev—Popovoperatorfor! = 1 (short—longdashedcurves),
boundaryof thefundamentaldomain (solidline), zerosof the fundamentaldeterminantfor I =

(dashedlines) andthe Gribov horizon (fat curves),aswell as the lines of equalpotential.

throughthe sphaleronscoincidewith 8A, afact that can alsobeconcludedfrom
the convexity of A. Hence, in Fig. 3 A coincideswith A and the line u + 2y =

—3 consistsof singularboundarypoints. In Fig. 4 it is not excludedthat, atthe
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dashed lines, 8A does not coincidewith 0A, as was also the case for the (u, v)
plane,seeFig. 2. We cansettlethis issueby consideringthe embeddingof the
(u, x) planewithin the threedimensionalspaceof the x1.

All surfaces to be constructedhaveto respectthe symmetriesof the permuta-
tionsand the doublesign flips of the x, coordinates.We first considerA1, see
eq. (57), which can be seenas a tetrahedronspannedby the points (4,4,4),
(—4, —4,4), (4,—4, —4) and (—4,4,—4), enlargedby addingto eachfacea sym-
metric pyramid, whose tips are given by the points (—2, —2, —2), (2,2,—2),
(—2,2,2) and (2, —2,2) (corresponding to the copies of the classical vacuum at
x = 0). For general1, A1 can be constructed from this twelve faced polygon by
scaling the corners of the tetrahedronwith 1 + 1 and the tips of the pyramids
with I, from whichtheir nestednatureis obvious.A specialcasearisesfor I =

wherethe pyramidsare of zero height, suchthat A112 is a tetrahedron.It is a
remarkablefact that thefundamentalFaddeev—Popovdeterminantin the sector
1 = ~ (eq. (62))vanisheson 0A112.As thisisenclosedby A1,whereall eigenval-
uesof FP112(A) with 1 ~ I arestrictly positive,we concludethatA = A112 (the
tetrahedron spanned by (3, 3,3), (—3, —3,3), (3, —3, —3) and (—3,3, —3)). The
convexregionboundedby the zerosof the adjointdeterminant(eq. (53)) can
beshown to form a surfacecontainedin A1 that can be visualizedby stretching
arubbersheetaroundthis tetrahedron,fixed at its edgesand slightly inflated.
This surfaceforms the Gribov horizon~Q, sincealsoall eigenvaluesof FP1(A)
with 1 ~ 1 arestrictly positiveinsideA1. Because of the inclusion A C A C 9,
all points on the edges of the tetrahedron are singularboundarypoints. As all
the faces of this tetrahedron contain a sphaleron, which we have proven earlier
to be on the boundary of the fundamental domain (the edges of the tetrahedron
aresingularpointson the sameboundary),we conclude(usingthe convexityof
A) that A = A. This is consistent with eq. (64), where equality of norms gives
the equationthat describesthe faceof thetetrahedronthroughthe sphaleronat
(—1, — 1, —1), ~ x1 + 3 = 0. Theotherthreefacesfollow from flipping the sign
of two of thex~,which is a symmetry.In Fig. 5 wehavedrawnthe fundamental
modulardomainfor d = 0 in x spaceand in Fig. 6 wegive the Gribov hori-
zonandthe edgesof 8A1 (dashedlines). Thiscompletesthe constructionof the
fundamentaldomain for d = 0.

6. Discussion

In thispaperwe haveanalysedin detailthe boundaryof the fundamentaldo-
mainfor SU(2)gaugetheorieson thethree-sphere.We haveconstructedit com-
pletely for thegaugefieldswith L~= 0 andhaveprovidedpartial resultsfor the
18-dimensionalspaceof modesthat aredegeneratewith thesein energyto sec-
ond orderin the fields. Especially,the interestingpoint ofexplicitly demonstrat-
ing the presenceof singularboundarypoints, i.e. pointswherethe boundaryof
the fundamentaldomain coincideswith the Gribov horizon,was addressed.In
ref. [13] existenceof singularboundarypointswas provenon the basisof the
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X3 0

-2

2 X2 -2

Fig. 5. The fundamentalmodulardomain for constantgauge fields on S3, with respectto the
“instanton”framing e~,in the diagonalrepresentationAa = Xaaa (no sumover a). By the dots
on the faceswe indicatethe spalerons,whereasthe dashedlines representthe symmetryaxesof
the tetrahedron.

presenceofnon-contractiblespheres[3] in thephysicalconfigurationspaceA/c.
This doesnot prove that all singularboundarypointsarenecessarilyassociated
with suchnon-contractiblespheres,which wedemonstratedfor the caseat hand
(seeappendixA). It is alsoimportantto notethat it is necessaryto divideA by
the setof all gaugetransformations,includingthosethatarehomotopicallynon-
trivial, to get thephysicalconfigurationspace.All thenon-trivial topologyis then
retrievedby the identificationsof pointson the boundaryof the fundamental
domain. Zwanziger [12] (appendix E) has constructed, for the caseof M = T3,

a gaugefunctionparametrizedby atwo-spherefor which the norm functional is
degenerate,but its vector potentiallies outsidethe fundamentaldomainwhen
also the anti-periodicgaugetransformationsareconsideredas part of c [13].

As we alreadymentionedin the introduction,the knowledgeof theboundary
identifications is important in the casethat the wave functionalsspreadout
in configuration space to such an extent that they become sensitive to these
identifications.Thishappensatlargevolumes,whereasatverysmallvolumesthe
wave functionalis localizedaroundA = 0 andoneneednot worry aboutthese
non-perturbativeeffects. That theseeffectscanbe dramatic,evenat relatively
small volumes (above a tenth of a fermi across), was demonstrated for thecaseof
thetorus [2,8]. However,for that casethe structureof thefundamentaldomain
(restricted to the abelianzero-energymodes)is a hypercube[13] anddeviates



P. vanBaa!,B. vandenHeuvel/Nuc!earPhysicsB417 (1994) 215—237 233
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Il/p:4 ~/I

x2

Fig. 6. TheGribov horizon for constantgaugefieldson S3,with respectto the “instanton”framing
e

1~,in thediagonalrepresentationAa = xaaa (nosumovera). Thedashedlines representtheedges
of A1, which enclosesthe Gribov horizon, whereasthe latter enclosesthe fundamentalmodular
domain,coincidingwith it at the singularboundarypoints alongthe edgesof the tetrahedronof
Fig. 5.

considerablyfrom the fundamentaldomainof the three-sphere.Onecanhence
concludethatsomethingneedsto happento the structureof thetheory, to avoid
that the infinite volume limit in the infrared dependson the way this limit is
taken, e.g. by scaling different geometries,like T

3 or 53~Oneway to avoid this
undesirableeffect is that the vacuumis unstableagainstdomain formation.We
havediscussedthisat lengthelsewhereandrefer the readerto refs. [1,8,13] for
further details.

To conclude, let us return to the issue of the singular boundary points. Many
of thecoordinatesingularitiesdueto the vanishing of the Faddeev—Popov deter-
minant (which plays the role of thejacobianfor the changeof variablesto the
gauge fixed degrees of freedom [4] in the hamiltonian formulation) are screened
by the boundary of the fundamental domain. Although the singular boundary
pointsform a setof zeromeasurein the configuration space, theycanneverthe-
lessbe importantfor the dynamics.Nearthesepointswe haveto choosediffer-
ent coordinatesandformulatethe necessarytransitionfunctionsto movefrom
one to the other choice. It is clear that this is difficult to formulate in all rigour in
the infinite dimensional field space. As the domain formation is anticipated to
bedueto the fact that theenergiesof thelow-lying statesflow overthe sphaleron
energy,wecan studythe dynamicsof the domainformationas long as the ener-
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giesof all singularboundarypointsarewell abovethe sphaleronenergy.From
Figs. 2—4 we seethat this is indeedthe casein the 18-dimensionalsubspacewe
haveconsidered.For the higher energymodesthe tail of the wave functional
will be sosmallat the singularboundarypoints,that we neednot worry about
their influenceon the spectrum.In this way we havea well-definedwindow in
which the non-perturbative treatment of a finite number of modeswill allow us
to calculate the low-lying spectrum of the theory (see ref. [1] for the set-up of
this analysis).
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Appendix A

In thisappendixweshalldemonstratethatthe singularpartof theboundaryof
the fundamentaldomainin the (u,v) planedoesnot containpointsassociated
to non-contractiblespheres.Suchanon-contractiblesphereimpliesatleastaone
parameter gauge function g (t) alongwhich the norm functionalis degenerate
andminimal. We will first showthat thisimplies that the fourth order term in
eq. (3) needsto benegative.After thatwe showthat this is not thecasefor the
singularboundarypointsunderconsideration.We write

g(t) = exp(X(t)), X(t) = tX1 + t
2X

2 + t
3X

3 + t
4X

4 + 0(t
5). (A.!)

For all t one shouldhavethat8(~~t~A~)= 0. Using the fact that

0i~~(~A~) = 8
1D~(~t)A)(gt (t)~g(t)), (A.2)

oneeasilyconcludesthat X1 is a zero-modefor the Faddeev—Popovoperatorat
t = 0, whereasthefirst-orderterm in t gives the equation

FP(A)X2 = ~[8aXi,[Xi,Aa]1. (A.3)

By consideringthe inner productof both sides of this equationwith X1, we
concludethatit canonly haveasolutionprovidedthethird-orderterm (for X =

X1) in eq. (3) vanishes,as shouldbeobviouslytrue sinceweareconsideringA e
A, i.e. thenorm functionalis at its absoluteminimum.We now havesufficient
information to compute~~(t)A~to fourth orderin t (the explicit forms of X3
andX4 dropout of theexpressionforthisorderwhenweusethatFP(A) X1 = 0
and 8aAa = 0, respectively)
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= hhAhh2 + t4 {3 (X
2,FP(A) X2) — ([DaX1,Xi], [0aXi~Xi])}

+0(t
5). (A.4)

To obtain this result we used the Jacobi identity, partial integration, eq. (A.3)
andthe assumptionthat X

1 is an eigenfunctionfor L~.Since the first term is
positivedefinite, the norm functionalcanonly bedegenerateif the secondterm
is negative.

We now specializeto the caseA (u, v) andthe singularboundarypointsthat
occurat (u, v) = (~,~) and u + v = —3 for h u — v ~ 3. Thezero-modesfor the
Faddeev—Popovoperatorat theseconfigurationsareeasilyseento begivenby

= naQ’~’ab, ~ = ~ (A.5)

wherethe tracepart of the symmetric (real) tensorcorrespondsto the j = 0

(eq. (33)) zero-mode(at u + v = 4) andthe tracelesspart to thej = 2 zero-
mode (at u + v = —3). It is now straightforwardto substituteX1 (eq. (A.5))
in eq. (A.4). After somealgebrawe find

~[DaXi,Xi], [8aXi,Xi])/2ir
2 = 2Tr(Q4) —2(Tr(Q2))2

+~(u+v)[(TrQ)2Tr(Q2)+2TrQTr(Q3)_(Tr(Q2))2_2Tr(Q4)]

(A.6)

With Qa~)= öab andu + v = 4 we find for the right-handside 3, which is
positive.ForatracelessQ wefind 4Tr (Q4) — (Tr (Q2))2 at u + v = —3, which
is likewise strictly positive. Noneof the singularboundarypointscantherefore
be associated with a continuous degeneracy.

Appendix B

In this appendixwewill calculatedet(FP
1(A(c,d))hi112)for general(c,d),

thus extendingthe result in eq. (50). We will write the result in termsof the
matricesX and Y defined in eq. (60). It is useful to introducethe following
quantities:

D1 (~abc~d~)
2= TrY ((TrX)2 — Tr (X2)) + Tr (X2Y)

-2TrXTr (XY),

D
2 (eabc~d~d~)

2= TrX ((Tr Y)2— Tr (Y2)) + Tr (XY2)

-2TrYTr (XY),

D
3 (Tr (X

2) — (TrX)2) (Tr (Y2)— (TrY)2) + 2Tr ((XY)2)
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—2(Tr(XY))2,

F
0m27 + 2detc+ 2detd— 3TrX — 3TrY,

F1 36Tr(XY) + 24(TrX — detc)(TrY — detd) + 2D1 + 2D2,

F2 6D3 + 8 det c det d (27 — detc — detd + 3 Tr X + 3 Tr Y)

+4detc(9(Tr(Y2) — (TrY)
2) _D

2)

+4detd(9(Tr(X2) — (TrX)
2) _D

1)

F3m48(cletcdetd)D3 + !296Tr ((XY)2)

+ 1728 (detcdetdTr(XY) — detcTr (XY
2) — detdTr (X2Y))

+96(detc)2(9Tr (Y2) — 6(TrY)2 — 2detd(TrX + TrY))

+96(detd)2(9Tr (X2) — 6(TrX)2 — 2detc(TrX+ TrY))

+4(Di + 4detcdetd— 2(detd)2— l2detcTrY)

+4 (D
2 + 4detcdetd— 2(detc)

2— l2detdTrX)

—16(detc + detd)2 ((detc)2 — 6detcdetd+ (detd)2),

Rm576(TrX+ TrY)(Tr(X2Y2)_Tr((XY)2))

+576 (Tr (X2YXY) - Tr (X3Y2) + Tr (Y2XYX)- Tr (Y3X2)).

(B.l)

In terms of this list of invariants we have

det(FP
1(A(c,d))h/1/2) = 2(F~+ F3) — (F~+ F1)

2 — 8F
0F2 + R. (B.2)

The significanceof thisexpansion becomes clear when we substitute the diag-

onalchoicesfor c andd, eq. (49), for which

F0=E0, F1=flE1, F2=>E1
2, F

3=~E~, (B.3)

with

E0 = 27 + 2flxe + 2~yi — 3~x?— ~

E1 = 6x1y, — 2y1x2x3 — 2x1y2y3,

E2 = 6x2y2— 2y2x3x1 — 2x2y3y1,
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E3 = 6x3y3 — 2y3x1x2 — 2x3y1y2. (B.4)

Most important is that R vanishes identically for eq. (49). Hence the way we
came to eq. (B.2) was to first extend E~,to invariant combinations,which is
uniqueup to invariant polynomialsthat vanishidentically for the diagonalcon-
figurationof eq. (49). The spaceof invariantpolynomialswith thispropertyis
1! dimensionalandby fitting the determinantwith numericalvaluessubstituted
for c andd, onecaneasily (with the help of Mathematica[21]) solve for the
11 coefficients.The final result of eq. (B.2) hasthenbeencheckedfor a large
numberof randomchoicesof c andd.
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