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The small-volume expansion of the low-lying glueball states for SU(2) and SU(3) gauge 
theory, coupled to massless fermions with periodic and antiperiodic boundary conditions, is 
determined. For SU(3) with periodic boundary conditions the vacuum is eightfold degenerate and 
breaks part of the cubic group spontaneously. In all cases the scalar-to-tensor mass ratio 
mA~+/mE++ is 1.1 to 1.3 as in the pure-gauge case. We also discuss chiral symmetry. 

1. Introduction 

In  this paper  we wish to apply the approach of the zero-temperature small-volume 
expansion [1] to S U ( N )  (for N = 2,3) gauge theories coupled to massless fermions 

with spatially periodic and antiperiodic boundary  conditions. The number  of 

flavours n f will be arbitrary (but small enough in order not to destroy asymptotic  

freedom). Some explicit predictions for three flavours will be given as an example. 

This work is aimed at understanding the mechanism of confinement and chiral-sym- 

met ry  breaking, starting from the fundamental  Q C D  lagrangian. Asymptot ic  free- 

d o m  will guarantee calculability at small volumes. For  large volumes one has the 

impor tan t  results of Liischer [2] and of Gasser and Leutwyler [3], especially for 

controll ing the finite-volume errors in lattice gauge theory. However, these large- 

volume expansions leave undetermined a number  of, in principle, calculable con- 

stants. 
It  was claimed in ref. [4] that chiral symmetry is broken even when going to small 

volumes, due to condensation of zero-energy fermion modes. We will show that 
actually expanding around the true quantum vacuum, no such zero-energy fermion 

modes  occur, so chiral symmetry is unbroken in small volumes [3]. 
Another  motivat ion for our study is the comparison of analytic results with 

Monte  Carlo data [5]. Limitations in computat ional  power will allow a better 

approach  to the cont inuum in small volumes [6]. In this context we compute  the 
cont r ibut ion  of  massless fermions to the effective hamiltonian of the zero-momen- 
tum gauge fields, yielding a generalization of  Liischer's effective hamiltonian [1]. 
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The fermions contribute through vacuum polarization effects, which are computed 

to one-loop order. The spectrum of the effective hamiltonian will give the low-lying 
glueball masses in a small volume and, as in the pure-gauge case, these are of the 
order g2/3/L. On the other hand, since there are no zero-energy fermion modes, the 
pion has a mass of order 1/L and hence glueballs cannot decay into pions in a 
small volume (the "femto universe" [7]; this reference also contains a very clear 
overview of the many aspects of nonperturbative QCD.) Therefore, we need not 
address the issue of coupling to flavour-singlet mesons. Nevertheless this is an 
important  issue, since this coupling determines the decay modes for the glueballs. In 
principle, however, the glueball wave function (not to be confused with the wave 
function for the effective hamiltonian) allows one to determine the mixing with the 
flavour-singlet states, but this issue will not be pursued any further in this paper. 

A surprising result for SU(3) with periodic boundary conditions is that the 
vacuum is eightfold degenerate and the set of vacua form an orbit under the group 
of coordinate reflections. As a consequence the mass gap will go to zero for small 
volumes. Tunneling effects will have to be included in order to go to intermediate 
volumes, as in the pure-gauge case [8], but a detailed study of the appropriate 
nonperturbative dynamics will be left for the future. 

2. Boundary conditions and chiral symmetry 

Let us begin by specifying the boundary conditions for the gauge and fermion 
fields on a cube of sides L x L x L (n ~ Z 3) 

Ai( x + nL ) = Ai( x),  

q ] Z + ( x + n t  ) ( ± 1 )  nl+na+n3 = , I ,+(x) .  (1) 

Hence, the vector fields and '/'+ are periodic, whereas ' / "  is antiperiodic. Naively, 
one would expand around A i = 0, ~ + =  0, but the following argument will show 
that this is not obviously correct. The periodic boundary conditions for the gauge 
fields remain unchanged under the twisted gauge transformations of 't Hooft  [9] 

g (x + nL) = exp(2  n. (2) 

but the boundary conditions for the fermion fields in the fundamental representa- 
tion of S U( N)  change to 

~ +(x + nL ) = (± 1)"l+~2+"%xp(2~ik • n / N ) ~  +(x), (3) 

where ~ ' + ( x ) =  gk(x)~+(x). However, operators like the hamiltonian remain in- 
variant under the gauge transformations gk and therefore one could just as well 
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claim that perturbation theory is defined by expanding around 'P+= 0, Ai(x  ) = 
- i g ; l ( x )  0igk(x), (which is equivalent to expanding around g '+= 0, Ai = 0.) Due 
to the presence of the fermions this will, in general, be a state with a different 
energy. 

The various candidate vacua, thus obtained, can be distinguished by the Polyakov 
line 

1[ (jo Pj=  ~ T r  Pexp i A j ( x  + tej)dt  , (4) 

evaluated at the vacuum. These Polyakov lines have to take values in the centre of 
the gauge group when evaluated at the quantum vacua (otherwise gauge invariance 
would be spontaneously broken) and they transform under eq. (2) by multiplying 
with an element of the centre. 

For  SU(2) Pj = +_ 1 and we expect the vacuum to have maximal symmetry. 
Indeed we will show that for periodic boundary conditions Pj = - 1 for all j (hence 
'P+= 0, A i = 0 is a false vacuum), whereas for antiperiodic boundary conditions, 
Pi = 1 for all j (here 'it' = 0, A i = 0 is the true vacuum). By taking k = (1,1, 1) in 
eq. (3) we see that both cases are related by a gauge transformation. This observa- 
tion is well known in lattice gauge theory [10] but the implication for the vacuum 
ambiguity was never realized. 

For  SU(3) and antiperiodic boundary conditions we likewise find Pj = 1 for all j ,  
but with periodic boundary conditions Pj = 1 will correspond to a false vacuum. 
The lowest energy in this case is achieved for Pj(I)= exp(2~rilJ3) with lj = _+1. 
Reflection in the ith coordinate will change the sign of li and we therefore have an 
eightfold-degenerate vacuum which forms an orbit under the coordinate 
reflections Z~. 

The proof that the above vacua are not false vacua will be given after we have 
discussed the implication for chiral-symmetry breaking. Chiral-symmetry breaking 
is believed to be associated with condensation of zero-energy fermion modes, and 
indeed for the two-dimensional Gross-Neveu model [11] (exactly solvable in the 
large N-limit) this causes chiral symmetry to be broken even in small volumes [12]. 
Expanding around g' = 0, A i --0, one would then expect a similar behaviour for 
gauge theories coupled to massless fermions [4]. However, one can easily convince 
oneself that zero-energy modes for the fermions in perturbation theory will only 
occur when 

gt(x + nL) = I l P f '  g t (x ) ,  (5) 
j = l  ] 

where Pj is the value of the Polyakov line in the true vacuum. This criterion is 
clearly not satisfied for the vacua we identified and, in lowest order, chiral 
symmetry will be unbroken. 

Actually, we claim that even if eq. (5) were fulfilled, no chiral-symmetry breaking 
would occur. To see this we compute, for periodic ferrnion fields in a fixed 
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zero-momentum gauge-field background Ai, the lowest order contribution to (~g '> .  
This yields 

m N n  

<'~'q") = L3~m 2 + 2Tr(A2) + O ( m / L 2 ) .  (6) 

For A i = 0, m ~ 0 we indeed get the result [4] <'/'g'> = N n f / L  3. However, one is 
not  allowed to take the limit m --+ 0 before averaging over the gauge-field fluctua- 
tions and this is easily seen to wipe out the non-zero value of <'/'g'> for m + 0. 
(Note, that for the Gross-Neveu model the fermions are not coupled to a gauge 
field and our argument does not apply to that model.) Thus, chiral symmetry will 
not be broken perturbatively through the presence of zero-energy fermion modes, 
and to all orders in perturbation theory, ( ~ q ' )  = 0 for massless fermions. It should 
be noted, however, that <g"~'> is not a good order parameter for spontaneous 
chiral-symmetry breaking in a finite volume (for the same reason that the magneti- 
zation in the Ising model will only be non-zero in the thermodynamic limit). 

Finally, we wish to remark that breaking of chiral SU(nr) × SU(nt) down to the 
diagonal flavour symmetry group SU(nf) should not be confused with breaking of 
chiral UA(1 ) through instantons [13]. However, using the consistency conditions 
imposed by the axial anomaly, 't Hooft showed that spontaneous chiral-symmetry 
breaking seems unavoidable in QCD [14], which suggests that this breaking of chiral 
symmetry is dynamically realized through the breakdown of the chiral UA(1 ) 
symmetry. 

3. The effective potential 

We will compute, in this section, the contribution of the fermions to the effective 
potential, which depends on the parameters of the classical vacua. These parameters 
are the same as for the pure-gauge theories (the fermion fields are zero), and are 
given by the set of spatially constant, abelian, gauge fields [1] (parametrizing the 
vacuum valley) 

C a C i • T 
= 

T Ta--- Z (7) 

modulo periodic (homotopically trivial) gauge transformations, leaving the abelian 
and constant properties invariant. In eq. (7), T a are the ( N -  1) generators for the 
Cartan subalgebra, explicitly 

SU(2): 

su(3): 

7-1 =1~o 3 = ~diag(1, - 1)" 

T1 =1~?~3 = ~diag(1, - 1,0) 

1 

~X~ ( 2 ~ )  
T 2=~ - d i a g ( 1 , 1 , - 2 ) .  ( 8 )  
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To be more precise, this describes one connected component, related to the others 
by the homotopically non-trivial periodic gauge transformations. Concentrating on 
one such component is equivalent to ignoring instanton effects [15]. 

If/~(~), i = 1,2 . . . . .  N are the (N-1)-dimensional  weight vectors of the funda- 
mental representation (i.e. T~ = diag(/~(~),...,/~U))), one easily generalizes Li~scher's 
result for the effective potential [1] to include the fermions 

N N 

V~ff(Ci~)=~ E I21(C'(I~(i)-I~(J'))-nfEDl(C't*("+C±), (9) 
i ~ j = l  i=1  

(up to a possible overall constant), where 

sin2(~n • x) 
4 E , (10) 

~ ' l ( X )  = q./.2---L n•o ( . 2 )  2 

C + =  0 (periodic boundary conditions for the fermions) and C = (rr, ~r, ~r) (anti- 
periodic boundary conditions for the fermions). Note, that {/~(i)_/,(j)} are the 
weights of the adjoint representation, i.e. the roots {a} (ref. [15], appendix D). Eq. 
(9) follows straightforwardly from (ref. [16]) 

T [ det'(-D2(B))det(D(B)) n'~ 
fo dt Vefr(C[) = In det,(Wu~(B))l/2 (11) 

with gJ(B) the Dirac operator a t  B i = e l .  T/L. 
The correct quantum vacuum is now given by the minimum of Vef f. Since l)x(X ) 

has its minimum at x = 0 (mod2~r) and its maximum at x = C (mod27r) [15], the 
true vacuum for antiperiodic boundary conditions is given by/x (i)- C = 0 (mod 2~r). 
Note that /a (i). C are not independent, since Ydx (o. C = Tr(T. C) = 0 and that the 
Polyakov lines evaluated at A = C.  T/L are given by 

1 
Pj (C: )  = ~Tr (exp( iCj .  T))  

1 N 
-- ~ ~, exp(ilx'k'.Cj). (12) 

k = l  

Hence, for antiperiodic boundary conditions we confirm the quantum vacuum to be 
unique with Pj = 1. For periodic boundary conditions the situation is more com- 
plicated, however. As mentioned before, exp(iCj-T) should be in the centre of 
SU(N) for C 7 corresponding to the proper vacuum and hence at the vacuum for all 



P. van Baal / Small volume expansion 

i 4=j, /~(o. C =/z(J)  • C (mod2~r) ,  or  for  all i 

279 

2q1 
/~(0. C = ~ - 1  ( m o d 2 ~ ) ,  lj = 0,1 . . . .  , (N  - 1). (13) 

At this value, V~f (C) = - N n  f Va(2~//N), which is minimal for S U(2) and SU(3) if 
all lj = _+ 1. Hence, for SU(2) we have Pj = - 1 and the vacuum is unique. Note that 
for SU(2) the periodic and the antiperiodic cases are related by the gauge transfor- 
mation g(1,1,1), which transforms Pj to - P j .  

For  SU(3) the vacuum is eightfold degenerate with Pj = exp(ljZ~ri/3), lj = + 1. In 
perturbation theory we will only expand around one of the quantum vacua. Since 
these vacua are related by coordinate reflections, a symmetry of the full effective 
hamiltonian, each choice is equivalent. The vacua of eq. (13) are related to Ci a = 0 

by the gauge transformation gt(x) .  Hence, expanding around q ' + ( x ) =  0, 
~(i) . A ( x )  = 2¢rl /NL is equivalent to expanding around ~ '+(x)  = O, .4i(x)  = 0 
provided operators are properly transformed before computing the expectation 
value. We will, therefore, express the effective hamiltonian in terms of 

1 
c7= -~ f d3x2Tr(d,(x)T,,), 

.~ i (x )  = g t ( x ) A , ( x ) g ; l ( x )  - ig t (x  ) a igi-~(x) ,  (14) 

where a now runs from 1 to N 2 - 1, with T~ a hermitian basis of the Lie algebra 
and Tr(TaTb)= a 53ah. The effective hamiltonian was computed with the "dynamical 
background field" calculation exactly as in the pure-gauge case [15,16]. The back- 
ground field is .4~ = cT/L ,  the pure-gauge Feynman rules are those of ref. [17] 
(m = 0) and the rules which include the fermions are given in fig. 1 with (y~ are the 

tl 

e(1) 
---#~;-- 

~2) _. . . - -  

lu (GeV) 

1017 

Fig. 1. Feynman rules which contain fermion lines. For the remaining, purely bosonic Feynman rules, 
see ref. [17]. 



280 

Dirac matrices) 

P. van Baal / Small volume expansion 

iSab ) 2w 
= , k =  - - ( n  + " o )  5/'7 k~,y ~' + i{ ,~B L ' 

(15) 

1 For antiperiodic boundary conditions no= 7(1,1,1) and for periodic boundary 
conditions no=l/N, i.e. for SU(2) no=  ~(1,1,1) and for SU(3) we choose 
n o = ~-(1,1,1) (the other seven possibilities can be obtained by coordinate reflec- 
tions.) 

The results up to one loop will be expressed in terms of the background field c~ 
and the renormalized coupling constant at the scale ~ = 1/L in the minimal 
subtraction scheme [18] 

b 1 
g-  2(L) = - 2boln ( LAMs ) + ~75, 2 ln[ - 21n( LAMs)], zo5 

1 
bo (4w)z ( g N -  2nf) ,  

1 
b 1 (4~r)4(-34N2+~Nnf+(N2-1)nf/N). (16) 

4. The effective hamiltonian for SU(2) 

For SU(2) we find the following result for the effective hamiltonian in the 
zero-momentum gauge fields ),02 

H e f t  = --  2 Z  '}- •1 O c a 2  q- V T ( C )  + V I ( C )  q- " ' "  , 

1 ( 1  ) a3F~jF~ffkck+aaF~jF~jc)9 L . V T ( ~ ) = ~  7 + , i ~  F , 3 F , 3 + "  ° ° ~ ~ ~ ° ° ~ " + , i , ( d e t ~ ) : + - . .  

V~(c) = I?~( r ) -  2n t l~ ( l r  + C ) -  21el~L, 

1( 
= __ ~ a a __ K4)CiCiCjC): q_ 5~4CiCiCiC i L I£1ciCi + 3(ff3 ~ a a b b ~ a a b b 

3 3 3 

q-l~5 E [ a a \  3 a a ~CiCi ) + ~ 6 E  ( c a c a )  2Cbcb q- I ~ 7 H  (CiCi ) q- " ' "  
i = 1  i¢-j i= 1 

, ( 17 )  
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where  

Ci 
a _  a b 

Fi j  - -- Eabcfi Cj , 

ai = a i -  2 n f a / ,  ~i = K i -  2n fx/ .  ( i8 )  

The  cons tan ts  a i, a,.',/£i, /£~ a r e  given in table 1. The pr imed coefficients are as 
m o m e n t u m  sums similar to those for the pure-gauge case [16], but  with the 

m o m e n t a  shifted over 2~rno/L. 

1 1 7 d +  1 L a 2n~(d-  1) L a 
g2 + °¢1 g2 ° 4d + 8d ~) ]kl 3 ' 

- ~  + ~2 = 8(/~4 -- /~3) -~- g---~ -- 2 1 + 2 4 d  Ikl  3 

+ 
2 n f ( 2 d -  3) L a 

12d (7) [k[3 ' 

1 

a~ 144v 2 3x~, 

1 
,~ = 3 ~  + 8 ( ~  - ~;), 

72~r 2 

a; = 6~LSE 
1 35k?k~ 189k?k~k~) 

3lkl  5 41kl 9 + 41k in  ' 

a' 4 = ~ L S E  
36k21 k4 189ktk~k 2 ) 

21k111 ' 21kl n 

a' 5 = ~ L S E  
(D 

1 63k?k2k 2 

Ikl  5 Ik] 11 
(19) 

where  d is the dimension of space, go is the bare  coupling constant  and 

E = E , E = E (20) 
(0) k=2~rn/L~:O (no) k=2~r(n+no(1,1,1)) /L 

For  the remaining  coefficients see ref. [16] or below. 
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TABLE 1 

Coefficients for the SU(2) effective hamiltonian. The primed coefficients give the fermionic contribution 
per Weyl component 

~l = -0 .30104661  a 1 = 2.1810429 × 10 -2 

~2 = -6 -3319840  × 10 3 ot 2 = 7.5714590 × 10 3 

~3 = 5.6289546 X 10 4 ot 3 = - 1.1130266 × 10 4 

K 4 = - 1.5687855 × 10 3 ~4 = - 2.1475176 × 10 4 

g 5 =  4 . 9 6 7 6 9 5 9 × 1 0  s ( ~ 5 = - 1 . 2 7 7 5 6 5 2 × 1 0  3 

K 6 = -5 .5172502  × 10 5 

)¢7 = - 1.2423581 × 10 -3 

~ = -2 .1272012  X 10-2  O~{ = 3.098211 × 10-5  
g~ = 2.2421241 X 10 -4 t~  = 1.7211922 × 10 3 

~ = 3.5180967 × 10 -5 a ;  = 3.0178786 × 10 5 
~; = 1 .5850480× 10 -4  a ~ =  3.2156523 × 10-5  

~; = --2.8659656 × 10 -6 a ;  = 3.2271736 × 10 S 
~; = 1.1578663 × 10 -5 

~ = --7.9447492 × 10 -5 

To obtain the perturbative 
rescale the fields as 

ci g2/3(1- 

which yields Liischer's effective hamiltonian [1] with n r dependent coefficients 

L-Her  f - g2/3H 0 + g4/3~lCaC ;  ̀"b g 8 / 3 ( ~  2 q- 8 ( f f  4 - -  ~ 3 ) )  n o  

+ 3 g 8 / 3 ( f f 3 _  ~ a a b b qc~8/3r7 rapa.b,,b_}_ 
K4)CiCiCjC) ~- ~6 '*4~i~i~i~i " ' ' '  

with 

^ 
expansion we add 2nfVl(~, ~ , ~ )  to eq. (17) and 

(21) 

(22) 

0 2 

I + ±~'~F a (23) Ho 2 0 c a 2  4 ~ i j "  i j"  

This deviates slightly from Liischer's [1] expression, but is equivalent to it by the use 
of the virial theorem, which implies (q)o, F/~2~o)= 4(~0, Ho~o) (here q'o is the 
eigenfunction of Ho). Energies, labelled by the representations of the cubic group 
are again given by a power series in g2/3, but now with coefficients ~i which depend 
on the number of flavours 

L .  E = g27381 + g n / 3 e  2 + g 2 e  3 + g S / 3 e  4 + O ( g l ° / 3 ) ,  

el = e l ,  e2 = Oe2 ,  ~3 = p2e3,  P = f f l / x l  , 

~4__p3E4_~_ [1~2_1_ 8 ( /~  _ _ p 3 ( 1 ~ 2 _  l_ 8 K 3 4 - -  i f3)  "3( 4 - -  K 3 ) ) ] E 1  

- ~ - 3 [ f f 3 -  1 ~ 4 -  p 3 ( K 3 -  /¢4)]  ~1 q- 5 [ f f 4 - -  p3K4] ~2  , (24) 
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TABLE 2 

C o e f f i c i e n t s  f o r  t he  p e r t u r b a t i v e  e x p a n s i o n  o f  t he  e n e r g y  f o r  a f e w  l o w - l y i n g  s t a t e s  in  S U ( 2 )  
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A; A~ + A~- e + 7"; 

~1 18.348 55.96 27 .1518  41.55 41.55 

~2 8 .8134  30.18 11 .6048 25.10 19.47 

~ ( 3 )  4 . 1 1 6 7 2 0  6 .386359  8 .786713 6 .0145 6 .0145 

~2(3) - 0 . 676567  - 1 .135974  - 0 .855423  - 1 .039 - 1 .039 

~ ( 3 )  - 0 . 0 3 9 4 6 4  - 0 . 1 4 5  - 0 .024888  - 0 .090  - 0 .090  

~4(3) - 0 .02188  - 0 .0382  - 0 .0485197  - 0 .0732  - 0 .0023 

where e~ were calculated by Liischer and Mtinster [1] and ~/~ are the expectation 
values 

a a b b  a a b b  
= ( , o ,  = ( , 0 ,  (25) 

They are given in table 2 for a few states, together with ~i as an example for three 
flavours. One can easily generate the results for other flavours by using eq. (24). 

We note that for the first three orders in perturbation theory there is a simple 
scaling of the energies 

e(nf,  g) = p-IL. e(0, d/2g). (26) 

Masses, which are obtained as the energy differences with the ground state, scale 
similarly, whereas mass ratios r R = rnR/mA? scale with zA; = - mA~. L to this order 
a s ~  

rR(n f ,  zA~) =rR(O, PZA~). (27) 

Since p = ( 1 -  0.14132n 0 is smaller than 1, the mass ratios in the presence of 
dynamical fermions have a weaker z-dependence than in the pure-gauge case, which 
suggests that the perturbative expansion remains valid for larger values of z. Indeed, 
this is what a crude nonperturbative analysis shows. Such an analysis is based on 
the fact that Vee e has local minima, which are false vacua, separated from the true 
vacuum by a potential barrier, and perturbation theory is typically expected to 
break down for the energy level in question, once this energy reaches the saddle 
point (the minimal potential one has to overcome to go to the false vacuum). We 
find the following heights 3V(nr )  for the saddle point above the vacuum: 

L .  3V(0) = 3.210, L .  3V(1) = 3.576, 

L .  3V(2) = 3.984, L-3V(3)  = 4.432. (28) 
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As an example we take again three flavours and equate E for the first excited A~ + 
state to 8V.  From this we find that the perturbative expansion should hold up to 
g - 0.76, which corresponds to zA;-  1.5 and m ~ : / m E + -  1.18. This is to be com- 
pared with the pure-gauge case, where perturbation theory for the same state breaks 
down at g ~ 0.54, for which z~?-  1.0. For SU(2) we therefore predict the low-lying 
glueball states to be arranged as in the pure-gauge case, independent of the 
boundary conditions for the fermions. Moreover, the spatial Polyakov line will have 
a single-phase structure, which clusters around ( + 1 ) - 1  with (anti-)periodic 
boundary conditions for the fermions. 

5. The effective hamiltonian for SU(3) 

The techniques to calculate the effective hamiltonian for SU(3) are essentially the 
same as for SU(2). We will restrict ourselves to one-loop and fourth order in the 
background field. In the following 

Fij - f .bccaic j  ' , (29) 

with f .b~ the SU(3) structure constants. The coefficients of 1 q 2--q a 2 - 5 o  / a c  i a n d  Fiaj 2 

were determined by a one-loop calculation; the remaining coefficients are de- 
termined by expanding the effective vacuum-valley potential. For this the following 
identities will be helpful (/,(o are the weights introduced earlier) 

3 

8,b = 2 ~_, o,(k),,(k) 
I ~ a  ~ b  ' 

k = l  

3 

d.~c = ~ E ,,(~).(k),,(k) t ~ a  t ~ b  ~ c  ' 

k = l  

3 

S.bcd = 18 ~ ~."(k)"(k)"(k)"(k)wb . ~  ~d • (30) 
k = l  

In this equation a, b, c and d run only over the generators of the Cartan 
subalgebra (i.e. in our conventions over 1 and 2), dab c = 2Tr((T,, Tb}Tc)  and s,bcd 

is the symmetric tensor introduced by Liischer [1]. We note that, for SU(3), [19] 

3 S a~c~= a( ~°~Sc~ + 8.cGa + ~.f ibc) , (31) 

(for SU(N), N > 3, no similar reduction of S.bcd to delta functions exists.) 
Using the fact that 8 and d are irreducible SU(3) invariant tensors, the extension 

to fourth order in the fields, from the vacuum valley to all background fields, is 
a 2 

unique up to F~j. The result will, therefore, be expressed in terms of the Taylor 
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coefficients of 121 

n o ¢ 0 ,  m ( n o ) -  o n ' r ) - ( c )  C=2~¢no(1 ,1 ,1 )  

n ° = 0 '  M(°) = 3 " ( 1 ~ 1 ( C ) - 2 [ C [ )  c=o" ' , . . . 'o (32) 

Note that the mi(ln°)i n are fully symmetric with respect to its indices and further are 
related by S 3 (e .g .M.  = M 2 2  = M 3 3  , M12 = M13 = 3/23 etc.) Furthermore, M~()/3) is 
negative definite (with two of its eigenvalues equal M(,I/3) - M(I~/3) and the other 
eigenvalue equal M(1/3)11 + 2M(~/3)), which guarantees that #(~). C = 2rr/3(1,1, 1) is 
a minimum of V~e(C~). 

We find the following expression for the SU(3) effective hamiltonian 

0 2 
L .  H¢. = - a - K -  V(c;)  

,10c~ Oc; + 

1 
( K - 1 ) q  = --~ + a~ n°) for i = j ,  

= - n f f l  ("°) for i 4=j, 

1(1 ) 
v(cT)  = ~ ~ + ~(~"o) r,3r, 3 + lnf/3("°)E F,~Fj~ + ¼(3MiT)-nfM~7°))c;e;  

i4~j 

8'~f~"ijk ~'~abe~i~j~k -~ 432 \ . . . .  ijkm -- "'f~'ZijkmJ'~abdeWit'j~k~m , 

where a~ "o), a(2 "o) and/3 ("0) are determined by 

1 1 (7d+ 1) L d 2 n f ( d -  1) L d 
- 

g2 +~"°)  ga 3 8d I - ~  + 8d ( )lkl 3 '  

1 a(2 "°) 1 ( 
g2 + g2 3 1+ 

(d-1)(d-24d 6 ) ) ~ [ _ ~ + L  d 2 n r ( 2 d - 3 )  E Ld]3 
(o) 12d ]k ' (-o) 

Ldklk2 
/3 ("°)= Z 

(.o) 4lkl5 
-- &{') rvt(no) , **("o)] 

- -  24 ~ ,~* '* I I12  q'- Iv* i123  ] " (34) 
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In  table 3 we give the values of M ~'°) for n o = 0, n o = ½ and n o = ~. The following 

relations of  M ~"°) with 1£~ and 1£' hold 

M(O) = 21£1 M(O) = 24(31£ 3 + 21£4 ) M(O) = 24(1£3 _ 1£4) 11 ~ 1111 ~ 1122 , 

M(1/2)11 = 8t¢; , M(1/2)1111 = 384(31£~ + 2x~) , M(1/2)1122 = 384(1£~ - 1£~)', (35) 

furthermore,  we have 

a[ "°)= 1.5 36~r 2 31£ 2 - 2nf  144~r2 

a~ "°)= 1.5 18~r 2 31£ 2 - 2nf  72rr 2 

1£(21/2) = 1£~, 1£(1/3) = 4 . 8 5 6 8 8 0  x 1 0  - 4  . (36) 

The  case of  n o = ½ gives the results for antiperiodic boundary  conditions. For  

periodic bounda ry  conditions of the fermion fields one has to choose n o = 3 ~ . 

To  obtain the perturbative expansion we rescale the fields as in eq. (21) 

6 \  1 (37) 

and find (using eq. (29), H o is still given by eq. (23)) 

L - n e f f =  g 2 / 3 n  0 + l g 4 / 3 ( 3 M i 7  ) -  n fMiTo ) ) cac ;  - ~a2r~86 "'f""ijkAA(n°)d'abe~i~j'k"%b'~e 

[ ( ~ tr l & _ r r 8 / 3 / Q , t / f ( 0  ) - -  ~ t i ( n o ) ]  a b d e 
...I._g8/3 1.51£ 2 __ 2nf1£2no)]llO qt_ 4 3 2 6  ~ . . . .  ijkm nflVlijkm)SabdeCiC)CkCrn 

+ ~gs/3nfB("o~ 
i~j 

- -  + F , 7 , U ,  + - .  • ( 3 8 )  
0c7 0c7 

For  the case of antiperiodic boundary  conditions in the fermions, Haf  is exactly 
of  the same form as in ref. [1] but  with coefficients depending on the number  of 
flavours. (To be specific one makes the following replacements in Lfischer's expres- 

sion for the SU(3) pure gauge effective hamiltonian:  a 1 ~ a  1-2nf1£~, a 3 ~  
8 t a 3 - 5n t (~  3 - K;) a 4 ~ a 4 - 43°n f1£~. ) The quan tum vacuum is unique with a single 

phase structure for the Polyakov loops Pj, clustering around 1. The effective 
hamil tonian has the symmetries of the full cubic group and charge conjugation C 

c: c,. v -~  - ( c , .  r )*  = - ( c , .  r ) ' .  (39) 
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TABLE 3 

T a y l o r  coe f f i c i en t s  o f  1~ 1. N o  s u m m a t i o n s  over  r e p e a t e d  ind ices  is impl ied ,  i ~ j  m k r u n  f r o m  1 to  3 a n d  

M is s y m m e t r i c  in  its indices  

no = 0 no = ~ no = 

mii - 6 . 0 2 0 9 3 2 2  x 10 1 - 1 . 7 0 1 7 6 0 9 8  x 10 i - 1 . 2 5 9 4 1 5 2 2  x 10 

M,/ 0.0 0.0 - 6 . 0 3 8 6 6 7 2 5  x 10 2 

Miii 0.0 0.0 - 1 .88451162 x 10 1 

Mii / 0.0 0.0 4 .40270126 x 10 2 

M,j k 0.0 0.0 4 .07658227  × 10 -1  

M , ,  - 3 .4773231 x 10 2 1 .62260164 x 10 1 1 .38599356 X 10 a 

MiQ j 5.1160343 X 10 2 - 4 . 7 3 5 6 3 5 3 9  x 10 2 - 3 . 5 5 2 5 9 5 0 1  × 10 - 2  

M m /  0.0 0.0 4 .25447526 X 10 2 

M , j  k 0.0 0.0 - 3 .61684403 × 1 0 -  2 

For the first three non-trivial orders we have, again, exactly the same scaling 
behaviour of eqs. (26) and (27), but with 

O = (3q  - 4 n r ~ ) / ( 3 ~ 1 )  = (1 - 0.09421 nr ) .  (40) 

To this order the results can, therefore, be read off from those of ref. [20], using eqs. 
(26) and (27). We will not determine the dependence of the fourth order term on the 
number of flavours, expecting this dependence to be relatively weak, like for SU(2). 

For  nf = 3, p -1 - 1.394 and the saddle point, similar to what was discussed for 
SU(2), has a height of L .  6 V - 7 . 8 3 4  above the vacuum. Therefore, perturbation 
theory is expected to break down at g - 0.64 for the first excited A~ ++ state, which 
corresponds to zA++-1.8. (In this case we have to compare 8V with the energy 
difference of the SU(2) groundstate energy [21].) 

Finally, we will discuss the consequences of our results for the energy levels of 
SU(3) with periodic boundary conditions for the fermions. As observed before, the 
coordinate-reflection symmetry is broken, since the values of P/ are not invariant 
under these symmetries. Moreover, since Pj is complex, charge conjugation is also 
spontaneously broken. However, since charge conjugation C has the same effect as 
overall parity P on the value of this Polyakov loop, evaluated in the quantum vacua, 
the simultaneous parity and charge conjugation transformation is still a symmetry. 
That  is, CP is conversed but C and P are separately broken spontaneously. Indeed, 
only terms in the expansion of the effective hamiltonian, which are odd in the tensor 
dab C, break either parity or charge conjugation, but are invariant under their 
combined action. The other symmetries of the perturbative vacuum are the coordi- 
nate permutations S 3 (up to a possible conjugation with coordinate reflections). 
Irreducible representations of S 3 X CP are denoted by A~, E k and A~, with k = + 1 
the eigenvalue of CP. The representations A 1 and A 2 are singlets and E is a 
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doublet. Each perturbative state is eightfold degenerate and tunneling between the 
vacua will lift the degeneracies and restore the full symmetries (of the cubic group 
and charge conjugation.) The perturbative ground state is an A1 + state, which will 
split into the following representations of O(3,Z) × C: AI~--->A~ +, T~--, T~ ~+, A 1 . 
Alternatively, these states can be classified by the eigenvalues pj of the coordinate 
reflections. The A1 ++ corresponds to all p j =  1; T f  , to one out of the three 
p j = - 1 ;  T2 ++, to two out of the three p j = - 1 ;  and A 1 corresponds to all 
pj = - 1. (There is some resemblance to the case of electric flux in pure SU(2) gauge 
theory [8,16].) We therefore have the surprising result that at small volumes the 
mass gap is exponentially small. Furthermore, each spatial Polyakov loop Pj has a 
two-phase structure, at sufficiently weak coupling, clustering around exp(2Tri/3) 
and e x p ( -  2~ri/3). No clustering around 1 should occur. 

Concerning perturbation theory we can obtain the low-order results from those of 
Weisz and Ziemann [20], depending on the representation in question. Since 
reflection symmetry is already broken at second order in perturbation theory 
(Mi()/3) is not diagonal), there are two possibilities: (i) states A~ c, E Pc and A~ c 
which do not split since they are already representations of S 3 × CP. Their energies 
are given by 

L.E=~192/3 +e2( 1 Ml(~/3)nf) 6K~ g4/3 + O(gZ) ,  (41) 

where the O(g 2) term requires more information than can be extracted from [20]; 
(ii) states T~ c and T f  c which are not invariant under coordinate reflections and 
will hence split into irreducible representations of S 3 × CP (into (E  k, A~) and 
(E  k, Alk), respectively, where k is the eigenvalue of CP). This splitting occurs to 
order g4/3 since (1/3) ~ a Mij ci cj is not invariant under coordinate reflections. In this case 
we can only extract the lowest order energy, which does not depend on the number 
of flavours, from ref. [20]. 

A safe estimate for z~?+, below which the mass gap is exponentially small, is the 
value of 1.6 estimated for the pure-gauge case, as the value below which electric flux 
is suppressed [21]. A more detailed analysis of nonperturbative effects is beyond the 
scope of this paper. However, we can expect that the ratio mA[+/mE++ (the 
scalar-to-tensor glueball mass ratio) remains relatively constant with a value of 
1.2-1.3 and that the perturbative results (eq. (42) together with the results of ref. 
[20]) remain valid up to at least ZA?+-- 1.5. 

This is consistent with the Monte Carlo results of ref. [5] where the fol- 
lowing ratios were measured: mA?Jme++ = 1.31 _+ 0.17 at ZA?+= 3.08 _+ 0.24, 
mA?+/mE++ = 1.62 + 0.30 at ZA~+=- 3.24_+ 0.30 and m4?+/mE~+= 1.69 _+ 0.40 at 
zA++= 3.52 + 0.60. However, the fermion mass used in ref. [5] is relatively high and a 
direct comparison has to wait until the mass dependence is included in the analytic 
calculations. This dependence is, however, expected to be small because the mass 
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ratios only weakly depend on the fermionic contributions. To lowest order, glueball 
masses are independent of this fermion mass since to order g2/3 there is no nf 

dependence. 

6. Conclusions 

We have started to investigate the effect of dynamical massless fermions, in the 
continuum for gauge theories in a finite cubic volume, on the low-lying spectrum for 
the glueball states. Already, at the order which allows one to identify the proper 
quantum vacuum, we found unexpected results. In particular, for periodic boundary 
conditions in the spatial directions imposed on the fermions, no zero-energy modes 
for the fermions arose and for SU(3) we found an unexpected rich vacuum 
structure, whose more direct consequences should be easily verifiable in Monte 
Carlo studies. We hope that some of the present work can serve as a testing ground 
for the fermionic algorithms developed [22]. A comparison with existing Monte 
Carlo results [5] for SU(3) was possible, but one needs to include nonperturbative 
corrections in the spirit of the pure-gauge case [8,16] and a fermion-mass term in 
order to make a direct comparison. 

Except for the case of SU(3) with periodic boundary conditions imposed on the 
fermions, the small-volume expansion is remarkably similar to the pure-gauge case 
[1,20], as expressed in terms of the scaling in eqs. (26) and (27), valid up to and 
including third order in g2/3. We should stress, however, that there is no reason to 
expect this scaling to hold even approximately in larger volumes. 

As for the pure-gauge case no claim is made that the results will give predictions 
for infinite-volume mass ratios and the interest is mainly theoretical. It would, 
however, be desirable for some SU(2) Monte Carlo glueball-spectrum calculations 
with dynamical fermions to become available, since intermediate-volume analytic 
calculations for SU(2) seem feasible, whereas those for SU(3) at present appear 
impractical. Certainly, in the pure-gauge case these intermediate-volume calcula- 
tions give good results, at least for the lowest-lying states, and seem to bring us to 
the point where confining effects set in [6, 8,16]. This conclusion is supported by the 
recent finite-temperature analysis [23]. In the presence of massless fermions one 
would likewise expect the intermediate-volume calculation (based on using the 
effective hamiltonian presented here, supplemented with boundary conditions in 
configuration space, which are dictated by symmetries and Gribov horizons [16]) to 
bring us to the point where spontaneous breaking of chiral symmetry starts to 
manifest itself. 

Andreas Gocksch was the first to urge me to look at fermions in a small volume, 
for which I thank him. I am greatly indebted to Jack Smith, whose valuable time 
was spent on ensuring that I could use my Stony Brook computer programmes at 
CERN. Many of those programmes were to a large extent developed by Jeff Koller 
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and I thank him for the fruitful collaboration of the previous two years. I also wish 
to thank Jiirg Gasser, Frithjof Karsch, Apoorva Patel and Akira Ukawa for fruitful 
discussions and Ulrich Baur for his help to run TEX. 
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