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We discuss SU(2) gauge theory on a three-torus using a finite volume expansion. Our 
discovery of natural coordinates allows us to obtain continuum results in a region where Monte 
Carlo data are also available. The obtained results agree well with the perturbative and semiclassi- 
cal analysis for small volumes, and there is fair agreement with the Monte Carlo results in 
intermediate volumes. The simple picture which emerges for the approximate low energy dynamics 
is that of three interacting particles enclosed in a sphere, with zero total "angular momentum". 
The validity of an adiabatic approximation is investigated. The fundamentally new understanding 
gained, is that non-perturbative dynamics can be incorporated by imposing boundary conditions 
which arise through the nontrivial topology of configuration space. 

1. Introduction 

T h e  subject  of  non-per tu rba t ive  effects in gauge theories is a diff icult  one f rom an 

ana ly t ic  p o i n t  of  view, and has been approached  f rom many  direct ions.  There  has 

been  on ly  l imi ted  success, and  the main  prize, the under s t and ing  and a reasonab ly  

r igorous  p r o o f  of  confinement ,  is still uncla imed.  In previous  work, we advoca ted  

first  unde r s t and ing  Q C D  in a small  volume,  then working  ou twards  to larger  

volumes ,  to  the scale where conf inement  effects begin.  The  founda t ions  for such an 

a p p r o a c h  were  laid in ' t  Hoof t ' s  s tudy [1] of gauge theories on a torus, and  the small  

scale pe r tu rba t ive  doma in  was analysed  by  Liischer in his con t r ibu t ion  [3]. In  our  

semiclass ica l  work  [4], we ident i f ied  the po in t  where non-per tu rba t ive  behav iour  

first  b reaks  out,  bu t  showed it  could not  be  the onset  of conf inement .  W e  gave 

c i r cums tan t i a l  evidence for  a second outbreak ,  at even larger  volumes,  which is 

assoc ia ted  wi th  str ing fo rmat ion  and conf inement .  In  keeping with our  phi losophy,  

we set ourselves  the task of unders tand ing  the first type of  non-per tu rba t ive  

behav iour ,  to p repa re  a f i rm base  for an  eventual  assaul t  on the conf in ing domain .  

This  p a p e r  analyses  the dynamics  of  SU(2) Q C D  in the in te rmedia te  regime, 

be tween  the pe r tu rba t ive  domain  and the string domain .  A let ter  descr ib ing some of 
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our results has already been published [6], so we concentrate here on our methods 
and the insights obtained into non-perturbative behaviour. 

We work [4] in the hamiltonian formalism, on a symmetric three-torus of length 
L. A low-energy effective hamiltonian for this problem was derived by Liischer by 
perturbatively integrating out all modes except the spatially constant (zero momen- 
tum) ones. Liischer and Miinster then solved this effective hamiltonian using 
perturbation theory, properly taking into account the quartic nature of these modes 
[3]. The perturbative expansion is equivalent to a small volume expansion, since one 
renormalises using minimal subtraction at the scale L. The essence of our approach 
is noting that Liischer's effective hamiltonian is accurate even at distance scales 
where it cannot be solved perturbatively. Thus, it is still valid to derive it perturba- 
tively, even though it is not valid to solve it perturbatively. We consider our results 
accurate up to L -  5M(0+) -1, where M(0 +) is the scalar glueball mass ( -  1 GeV), 
whereas the perturbative solutions are (in general) demonstrably inaccurate beyond 
1M(0+) -1. Perturbation theory breaks down here not because the expansion 
parameter is large, but because topological properties of configuration space become 
important. 

To properly account for the topology of configuration space, one must under- 
stand the vacuum valley ~' ,  which is the set of gauge-inequivalent classical vacua of 
the Yang-Mills hamiltonian: 

~e'= j f / f f .  (1.1) 

Here ~/" is the null set of the Yang Mills potential 

.A/'= (Ai(x)IA,(x+ L)= Ai(x ), fv3 d3x Tr( F/2(x ) ) =  0}, (1.2) 

and f¢ is the set of local gauge transformations 

gAi ( x  ) = g ( x ) A i ( x ) g ( x )  -1 - i g ( x )  O ig (x  ) - 1 .  (1.3) 

As usual, Ai(x ) is here the Lie algebra-valued vector potential 

a a A~(x) = A~(x)-~-,  (1.4) 

and F/j(x)  is the chromomagnetic field strength 

F i j ( x  ) = O i A j ( x  ) - O j A i ( x  ) + i [ A i ( x ) ,  A j ( x ) ]  , (1.5) 

written similarly in terms of the Pauli matrices o i. Finally, g(x) is an SU(2)-valued 
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function on the three torus: 

g ( x + L e i )  = g ( x ) .  (1.6) 

We showed in ref. [4] that Y/" is the disconnected union of spaces YF e with distinct 
integer topological quantum number P. The gauge transformation eq. (1.3) maps Y/'0 
into ~/'e if g(x)  has Pontryagin index P: 

1 
P -  ---~2 f T 3 d 3 x ~ i j k T r ( ( g O i g - 1 ) ( g ~ j g - 1 ) ( g O k g - 1 ) ) ,  (1.7) 

and each ~¢'p is a three-torus with periods 4rr: 

~o = ( C ~ ( R/4~rZ)3) . (1.8) 

Actually, to be accurate, it is an "orbifold", T3/Z 3, but our arguments will account 
for this implicitly. From now on, we work in a single sector, ;e'0, and drop the 
subscript. 

The electric flux quantum number is introduced by recognising that the theory 
has additional symmetries, the so-called "allowed gauge transformations", which 
are antiperiodic SU(2)-valued functions, 

g(x + = ( -  a )k 'g (x ) ,  (1.9) 

acting by the normal gauge transformation formula (1.3). Here k is the Z2-valued 
't Hooft  twist vector. These are not gauge symmetries, because states are allowed to 
transform nontrivially under them: 

Iqs(gA(x))) = ( - 1 ) k e t , t , ( A ( x ) ) ) ,  (1.10) 

where e is the Z2-valued electric flux of I qs(A(x))). 
We will show in sect. 3 that Liischer's effective hamiltonian is equivalent to an 

infinite component hamiltonian on the vacuum valley. Moreover, in sect. 4 we will 
show that this wave function must vanish at C i = 2rrn~, (n ~ (Z2)3). Thus we arrive 
at an effective theory defined on the cube [0,2r r] 3, with vanishing boundary 
conditions. 

This is a satisfying result, because it explains neatly why the vacuum valley has 
the symmetry (Z2) 3 rather than the full group of translations on the torus. The 
(Z2) 3 arises from the allowed gauge transformations eq. (1.9) with non-trivial 
homotopy, which map the cube into itself. In particular, the eight corners of the 
cube correspond to eight equivalent perturbative quantum vacua, which can be 
mapped into each other by these transformations. Other points, within the vacuum 
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valley cube, are not quantum vacua because quantum effects raise the energy of the 
system in these configurations. This can be interpreted as a quantum-induced 
potential barrier separating the eight perturbative vacua. 

It is now easy to see the origin of the non-perturbative effect we are discussing 
here, and the concept of electric flux energy. At small coupling, a perturbation 
expansion within any of the wells will give accurate results. There are thus eight 
degenerate perturbative vacua. However, as the coupling increases, the energies 
approach the barrier height, and the system tunnels from one vacuum to another. 
The eight degenerate levels split, the true non-perturbative vacuum being a symmet- 
ric linear combination of the eight perturbative vacuum states. The other seven 
linear combinations transform non-trivially under the allowed gauge transforma- 
tions, eq. (1.9), and thus have nonzero electric flux. The energy split is the energy of 
electric flux. To avoid confusion, we should point out that even at very small values 
of the coupling there is some tunneling between the wells, giving an exponentially 
small energy of electric flux. However, we say "tunneling sets in" where the splitting 
of the levels becomes appreciable on the energy scale of the levels themselves. This 
is typically where the exponential in the semiclassical splitting formula becomes 

0(1). 
In this paper we show how to approximately include in Liischer's effective 

hamiltonian the effects of additional perturbative vacua. The idea is to introduce 
boundary conditions "midway between the wells", chosen to enforce the correct 
symmetry of the wave function, and then work in a single well. 

In sect. 2 we describe a background field calculation to compute Liischer's 
effective hamiltonian to higher orders. This calculation reveals a new coordinate 
system for the zero-momentum gauge fields, which allows the Rayleigh-Ritz calcula- 
tion of low-lying energies. In sect. 3 we discuss writing the theory as an infinite 
component  hamiltonian on the vacuum valley. Our earlier semiclassical work [4] 
used either gauge-fixed coordinates, which had Gribov ambiguities, or polar coordi- 
nates, which were messy in the nonspherical sector. Our new coordinates differ from 
the old ones in their parameterisation of degrees of freedom transverse to the 
vacuum valley. They are actually singular at certain points, but only in the way 
spherical coordinates are singular at the origin, and this singularity is what causes 
the wave function to vanish at the boundaries of ~e-. A different choice of transverse 
coordinates, with different or no singularities, can lead to a different decomposition 
along the vacuum valley, and some of the subtleties involved are discussed in sects. 

3 and 7. 
In sect. 4 we discuss configuration space boundary conditions as an effective way 

of incorporating the topological non-triviality. The intimate connection with Gribov 
ambiguities is discussed in detail. We show how this problem could be approached 
in general, and then argue boldly that if the adiabatic approximation is accurate on 
the boundary, the boundary conditions in our new coordinates are unique and 
elegant. 
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The new coordinates would be a bad choice for a semiclassical analysis, but do 
allow an elegant elimination of the gauge degrees of freedom in a Rayleigh-Ritz 
calculation. Sect. 5 finds the low-lying spectrum of the resulting theory using the 
Rayleigh-Ritz method. A numerical method is inevitable, since the hamiltonian is 
nonintegrable, but we take pains to calculate matrix elements analytically and to 
provide rigorous upper and lower bounds for the results. 

We consider it crucial that our new results agree with our previous semiclassical 
results. This is shown in sect. 6. In sect. 7 we check that the adiabatic approximation 
is valid on the boundary, and conclude that it is, to within a few percent. Finally, in 
sect. 8, we address the consequences our results have for many issues of physics. We 
conclude with two technical appendices and an outline of our approach applied to a 
simple toy model. 

2. The background field calculation 

In this section we rederive the effective lagrangian for spatially constant gauge 
fields, using the non-local gauge fixing procedure suggested in ref. [8]. For details we 
refer the reader to [4]. 

The gauge field A~ is split into a constant piece B~(t) and a spatially varying 
piece Q~(t, x): 

1 
B~ = ~ f_, d3x Au(x) - ~aA~. (2.1) 

" 1  

The gauge fixing then sets B 0 = 0 in the B sector, and introduces a gauge fixing term 
and ghosts q', UP in the Q sector. The quantum modes Q, are integrated out, leaving 
an effective action for B i [4]: 

ise. = i f  dt A°¢ff (B)  

[i ] = l n f  ~@'Q~.@'g'.O'~exp - ~-~ f dt fT d3x £'a(B, Q, if,, ~ ) ,  

~O(B, Q, ,/,, Up) = Tr{½(F~(B + Q ) ) 2 _  (D~,(B)Q~,)2_ 2 ~ D . ( B )  D.(B + Q)',t" 

- 2 [ Q , ,  g,] ~ [Q,,  up]}. (2.2) 

The primes in the integration remind us to omit zero momentum modes. Ref. [9] 
gives Feynman rules for this problem. 

We will first compute the one-loop part of Seff quadratic in B. The diagrams are 
shown in fig. 1. Momentum p = (p0,0) flows through the graph, i.e., external spatial 
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p+k p_+k 
B i / ' ~  B i B i ,-" " .  B i 
P ~ P"  ; p 

p "--~___E~/ p p "-__k_-" p 

Fig. 1. Feynman diagrams for the one-loop effective action, quadratic in the background field B (eq. 
(2.3)). For the Feynman rules see ref. [9]. 

momenta  are zero. We obtain 

1 
See r (l-loop, fig. 1) = - f dt  d t '  d Po eip° ' t -  '') - -  Tr( B i ( t ) By ( t ' ) )  

2~r 

x ~_. ½ ( d -  1 ) k ; k j + p a 3 u  (2.3) 
L k / 2 ~ z  ~ ikl(k2 + ¼p2) , 

where d = 3 - 2e is the spatial dimension. We will use dimensional regularisation 
and minimal subtraction [2] where space-time, R × T 3, is extended to R × T d [3]. 

Expanding eq. (2.3) in powers of po 2 and combining with the tree level and a tadpole 
contribution we find 

Seff ( l- loop, quadratic in B) 

=fd,----if--- ~k ]-~Tr(B,  ) + go2 8d ~ lk / -~  

(7d+ 1) ( -1) ;  1 { d'+2Bi ] 2] 
+ 32-----~ ,=o y" 4' ~ Ik] 2'+5 Tr I d--~ ~ ) / "  (2.4) 

The momentum sums are easily evaluated: 

1 _ (  L ]  2s 

ik12 s \ ~ 1  a (2s ) ,  (2.5) 
k 

where a(2s)  are lattice sums, tabulated for d = 3 in [10]. Only a(3) has a pole at 
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TABLE 1 

Coefficients for the effective potential ( e q s .  ( 2 . 1 6 ) ,  ( 2 . 1 7 )  a n d  ( 3 . 2 ) )  and the effective 
hamiltonian ( e q s .  ( 3 . 1 )  a n d  ( 3 . 3 ) )  

x 1 = - 0 . 3 0 1 0 4 6 6 1  a I = 2 . 1 8 1 0 4 2 9  X 1 0  2 

1¢ 2 = - 6 . 3 3 1 9 8 4 0  X 1 0  3 ot 2 = 7 . 5 7 1 4 5 9 0  × 1 0  3 

x 3 = 5 . 6 2 8 9 5 4 6  × 1 0  - 4  % = - 1 . 1 1 3 0 2 6 6  × 1 0  - 4  

/~4 = - - 1 . 5 6 8 7 8 5 5  × 1 0 - 3  a 4 = - 2 . 1 4 7 5 1 7 6  X 1 0  - 4  

K 5 = 4 . 9 6 7 6 9 5 9  × 1 0  - 5  a s = - 1 . 2 7 7 5 6 5 2  X 1 0  - 3  

x 6 = - 5 . 5 1 7 2 5 0 2  × 1 0 - 5  p = 1 . 0 5 9 7 2 8 0 7 3  X 1 0 - 3  

x 7 = - 1 . 2 4 2 3 5 8 1  × 1 0  - 3  q = 2 . 8 4 4 9 5 2 5 8 7  × 1 0  - 4  

~8 = - 1 . 1 1 3 0 2 6 6  X 1 0  - 4  r = 2 . 5 3 3 8 1 2 4 2 4  × 1 0  - 4  

g9  = - 2 . 1 4 7 5 1 7 6  X 1 0  - 4  

Klo = - 1 . 2 7 7 5 6 5 2  × 1 0  - 3  

d = 3, and using Liischer's results [3] we find explicitly: 

1 - 1  18a 2 1 
L - 3 ~  3 -- _ 11 44rr 2 ' k Ikl 2¢r2(d  3) + 

22 
a2 9(4~r) 2 ( ln( /xL)2-0.409052802) .  (2.6) 

We now choose the renormalisation scale /, to be l / L ,  and write g(L)  for the 
renormalised coupling constant in the MS scheme. Thus: 

.~(1-1oop, q u a d r a t i c i n B ) = f d ~ -  2K~Tr(c~)+ g2(L)  3~2+ 3-~-~-7~ 2 Tr dr ] 

[{ d2c \2~ 
+ A K T r / / ~ r ~  ') ) +  . . - ,  {2.7) 

where c i = LB, is dimensionless, x 1 and i¢ 2 are given in table 1, and 

AK=- -2 .4285435 . . . . 10  4, 

r = t / L .  (2.8) 

Note that the coefficients of the higher derivative terms are small, decaying as 
(11 /32 l ) / (2¢r)  21+1 for Yr[(d/dr)%i] 2. From now on we drop these terms, as well as 
any terms more than quadratic in c involving time derivatives. This is called the 
adiabatic approximation, and for higher powers of B it amounts to taking B 
constant in time, i.e., to calculating the effective potential. 
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For the one-loop result, instead of using Feynman graphs, we will expand the 
following well known result for the one-loop effective potential V~: 

fordtVl(c)=lnldet '(-D2(B))/det '(~//" (B))l/2], (2.9) 

with (D~,(B)) 2 the inverse ghost propagator and ~ ( B )  the inverse vector propa- 
gator. The Fourier transforms of these inverse propagators are of the form ko21 + 
M(k)  with M a 3- or 3d-dimensional matrix. Using zeta function regularisation and 
Poisson resummation 

E e_k~ s = ~ Z  E e-(nT)2/4s T~_~ 1 foTd t (2.10) 
Tko/2,~z ~ n 2 ~  

gives our result: 

L 3 oo s - 3 / 2  

Vl(c) = ~go 2 T r ~ ( B ) -  fo ds 2---~ 

X {½ a~o trTr exp ( - s  [ 3.~(k i + ad Bi) 2 -  2iad F~(B)] )  

-k•o ~" T r e x p ( - s ( k i + a d B i ) 2 ) - 3 ( d -  2)l" (2.11) 

Here 

ad Bi(o ~) = --ieahcBboc, 

e , , (8 )  = i[8, ,  8j],  

Fo r = K. o = 0. (2.12) 

Tr is the SU(2) trace in the adjoint representation, and tr is the space-time trace. We 
have subtracted a constant to make VI(B = O) = O. 

The graph expansion is now replaced by an expansion of the exponentials. Using 

fo ~ s "-3/2 2(2n - 2)! 
d s ~  e -sk2 = (2.13) 

2v~- ( n -  1)!4nlkl zn - l '  
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we find: 

v~ 
( d - l )  2 

4d 
1 1 

- -  Y~. - -Tr ( (ad  Bi) 2) + 
k Ikl 

L 3 1 )  
2g--7- ~ 1 ~  Tr((adF~j(B))2) 

( d -  1 ) (d -  6) 
16d 

1 , 2 2" 
~ i-~-Tr/(ad Bi)(ad Bj) ) 

5 ( d -  1) kik klk, n 
1-------6- y~" ~ Tr(ad Biad Bjad Bkad B,) 

k 

78 ~ i k _ ~ T r ( [ ( a d B , ) q 3 ) _ ~  1 2 t, i~gWr((ad Bi)2ad Bj(ad Bk) adBj) 

1 
+ ¼i E [-~Tr(ad Fij(B)ad Fjk(B)ad Fz¢i(B)) 

k 

1 

k ik] -~ Tr((ad ~j(  B))Z(ad B k ) 2 )  ~Y~i-~Tr((adF, j ( B ) a d B k ) 2 ) - ~  1 

kikykkkt 
+ ~6Y~  Tr((adBm)2adBiadBjadBkadBl) 

k Ikl 9 

k fljkkktkmk, 
~6 E ~ Tr(ad Biad Bgad Bkad B, ad Broad B,) 

k 

+ O(B8). (2.14) 

For terms of O(B 6) and higher the momentum sums converge and we have set 
d = 3. This expression can be simplified considerably by using a complete set of 
polynomials of even degree. One way is to write all the traces in terms of M~j = cTcy , 
using ad Fij(B ) = i[ad B i, ad Bj]. However, the following complete set turns out to 
have physical significance: 

3 

E 
a ~ l  

i=1 ,2 ,3 ;  

3 

E 3>~i> j>1 ,  = a __~abdCiCy 

(det c) 2 . (2.15) 
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Note that (det c) 2 must be included to determine the sign of cac], (i 4:j). The final 
result using the tricks in appendix A, is 

1 (  1 1 ) o  
L V I ( C  ) =l£1cacadr -'~ g 2 ? Z  ) 3x2+ ~ Fij(c)F~ (c) 

a a b b  +x3(3ckcl, c,c , - 2F[,~(c)F~at(c)) 

a a b b  .q_l£4(5CkCkCkCk a a b b a a - 3ckct, ctc , + 2F~,(c)F~,(c))  

v " ~ z  a aX3. . ]_  a a b b 2 
"~-~52..a~ CiCi ) ~6 E CiCi ( C)Cj ) -[-1£7I-Icac a 

i i~:j i 

a a b b x 9 ~ . , F , ~ ( c ) F a j ( c ) c b c ~ + x m ( d e t c ) 2 + O ( c S ) .  + ~ F , j ( ~ ) F , j ( ~ ) ~  + 
i ~ j  

(2.16) 

Terms up to and including fourth order arise exactly as in Liischer's calculation. In 
terms of lattice sums, the new K i, i = 5 , . . . ,  10 are: 

x5 ( _ 1  385 q - , = i p +  ~r)  

K6= ( ~ p  - 4q~q + al~r ),  

K7 ( _  UT_- ~ r )  = q-p  -1- 315q - , 

~8=(~63p - l°29-~g-q+ L]2r) 

/~9 = ( - -  1407 _ 4 8 6 5 q  441 .  
-96 - / "  -1- 32 - -  ~ - r j ,  

Xlo= ( _ ~ p  + l~7q_ 63r),  

1 1 1 E n~ 

P = ( 2 ~ )  ~ . ~ z ,  £ I"1 ~ '  v = ( 2 ~ ) ~  ~ z ,  I "19 ,  

1 n~ 
( 2 r r ) s  Y', . (2.17) r = - -  i.111 

n ~ Z  3 

The numerical values are given in table 1. 
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Rescaling the fields by 

11 

( ( 1 ) )  
C ~ g2/3 1 + K 2 72vr 2 g2  C (2.18) 

would reproduce Ltischer's result for the quadratic and quartic parts. However, this 
rescaling would make the vacuum valley coordinates depend on g, so we do not 
incorporate it. A useful feature of these coordinates is that the vacuum valley is 
neatly parameterised. The vacuum valley in Liischer's effective hamiltonian is the 
set of abelian spatially constant vector potentials. Previously [4], we parameterised 
this set by first fixing the gauge, which was not possible near the origin c 7 = 0. In 
our new coordinates, however, the vacuum valley is uniquely defined by Fi2(c)= 0 
for all i, j (which implies (det e) 2= 0). Thus we can introduce gauge invariant 
vacuum valley coordinates 

73 lj j Ci= Y'. c'~c~ = ~-g d 3 x d 3 x ' A ~ ( x ) A ' ] ( x  ') . (2.19) 
a = l  = 

The remaining coordinates are angles, defined by choosing spherical coordinates 
(C ,  0i, q,~) for the vectors e, = (e~, c 2, c3); explicitly: 

1 2 ¢i' Ci ' c3 ) = Ci ( c o s  q>isin 0,, s i n  q>~sin 0,, c o s  0 i) (2.20) 

It is thus convenient to think of the nine c 7 as being three SO(3) vectors with labels 
i = 1, 2, 3. An intuitive way to describe the vacuum valley is to say that the three 
vectors c/ are all lined up, their common direction being an overall gauge freedom. 

We can now easily improve our result for the effective potential in two ways with 
very little extra work. First, we can extend part of the one-loop result for Vl(c  ) to 
infinite order in C i. Observe that the one-loop effective potential along the vacuum 
valley is known to infinite order [3,4]: 

sin2(n. ½C) 
~1(:¢p,C)_ 4 ~ (2.21) 

- ~ L  . . o  ("~)~ 

#1 differs from V 1 in that more modes (the spatially constant but non-vacuum 
modes) have been integrated out. It was calculated by Liischer [3] using gauge-fixed 
coordinates, and as we have discussed extensively previously [4], is related to V 1 by 

2 
vl (c)  = Vl( c, FJ(c)= 0) = 31( c ) -  z r c l  (2.22) 

Note the change in notation from ref. [4], where V 1 was denoted by V{ and 
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I,~I(Y/', C) by VI(C). We can thus find the higher powers of C in V 1. Also, Taylor 
expanding both sides of this equation gives a consistency check on our calculations. 
We find the following new relations involving the coefficients a n and c, defined in 
ref. [4] and the Riemann zeta-function ~ [19]. 

K 5 180~" n6an ' 
n=l  

4K 6 + 30x 5 -- 4~5 

oo 
--  - - - J r  ~ ~'~ 

K 7 + 18x 6 + 45~ 5 = 0. (2.23) 

The last identity follows from 

02 )2 
V' (c 'F~2(c )=O)  - A 2 V I ( C ) = z / ~ r 2 "  (2.24) 

A second improvement we can easily make is to calculate the two-loop effective 
potential along the vacuum valley. Since the B i mutually commute when F, j2 _- 0, 
one can diagonalise the propagators. Choose for convenience Bi= B3io3/2 = 
Cio3/2L.  The Feynman rules of ref. [9] can again be used. There, the two-loop 
result was calculated in terms of parameters X (a), where (a)  is an adjoint SU(2) 
index. We can apply the result here by using the following trick: take the SU(2) 

basis a ~ { + ,  - ,  3) with 

X (+) = C/2~r, 

~(-) = - C/27r , 

Thus we find 

2, (3) = O. (2.25) 

V (c, Fi)(c)=O)= lg2L E 
aCb 

a ,b=(+ , - - ,3}  

AV1 (27rX (a)) AV1 (2~rX (b)) 

= ~ g 2 L [ ( A V I ( C ) )  2 + 2AVI (C)AVI (O)  ] • (2.26) 

In summary, we know the effective potential to two-loop and to all orders in the 
fields if we restrict ourselves to the vacuum valley, whereas away from the vacuum 
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valley we have calculated the effective potential the hard way to sixth order in the 
fields. 

Since the potential is shaped so the wave function concentrates near the vacuum 
valley, it makes intuitive sense to approximate the potential accurately along the 
valley, and use a simpler approximation for deviations from the valley. Roughly 
speaking, the transverse term serves mainly to concentrate the wave function near 
the valley. It  turns out that a sixth-order vacuum-valley potential with the lowest 
(fourth) order transverse piece captures enough of the structure to give good results. 
A weaker approximation along the vacuum valley gets the barrier height wrong, so 
that tunneling sets in at the wrong value of g. 

3. Reduction to a vacuum valley problem 

In this section we reexamine the question of writing Li]scher's effective hamilto- 
nian as an effective hamiltonian for just the vacuum-valley cordinates Ci. In 
previous work [4] we emphasized the severe obstacles to this, because the modes to 
be integrated out had extremely non-adiabatic behaviour near C = 0. Thus, although 
we could find an effective hamiltonian for C away from 0, special arrangements had 
to be made near the origin. In our new coordinates, the behaviour is rather different, 
and requires some new discussion. 

We are interested in this issue, because it determines the accuracy of some of the 
boundary  conditions we deduce in sect. 4. 

Because Liischer's hamiltonian is similar to a three-particle quantum mechanics 

problem, we will often use the notation r i for the vacuum valley coordinate C~. Also, 
1 2 we write r~ = (c~, c~, c3), and to avoid confusion we denote the triple (rl, r2, r3) by C. 

Compared  to ref. [4], our new coordinates make the following discussion much 
simpler. 

Liischer's effective hamiltonian as extended in sect. 2 can be written as: 

1(1 
Heft= - ~ T  ~ - 5 + a l  (OcT)2+VT(c)+Vz(c), (3.1) 

where a 1 = 1/36~r 2 _ 3x2. The "radial"  or "longitudinal" effective potential Vl(c) is 
independent  of the angular variables. If V z i is the / - loop  contribution, 

V / ( c )  = V / , l ( C  ) --[- V / , 2 ( ¢  ) -~- - . -  , 

V / , l ( C  ) = V I ( ~ p "  C )  - 2 I C I / L  , 

g2L ( 6xl 
= 5 5  -d-  + 

02V/,1(c ) )2 9g2x ] 

(oc) 8L 
(3.2) 



14 J. Koller, P. van Baal / Gauge theory 

W e  normal i se  so that  Vt(0 ) = 0, a fact to be kept  in mind  when analyzing vacuum 
energies. Similarly, Vr(c  ) = VT, I ( c )+  . . .  is the transverse par t  of  the effective 

potential ,  vanishing along the vacuum valley: 

L. v~:(c)= -4 + ~  F, TF, a j+~(F,: , j )c :~  

a a b b (3.3) -~-(]~4EFijFijcjcj .-I- a s (de t  c)= + . . .  , 
i , j  

with a 2 = 1/(18¢r 2) - 3x 2 + 8(x 4 - x3), a3 = ~8, 0/4 = /£9 and a 5 = Kx0. The numeri-  
cal values for  ai are also given in table 1. 

We  decompose  the wave function by writing it in the following way: 

q ' ( c )  = ~ (r lr2r3)- l~(n)(C)x[~.~(Oi , , i ) ,  (3.4) 

where  the transverse wave functions -,(~)~0 ,~[c]~ ~, if,) are eigenstates of  the " t ransverse  

hami l ton ian , "  

) . ~(n) = + ~ - -  + V ~ ( C )  ~(") 
~ ' t r A [ C ]  - -  L 2ri  2 A [ C ]  

i = 1  

= v ( . ) ~ r ~ . . ( - )  ( 3 . 5 )  • tr k ~ I A [ C ] "  

Here  L i is the s tandard 1-particle angular  m o m e n t u m  operator .  H t r  is obta ined by  
t reat ing the r i in Her f as fixed parameters .  The  decomposi t ion  can be thought  of as 
using a coordinate  representat ion for the ri and an energy representat ion for the 
angles. Thus  ~ ( c )  is completely  equivalent to an infinite number  of vacuum-val ley 
wave  funct ions q~(n)(C). For  simplicity we normalise  - , ( ' )  using dI2 = sin 0 dO d~  so A[c ]  

that  at fixed r~ 

(~(")~(")\=fd121d~22d~23,~[cl ~ i, Y i l  A.[C] \ i A [ C ] I A t C ] /  " ( n ) * [ O  ~ ]'v(rn)[O ,~')i) = ~ n  m" (3.6) 

N o t e  that  the eigenvalues of Htr form an increasing sequence of C-dependent  

"effect ive  potent ia ls ."  
Wi th  this decomposi t ion,  the eigenvalue equat ion for Her f can be rewrit ten as 

[4,7]: 

[ . ] - 2L(1 + g ~ ) ( v " ~ ( c ) ) ~  + (v,(c)  + ~ : ( c ) )  8nm e(m)(c) 

= E ~ ( " ) ( C ) .  (3.7) 
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x7 n m ( c )  is a "covar ian t  derivative" 

15 

0 0 /v(n) l _ _ l v ( m ) \  v n m (  c )  = 8nm--oC "}- \,&[C]l OCIAIC] / 

0 
~_¢~ . . . .  Anm( c ) (3.8) 

OC 

The  radial  factor  (rlr2r3) -1 included in (3.4) produces a simple normalisat ion:  

~x/tl~t) = ~ ~ ° ¢ d 3 C d p ( n ) ( c ) * ~ ( n ) ( c ) .  
n=l 0 

(3.9) 

Now,  an effective hamil tonian for the vacuum valley ze" will be well defined if the 
adiabat ic  approximat ion ,  obta ined by truncating eq. (3.7) to n = m = 1, is accurate. 
There fo re  either of  two condit ions is sufficient: if Anm(c )  is small, the n = 1 sector 

decouples  f rom higher sectors, whereas if AE (2) = Vt~2)(C) - Vt~I~(C) is large com- 
pa red  to the energy E ~ g a / 3 / L  we are working at, the higher ~/i's are small and 
irrelevant.  Let  ~ ( 2 )  = in fc  A Et2) be the min imum transverse energy gap. In m a n y  
prob lems ,  E/-~--E (2) is a positive power  of g (e.g., for the non-zero m o m e n t u m  
modes  in tegrated out to obta in  Liischer's effective hamil tonian one has E / A E  (2) = 
O(g2/3)) .  In  such cases the adiabat ic  approx imat ion  improves  as g ---> 0, and can be 

incorpora ted  as a controlled expansion in g. However ,  as we will see shortly, 
because  the transverse f luctuations are now quartic, bo th  L .  E and L .  A E are 

O(g2/3) ,  and  the adiabatic  approximat ion  in per turba t ion  theory is not directly 
control led by  an expansion in g. This is why a priori one cannot  work entirely 
within the vacuum valley. 

T o  see exact ly  where the nonadiabat ic  behaviour  is, we turn to investigating the 
t ransverse  hami l tonian  Htr in eq. (3.5), and it suffices to consider just  the leading 
order  in g to exhibit the relevant features. We thus wish to solve the hamil tonian 
(we have  pu t  L = 1 for convenience) 

g2 L 2 1 
= ~i - - + - - ~ _ , ( r i 2 r T - ( r i . r j ) 2 ) ,  (3.10) Htr -2- ri 2 2 g 2 i >j 

where  L i is the s tandard 1-particle angular  m o m e n t u m  operator .  A gauge transfor-  
m a t i on  acts on each "par t ic le"  as a rotat ion (not to be  confused with a space 
rota t ion,  which mixes the r,). Gauge  invariance is therefore equivalent to constrain-  
ing the total  "angula r  m o m e n t u m "  to be zero: 

L = L 1 + L 2 + L 3 = 0. (3.11) 
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Note that an expansion in g is deceptive since by rescaling rs = gE/3p i one can 
scale Htr to depend on g by an overall factor: 

( [e:/ .¢2]) 
Ht ~ = g2/3 ~i 2P, ----5 + ½ E - (ri • 

• i>j 
(3.12) 

Thus the transverse energy is O ( g 2 / 3 ) ,  and the correct expansion parameter is 
P = r i g  2/3. One easily derives the following explicit form: 

L~ 
g-2/3ntr= ~i 2r, -----7 + ½ y" ri2~2[sin2Oisin2Ojsin2( ~i - l~J)  

• i>J 

+ sin2( 0 i - Oj) + sin(2Oi)sin(2Oj)sin2 (½(~i -  ffj))]- (3.13) 

This is too difficult to solve in general, so we look at limiting cases. First, if all 
Pi >> 1, one can consider fluctuations about the vacuum valley. 

Using the gauge invariance we write 0i = lw + x i /P  i, eo i =yi/Pi to get approxi- 

mately 

g-2/3ntr = n (  xi)  + n (  yi) , 

1 0 2 

H ( x i )  2 ----5 + V ( x i ) '  

g(xi) =12 z~ri ~2~2/[ "~"- xi xJ ) 2 
i>j \ ri 

(3.14) 

To determine the spectrum one diagonalises the hessian of the potential V: 

(e~+p~ -P:2 -P:3] 
°2v [ -~1~2 Pl ~ + ~ -P:3 I 

Ox~ Oxj 
(3.15) 

which is easily seen to have two degenerate eigenvectors with eigenvalue X = ~iPi 2 
and one zero eigenvalue with eigenvector (Pz, P2, r3). The zero eigenvalue is due to 
the gauge invariance and should be ignored, so the transverse spectrum is 

(4 )) 
v~ ~)= ½1CI E (2n ,+  ½ 

i = 1  

= 2 1 C l , 3 1 C l , 4 1 C  I . . . .  Ci>>g 2/3. (3.16) 
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Thus we reproduce the one-loop result obtained in previous gauge-fixed analysis 
[3,4]. Since Vt~ 2) - V~ z) >> E -  g2/3, the adiabatic approximation holds in this re- 
gion. 

Next we go to the opposite limit of all P~ small. In that case the kinetic term 
clearly dominates, which means each "particle" will be in the lowest angular 
momentum state. Hence to lowest order the transverse energy is given by the 
potential of Htr averaged over the sphere: 

g2/3 1 
= E Pi2~ "2 = - -  E /'/2Fj 2" 

Vt~Z) 3 i>j 3g 2 i>j 
(3.17) 

To find excited states, note that gauge invariance, i.e., zero total angular momen- 
tum, requires 

ll + 12 >1 13, 12 + 13 >~ lx, l 3 + l x >/l 2 . (3.18) 

Thus, in the even parity sector (see sect. 5), the first excited state will correspond to 
l 1 = l 2 = 2, l 3 = 0 (assuming P3 < P2 ~< P1), giving 

3ga/3 3g:/3 
V~ z) = - -  + - -  (Ci << g2/3).  (3.19) 

The surprising conclusion then, is that the adiabatic approximation is also good if 
all Pi << 1. This is the first indication that our new coordinates are rather different 
from the ones in ref. [4]. A second surprise is that exactly the same reasoning holds 
if only two of the Pi are small, since if two of the l i are zero, the conditions (3.18) 
force the third one to be small too. Thus the effective potential is still given by 
(3.17), which vanishes if two of the ri are zero. A region with two P/ small is a 
minimum action tunneling path for the system, called a pinchon [4, 8], and it is very 
surprising to find a vanishing effective potential here, because in ref. [4], we claimed 
this effective potential was 21ci everywhere sufficiently far from I CI = 0. Indeed, a 
second peculiarity is that, since the pinchons are on the boundary of the vacuum 
valley cube, the wave function vanishes there, as claimed in the introduction. To 
resolve this dilemma, note that the region i",. << g2/3 where this approximation is 
valid actually vanishes as g ~ 0, while the region r i >> g2/3 where the expected form 
(3.16) is valid actually increases. In sect. 7 we give convincing numerical evidence 
that between these two regions is a region where the adiabatic approximation breaks 
down: Vt~ 2) and Vt~ 1) c o m e  reasonably close, and {0) ^ (k} (X[cllO/Or, lX[cl) is no longer 
small for i = 1 or 2. The net effect of this non-adiabatic region, which has zero 
support as g--+ 0, is apparently to replace the vanishing condition on the wave 
function with a vanishing condition on its derivative. We will not try to prove this 
analytically, being satisfied in this paper with the numerical evidence, and the fact 
that we can verify our semiclassical formula. 
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The point of this section, then, is to observe that in these new coordinates, the 
region of non-adiabatic behaviour is not confined to very near the well. Thus, to use 
the boundary conditions we are about to derive, we need to check explicitly, a 
posteriori, whether the adiabatic approximation is sufficiently accurate. We will do 
this in sect. 7. 

4. Boundary conditions and Gribov ambiguities 

Gribov ambiguities [11] arise in non-perturbative discussions when one chooses 
gauge-fixed coordinates for configuration space. At some finite distance from the 
chosen origin, the tangent planes of the gauge orbit and the coordinate hypersurface 
can partially overlap. Beyond this point, in general, Gribov copies are formed, and 
the choice of gauge invariant coordinates is no longer uniquely determined by the 
gauge fixing procedure. 

The Gribov horizon is the set of configurations where the copies are first formed, 
and is uniquely specified by the fact that at least one non-zero tangent vector to the 
gauge orbit is tangent to the coordinate plane. Equivalently, these points have a 
larger isotropy subgroup (the set of gauge transformations which leave that point 
invariant) than neighbouring points, and this is where the Faddeev-Popov determi- 
nant vanishes (or acquires an additional zero). It is imperative to note that if the set 
of gauge-invariant configurations zg/N is topologically non-trivial (~¢ the set of all 
vector potentials), Gribov ambiguities cannot be avoided [12] in a linear gauge on a 
compact manifold, including the torus [13]. On the other hand, the same non-trivial- 
ity causes the instantons whose effects dominate any non-perturbative analysis. 
Thus any attempt to add instanton effects to a perturbative analysis is bound to 
introduce the Gribov problem as well [15]. 

Let us therefore state unambiguously where in our analysis this problem arises. 
For this we will closely follow the Coulomb gauge hamiltonian formulation [16], 
used by Liischer to obtain the effective hamiltonian. As he noted, the Faddeev-Popov 
determinant arises in the measure for configuration space. Two wave functionals 
g'[A] and O[A], being gauge invariant, are well defined on zZ/N, and 

( ' / ' 1 0 5  = f~Aq, [AI*O[A] 

= (4.1) 

where A satisfies the Coulomb gauge, and 

o(A)  = d e t ' ( -  OkDk(A)). (4.2) 
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The zero momentum modes are omitted in the functional determinant, and Dk(A ) 
is the covariant derivative. Hence 0 is the measure for d / q ,  with its zeros 
constituting the Gribov horizon. 

Now, the crucial point is that in perturbation theory the wave functional is 
rescaled with p 1/2 

~,[~] = p ( ~ ) l / 2 q [ ~ ]  (4.3) 

to obtain a trivial integration measure. Therefore the new rescaled wave function 
vanishes at the Gribov horizon. 

For SU(2) Yang-Mills on the torus, one easily verifies that p( ,~)= 0 if A~ = 
( 2 ~ r n i / L ) o a s a / 2  for at least one i, with n i E Z and s 2= 1. (Take an eigenvector 
with k i = +_2rrni /L and the other components of k zero.) 

Thus '/'[A] (and therefore presumably ~(c)) vanishes linearly in 2~rn,-r~ at 
ri = 2rrn i for any i. 

Finally, recalling that we define ~(")(C) in terms of '/'(c) with a factor (rlrzr3) 

factored out, we conclude that ~(")(C) vanishes at the boundary of ze'= [0,27r] 3. 
Note that these boundary conditions are all caused by coordinate singularities. 

Having shown that the wave function vanishes at the surface of Y/", and thus in 
particular at the comers where the perturbative vacua occur, we turn our attention 
to the configurations midway between two perturbative vacua. Consider the gauge 
transformations 

/I-.17 ) 
g . ( x ) = e x p - i ~ r  L %sa  ' (4.4) 

which implies: 

~,e(g.A) = ( _ l ) n . e ( p ( g ' A )  ~1/2^ ~ 

p(~------~) ~ e ( A ) .  (4.8) 

where s a is an arbitrary unit vector. It transforms the vector potential A into 

2,rrn i Oa Sa 
g " ( x ) A ' g ; l ( x )  + L 2 (4.5) 

Take A i abelian, and choose s such that Ai = - ( r i / L ) % s a / 2 .  Applying g, gives 
((27rn,-  r ~ ) / L ) % s ~ / 2 ,  so that in our gauge invariant coordinates, 

ri ~ 2~rni - r i . (4.6) 

Thus if n i ~  (0,1}, eq. (4.5) maps Y/" into itself. Since g, is a homotopically 
non-trivial gauge transformation, a wave functional 'P(A) with definite electric flux 
satisfies 

X°e(g"A) = ( -  1)n'e'/'e(A), (4.7) 
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F r o m  this we easily see that when A is restricted to the vacuum valley (where we 
can suppress  the overall factor %sa /2 ) ,  

q'e (2 ¢rn - r )  = ( -  1 ) " e  ( p (2rrnp(r)- r )  j ta/z^g'e(r) .  (4.9) 

Hence  if e i = 1 we conclude that  on the vacuum valley, the wave funct ion vanishes 
at ri = ~r. Unfor tunate ly ,  we are interested in the wave funct ion ~ ( c )  for Liischer 's 
effective hamil tonian,  which is not  s imply a restriction of the full wave function. We  
need to project  onto  the constant  modes  as prescribed by  Bloch per turba t ion  theory. 
This  project ion is only defined perturbatively,  and we would need it to infinite order 
to find an exact  boundary  condit ion at r i = rr. This is beyond  our capabilities. 
Nevertheless ,  (4.9) motivates us to look for a set of bounda ry  condit ions at r i = ~r. 

For  eg = 1, the conclusion that  the wave funct ion vanishes at r i = ~r should survive 

the project ion,  so the real issue is the e i = 0 boundary  condition. 
A point  we have ignored so far is that  Lfischer's effective hamil tonian  breaks 

down  as one  approaches  the Gr ibov  horizon at r i = 2rr, because some of the higher 
m o m e n t u m  modes  that  have been integrated out become  quartic. A way to cir- 
cumven t  this is to adapt  an idea discussed by  N a h m  [14], that  an alternative way to 
unders tand  Gr ibov  ambiguities is as a need for different coordinate  patches in 
a g / ~ ,  and transi t ion functions to connect  the coordinates  in the overlap region of 
two such patches.  As was advocated in our previous work [4], one centers a 
coord ina te  pa tch  at each of the eight corners of the vacuum valley Y/'= [0, 2~r] 3, and 
derives Liischer 's  hamil tonian in the zero m o m e n t u m  (but for 2~rn ~ 0, not neces- 

sarily constant )  modes.  Explicitly: 

1 3 1 
(4.10) 

By taking A ( x )  in the vacuum valley, we conclude that  C~ (") is to be  identified with 

2 ~rn i - Ci (°), where 

(4.11) 

Fo r  the remaining coordinates in each patch, we can use angular  coordinates  just  
as for  n = 0. Next ,  note that  the ground state ,,(a) for the f luctuations transverse to ,~[c] 
the v a c u u m  valley is unique, and a smooth  function of r r If  we assume for the 
m o m e n t  tha t  all of  the wave function is in this transverse ground state, then 
@(a)(C(n)) def ined in the pa tch  at corner 2~rn must  be  identified with @(a)(C(°)). 
No te  that  the factor  (rir2r3) - x included in the definit ion of q~(i)(C) (eq. (3.4)) again 
proves  essential, because otherwise the measure  on ~¢~ would not be  differentiable.  
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i ( c , j  E, 

~ f ~ j  G   ger=E 
el+gr=Er 

gl+gr=G 

gl 
gr 

Fig. 2. Schematic illustration of avoidance of level crossing. We consider two transverse modes, and plot 
the "l-particle" energy levels in fig. 2a. For the transverse mode that becomes quartic to the right (left) 
we give the ground state gr (gl) and the first excited state er(el). In fig. 2b the total energies due to the 
transverse modes are plotted, without incorporating off-diagonal coupling. Fig. 2c shows the effect this 
off-diagonal coupling has on the level crossing of the states El and Er of fig. 2b. In fig. 2c, E1 and E2 
are obtained in this simple example as the eigenvalues of the 2 × 2 matrix with Er and El on the 

diagonal and 1 off the diagonal. 

Thus  we f ind the following symmetry properties: 

~/i(1)(2~rni- ri) = ( - 1)nedp(1)(r,). (4.12) 

The  s i tuat ion is more complicated if some of the wavefunct ion is in excited 

transverse states, since symmetry (eq. (4.5)) dictates a degeneracy in the 

excited transverse energies at r i = 7r. In  general this means an excited zero-momen- 

t u m  transverse state in one patch can become a non-zero m o m e n t u m  excited 

transverse state in  another  patch (see fig. 2b). This would lead to more complicated 

b o u n d a r y  condi t ions,  because the latter were integrated out in Liischer's effective 

hami l ton ian .  However, we do not  expect this problem to be too severe, because if we 

take in to  account  the off-diagonal coupling between transverse levels (by terms 

analogous  to A, , , ) ,  we see that in general this problem is avoided (see fig. 2c). A 

simple example demonstrates  this effect. Take a two-level system with hami l ton ian  

At  g = 0, the energy levels as a funct ion of X cross, whereas for g :g 0 they do not  

come closer in energy than ZlE = 2g. 
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To summarise, for small g we expect the boundary condition to be good because 
most  of the wave function is in the transverse groundstate, whereas at large g we 
expect no level crossings between zero and non-zero momentum ground states. Thus 
as long as the latter can be integrated out, no inconsistencies arise. In that case, 
however, since transverse excited states are populated, we should demand that both 
~(0  and ( V ~ )  (° be continuous across the boundary separating the two coordinate 
patches, to ensure a continuous energy density. Hence, using the symmetries (4.7), 

we find the following boundary conditions at r i = 7r: 

(~7/ )1-e i~  = 0,  (4 .14)  

which is easily seen to be equivalent to: 

O~ 1 1-ei 
-~ri] (r iq(c))=O" (4.15) 

These are the boundary conditions used for the Rayleigh-Ritz analysis. There is an 
additional argument why in eq. (4.14) the "covariant derivative" instead of the 
ordinary derivative should appear: one is free to choose the phase of Xt~)1, even if it 
depends on C. Eq. (4.14) gives a condition independent of this choice. 

After the Rayleigh-Ritz calculation is done, we need to test whether at the 
boundary  most  of the wave function is indeed concentrated in the lowest transverse 

state. We can calculate the following quantity: 

f f £ d %  dr~[~O)(C)[ 2 

f i  = lim o~ 

jo Jo r i ~  drj. d r  k y ,  i¢(o(C)12 
1=1 

(i 4:j ~ k ) ,  (4.16) 

which is the fraction of the wavefunction actually in the lowest transverse state, at 
the boundary  r i = ~r. We will verify in sect. 7 that 1 - f i  becomes smaller for smaller 

g, indicating l i m g ~  of, = 1. 
To summarise this section then, if the adiabatic approximation is good on the 

boundary  of the vacuum valley, one can define a vacuum-valley wave function 
there, and easily derive its boundary conditions. The same adiabatic approximation 
allows one to then deduce the boundary condition eq. (4.15) on the wave function 
for Liischer's effective hamiltonian. Moreover, if the coupling with the non-zero 
momentum modes (which were integrated out in Liischer's effective hamiltonian) 
can be ignored, we argued that continuity of the energy density already implies the 
same boundary  condition. In sect. 7 we will show that the adiabatic approximation 
at the boundary is good. This would allow a restriction to the vacuum-valley but 
implies furthermore that the coupling to the non-zero momentum modes can be 
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safely ignored. Consequently, we believe that our choice of boundary conditions 
gives an accurate description of the dynamics and that the agreement we found [6] 
with the Monte Carlo data in intermediate volumes is not a "numerical accident." 

5. The Rayleigh-Ritz analysis 

In this section we describe our basis for the Rayleigh-Ritz analysis and the 
implementation of gauge invariance. We then discuss Temple's inequality, which 
allows us to calculate rigorous upper and lower bounds for the energies once the 
hamiltonian is given. We also discuss projection onto the irreducible representations 
of the cubic group. 

Because of the similarity to a three-particle quantum mechanics problem in a 
sphere, we construct a basis out of spherical harmonics Y/m(0, ~) and radial 
eigenfunctions X~t(r) with radial quantum number n. At this point we only specify 
the boundary condition for X~t(r), which follows from (4.15): 

d 1 (1-ei) 
-~r ] ( r x , , ( r ) )  r= = 0 .  (5.1) 

The specific choices of Xnt(r) are discussed later. 
The question of imposing gauge invariance is completely independent of the 

radial eigenfunctions, because in our coordinates a gauge transformation is simply a 
rotation of the particle states. Thus imposing gauge invariance is equivalent to 
requiring that the three-particle states be singlets under SO(3): 

L 1 + L 2 -t- L 3 = O. (5.2) 

Let (0, ffl l, m ) =  Ylm(O, ~) and combine the first two "particles" into angular 
momentum eigenstates l lll2j, rn ): 

Ill lzj ,  m ) =  ~ ]1112mlmz)~lx12mlmzllllzj , m ) ,  (5.3) 
ml,  m2 

where [ll12mlm2) = Ilamx)ll2m2) and (1112mlm21ll12j, m)  is a Clebsch-Gordan- 
Wigner coefficient, found in standard quantum mechanics texts. Here we just 
remind the reader that (lJ2rnlrn2llll2j, m)  vanishes unless m l + r n 2 = r n  and 
111-121 < ~ j ~ l l + l  2. Finally, we combine llll2j, m ) and 113m3) into an SO(3) 
singlet, which requires rn 3 = - r n  and l 3 =j .  Thus a triplet (ll, 12, 13) uniquely labels 
a three-particle SO(3) singlet state, which we write as l l~1213). Explicitly: 

IZlZzZ3) = ~ W(lllz13mlrnzm3)lllml)llzm2)l13m3), (5.4) 
m l , m 2 , m 3  
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where 

W(lJ213mlm2m3) 

~ml+m2+m3'O(--l)13+m3-/V (11 + 1 2 -  13)!(l l  "~ 13 -- 12)!(12 -~ 13 -- l l ) !  
( l  1 + / 2  + l  3 + 1 ) !  

( - -1 )k~( l l  + m,)!(l,-- m l ) ! ( l  2 + m2) ! ( l  2 -  m2) ! ( l  3 + m3) ! ( l  3 -  m3)! 

1 } .  (5.5) 
X (13_12+ml+k)  ! 

Factor ia l  arguments cannot  be negative, so the range of the k sum is determined 
and constraints  on the triplet ( 1 1 , / 2 ,  13) appear: 

ll + l 2 >~ 13, l 2 + 13 >~ l l ,  l 3 + l I >/ l 2 . (5.6) 

This is equivalent to [ l x -  12J ~< l 3 ~< l 1 + 12, (see above), but  shows the permutat ion 
symmet ry  between the particles more explicitly. The Wigner coefficients W are also 
symmetric:  

W(1~(1)l~2)l~(3) m ~(i)m ~(2)m ~3)) = ( - 1) ~g(~)(6 + 6 + 6)W(l l l2l  3 mlm 2 m 3 ) (5.7) 

for  any 3-permutat ion ~r. 
T o  summarize,  our complete, 

states I lJ213nln2 n 3; e )  with 
gauge invariant Rayleigh-Ritz basis consists of 

(cllll213nan2n3; e> = [ " ( e ' ) (  r 'WO = ~'~,d,~ J\ i'ePil 1111213) 

E 
ml~m2~m 3 

3 
W(11121amlm2m3 ) I-"l v ( e , ) [ r ) Y l i m , ( O i  ' dpi) I IAnili% 

t'=l 

hi, l i fO,  I,2 . . . . .  [11-121<~13<~11+12. (5.8) 

The  electric flux quantum numbers  e i ~ Z 2 appear f rom the boundary  conditions 
on the 1-particle radial eigenfunctions (5.1). In practice, we always pick X so that 
the basis vectors are eigenstates of some simple operator,  say - 1 2 a 2 ~O / (  OC i) , with 
eigenvalues e( IjEl3nln 2n 3). 

Despi te  the constraint on l i (eq. (5.6)), we have a large set of quantum numbers,  
and one might  fear one needs too many basis vectors to get an accurate variational 
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state. It is thus helpful to project onto the irreducible representations of the 
symmetry  group of our effective hamiltonian, which for e---0 or e = (1,1, 1) is 
the full cubic group 0(3, Z). This acts on the i index of c 7 and thus mixes the 
"part icles".  The projection also removes degeneracies caused by irreducible repre- 
sentations with dimension higher than 1. The cubic group has ten irreps: 

A((1) ,  Af(1) ,  E ' ( 2 ) ,  Tf°(3), T f ( 3 ) ,  (5.9) 

where p = + 1 is the eigenvalue for the parity operator P ( P c ' / =  - c~ ) ,  and the 
number  in brackets is the irrep dimension. We construct these representations by 
noting the cubic group is the semidirect product of the coordinate permutations S 3 

and the three Z 2 coordinate reflections P~ (P~cf, = - c f , ( i  = k ) ,  + cf,(i ~ k)): 

O(3 ,Z)  = Z 3 N S 3 . (5.10) 

If Pi = +---l is the eigenvalue of P~ we obviously have 

P = P l P 2 P 3 ,  

P~1111213 ) -- ( - 1 )  "lZxZ2z3), 
~r I lal 2 l 3 n in 2 n 3) = I 1,~(1)l.(2)l.(3) n ~'(1) n =(2) n ~(3)), (5.11) 

where ~r ~ S 3 is a three-permutation acting on the particle index. The projection on 
the various representations can now be specified in terms of the triplets (ql, q2, q3), 
where q stands for the pair of quantum numbers (l, n), i.e., 

Iqlq2q3) =- I l t121anln2n3) ,  (5.12) 

and we define an ordering 

q < q '  ** (l  < l '  or if l = l ' ,  then n < n ' ) ,  

q = q '  ** ( / = / ' a n d  n = n ' ) .  (5.13) 

These projections are given in table 2. They are mutually orthogonal and block 
diagonalise the hamiltonian. 

For  electric flux e 4: 0, e ~ (1,1,1) the cubic group is broken to Z 2 × 0(2, Z) = Z 2 
× (Z~ >4 $2) , where S 2 permutes the directions with equal electric flux. In this work 
we only consider states that have positive parity pg and are even under S 2. Such 
states are denoted e~, where e~- and e~- are triplets with one and two units of 
electric flux respectively. We also write e~ for the singlet with three units of electric 
flux, e = (1,1, 1). 
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TABLE 2 
Projection of the basis onto the irreducible representations 

Iqlq2q3; A~) = "~- Y'~ Iq~o)q~.~2)q~o)), 
• r E S  3 

ql>>-q2>~q3, ( - 1 ) / '  = p ,  e = 0 ;  

1 
Iqlq2q3; A~) = - ~  ~.~ sg ~rlqml)q~t2)q~o)), 

I r ~ S  3 

ql>q2>q3,  ( - 1 ) l '  = p ,  e=O; 

1 
[qlqzq3; EP) = Nq "~lqlq2q3) - 121qxq3q2) + ½[q3qzql) 

, 1 ) 
2 ~  Iq2q3ql) - ~ l q 3 q l q 2 )  , 

ql>q3, q2Nq3, ( - 1 ) l '  = p ,  e = O ;  

[qlq2q3; T~) = ~/~(Iqtq2q3) - Iq2qlq3)); 
ql>q2,  ( -  1)fi+l = ( -  1)/2+1 = ( -  1)tJ = p ,  

Iqlq2q3; T~) = ~/~Nq([qlq2q3) + Iq2qlq3)); 
qx>~q2, (-1)6+l =(-1)12+l=(-1) t3=p,  

Iqlq2q3; e l )  = fi~ Nq(lq, q2q3) + [q2q, q3)); 
ql>~q2, ( - 1 ) l '  = p ,  e =  (0,0,1); 

[ ql q2q3; e~ ) = ~ Nq ( [ ql q2 q3 ) + I q2 qlq3 ) ) ; 
ql ~>q2, ( - 1 ) t '  = P ,  e = (1,1,0) ; 

[qxq2q3; e~) = ~6g Nq Y', Iq,,(1)q.,<2)q,.3)), 
• r ~ S  3 

ql>~q2>~q3, ( - 1 ) t '  ~ p ,  e =  (1,1,1). 

e = 0 ;  

e = 0 ;  

For  each, only one element of the 0(3, Z)  orbit is given. Nq is a normalisation factor different from 1 
if some q~'s are equal. 

Thus the A1 + ground state, which is 8-fold degenerate for g ~ 0, splits into two 
singlets A1 + and e~- and two triplets e~- and e~- at larger g where electric flux 
energies are significant. 

Following the prescriptions in table 2, we can build a separate basis for each type 
of representation, and diagonalise the hamiltonian separately in each sector. 

The Rayleigh-Ritz procedure consists of simply truncating the infinite basis, to M 
vectors say. Diagonalising the truncated hamiltonian matrix provides a rigorous 
upper bound on each of the energy states [18]. The ordering of the basis is 
important, since we want an accurate approximation to the wave function. The 
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vectors were thus ordered by first truncating to 11 + 12 + l 3 ~< L and n x + n e + n 3 <~ N.  

Then we ordered the basis vectors with increasing e(l~1213n~n2n3) , the sum of the 
one-particle energies (see later). Finally, we truncated this ordered basis to M 
vectors. This procedure more or less guarantees that the most important basis 
vectors are used, as we could verify by inspecting the coefficients of the eigenvec- 
tors. 

However, to be completely sure no important basis vectors were omitted, we also 
used Temple's inequality to obtain a rigorous lower bound on the energy [18]. 
Suppose Eg is a discrete eigenvalue of a hamiltonian H, i.e., there exist eigenvalues 
E,_ x and Ei+ 1 such that Ei is the only eigenvalue in the open interval (Ei_l,  Ei+I).  
Suppose q'~ is the variational state for this eigenvalue (the ith eigenvector of the 
truncated hamiltonian), and is "reasonably good", i.e., ( ~ [ H [ ~ i }  is smaller than 
Ei+ 1. Then one has for E~ the lower bound: 

E~>~ ('PAHI ~,.) - T ( K i ) ,  

( ~ I H 2 I ~ }  - (,P~IHI ~ )  2 
T(K, )  -- (5.14) 

K ~ - ( "I', I H I "I', > 

for any K i in the half open interval ((~AHI~R~), Ei+l]. The sharpest bound is 
obviously obtained for Kg = Ei+ 1 (and is the best we can do, because it saturates for 
~v an arbitrary linear combination of the exact ith and (i + 1)th eigenvectors). Since 
Ei+ 1 is not known exactly, we use a conservative estimate 

½(( ilnl ,) + ( ~ i + l ] H [ r P i + l } )  . (5.15) 

Note that if (q'i+llHl'Pi+l> is close to El+ 1 then T ( K , )  --- 2Z(Ei+l) .  We will list the 
Rayleigh-Ritz energies as E i = (q',lHI ~Pi)(½T(Ki)), i.e., if we quote E i = a ( b )  this 
means a - 2b  <~ E i <<. a is a rigorous bound, while a - b ~< E~ ~< a is a safe bound. In 
practice we observed by varying M that E i is far closer to its upper bound than to 
its lower bound. 

The proof [18] of (5.14) follows from Temple's operator inequality ( H -  E i ) ( H -  

K )  >/0 for any K ~  [E,, E~+~]. Note that to compute the lower bound we need the 
matrix for H 2. 

We now discuss the radial wave functions Xnt(r ) ,  chosen to be eigenfunctions of 
some convenient radial wave equation: 

z(z+l) ) 1 d 
r 2 d  + - -  + V ( r )  X , l ( r ) - - e , t X , l ( r  ) (5.16) 

2r 2 dr  dr  2r 2 
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together with the boundary condition (5.1). The hamiltonian in this basis is 

( l t l  213 n in 2 n 31H~rr[l~l~l~ n In '2 n '3 ) 

1 )-t 
= L - t  - ~  + a t (e.ltl + e.212 + e.~t~ ) 8.~.I 81~l; 8.~., 8l~l~ 8.~., 8t~l; 

+ (l~1213n~n2n31Vr(c)ll;l~l~nln'2n'3) 

1 ) -1  
+ (ll1213nxn2n31Vl( c) - --g2 + al V(ri) l l ; lJ~n~n'2n'3 ) , (5.17) 

i 

with a similar expression for the matrix of H~t, required for computing the lower 
bound. 

To reduce to 1-particle matrix dements  we first expand Vt(c ) in powers of r~. 
Although Vt(c ) is known to infinite order (see eq. (2.22) and eq. (2.26)), we found it 
sufficient to expand to sixth order. To one loop, this can be read off from (2.16). We 
also added an eighth-order term to check stability; its coefficients were chosen to 
minimise the maximum error in V t on C ~ [0, ~r] 3 to 0.3%. The expression we use for 

Vt(c ) is therefore: 

L"  Vt( c ) = 7 1 ( g ) E r i  2 + ")12(g) E r i  4 + "Y3(g) E ri2rj 2 
i i i>j 

~-'~4(g) E r i  6 q- ~5(g) E Fi4rj 2 + 7 6 ( g ) r l  2r2r2 + YT(g) Eri  8 
i i4:j i 

q-]/8(g) Eri6?'j 2 + ]t9(g) E r i  4r4 + 71o(g)~-,ri2(r?rdrd) • (5.18) 
i4:j i>j i 

The functions "YN(g) accurate to two loops are listed in table 3, and we observe that 
the g dependence is surprisingly weak. 

To keep track of the different types of approximations we have made, we will 
divide our results into three sets: 

Type I ("Minimal  hamiltonian"). These comprise the majority of our results. We 
neglect the sixth order part  of V- r, all two-loop effects, and the eighth and higher 
order terms in V I. This is the simplest approximation we can expect to give 

reasonable results, and amounts to putting a 3 = od4= a 5 = 0  (/£8 = /£9 = /£10=0) , 
7v = 78 = 79 = 7x0 = 0, and taking 7i(g) = 7i(0) for i < 7. 

Type H ("Full hamiltonian"). Here all displayed terms are included (except for a 
negligible 8th order two-loop contribution). We did some calculations to investigate 
the relative contributions of the 8th order one-loop, the two-loop, and the sixth 
order transverse terms. It  turns out all 8th order terms can be ignored, while the 
other two are of roughly the same magnitude. 
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TABLE 3 

loops for the vacuum-va l ley  effective potent ia l  V t (eq. (5.18)) 
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Yl(g) = - 0.30104661 - 0.30104661 ( g / 2 w )  2 

Y2(g) = - 1 . 4 4 8 8 8 4 7  X 10 -3  - 9.9096768 X 10 3 ( g / 2 ~ ) 2  

Y3(g) = 1.2790086 x 10 -2  + 3.6765224 x 10 -2  ( g / 2 ¢ r )  2 

Y4(g) = 4.9676959 x 10 5 + 5.2925358 x 10 -5  ( g / 2 ~ r )  2 

75(g)  = - 5 . 5 1 7 2 5 0 2  X 10 5 + 1.8496841 X 10 4 (g /2~ r )2  

Y 6 ( g ) =  -1 .2423581  X 10 3 _ 5.7110724 X 10 3 (g /2~r )2  

YT(g) = - 9 . 8 7 3 8 9 4 7  X 10 7 _ 5.1311245 X 10 6 (g /2~r )2  

Y8(g) = 9.1911536 X 10 -6  + 9.1452409 X 10 s ( g / 2 r r ) 2  

Y9(g) = - 2 . 7 9 1 1 5 6 5  X 10 -5  - 2.5203366 X 10 5 ( g / 2 r r ) 2  

Ylo(g) = 1.8208802 × 10 -5  + 6.0939067 × 10 -5  ( g / 2 r r ) 2  

Type I I I  ("Truncated hamiltonian"). We set all coefficients a i, /£i and 7, to zero. 
Although the results are not physical, the simplification allows a number of 
consistency checks and resolves an issue concerning the meaning of the T 1 and A 2 
representations at weak coupling. 

Lower bounds on the energies are only calculated for types I and III, because the 
full hamiltonian is too complicated to square easily. 

Now we discuss the actual evaluation of the matrix elements, beginning with the 
angular parts. Here, three types of terms are involved ( c 7 -  cT/ri): 

( i)  (ll12131(^a^a 2 , ,  , t ic  ) ) 1111213) (i ~ j ) ,  

(ii) (1112131 ( . . . .  2 . . . .  2 , , ,  cic)) (c~c,)IlJ213) (i4:j-~k), 

( iii ) (l~12131(det ~)=11;1~l~>. 
These can all be calculated exactly, using (5.4), (5.5) and simple properties of 
spherical harmonics. The numerous symmetries imply we need (i) and (ii) for only a 
few values of i, j and k. 

We are thus left with the radial reduced matrix elements, all of the form 

f~rc l r~2+2i+2j . . ( e )  [ ~'l~.(e) (j.'~ Fe(n, n', l, i, j )  - Jo "~'" , t , , , , - , a , , , t + 2 j , - , -  (5.19) 

The integers i and j are small, 

j =  2, i = 0 (AI= 4), 

j = l ,  0~<i~<3 ( A / =  2), 

j =  0, 0 ~<i~< 6 (AI= 0). (5.20) 
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For normalised eigenfunctions clearly Fe(n, n', 1,0,0)= 3n,,,, but we will list the 
eigenfunctions without normalisation. 

At this point we must finally be more specific about the radial 1-particle 
eigenfunctions X, which are determined by the 1-particle potential V(r) in (5.16), 
and the boundary conditions. We list three different choices A-C.  

Type A ("Plane wave"). These are the spherical Bessel functions, i.e., spherical 
plane waves, 

x~et)( r ) = jl( k~el)r ) , 

V(r) =0, 

1 / b ( e ) ~ 2  (5.21) 
Enl = 2 \ ~nl ] 

which satisfy the boundary conditions (5.1). The boundary conditions determine the 
"momenta"  k~,~): 

d )) z-k~% j,(k~p~r) = O, --dTz(Zjt(z = 0 .  (5.22) 
n 

The matrix elements Fe(n, n', l, i, j )  were calculated exactly in terms of ~'nlb(e), which 
were evaluated to 16-digit precision. This is elaborated upon in appendix C. 

Type B ("Harmonic oscillator"). These are harmonic oscillator wave functions 
which because of the boundary conditions (5.1) have no simple ~0-dependence: 

X~t)( r ) = rte-~,2/ZM( ½1 + 3 _ e~)/(2o~), l +  3, ~r2) ,  

V(r)  =12~o 2 r 2 , (5.23) 

where M(a, b; z) is a confluent hypergeometric or Kummer function, regular at 
z = 0 [19]. The 1-particle energies were evaluated numerically from the implicit 
definitions 

M(½l+ ¼ - e~)/(2oa), l +  3,~0r2) = 0 

( l+  1 -oarr 2 -  2 a ) M ( a , l +  3, ¢~"ff 2) + 2 a M ( a +  1,1+ 3,wrr 2) = 0 ,  

e~°) = ~°( l +  3 -  2a ) .  (5.24) 

The matrix elements Fe(n, n', l, i, j )  were calculated using 24- to 96-point gaussian 
integrations. Both e and F e depend in a complicated way on o~ and have to be 
evaluated anew for each ~. 

Type C ("Perturbative"). Here we take harmonic oscillator eigenfunctions, and 
impose no boundary conditions, demanding square integrability instead. These do 
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not distinguish between the different electrix fluxes, and are used to compare with 
the perturbative results of Liischer and Mfinster [3]. This is partly for debugging and 
partly to investigate the spin content of the T 1 and A 2 representations at weak 
coupling. Thus we take 

Xnl(r) =re t  ,or2/2-,+ ~(o~r 2) , L ,  

v(r )  =  , 2r2, 

e . ,=  t~(Zn + l +  3),  (5.25) 

where L~(z) are generalised Laguerre polynomials [19, ch. 13]. One easily derives 
analytic expressions for the matrix elements. 

Our results will be classified by their type, the most common being type IA 
(minimal hamiltonian with a plane wave basis). The spherical plane wave basis is a 
very good basis for larger g values, beause at larger g the wave function becomes 
less peaked near the origin; its Fourier transform (effectively the coefficients of the 
wave function in the plane wave basis) will therefore concentrate around low 
momenta. At weaker coupling the harmonic oscillator basis tends to be better, 
because ~ is an extra variational parameter that can be adjusted. For 0.5 ~< g ~ 1.4 
we used ~ = 1.5 and a~ = 1.7. The improvement is significant, although we expect 
that being able to increase the maximum value of l 1 + l 2 + l 3 would be most 
effective. For  g values where we have accurate results for both bases we have 
observed up to 5 digit agreement. 

We end this section with a few words about the computer programme, which was 
written in the language C. The UNIX environment proved useful for our com- 
plicated data handling. Angular matrix elements and 1-particle momenta were 
calculated and stored in files, reducing the building of the matrix for Heef or H2~ to 
simple algebraic operations. We then used routines from the IMSL library to 
diagonalise the hamiltonian. We used double precision throughout, but have per- 
formed quadruple precision calculations to check numerical stability. The maximal 
parameters w e r e  l 1 + l 2 q- l 3 ~< L = 20, n 1 + n 2 + n 3 ~< N = 10 and M = 800. For this 
case 443- hours of CPU time on a Ridge-32 are spent diagonalising H, and 1¼ hours 
spent calculating the lower bound. Building the hamiltonian matrix took 23 min. 
Most runs were done with M = 500, requiring 2 h to calculate upper and lower 
bounds. If one calculates only the first few eigenvalues (and no eigenvectors, 
required for the lower bound) ½ h of CPU time is used. Finally, CPU time is 
roughly proportional to M 3. The calculation is thus a non-trivial computation. 
However, because of the many cross checks, excellent agreement with previous 
results of Liischer and Miinster [3] and with our earlier semiclassical prediction, and 
the convergence of upper and lower bounds for increasing M, we are very confident 
of the numerical accuracy. 
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6. Comparison with the semiclassical result 

This section is dedicated to a detailed comparison of the Rayleigh-Ritz results 
with the semiclassical prediction. Because our numerical results are for g values 
where there could be appreciable unknown corrections to the semiclassical expres- 
sion, our approach will be to show that the two calculations agree up to beautifully 
simple correction terms, which vanish as g ~ 0. 

We first recall our prediction for the energy of three units of electric flux [4, 5]: 

a E ( 1 , 1 , 1 )  = E o ( 1 , 1 , 1  ) - E o ( 0 , 0 , 0  ) 

where 

= L - l (  1 +fo(g))-1. 3" 2XB2gS/3exp 

fo(0)  = 0,  

-S+ gTg2/3e), (6.1) 

= 0.6997 . . . .  

B = 0.2063 . . . .  

S = 12.4637 . . . .  

T =  3.9186 . . . .  

e = 4.116719735 . . . .  (6.2) 

and where the perturbative correction fo(g) is at least of order gl/3.  Eq. (6.1) is the 
rigorous weak-coupling expansion for AE, but as we have pointed out before [5], it 
was derived using only the lowest order expression E o = g2/3e/L for the perturba- 
tive energy in the exponential. The higher order terms in E 0 are O(g4/3), and 
omitting them causes the leading (1 + O(gl/3)) correction. Thus we can increase the 
accuracy and range of applicability of (6.1) by replacing g2/3e/L by the true 
perturbative energy. One option is to use the high order expansion of LiJscher and 
Miinster [3]: 

EoL = 4.116719735g 2/3 - 1.174516027g 4/3 - 0.118933g 2 

- 0.03148g 8/3 + O(glO/3). (6.3) 

The other option is to note that within the semiclassical approximation (i.e., up to 
O ( A E  2) corrections) the perturbative energy is midway between the energy of three 
units of electric flux and the energy of zero units of electric flux. In table 4 the two 
definitions are compared, and their difference (larger than our rigorous numerical 
error bounds) is entirely consistent with small O(g a°/3) and O(AE 2) corrections. 
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TABLE 4 
Type I(A&B) Rayleigh-Ritz results for the ground-state energies (in units of 1/L) 

with e = 0 and e = (1,1,1) 
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g Eo(0,0,0 ) Eo(1,1,1 ) f(g) ft. ELM AE 

0.5 2.09420(- 451) 2.09414(- 197) 2.0941(- 30) 2.09257 
+ 2 5 3  0.55 2.19391(-253) 2.19398(-98) 2.1939(-17) 2.19186 0.00007(_98 ) 
+ 4 8 8  0.6 2.28578(-188) 2.28621(-79) 2.2860(-13) 2.28329 0.00043(_79 ) 

0.65 2.37026(-205) 2.37166(-77) -05277(+5772]. ~,-28o6j 2.3709(-10) 2.36752 0.00140(+285°) 
+ 1220 + 269 0.7 2.44756(-269) 2.45119(-77) -0.5470(_1928 ) 2.4493(-17) 2.44507 0.00363( 77 ) 

+ 562 0.8 2.58031(-562) 2.59621(-61) -05744/+17°]" t 1112! 2.5882(-31) 2.58194 0.01590( 61 ) 
+ 966 0.9 2.68229(-966) 2.72917(-41) -0.5956(~6361) 2.7057(50) 2.69679 0.04688(_41 ) 

1.0 2.75241(-1387) 2.85796(-22) -0.6113(+~51) 2.8051(-70) 2.79179 0.10555(_+13287 ) 
1.1 2.79242(-1271) 2.98977(-10) -0.6217(+229) 2.8911(-64) 2.86861 0.19735(+~ 271) 
1.2 2.80665(-1108) 3.13086(-4) -0.6262(_+~23) 2.9687(-55) 2.92859 0.32421(_+~ 1°8) 
1.3 2.80000(-612) 3.28663(-4) -0.6242(+17) 3.0433(-31) 2.97280 0.48663( +612 ) 
1.4 2.77661(-378) 3.46178(-3) -0.6153(_+~1) 3.1192(-11) 3.00212 0.68517(+~ TM) 

1.6 2.6908 3.8854 - 0.5741 3.2881 3.01893 1.1946 
1.8 2.5652 4.4238 - 0.4930 3.4945 2.98364 1.8586 
2.0 2.4129 5.0847 -0.3538 3.7488 2.89967 2.6718 
2.2 2.2513 5.8639 -0.1224 4.0576 2.76958 3.6126 
2.4 2.1011 6.7498 +0.2621 4.4255 2.59534 4.6487 
2.6 1.9807 7.7276 + 0.9040 4.8542 2.37849 5.7469 

The perturbative factor f(g) is defined in eq. (6.4), while ELM is given in eq. (6.3) and E is an 
abbreviation for ½(Eo(0 ,0,0) + E0 (1,1,1)). Where no bounds are quoted they are (far) better than the 
last ones tabulated. 

Thus,  incorporat ing this improvement  into our prediction, we find: 

AE(1 ,1 ,1 )  ---- e o ( 1 , 1 , 1 )  - Eo(O, O, 0 ) 

= L - l ( 1  +f(g))-16)~B295/3 

- S  + ½LT(Eo(1,1,1 ) + Eo(0 ,0 ,0 ) )  ) 
X exp g , (6.4) 

We  have no  prediction for f i g ) ,  but  f rom the way it was derived (i.e., using [7] the 
pa th  decomposi t ion  expansion), we expect it to be determined by the transverse 
f luctuat ions along the tunneling path, which have a perturbative expansion in g. All 
the non-adiabat ic  behaviour, causing powers of  g2/3, should enter through the 

per turbat ive wave function contr ibution to A E,  which we have already accounted 

for [7]. However,  since tunneling is expected to become significant only at g -  0.7, 
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Fig. 3. The function f(g)/g appearing in eq. (6.4) calculated using the Rayleigh-Rdtz results for the 
minimal hamiltonian (type I(A&B)) to test the semiclassical result for the energy of electric flux. 

where the exponent in eq. (6.1) changes sign, f ( g )  is not guaranteed to be small in 
the region of interest, and could be - 1 .  This is why we should be careful in 
comparing Rayleigh-Ritz results with the semiclassical expression. The best we can 
do is confirm f ( g )  is a simple power series in g, vanishing as g ~ 0 ,  with 
coefficients of order unity. 

To  test all this reasoning, note that for our favourite two-dimensional vacuum-val- 
ley toy model, where transverse fluctuations are exactly quadratic, we would expect 
f ( g )  to be zero up to O(AE 2) corrections. Appendix B confirms this to high 
accuracy. There we provide the perturbative, semiclassical, Rayleigh-Ritz and Monte 
Carlo analyses performed on this toy model as a warm-up for the Yang-Mills case. 

Table 4 gives our highest accuracy data (type IA& B) for E0(0, 0, 0) and E0(1,1,1), 
as well as the value of f (g) .  Below g = 0.7 no reliable estimate is possible. In fig. 3 
we plot f ( g ) / g  versus g and see remarkably near-linear behaviour over a wide 
range of g. To a good approximation 

f ( g )  = - 1.11g + 0.49g 2 (dotted line). (6.5) 

However, the need to extrapolate from g = 0.7 to g = 0 does leave room for doubt, 
so we designed a rather sensitive test. We repeated both the semiclassical and the 
Rayleigh-Ritz analysis for the truncated hamiltonian (type III)  

g2 a2 1 
- -  + - -  2 [ c : e : + : -  )2] 

2g 2 i>j 2 (ac•) 2 (6.6) 
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In  this case, the lowest order per turbat ive  wave funct ion and energy are exact, with 
no higher order  corrections. Moreover,  they are equal to the lowest order wave 
funct ion  and  energy in the full problem.  Thus 

( -S '+T 'g2/3e  ) (6.7) AE' = L - l ( 1  + f'(g))-16X'B2gS/3exp g , 

with B and e the same as in eq. (6.1). However,  S' ,  T '  and X' are now determined 

by  the s imple  l - loop  effective potent ial  21CI (ICil ~<r:), giving the (rescaled) 
double -cone  p rob lem solved in ref. [7]. So 

/o =dC v/2 2C S '  = 2 • = 8rr3/2 

,~ 1 / *  

T' = 2.]0 d C  ~/2.2-------~ - 27rl/2'  

1 
X' = ~ ( 6 . 8 )  

(27r) 1/2" 

One  calculates X' as in ref. [7], sect. 4. 

TABLE 5 
Type III(A&B) Rayleigh-Ritz results for the ground-state energies (in units of 1/L) 

with e = 0 and e = (1,1,1) 

g Eo(0,0,0) Eo(1,1,1) f'(g) if, g2/3e AE 

0.65 3.08974(-1218) 3.08911(-72) 3.08943(-645) 3.089064 
+4114 0.7 3.245459(-19) 3.245564(-12) 2.1884(_4883 ) 3.245512(-16) 3.245513 0.000105(-+~29) 
+411 0.8 3.54724(-3) 3.54808(-1) 2.4510(_119o ) 3.54766(-2) 3.547682 0.00084(_+~) 

0.9 3.83535( - 8) 3.83941( - 4) 7290 • + 368 2. I,- 723 ! 3.83738(-6) 3.837482 0.00406(~ ~) 
1.0 4.10939(-24) 4.12310(-4) 3.0625(+71~ 8) 4.11625(-14) 4.116720 0.01371(_ +24) 

+48 1.1 4.36712(-75) 4.40369(-4) 3.3509(_892) 4.38541(-40) 4.386786 0.03657(_+47s) 
1.2 4.60504(-18) 4.68621(-6) 3.6364(_+~o43) 4.64563(-12) 4.648778 0.08117(_+6 TM) 

1.3 4.81977(-29) 4.97615(-6) 3.9325(_+~ 9) 4.89796(-18) 4.903583 0.15638(*29) 
1.4 5.00887(-43) 5.27902(-7) 4.2459(_+~]) 5.14395(-25) 5.151930 0.27015(+43) 
1.5 5.17151(-65) 5.60011(-8) 4.5912(218 °) 5.38581(-37) 5.394429 0.42860(+ 65) 
1.6 5.30831(-84) 5.94422(-9) 4.9907(-+89) 5.62627(-47) 5.631593 0.63591(_+~ 4) 
1.7 5.42091(-103) 6.31550(-11) 5.4695(+84) 5.86821(-57) 5.863864 0.89459(+]1 °3) 
1.8 5.51160(-121) 6.71734(-11) 6.0592(+81) 6.11447(-66) 6.091622 1.20574( _+ ~ 21) 
1.9 5.58317(-137) 7.15231(-10) 6.7983(+658) 6.36774(-74) 6.315199 1.56914(+~ 37) 

150 2.0 5.63886(-150) 7.62228(-10) 7.7380(_+46) 6.63057(-80) 6.534885 1.98342(+1o ) 

The perturbative factors f'(g) and e are defined in eqs. (6.2) and (6.7), and if? is 12(Eo(0,0,0 ) + 
E o (1,1,1)). 
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Fig. 4. The function f ' ( g )  appearing m eq. (6.7) calculated using the Rayleigh-Ritz results for the 
truncated hamil tonian (type III(A&B)) to test the semiclassical result for the energy of electric flux in the 

truncated model. 

Numerical results (type IlIA&B) for this truncated model are in table 5, and in 
fig. 4 we plot f '(g) versus g. We find 

f ' (g) = 3.03g (dotted line), (6.9) 

again over a large range of g. 
We regard eqs. (6.5) and (6.9) as excellent evidence for the consistency of the 

semiclassical and Rayleigh-Ritz analyses. 

7. Nonadiabatic behaviour 

In this section we analyse the deviation from adiabatic behaviour. We first 
describe the method of calculation, but most of this section presents and discusses 
numerical results. As described in sect. 3, the wave function can be decomposed into 
an infinite component vacuum-valley wave function by projection: 

--  ( , . , , d O , , )  o , , ,  

Here X is the transverse eigenfunction satisfying 

H ~(i) (Ok,,~k)= v'(i)(c~"°'(i) (0 ,,4., ~ trA[C] tr \ ]A[C]  ~, k "~"k)" 

(7.1) 

(7.2) 
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The transverse hamiltonian is given in eq. (3.5). We will perform the analysis only 

for the minimal (type I) and truncated (type III) hamiltonians. Thus for type I we 

have explicitly 

x [ 1 - sin2t9,sin28, ( cos2&cos2+, + sin2Gisin2Qj) - COS28icos2ej] , (7.3) 

and for type III we put c~i = a2 = 0 in this equation. Obviously I’,!‘) is found by 

diagonalising the matrix of H,, in the basis 1Z,Z,Z3). This requires only a minor 

change in our Rayleigh-Ritz programme: simply restrict ni to zero and for the radial 

matrix elements use F,(O,O, I, p, q) = Y~(~+~), i.e., freeze the ri coordinates. 

Clearly, when all ri are unequal, there is no permutation symmetry and the cubic 

group is broken down to the coordinate reflections Z:. Thus @(‘) in eq. (7.1) is only 

non-zero if the parities, (- l)h, for x[& are the same as for q (see table 2). This has 

an important consequence: we expect transverse states involving odd parity to have 

higher transverse energy than those involving even parity. Thus wave functions \E 

involving odd parities see a higher quantum induced potential barrier, and tunneling 

sets in at higher values of g. This explains why, for the A; state, the agreement 

between our Rayleigh-Ritz results and the perturbative expansion of Liischer and 

Mtinster is good up to g = 1.2, where the difference is only 0.5%. Similarly, 

tunneling for the T, representation is expected to set in later than for the E 

representation, which we confirm in our variational analysis [6]. Sect. 8 gives some 

details. 

Diagonalising the whole hamiltonian and the transverse hamiltonian gives 

xg](e,, +!A = PC;) ,,,,,,vw%~ &1~1~24)~ (7.4) 

which provides a straightforward expression for Q(‘)(C): 

The only difficulty is that we have to “undo” the projections defined in table 2. We 

next computed the “non-adiabaticity fractions” f, defined in eq. (4.16) by using 

12 X 12-point gaussian integration for the two-dimensional integrals. We also calcu- 

lated, for individual points C, the fraction of the wave function in each component 
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of the vacuum-valley decomposition: 

~(J)(C)2 (7.6) 
fy)(c)= 

k=l 

The denominator was calculated independently using 

E ~(k)(c) 2= E ~kl,1213n,n2n3 rixnj,(r,) , (7.7) 
k=l (n,t} 

to avoid calculating all transverse eigenfunctions X}~I- We do, however, confirm 
that fi(g) decreases rapidly with k, and the sum of the first two or three pointwise 

fractions is very close to 1. 
Note  that f/(J)(C) provides a different interpretation for f~, being the weighted 

average of the pointwise fractions f~(1)(C) over one face of the vacuum-valley 

boundary: 
r, r, 

fi = lim f f d r j d r k f i ( X ) ( C ) w i ( C ) ,  (7.8) 
~ - ~  ~r " 0  0 

where the weight wi(C ) is proportional to the square of the wave function at C: 

w i ( C  ) -- Wi(r i )  q~l l~(q)(c)2' 

oo 
W/(ri) = for'foridrjdrk Y'~ I~(q)(c) 2. (7.9) 

q=l 

At first sight one might think the adiabatic approximation is only good if the 
pointwise fractions at the boundary r i = ~r are uniformly small. However, the 
following argument shows this is incorrect. Suppose the adiabatic assumption is 
exact, and let ~/" be the E ÷ or Tt + state. For each of these, ~(1)(C) has a nodal 
surface, dictated by symmetry, which intersects the boundary r i = Tr. Thus if we 
switch on some arbitrarily small non-adiabatic corrections, fi(1)(C) =- 0 at the nodal 
surface. The adiabatic approximation is nevertheless good because the probability 
wg(C) of actually being at this point is arbitrarily small. Thus eq. (7.8) is the 
appropriate measure of the accuracy of the adiabatic approximation. However, as 
stated at the outset, we will not try to estimate the size of corrections as a function 
of ( 1 - f i ) .  Such an analysis would have to include the effect of off-diagonal 
coupling illustrated in fig. 2, which as explained in sect. 4, could be enhancing the 
accuracy of our results at higher g. Unfortunately, we are lacking an expansion 
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TABLE 6 
Adiabaticity parameter f,,  eq. (4.16) (upper number) and integral of the wave function squared W,, 

eq. (7.9b) (lower number) for the states in column 1 and surfaces in column 2 

39 

g = 1.0 g = 1.5 g = 2.0 g = 2.6 

Al + r 3 =~r 

(A()'  r3 = ~  

A 1 r 3 =~r 

E + r I = ~r 

r2 = ~r 

r3=~r 

T1 + r l=~ r  

r3=r r  

T2 + q = ~ -  

r~=~r 

e [  r I = 3 

r ~ = 3  

e~ q = 3 

r 3 = 3  

e* r 3 = 3 3 

0.9607 
5.590 × 10 -2  
0.9856 
3.752 × 10 -1 
0.8951 
6.801 × 10 -3 
0.9456 
1.026 • 10 1 
0.9586 
5.112 • 10- 1 
0.9564 
3.069.10 1 
0.9753 
7.571 • 10 1 
0.9797 
9.179- 10 -2 
0.9789 
6.840 10 1 
0.9840 
7.463 10 2 
0.9667 
6.340 10 2 
0.9353 
1.671 10 3 
0.9310 
1.636 10 3 
0.9631 
6.245 10-2 
0.9318 
1.855 10 3 

0.9482 0.9173 0.9284 
2.387 × 10 1 3.767 × 10 -1 5.095 × 10 1 
0.9667 0.9182 0.8858 

5.865 × 10 1 6.702 × 10 -1 6.935 × 10 
0.8938 0.8898 0.9709 
1.554 × 10 1 4.167-10 1 6.659- 10 1 
0.9407 0.9208 0.9522 
2.866.10 -1 4 .404.10 1 5.621.10 -1 
0.9542 0.9583 0.9769 
5.969.10 1 6.195.10 -1 6 .331.10 - l  
0.9498 0.9428 0.9653 
4.417- 10 - I  5 .299.10 -1 5.976 • 10 1 
0.9740 0.9717 0.9277 
7.007 - 10 1 4 .669 .10-1  4.032 • 10- 1 
0.9622 0.9202 0.8664 
3.101.10 1 4.565-10 1 5.671-10 1 
0.9722 0.9670 0.9608 
6.456-10 -1 1.018-10 o 8.114.10 1 
0.9739 0.9350 0.8953 
2.569- 10 -1 3.716.10 1 4.901.10 l 
0.9530 0.9444 0.9730 
2.648.10 i 5 .627.10-1  7.536.10 1 
0.8959 0.8650 0.9284 
4.135 • 10 -3 6.378 • 10 3 8.571 • 10 3 
0.8937 0.9144 0.9707 
4 .841-10-3  4.537.10 3 5.258-10 3 
0.9472 0.9580 0.9874 
3.306.10 i 5.271-10 i 6 .281-10-1  
0.8972 0.9293 0.9808 
6.258 • 10 -3 1.011 • 10 2 1.240- 10 2 

Note (A1 + ) '  is the first excited A1 + state. 

p a r a m e t e r  f o r  t h i s  t y p e  o f  a n a l y s i s ,  b u t  i t  j u s t  m i g h t  e x p l a i n  w h y  o u r  v a r i a t i o n a l  

r e s u l t s  s e e m  t o  a g r e e  b e t t e r  w i t h  t h e  h i g h e r  s t a t i s t i c s  M o n t e  C a r l o  d a t a  o f  re f .  [20] a t  

g - 2 . 6  t h a n  a t  g -  2 ( s e e  re f .  [6]). F o r  m o r e  d e t a i l s  w e  r e f e r  to  sec t .  8. 

I n  t a b l e  6 w e  g i v e  o u r  n u m e r i c a l  r e s u l t s  f o r  t h e  f r a c t i o n s  f ,  ( eq .  (4 .16) ) .  F o r  

p r a c t i c a l  r e a s o n s  w e  c o m p u t e  f~ f o r  n o n - z e r o  e l e c t r i c  f l u x  a t  r, = 3, b e c a u s e  t h e  w a v e  

f u n c t i o n  i s  z e r o  a t  r i = ~r i f  e ,  = 1. T h e  t a b l e  a l s o  g i v e s  t h e  i n t e g r a l  o f  t h e  w a v e  

f u n c t i o n  s q u a r e d  (W~) o v e r  a b o u n d a r y  f ace .  W e  p r o v i d e  d a t a  f o r  g r o u n d s t a t e s  i n  

t h e  s e c t o r s  A1 + ,  A I - ,  E +, T1 + ,  T+2, e~-, e+2, e ~ ,  a n d  f o r  t h e  f i r s t  e x c i t e d  A~ + s t a t e  

( w h i c h  w e  c a l l  (A I+ ) ' ) ,  f o r  g v a l u e s  o f  1.0,  1.5,  2 .0  a n d  2.6.  S y m m e t r i e s  ( t a b l e  2)  

r e l a t e  t h e  f i  w i t h i n  e a c h  s e c t o r  a s  f o l l o w s :  fa  = f 2  = f 3  f o r  A1 + a n d  e ~ ,  f t  - - f 2  f o r  

T ( ,  T'+2, e ; ,  e2,+ w h e r e a s  a l l  f i  a r e  d i f f e r e n t  f o r  E +. T h e  W,. a r e  r e l a t e d  s i m i l a r l y .  
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Fig. 5. Plots  for the p robab i l i ty  densi ty  of the A~ + ground-s ta te  wave funct ion at  r 3 = ~r as a funct ion of 
q and  r 2 on  [0, ~r] 2. The vert ical  axis is pos i t ioned  at  (0,0) and  the vert ical  scales are the same in each 

plot.  

A number  of interesting observations can be made through inspecting table 6. We 

see the effect illustrated in fig. 2 confirmed, since f, increases beyond g = 2 for most  

states. The fraction of the wave function possibly leaking to the excited transverse 

sectors is always less than 15%, and usually much less. F rom this evidence, we 
expect that  non-adiabat ic  corrections to our energy levels are no more than 5 to 
10%. 

F r o m  table 4 we also see that W~ increases with g. The suppression of tunneling 
at lower g is clearly visible in the A 1 state, and to some extent in A~ +, e~, e~- and 
e~.  It  thus confirms that for A {  the tunneling sets in at larger g values (presumably 
g - 1.2), whereas for the other states tunneling has already set in at g < 0.8. 

A third effect, which is quite dramatic, is illustrated in fig. 5. There we plot the 
probabi l i ty  density Y'~ql~(q)(c)2 o v e r  one face (say r 3 = ~ ) ,  for the groundstate  A~ +. 
The  vertical scale is the same on each graph, and horizontally we plot r 1 and r 2 
f rom 0 to ~r, with (0, 0) at the vertical axis. We see that towards larger g the wave 
funct ion tends to concentrate around r, = ~r, rather than close to r i = 0, which can be 
considered as the "Z2-symmetry  restoration". All other representations show similar 
effects (e.g., see fig. 6 and fig. 8). 

F r o m  fig. 5 we also see the effect ment ioned in sect. 3. At  smaller g, the wave 

funct ion peaks near to ri = 0, and we conjecture that the maximum at fixed r 2, r 3 
moves to rl = 0 as g ~ 0, thereby effectively turning the vanishing boundary  
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Fig. 6. Plots  for the p robab i l i ty  densi ty  of the first exci ted A1 + s ta te  at  r 3 = ~v as a funct ion  of r I and  r 2 
on  [0, ~r] 2. The vert ical  axis is pos i t ioned  at  (0, 0) and  the vert ical  scales are the same in each plot.  

cond i t i on  on  ~(1) at  r i = 0 into the condi t ion  0 ~ ( 1 ) / O r i  = 0 at r i = 0. Al l  representa-  

t ions show a s imilar  peaking.  

In  fig. 6 we give the p robab i l i t y  densi ty  for (A~+) ', the first excited A~ + state. The  

new fea ture  exhib i ted  there is revealed more  clearly in fig. 7, which gives for the 

n o n - a d i a b a t i c  f ract ion 1 (1 - f3 (1 ) (C) )  as a funct ion of  r 1 and r 2 for r 3 = ~r. Aga in  

ver t ica l  scales are the same for each g, and  the vertical  axis is d rawn at ( r  1, r 2) = (0, 0). 

W h a t  we see appear ing  at  g = 1.5 is the nodal  surface of ~b(1)(C), which for small  g 

is a sphere  centered  at C =  0, with radius  O(g2/3) .  Only  at large enough g is it 

expec ted  to intersect  with the boundary•  As was expla ined earlier, at such a noda l  

sur face  f will become zero, and  fig. 7 clearly i l lustrates  this feature. The noda l  

surfaces  are  ha rde r  to see in fig. 6, bu t  can still be made  out. 

Fig.  8 gives p robab i l i ty  densit ies for the E + state at g = 1 and g = 2, for each of 

the faces r 1 = Tr (a), r 2 = Tr (b), r 3 = ~r (c). Here  the nodes  are d ic ta ted  by  symmetry ,  

a n d  they pers is t  down to g = 0, the nodal  curve at  r I = ~r being par t i cu la r ly  

consp icuous .  Al though  we do not  present  the graph,  we have observed that  these 

nodes  co inc ide  with highly isola ted zero 's  in the f ract ions ~ ,  jus t  as in fig. 7. We  

leave it to the reader  to visualise how the three faces in fig. 8 combine  into  one 

con t inuous  funct ion.  

W e  end this sect ion with a discussion of the behav iour  of Vt~ ~1 and Akin to 

i l lus t ra te  the po in t  made  at the end of  sect. 3. This requires us to calculate  the 

q u a n t i t y  (O/3r~)xlJc! 1. The p rob lem is s imilar  to one faced in append ix  B, since it is 
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Fig. 7. Plots  for  the nonadiaba t ic  fract ions of the first excited A1 + state at r 3 = 7r as a funct ion  of r x and  
r 2 on  [0, ~r] 2. The  vertical axis is posi t ioned at (0,0) and  the vertical scale, the same  in each plot, gives 

13( 1 _ f (1)(C)) .  The  " m o u n t a i n  range",  for which f3°)(C) = 0, cor responds  to the node  in fig. 6. 

equivalent  to calculating the first order correction to the eigenvectors of the 
transverse hamil tonian Htr(ri + e). One easily finds a linear equation determining 

( 3/3r,)xlJc)l: 

(ntr__ Wt~J,)9-~-v(J) ( o n t r  O W t ~ J ' )  . . . .  (J) ( 7 . 1 0 )  
3r  i zqc] 3r i Or i A[c], 

which can be converted to a non-singular matrix equation (by adding/~l#k) 

(/-/i, k - ~ J )~ , , k  + ~ , ~ )  vk = ( t~, , ( ,an) , , ,q~q~, ,~-(~n) , ,~)~ k . (7 .a l )  

Here  we have suppressed C dependence,  and write 

I!) = Illla13), 

Ht, k=( l ln t r l k ) ,  

aHtr 
(AH), .k=(ll~-f-r  Ik),  

X[~I(Ok, (/'k) = # , ( (  0k, ~k }1/), 

3 
- - ~ ( J )  e0 , (/'k) = ~'t(( 0k, (/'k)1/) (7 .12)  3 r  h t C ] t  k 
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Fig, 8. Plots for the probability density of the E + ground-state wave function at (a) r 1 = ~r as a function 
of r 2 and r 3 on [0, ~r] 2, (b) r 2 = ~r as a function of r a and r 3 on [0, ~r] z and (c) r 3 = ~r as a function of r a 
and r 2 on [0, ~r] 2. The vertical axis is positioned at (0,0) and the vertical scales are the same in each plot. 

C o n s i d e r a t i o n  o f  eq. (7.12) shows tha t  the m a t r i x  A H  is a t r ivial  v a r i a t i o n  on  the  

m a t r i x  H,  so o n e  read i ly  solves eq. (7.11) to o b t a i n  v t. N o t e  tha t  ( O / O r i ) x l ~ l  is 

o r t h o g o n a l  to  ~ o )  s ince the la t te r  is n o r m a l i s e d  to 1. a [ c ]  
W e  c a n  n o w  ca lcu la te  A i j  as de f i ned  in eq. (3.8). A useful  check  is 

. L o r k  = i=IE[Aij(CI] (7"13t 

W e  o b s e r v e d  tha t  the  sum ove r  i is d o m i n a t e d  by  the first  few n o n - z e r o  terms.  

R e s u l t s  fo r  g = 1.0, type  III ,  a re  g iven  in figs. 10 and  11. T h e  f o r m e r  shows  r 3 = 2 

a n d  the  l a t t e r  r 3 = 3. O n l y  the  even  pa r i ty  sec tor  is p resen ted ,  and  we p lo t  (a): 

Y~,k[Ak l (C)]  2, (b): Z k [ A 3 1 ( C ) ]  2, (c): Vt~2) (C) -  Vt~l)(C) and  (d): Vt~I)(c). These  

g r a p h s  c l ea r ly  d o  show a r eg ion  of  in t r i ca te  b e h a v i o u r  at i n t e r m e d i a t e  va lues  o f  r I 
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Fig. 9. Plots at E~ =2 as a function of r 1 and r 2 for (a) (Akl(C)) 2, (b) (A]a(C)) 2, (c) L-(Vt~2)(C)- 
Vt~t)(C)) and  (d) L .  Vt~I)(C). 

and r2, as discussed at the end of sect. 3. We have confirmed this intermediate 
3 2 region shifts towards r 1 = 0, r 2 = 0 as g decreases, and that ~2k[Akl(C)] becomes 

negligible. As can be seen in the figures, the one-loop result holds for large enough 
C, where Vt~I)(C) = 2[CI and Vt~2) (C)  : 4[ C I (the transverse state with energy 3 I t  I 
has negative parity) so that Vt~ 2) - Vt~ 1) = Vt~ 1). We have also confirmed that the 
domain of validity of the one-loop result approaches the axis as r 3 increases. 

We herewith rest our case. 

8. Results and discussion 

Having motivated our approach and justified our approximations in previous 
sections, we will now discuss our results. Most of them can be found in the figures 
of ref. [6], so instead of reproducing those figures, we tabulate the " raw"  data i.e., 
the energies as functions of g, in tables 7 and 8. 

Table 7 lists type IA and IB results, energy levels of the minimal hamiltonian 
diagonalised in a plane-wave or harmonic-oscillator basis. Recall from sect. 5 that 
the minimal hamiltonian incorporates a sixth order approximation for the one-loop 
potential along the vacuum valley, and only the lowest (fourth) order contribution 
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Fig. 11. The Monte Carlo data [20,27] compared with the Rayleigh-Ritz variational results for the 
energy of electric flux EL.+= A E/M(E+),  versus the distance zE~= M(E+) . L (both in units of the 
glueball mass). Along the vertical axis we plot for easy comparison ~ = V ' ~ / z E ÷  which at 

large zE+ can be identified with the square root of the string tension in units of the glueball mass. The 
crossed data points  are from ref. [20], the open circles from ref. [27b] and the remaining data points are 
from ref. [27a] (see ref. [5] for details on the representation of the data from ref. [27]). The full line gives 
the Rayleigh-Ritz results for the minimal hamiltonian (type I(A&B)), the dashed line gives the 
Rayleigh-Ritz results for the full hamiltonian (type IIA) and the dotted line reminds us that we expect 
our approximations to break down beyond zE+- 5, presumably due to the onset of non-zero action 

tunneling. 
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TABLE 7 
Type I(A&B) results for the energies (in units of l / L )  of the lowest states in the listed O(3,Z) 

symmetry sectors, as well as for (A1 + )', the first excited state in the A1 + sector 

g A~- (A~-)' A{ E + T{- T~- e; e~ e; 

0.8 2.580(6) 3.540(450) 6.416(6) 3.458(165) 3.547(565) 2.586(i5) 2.593(15) 2.596(1) 
0.9 2.682(10) 3.651(550) 6.831(2) 3.558(142) 3.630(5Ii) 2.698(10) 2.714(8) 2.729(1) 
1.0 2.752(14) 3.763(650) 7.208(0) 3.656(72) 4.651(490) 3.661(472) 2.786(7) 2.821(4) 2.858(0) 
1.1 2.792(13) 3.878(450) 7.544(0) 3.761(31) 4.915(142) 3.690(325) 2.853(5) 2.919(2) 2.990(0) 
1.2 2.806(11) 3.999(350) 7.833(0) 3.873(18) 5.216(28) 3.719(151) 2.904(3) 3.010(1) 3.131(0) 
1.3 2.800(6) 4.134(132) 8.070(1) 3.996(9) 5.550(16) 3.750(73) 2.942(2) 3.100(0) 3.287(0) 
1.4 2.776(4) 4.285(83) 8.255(1) 3.783(6) 5.919(8) 3.783(22) 2.971(1) 3.192(0) 3.462(0) 
1.5 2.739(2) 4.454(33) 8.390(1) 4.280(4) 6.323(6) 3.818(9) 2.996(I) 3.290(0) 3.660(0) 
1.6 2.691(2) 4.641(12) 8.481(1) 4.444(3) 6.763(5) 3.857(7) 3.018(1) 3.399(0) 3.885(0) 
1.8 2.565(1) 5.074(4) 8.552(2) 4.823(3) 7.754(4) 3.951(5) 3.068(1) 3.660(0) 4.424(0) 
2.0 2.413(1) 5.590(2) 8.526(2) 5.277(2) 8.887(3) 4.073(4) 3.141(1) 3.999(0) 5.085(0) 
2.2 2.251(1) 6.194(1) 8.481(2) 5.815(2) 10.157(3) 4.235(3) 3.256(1) 4.428(0) 5.864(0) 
2.4 2.101(1) 6.884(1) 8.488(1) 6.442(I) 11.554(3) 4.446(3) 3.428(1) 4.949(0) 6.750(0) 
2.6 1.981(1) 7.652(1) 8.594(1) 7.i59(1) 13.071(4) 4.714(2) 3.663(1) 5.554(0) 7.728(0) 
2.8 1.902(1) 8.486(1) 7.961(1) 3.961(1) 
3.0 1.870(1) 9.376(1) 8.837(1) 4.318(1) 
3.2 1.885(1) 10.314(1) 9.776(1) 4.725(1) 
3.4 1.942(1) 11.293(1) 10.767(1) 5.176(1) 

The lowerbound is obtained by subtracting the digits in parenthesis. 

perpendicular  to the vacuum valley. This is the simplest approximation one can 
expect to yield reasonably accurate values for the energies. Above g = 1.2 we used a 
basis of  500 plane waves (spherical Bessel functions), whereas below g = 1.2 we used 
up to 800 plane waves or harmonic oscillator wave functions to improve accuracy. 

Table  8 lists type I IA  results, the full hamiltonian of sect. 3, diagonalised using 
plane waves. These tables also contain some new results, namely those for the T: 

representation, and for g values beyond 2.6 (z e > 5). 
We begin with a few words on the accuracy. For  (AI+) ' (the first excited A1 + 

state), T2 +, E ÷ and Tt + we still have difficulty bringing the lower bound  close to the 
upper  bound,  despite our use of  the harmonic oscillator basis. Although there was 

substantial  improvement  at g = 0.8 and 0.9, it is likely that increasing l I + 12 + 13 
beyond  20 will be much more helpful. Doing this is quite feasible, but  it would be 
time consuming and is too academic to pursue. The reason is that in general the 
upper  bound  is much more accurate than the lower bound  is willing to reveal. For  
example, at g = 0.8 the type IA result for T2 + is 3.611 (2572). The improvement  
lowers the upper  bound by only 2%, but  reduces the uncertainty by a factor 5. For  
the (A~-)' at g = 0.8 we also find a 2% change, while for E + it is only 1%. However, 

for higher g the change is always less than 0.3%. Table 9 gives further evidence for 
an accuracy of better than 1% at low g values. There we list the energies 
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TABLE 8 
Type IIA results, as in table 7 

47 

g Al + (AI+) ' ,41 E + T1 + T2 + e~ e I e f  

0.8 2.558 3.486 6.389 3.419 3.502 2.569 2.572 2.575 
0.9 2.646 3.576 6.790 3.489 3.557 2.664 2.681 2.698 
1.0 2.698 3.665 7.147 3.564 4.546 3.559 2.735 2.774 2.814 
1.1 2.713 3.752 7.456 3.644 4.784 3.558 2.781 2.852 2.931 
1.2 2.699 3.843 7.710 3.727 5.054 3.554 2.805 2.921 3.054 
1.3 2.659 3.944 7.902 3.817 5.355 3.547 2.812 2.985 3.190 
1.4 2.598 4.057 8.032 3.915 5.686 3.539 2.808 3.047 3.343 
1.5 2.518 4.184 8.102 4.024 6.048 3.529 2.794 3.112 3.517 
1.6 2.423 4.325 8.116 4.145 6.444 3.518 2.774 3.185 3.717 
1.8 2.187 4.654 8.000 4.426 7.336 3.497 2.727 3.367 4.199 
2.0 1.904 5.055 7.750 4.770 8.359 3.486 2.690 3.620 4.800 
2.2 1.591 5.533 7.462 5.187 9.506 3.498 2.684 3.958 5.516 
2.4 1.276 6.091 7.222 5.688 10.771 3.547 2.728 4.384 6.335 
2.6 0.982 6.719 7.087 6.274 12.215 3.643 2.831 4.891 7.243 
2.8 0.725 7.405 6.939 2.994 
3.0 0.511 8.140 8.469 3.211 
3.2 0.341 8.914 9.308 3.475 
3.4 0.209 9.722 10.181 3.777 

These include all corrections discussed in the text. 

TABLE 9 
Type I(A&B) results for the first excited A1 + and the lowest T2 + state with 0 and 3 units of electric flux, 

compared with the perturbative prediction El, [3] 

(A~+) ' T; 

g E(0,0,0) E(1,1,1) E Ep E(0,0,0) E(1,1,1) £ Ep 

0.5 3.105(420) 3.109(173) 3.107 3.103 
0.55 3.213(410) 3.244(128) 3.228 3.230 
0.6 3.297(374) 3.376(110) 3.336 3.342 
0.65 3.365(342) 3.510(101) 3.437 3.441 
0.7 3.427(352) 3.649(91) 3.538 3.527 
0.8 3.540(450) 3.949(61) 3.744 3.662 
0.9 3.651(550) 4.289(31) 3.970 3.752 
1.0 3.764(650) 4.674(12) 4.219 3.809 
1.2 3.999(350) 5.588(1) 4.794 3.780 

3.431(532) 3.487(153) 3.459 3.458 
3.547(565) 3.712(140) 3.629 3.603 
3.630(571) 3.944(26) 3.787 3.761 
3.661(472) 4.199(5) 3.930 3.819 
3.719(325) 4.799(0) 4.259 3.904 

The quant i ty  if7 is the average ~ (E(0 ,0 ,0 )+  E(1,1,1)), and we expect E p - E ' =  O ( ( E ( 1 , 1 , 1 ) -  
E(0,0,0))2).  All energies are in units of 1/L.  
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+ ' t A + v T, + T, + for (A 1 )e=o, ~ 1 Je=(1,1,1), ( 2 )e=0, ( 2 )e=(1,1,1), the average of these two energies 
for each representation, and the perturbative prediction of Ltischer and Mtinster [3]. 
As explained in sect. 6, the average should equal the perturbative result, up to 
corrections vanishing rapidly once tunneling effects are small. The agreement is 
extremely good. Table 9 also shows that for (AI+) ' (and E +) tunneling sets in 
around g = 0.5, but somewhat later for T2 +. 

We now come to the new results for the T1 + representation. This is an important 
state because it confronts one with an issue, which is as follows. In a situation where 
the cubic group can be enlarged to the full rotation group, the irreducible represen- 
tations we have been discussing combine into angular momentum multiplets, a fact 
used extensively in the Monte Carlo analysis [21]. In particular, in a large volume 
one expects restoration of rotational invariance, both on the lattice and in our 
cont inuum calculation on a torus. One therefore conjectures that the energy gap 
between each representation R 4: A~ + and the A~ + groundstate (which is the true 
vacuum) gives the mass of the lowest angular momentum state containing R (and 
(AI+) ' supposedly gives the 0 + mass). Thus, in refs. [20] and [21], spin 2 is associated 
with the E and T 2 representations, spin 1 with the T 1, and spin 3 with the A 2 
representation. On these grounds, it is tempting to conjecture that our T1 + state will 
correspond in larger volumes to a spin I state, especially since they are both triplets. 

The above claim apparently contradicts a statement by Lfischer and Miinster [3] 
that the J = 1 states cannot be studied within the context of the zero-momentum 
effective hamiltonian. The resolution of this contradiction shows one must at least 
be careful about simplisticly deducing infinite volume results from our intermediate 
volume energies. Liischer and Mtinster observe that the lowest order effective 
hamiltonian, valid at small g, possesses full rotational symmetry, and give an 
argument that in general prohibits any odd spin multiplets from forming as g ~ 0. 
However, this symmetry is in a sense accidental, and there is no reason why the 
energy levels should combine into multiplets in the same way at g ~ 0 as in the 
infinite volume limit. 

The question thus arises, to what spin multiplet the T1 + (and A~) belong as 
g---> 0. This can be answered as follows. The lowest order effective hamiltonian is 
what we have called the truncated (" type I I I")  hamiltonian, and one can scale out 
g, where upon taking g ~ 0 is equivalent to moving the boundary condition to 
infinity. Thus we have a problem of type IIIC, in the language of sect. 5. One can 
find the eigenstates, and settle the low g spin assignments by identifying degener- 
acies between different representations of the cubic group. In table 10 we collect the 
results. The conclusion is that Tf- and A~- belong to J : 4 and J = 6 respectively. 

As mentioned above, there is no reason to expect these spin assignments to hold 
for a large volume, and the reason we wish to be cautious about identifying our 
results at zE+-  5 with certain spin states is that the volumes we probe are still too 
small to restore rotational invariance. This is clear from the fact that the E + and 
T2 + groundstates differ substantially in energy. However, the level rearrangements 
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TABLE 10 
Low g spin assignments, e 1 = L .  E / g  2/3, computed using type IIIC at g = 1 
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J e 1 R 

0 + 4.1167(0) A~ + 
2 + 6.0145(47) E +, T2 + 
0 + 6.3863(0) A~ + 
4 + 7.7355(103) A1 +, E +, Tl +, T2 + 
2 + 7.822(10) E +, T2 + 
0 + 7.974(0) A1 + 
0- 8.7867(0) A i 
0 + 9.25... A1 + 
6 + 9.3273(241) A~, Af, E +, T1 +, 2 × 7"24 
2 11.331(0) E , T 2 
0- 12.055(2) A 1 
4- 13.721(27) A1, E-, T1, T 2 

6 15.988(39) A~, A2, E , / '1 ,2  × T 2 

We list only the eight lowest even parity states and five lowest odd parity states. 

are  somewha t  restr ic ted because  we do  not  expect  crossing of  levels within a 
r ep re sen t a t i on  of  the cubic  group,  since 0(3 ,  Z )  is a good  symmet ry  at all values of 

the  coupl ing.  This  indeed makes  it very tempt ing  to ident i fy  (A~+) ' with J e =  0 +, 

T~ + with J e = l + ,  E + and T2 + with J P = 2  +, A ~  with J P = 3  + and A~- with 

J P =  0 - .  I t  suppor t s  the conjecture  made  in ref. [20] that  the 2 + glueball  mass  is 

lower  than  the 0 + mass, which is a l lowed by  r igorous mass  inequal i t ies  [22]. But 

aga in  we emphas ize  that  we do not  yet know how, for example,  the E + and T Z will 

merge  in to  a 2 + mul t ip le t  at large volumes. The  na tura l  choice for the 2 + mass  as a 

" w e i g h t e d "  average of the E + and T2 + mass might  require  "nega t ive  weights."  

W e  now move  on to a discussion of mass  ratios,  expressed as funct ions of  z, the 

r eno rma l i za t i on -g roup - independen t  pa ramet r i sa t ion  of the box size. As was stressed 

in ref. [6], we consider  these results  to be par t icu la r ly  reliable.  F o r  a given 
r ep re sen t a t i on  R, one can def ine 

z R = L ' M R = L ' ( E R - E , q  ). (8.1) 

W e  chose zAF= L.(E(A?),-EA; ) as our  pa rame te r  in refs. [5, 17], and  zE~ in ref. 

[6]. This  a l lowed easy compar i son  with the Mon te  Car lo  results of ref. [20]. The  

mass  ra t ios  can  be expressed as ZR1/ZR2, and we will a lways relate masses  to zE~. In 

ref. [6] we found  ZA;/ZE+-- 1.1 and zr;/zE+- 0.50, bo th  a lmost  cons tan t  over  the 

range  zE+ = 2 - 5 .  A similar  cons tant  behaviour  occurs for T1 + : zr?/zE+ = 2.1, easily 

d e d u c e d  f rom tables  7 and  8. Aga in  [6], the higher o rder  correct ions  inc luded in 

t ab le  8 l ead  to less than  a 1% change in ZT//zE+. F o r  A 1- we observed a s t rong 

vo lume  dependence ,  with zA,/ze+ dropp ing  f rom - 5 at zE+-  1 to - 1 at zE+-  5. 
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We have drawn the line on producing detailed results at A 2 (for which zASzE+- 
3.6) and at zE+= 5. The former needs no justification, but the latter choice is of 
crucial importance. Thus tables 7 and 8 contain some results beyond this point. Let 
us first remind the reader of the physical reasons we have to expect our approxima- 
tions to break down at zE+= zA?--5. It is the distance where the energy for the 
Nambu-Goto  string becomes imaginary, and it is the distance scale set by the 
deconfining temperature T c [7,16, 23, 24, 25]. A more technical reason is that there is 
still one feature we have not incorporated in the effective hamiltonian, which is the 
presence of non-zero-action instantons, i.e., the 0-dependence of the energies [26]. In 
analogy to the present case of zero-action instantons, where the energy of electric 
flux is the most suitable quantity for detecting the onset of tunneling, the topologi- 
cal susceptibility Xt is the most suitable quantity for detecting the onset of 
non-zero-action tunneling. Although the energy levels will depend smoothly on g as 
this tunneling sets in, just as in the present case, their values will deviate substan- 
tially from the values obtained when neglecting these tunneling contributions. Thus 
the true energies will begin to deviate from the energies we calculate here, just like 
our energies began to deviate from the perturbative formulae of Lfischer and 
Mtinster. Indeed, if we consider the results in tables 7 and 8 beyond ze+ = 5, we do 
find a deviation from the Monte Carlo results. To illustrate this we reproduce in fig. 
11 the fig. 2 of ref. [5] (which was based on the data of ref. [27]). We augment the 
figure with Monte Carlo data from ref. [20] and our results from tables 7 (full line) 
and 8 (dashed line). (We have assumed, as was done in ref. [28], that the masses 
listed in ref. [27a] are for the E(2 ÷) and not the AI(0 +) state. This will be true if the 
E(2 ÷) is far enough below the AI(0 +) so that there was only one intermediate state 
in the correlation measured in ref. [27a].) 

In ref. [24] one of us mused on the usefulness of studying volume dependence of 
Xt, conjecturing that Xt drops to zero when approaching z - - 5  from above. 
Actually, those investigations had already been done, in the guise of a study of 
temperature dependence [29,30]. The results are however conflicting. Without 
passing judgement on calculations as complex as these, we consider the results of 
ref. [29], which do show strong suppression of X t in the deconfined phase, to be 
more appealing, because they are based directly on instanton dynamics. Direct 
analogues of instantons occur in lattice gauge theory as (approximate) saddle points 
in the action, and there is no need to take a continuum limit to use the concept. 

All of these arguments strengthen our belief that zE+ = 5 is where all the action is. 
What the dynamics is, we can now only guess. One guess would be the formation 
(driven by non-zero-action instanton effects) of domains with a size corresponding 
to z - 5. An electric flux string might then comprise "beads" of domains with e ~ 0 
(a picture surprisingly similar to the proposal in [31]). After all, the energy of 
electric flux per unit length we have calculated is remarkably close to the string 
tension. Rotational invariance could be restored as in the Copenhagen vacuum [32] 
or the Ising model. Such domains would be magnetically neutral. An updated 
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Fig. 12. The chromomagnetic energies to two loops [9] compared with the magnetically neutral vacuum 
energies on a toms.  The dashed line (a) is the vacuum energy E(A~) obtained from table 8, which 
includes the higher order corrections to the effective hamiltonian, whereas the full line (b) gives E(A~) 
from table 7, where higher order corrections were ignored. The vacuum energies for non-zero magnetic 

flux m ~ Z 3 are labelled (c) for m = (1,0, 0), (d) for m = (1,1,0) and (e) for m = (1,1,1). 

version of fig. 3 in ref. [9], which is presented in fig. 12, seems to indicate this. In 
this figure, the chromomagnetic energies on a torus are compared with the magneti- 
cally neutral vacuum energy. The latter was obtained from table 7 (full line) and 
table 8 (dashed line) by adding the "zero field" contribution (see sect. 3 and ref. 
[9]): 

( - 2 a ( 4 ) / ~ r 2 + 3 ( a ( 2 ) g / w 2 ) 2 ) L - l = ( - 5 . 0 2 5 2 2 1 + 2 7 x ? g 2 / 8 ) L  -1.  (8.2) 

Since the energy of the magnetically neutral state is always lower than the chro- 
momagnetic energies, magnetically neutral domains in the scenario of ref. [9] seem 
to be preferred. Of course, this argument could be affected by higher order 
corrections and the effects of non-zero-action instantons. 

Things are however not as simple as they seem. The duality relations of 't Hooft  
[1] put  important constraints on the behaviour of chromomagnetic energies in large 
volumes, and 't Hooft 's algebra for the A and B operators [33] rules out a vacuum 
of uncorrelated domains. These fundamental constraints are of a kinematic nature, 
and deserve more attention in building a model (or even a picture) for the 
Yang-Mills vacuum. They will be indispensable for understanding what confine- 
ment is about, and cannot be ignored. 

Another important issue will be the connection with Ltischer's large volume 
expansion for the glueball mass [34]. The expected [3, 35] plateau for the glueball 
mass M as a function of z found in ref. [6] cannot, however, be interpreted as the 
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infinite volume glueball mass for three reasons. First, as we mentioned before, there 
is no restoration of rotational symmetry below z E - 5. Second, we used the two-loop 
beta function to convert z to a physical mass, which for g -  2.6 is certainly 
questionable (higher loop calculations for both the beta function [36] and our 
effective hamiltonian are required to establish the accuracy). Third, and physically 
more important,  Liischer's result predicts the asymptotic value will be reached from 
below. We therefore expect a dip to occur in M ( z )  around z - 5. Interestingly, this 
has been observed [37] for the available SU(3) Monte Carlo data. 

In conclusion, we believe we now understand the dynamics of non-abelian gauge 
theories in intermediate volumes, and that our present calculations have brought us 
to the point where confinement and restoration of rotational symmetry sets in. Only 
now can we meaningfully start to ask what the dynamical contribution of non-zero- 
action instantons will be. Necessarily this question needs to be addressed outside the 
sector of zero momentum configurations. But the latter might still play an important 
role if indeed domain formation occurs as we speculated above. We hope that the 
methods we have developed to include pinchons (the zero-action instantons) can be 
adapted to include the non-trivial topology classified by the Pontryagin number (eq. 

(1.7)). 

We are grateful to Werner Nahm for a discussion on Gribov ambiguities and for 
his encouragement. We thank Jos Vermaseren for the check on part  of our algebraic 
manipulations. This work was supported in part  by NSF grant numbers DMS-84- 
05661 and PHY-85-07627 and by DOE grant number DE-FG03-85ER25009. 

Appendix A 

We give here a number of useful SU(2) and lattice sum identities, used in the 
background field calculation. We use the following notation: If A is an SU(2) Lie 

algebra clement, 

0 a 
A - A " - -  (A.1) 

2 ' 

then in the adjoint representation its matrix is A -= ad A where 

A ab = - i ~ b c A  ~. (A.2) 

Thus the adjoint matrices act on the Lie algebra vectors as 

BA - [B, AI.  (A.3) 

The following identities reduce the traces of products of adjoint matrices in eq. 
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(2.14) to inner products of Lie algebra vectors. The fundamental results are 

A B  = A • B1  - B A  T, 

i.e., (AB) ~b = ( A~B~)6~a _ BaA b ' 

F i j = i ( c i 4 - - c j c T  ) , 

F,j. ck = - % ~  (det c).  (A.4) 

For the product of four adjoint matrices, Liischer [3] has already given useful 
identities, so we will only discuss products of six adjoint matrices. 

Tr [  ( c,)=( cj)2( ck) 2] = 3( c,. c j) :(  c,. c,) - ( C," C+)( Cj" Ck)( C," Ck) 

= 2(c2) 3 - ~ F : c  2 - 3(det c): ,  (A.5) 

Tr[(ci)2Cj(Ck)2Cj] =(Ci 'Ci)  3 q- 2(C, .c j ) (c j .ck) (c~.ck)  -- (C , • 

= 2(c2) 3 - 2 F 2 c :  + 6(det c): ,  (A.6) 

Vr[ c ic jckcjc ,ck]  = 2(c , .  cj)( cj. c~)( c,. ck)  

= 2(c2) 3 - 3FZc 2 + 6(det c) 2. (A.7) 

Here we sum over indices occurring more than once, unless an explicit summation 
symbol shows otherwise. Note that rotationally invariant expressions such as those 
above can be written in terms of the three independent rotationally and gauge 
invariant objects 

= = X } ,  

r 2 =  (F~I) 2 :  2 x } x } ,  
i~j 

det c = X l X 2 X  3 . ( A . 8 )  

Here xi are the polar coordinates [4] of the matrix c7, i.e., with a suitable rotation 
and gauge transformation c 7 can be made diagonal with x i on the diagonal. Other 
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rotational invariants are: 

Tr[IV, j)2(c#] = I F, j .  r,~)(c~, c~) + I F, j .  c,) 2 

= F2c  2 + 6(det c) 2, (A.9) 

Tr[(Fi,c,) 2] = 2( Fq" ck) 2= 12(det c) 2 , (A.10) 

Tr[Fq~kFk,] = - 6 i ( d e t  c) 2. (A.11) 

Thus we are left with the last two terms in eq. (2.13), which break the rotational 
invariance. The following momentum sums occur: 

p = ~  1 
k Ikl 5 '  q =  ~ k 4  t, ]k] 9 '  

r =  ~_~ k6 k 2 k 2  

I, Ikl u '  s = ~ ,  ~, 

k2Z.2t.2 k~k 4 
1 ~2'~3 (A.12) 

t = ~ - -  u = ~  iklX 1 . k Ikl u ' k 

In these expressions i and j are fixed and unequal but q, r, s and u do not depend 
on their value. They are related as follows: 

1 1 s = g p -  ~q, 

t =  ~p + r -  3q, 

u = ½q _17r. (A.13) 

We find: 

k i k j k k k t  ~ 2 ' ~ Tr[(c")c'cjckC'] 

= (q-  3,)ETr[(O~(¢,) 4] 
i 

2 2 1 2 2 +s(Tr[((ci)2) 3] + 2Tr[(c,) cj(ck) c7]-7 Tr[(c,~)(Fjk ) 1) (A.14) 
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and 

~_, kikjkkk'kmk"[kll 1 Tr[ cicjckczcmc. ] 
k 

=(i,-  15u+ 30t)ETr[(c,) 6] 
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2 1 2 Tr((cicjc ~) ) = Tr( eicjet, ejc, ej, ) - 7  Tr(( F/jc k ) ). 

Similar manipulations yield: 

2 E Tr[c/(cj)3cicj] = ~ (Tr[(cg)z(cj)4l - Wr[(cj)2(r,)2] ÷ Wr[c,(cj)%,(~i)2l ). 
J J 

(A.17) 

The fol lowing four identities complete the conversion to the invariants of eq. (2.15). 

E Tr[(Ci) 6] = 2 E(ci"  c/) 6, (A.18) 
i i 

E T r [ ( c / ) 2 ( c ) )  4] = E ( 2 ( c i . c j ) 2 ( c i . c i ) - ( F i j .  F i j ) (c j . c j ) ) ,  (A.19) 
J J 

2 2 . , Y'~Tr[(cj) (~ j )  ] =  E(F~j F~j)(ej.cj) (A.20) 
J J 

2Tr[ci(cj)2ci(cj)2] = 2Y ' . ( (c , . c , ) (c j . c j ) - (F~j .  F~y))(cj.cj). (A.21) 
J J 

As mentioned in sect. 2, one can also write the one-loop effective potential in 
terms of the invariants Mij = c i • Cl, which is the form in which we obtained the sixth 

(A.16) 

i 

J 

+Tr[(cicjck) z] + 3Tr[c,cjckcjcick] ). (A.15) 

The rotationally invariant terms have been listed already, except for one, which is 
readily reduced to known ones: 
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order term using a symbolic manipulation programme: 

V(6) = ( 4 ~ P  - -  1~ S + z~t)(Tr[M]) 3 + (346- t - ½P - ~ s ) T r I M ] T r [  M2] 

+(L~s  _ ~p35 _ 44,_lTt)Tr[ M ] E M i ~  + (¼3p - ~-s + 21t)Tr[ M 3 ] 
i 

+(4t2-~V6s- U P -  -~-t)~-,Mii(M2)ii  + ( ~ P -  ~66 s+  ~6vt)~-~(Mi,) 3- (A.22) 
i i 

Appendix B 

In this appendix we discuss the perturbative, semiclassical, variational and Monte 
Carlo analyses performed as a feasibility and warm-up study for SU(2). The model 
is the 2-dimensional vacuum valley of ref. [7]: 

H = - ~ + ~ + g--~2 (X 2 -  1)2Y 2. (B.1) 
zg 

The perturbative expansion for the well at X = 1 is obtained by substituting 

X = g2/3x  + l ,  

y = g2/3y, (B.2) 

giving: 

g - 2 / 3 H  = - -~ 0 x  2 + + 2 x 2 y  2 + 2g2 /3x3y  2 + ½ga/3x4y2.  (B.3) 

The energy eigenvalues are classified by the parity in y, and were calculated 
using a Rayleigh-Ritz algorithm. Our basis was q'(x, y ) =  (xln; wx)(ylm; wy)= 
( x, y ln, m ), where (x  In; w) are 1-dimensional harmonic oscillator eigenfunctions, 
and the frequencies w x and wy were used as variational parameters. The resulting 
perturbative expansions for the ground-state energy in the even(+) and o d d ( - )  
y-parity sectors are: 

E + (g)  = 0.87959730g 2/3 - 0.21065396g 2 + O( g8/3 ), 

E - ( g )  = 1.8879261g 2/3 - 0.23230415g 2 + O(g8/3).  (B.4) 

The lowest order result is obtained by diagonalising the matrix of H o in the 
appropriate sector, where H o is the single-well hamiltonian [7]: 

1(02 02) 
H ° =  - 2 10x2 + -ff-fSy2 + 2x2y 2" (B.5) 
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For  these g round  states, which are even in x, the first order correction vanishes 

because the first order term in H is odd in x. Thus we can write 

q,+-= , I ,J  + g2/3 W -  + . . .  , 

E +- = g 2 / 3 E J  -4- g 2 E ~  + • • • , 

H = g 2 / 3 H  0 --1-- g 4 / 3 H  1 -4- g 2H2 ,  

/41 = 2x3y 3 , 

= 1 4. 2 (B.6) H 2 ~x  y . 

We briefly discuss our approach to comput ing E 2, since a similar method is used in 
sect. 7. In general 

E ~  = <'/So -+ In ,  I ~,-+5 + <%-+ I n 2 1 ~ J > ,  (B.7) 

and a useful observation is that we can obtain 'Px+ by using a routine f rom the 
I M S L  library to solve the linear equation 

( /~o - E0 -+) %-+ = - H l ~ o  -+ . (B .8 )  

This avoids having to find all eigenvalues and eigenvectors of H o. The point  is 

s imply that  'Pl -+ and Hl'/'0 -+ are odd in x, so we can restrict eq. (B.8) to the odd 
x-par i ty  sector where it is non-singular. It is then easily written as a matrix equation 
in our  Rayleigh-Ritz basis, and solved. Eq. (B.4) was calculated using up to 351 
basis vectors and w x = Wy - 2.0. 

Nex t  we discuss the semiclassical analysis. The perturbative ground state wave 
funct ion in the well at X = + 1 must  be combined with one at X = - 1 ,  and an 

energy split appears between the even and odd x-pari ty combinations.  Energies will 
thus be classified by the x-parity and y-parity,  with the notat ion E (x-parity)(y'parity). 
Perturbat ively one has E +-+= E - e - -  E -% The result for the ground-state energy split 
ob ta ined  in ref. [7] was 

~E_- (E++_E-+) 

= 2 g 2 / 3 1 C ( g ) 1 2 e x p (  1 , E0g 1/37) - ~ r g  + (B.9) 

(note the typing error in eq. (5.45) of ref. [7]). Here all corrections are absorbed into 
the definit ion of  C ( g ) ,  and e 0 is the lowest order perturbative energy, calculated 
f rom (B.4) to be e o = l img~ o g - 2 / 3 E  += 0.87959730 . . . .  As in sect. 6 we rewrite this 
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Fig. 13. The Rayleigh-Ritz results for the asymptotics of the single-well wave function as defined in eq. 
(B.12). 

equation as 

AE = (1 +f"(g))-12g2/31C12ex p ( E + + +  E - + -  1) , (B.10) 

where f"(g) ~ 0 as g --* 0, and C is the coefficient of the asymptotic form of the 
perturbative wave function along the vacuum valley y = 0 (eq. (5.46), ref. [7]): 

c =  hm C(x), 
x--~ ~ 

(2x)X/2exp(~(2x-2%)3/2)fdy't'~-(x,y)e-:'Y2 (B.11) C ( x )  ~- ~.1/4 

We must thus evaluate ~o(X, y)  to high accuracy and apply the above projection. 
As in the SU(2) case of ref. [4], we cannot explicitly take the x ~ oo limit because 
the tail of the wave function is inaccurate. However, for large enough x we expect 
C(x) to be almost constant, and the point where this occurs can be shifted to 
smaller x by inchiding analytic corrections to the asymptotic form divided out in 
(B.11). Thus in fig. 13 we plot 

B(x) = C(x)/h(x),  (B.12) 

where h(x) is asymptotically 1 and satisfies 

2 dx 2 + x + ~  h(x) eoh(x ). (B.13) 

We see B(x) indeed stabilises rapidly to a constant value, until numerical inaccu- 
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TABLE 11 
The Rayleigh-Ritz results for the toy model, f " (g )  is defined in eq. (B.13) 

and E -+ are given in eq. (B.4) 

59 

g E ++ E -+ E - + - E  ++ f " (g )  ½ ( E + + + E  +) E+(g) E +- E - ( g )  

0.09 0.17487575 0.17487654 0.00000079 -0 .0014  0.17487615 
0.1 0.18729819 0.18730214 0.00000395 -0 .0158 0.18730016 
0.2 0.2890532 0.2933515 0.0043107 -0 .0016 0.29120238 
0.25 0.3256065 0.3414209 0.0158144 0.0327 0.33351369 
0.3 0.3540396 0.3901446 0.0361050 0.0842 0.3720921 
0.35 0.3770573 0.4407058 0.0636485 0.1483 0.4088816 
0.4 0.3969677 0.4935331 0.0965654 0.2193 0.4452504 
0.45 0.4152398 0.5487022 0.1334624 0.2935 0.4819710 
0.5 0.4327243 0.6061322 0.1734079 0.3685 0.5194283 

0.17494313 0.37724 0.3772703 
0.18739695 0.40437 0.4044183 
0.29239189 0.635790 0.6363695 
0.33590255 0.733062 0.7347050 
0.37522430 0.820595 0.8251487 
0.41104178 0.898229 0.9091703 
0.44381425 0.965727 0.9877553 
0.47386862 1.023656 1.0616055 
0.50144809 1.073428 1.1312429 

racy causes it to drop to zero. We thus obtain 

C = 0.4083 _+ 0.0002 (B.14) 

from the plateau in fig. 13, which is data from the perturbative variational 
calculation with 351 basis vectors and w x = Wy = 2. 

We wish now to compare these predictions with a Rayleigh-Ritz analysis of the 
full hamiltonian, eq. (B.1). Note how this differs from the perturbative calculation, 
where we applied the Rayleigh-Ritz method to only the single well hamiltonian H 0 
in eq. (B.3). As a basis we again took products of harmonic oscillator eigenfunctions 
in the x and y directions. 

Despite the fact that our x-oscillators are centered at X = 0 (whereas at small g 
values the wave functions are localised around X = _+ 1) we could obtain accurate 
results even at low values of g. This was achieved by tuning w x and Wy separately, 
and we never required more than 231 basis vectors. Table 11 lists the results, 
showing the number of digits we believe to be significant, although no rigorous 
bounds were calculated for this toy model. We find very good agreement with the 
perturbative and semiclassical predictions, and observe that f " ( g )  = O(aE(g) ) ,  just 
as anticipated in sect, 6. Actually, f " ( g )  is remarkably well fitted by f " ( g ) =  
2 .3AE(g) ,  given that uncertainty in C leads to an error of +0.001 in f " ( g ) .  This 
therefore substantiates our claim in sect. 6 that the perturbative factor f ( g )  in the 
semiclassical formula has n o  O(g 2/3) term and is determined by the transverse 
fluctuation along the pinchon, leading to O(g) corrections for SU(2) and O(A E(g) )  
corrections for the toy model. Table 11 also shows that ~(E1 ++ + E -+) and E +- 
agree with the perturbative predictions E-+(g) of eq. (B.4) to high precision. 

We end this appendix with a short discussion of the Monte Carlo analysis we 
carried out for the toy model. We follow in detail the approach described in refs. 
[38, 39]. The time step size (a)  varied from 0.2 to 0.5, and the number of sites (N)  in 
the time direction was usually 10 000. For some runs we took N =  1000 to 
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Fig. 14. Rayleigh-Ritz and Monte Carlo results for the toy-model energies: (a) AE= E - + -  E ++, 
(b) E ++ and (c) E +-. 

investigate temperature dependence. We averaged over N E = 100 ensembles, sam- 
piing occurr ing every 5th sweep through the time lattice. We used ~ = 5 Metropolis 

hits per  site, and intervals I x -  x '  I ~< A x and l Y - Y ' I  ~< Ay were chosen for updat-  
ing, with A x = m y  = 2gx/-a-. Finally, N r =  500 sweeps were performed before starting 

to sample, to ensure thermalisation. To check on thermalisation, we calculated ( x ) ,  

( y ) ,  ( x  2) and ( y 2 )  for each ensemble, and demanded  that {x )  and ( y )  be close 
to zero and that  {x 2) and {y2)  remain constant  apart  f rom statistical fluctuations. 

At  low values of  g ( =  0.25) we had to increase to N r = 2000 to ensure this, which 
was achieved by  taking the last path of a run as input for the next, at the same 

values of  the parameters. We also did a " coohng  run," starting at g = 0.5 and 
decreasing in steps of 0.05 to g = 0.25, by  taking the last path of  the run at g as 
input  for the run at g - 0.5. For  this cooling run we took a = 0.5. 

I n  fig. 14 we compare  our Monte  Carlo results for (a): A E - E  - + -  E +÷, (b): 
E ÷÷ and (c): A E '  = E ÷ - -  E ÷+ with Rayleigh-Ritz variational results. The energy 
difference A E  = E - ÷ -  E ++ was measured with the time correlation ( x ( O ) x ( t ) )  - 

e -AE't.  The ground-state energy E ÷+ follows f rom the virial theorem [38,39] 
E + + =  ( (2x  2 - 1)(x 2 -  1)y2) ,  and the energy difference A E '  = E + - -  E ++ was 

measured using the time correlation ( y ( O ) y ( t ) ) -  e -Ae' ' t .  Since we expect sys- 

tematic  errors to be much larger than statistical errors, fig. 14 displays the range of 

values obta ined by varying a, N and N r within the above-ment ioned bounds.  At 
lower g values, thermalisation problems are clearly visible in the energy differences, 
whereas for the ground-state energy, finite-a corrections will dominate.  The discus- 
sion of  Shuryak and Zhirov [39] on these errors is appropriate.  

Figs. 15 and 16 give the scatter plots for g = 0.25 and g = 0.5 (a  = 0.5, N = 10 000, 
and  N r = 2000 and 500 respectively). One can clearly see the onset of tunneling. 
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Fig. 15. Sca t te r  p lo t  for the t o , m o d e l  a t  g = 0.25. We  took the las t  p a t h  b ~ e d  on N = 10 000, i.e. 

(X(ti), Y(ti) ) ~ r  i = 1 to 10 000. 
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Fig. 16. Scat ter  p lo t  for the toy-model  at  g = 0.51 We took the las t  p a t h  based on N = 10 000, i.e. (X( t , ) ,  
Y(ti)) for i = 1 to 10 000. 
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Appendix C 

In this appendix we show how to obtain analytic expressions for the plane-wave 
radial matrix elements 

t • ( e )  Fe(n,n , l , i ,  j ) =  drr2+2i+2Jj'l(k(ne~r)Jl+2j(kn,,l+2jr ) . (C.1) 

The momenta k (e) depend on the electric flux (e), and are essentially roots of either n,l 

the spherical Bessel function Jl or of its derivative: 

jl( ~rk(~l,)l) = 0 ,  

d z = ~k~, d--7(zj,,,(z)) = 0. (c .2)  

W e  first simplify by defining 

f ( w ,  z, l, p, q) = fo' dyy2(l+p+q)Jt(wy)Jt+2q(ZY)' (C.3) 

so that 

Ft(n n', l, p, q) = ,,3+2p+2qe(~V(e) erb(e) l ,  p, q) (C.4) 
" J ~ " ~ n , l ,  " '~n' , l+2q~ • 

The integral in eq. (C.3) can be calculated analytically for arbitrary w and z. The 
method is iterative, and we will briefly outline the algorithm. 

For p = q  = 0, l any integer, the integral is known [19], being given by the 
Lommel formula 

j ,(  z )( wj,( w ))' - j , (  w )( zj,( ~ ) )' f 1 2 dyy  Jl( zY ) Jl( wY ) .Io z ~ - w ~ (c .5)  

Using the recursion relations for spherical Bessel functions, one can derive the 
following recursion formulae for f:  

f ( w , z , l + l  p + l , 0 )  ' , t  d2 , = ~zw) d~-~z (ZW)- l f (w ,  z, l, p ,0 ) ,  (C,6a) 

In principle, eqs. (C.5), (C.6a) and (C.6b) determine the integrals, but they can be 
turned into a more convenient form as follows. Note that (although it is not 

f ( w ' z ' l ' p ' q + l ) = z t + Z q + l  d ( 1 d ) d-~ -z ~ [z-(l+2q)f(w' z, l, p, q ) ]  . (C.6b) 
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obvious) the ansatz 

f ( w ,  z, 1, p, q) =All "jl(w)jl+2q(Z) +A12 "jl(w)(zJl+2q(Z)) t 

q - A 2 1 " ( w j l ( w ) ) ' J l + 2 q ( Z )  q- A22" ( w j l ( w ) ) ' ( z J l + 2 q ( Z ) ) '  , (C .7)  

is preserved under (C.6), with Amn rational in w, z, l, p, q. Thus we obtain recursion 
relations for the rational functions, which can be iterated using an algebraic 
manipulation programme. 

To obtain matrix elements, one has to substitute the relevant values for w and z, 
which further simplifies the result, since all except one of the terms in (C.7) then 
vanishes. However, a complication is that the coefficients A m n involve 1 / ( z  2 _ w 2), 
so that to set w = z for the diagonal elements one first has to expand to some 
reasonably high order in (w - z)  and let the pole terms cancel (which they do). A 

further simplification is that when one normalises the wave functions, even the 
factors of Jl and its derivative drop out of the final answer, so the radial matrix 
elements are rational functions of the k}~ ). 

We are grateful to J. Vermaseren, who developed a very quick computer al- 
gorithm, that enabled us to confirm our results independently. Of course, one can 
also evaluate (C.3) numerically as a check, which we have done. 

We do not discuss radial matrix elements in the harmonic oscillator case, since in 
the case with a boundary at ~r we had to resort to numerical integration, whereas 
with the boundary at infinity, we believe the simple results must be well known. 
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