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We discuss SU(2) gauge theory on a three-torus using a finite volume expansion. Our
discovery of natural coordinates allows us to obtain continuum results in a region where Monte
Carlo data are also available. The obtained results agree well with the perturbative and semiclassi-
cal analysis for small volumes, and there is fair agreement with the Monte Carlo results in
intermediate volumes. The simple picture which emerges for the approximate low energy dynamics
is that of three interacting particles enclosed in a sphere, with zero total “angular momentum”.
The validity of an adiabatic approximation is investigated. The fundamentally new understanding
gained, is that non-perturbative dynamics can be incorporated by imposing boundary conditions
which arise through the nontrivial topology of configuration space.

1. Introduction

The subject of non-perturbative effects in gauge theories is a difficult one from an
analytic point of view, and has been approached from many directions. There has
been only limited success, and the main prize, the understanding and a reasonably
rigorous proof of confinement, is still unclaimed. In previous work, we advocated
first understanding QCD in a small volume, then working outwards to larger
volumes, to the scale where confinement effects begin. The foundations for such an
approach were laid in "t Hooft’s study [1] of gauge theories on a torus, and the small
scale perturbative domain was analysed by Liischer in his contribution [3]. In our
semiclassical work [4], we identified the point where non-perturbative behaviour
first breaks out, but showed it could not be the onset of confinement. We gave
circumstantial evidence for a second outbreak, at even larger volumes, which is
associated with string formation and confinement. In keeping with our philosophy,
we set ourselves the task of understanding the first type of non-perturbative
behaviour, to prepare a firm base for an eventual assault on the confining domain.

This paper analyses the dynamics of SU(2) QCD in the intermediate regime,
between the perturbative domain and the string domain. A letter describing some of

Present addresses:
! Lauritsen Lab., Mailcode 352-48, CALTECH, Pasadena, CA 91125, USA.
2 CERN, Theory Division, CH-1211 Geneva 23, Switzerland.

0550-3213 /88 /$03.50 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)



2 J. Koller, P. van Baal / Gauge theory

our results has already been published [6], so we concentrate here on our methods
and the insights obtained into non-perturbative behaviour.

We work [4] in the hamiltonian formalism, on a symmetric three-torus of length
L. A low-energy effective hamiltonian for this problem was derived by Liischer by
perturbatively integrating out all modes except the spatially constant (zero momen-
tum) ones. Liischer and Miinster then solved this effective hamiltonian using
perturbation theory, properly taking into account the quartic nature of these modes
[3]. The perturbative expansion is equivalent to a small volume expansion, since one
renormalises using minimal subtraction at the scale L. The essence of our approach
is noting that Liischer’s effective hamiltonian is accurate even at distance scales
where it cannot be solved perturbatively. Thus, it is still valid to derive it perturba-
tively, even though it is not valid to solve it perturbatively. We consider our results
accurate up to L ~ SM(0*)~1, where M(0*) is the scalar glueball mass (~ 1 GeV),
whereas the perturbative solutions are (in general) demonstrably inaccurate beyond
1M(0*)~ 1. Perturbation theory breaks down here not because the expansion
parameter is large, but because topological properties of configuration space become
important.

To properly account for the topology of configuration space, one must under-
stand the vacuum valley ¥”, which is the set of gauge-inequivalent classical vacua of
the Yang-Mills hamiltonian:

V=N/G. (1.1)

Here 4" is the null set of the Yang Mills potential
A= {A,.(x)|A,(x +L)= A (x), [ &xTe(FX(x) = o} a2
Ty

and ¥ is the set of local gauge transformations

54,(x) =g(x)A4,(x)g(x) " —ig(x) d,8(x) " (1.3)

As usual, 4,(x) is here the Lie algebra-valued vector potential
oa
A,(x) = A5(0) (14)
and F, (x) is the chromomagnetic field strength
F(x)=0,4,(x)— 3,4,(x) +i[4,(x), 4,(x)], (1.5)

written similarly in terms of the Pauli matrices o,. Finally, g(x) is an SU(2)-valued
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function on the three torus:
g(x+Le)=g(x). (1.6)

We showed in ref. [4] that ¥~ is the disconnected union of spaces ¥, with distinct
integer topological quantum number P. The gauge transformation eq. (1.3) maps ¥,
into ¥} if g(x) has Pontryagin index P:

1

P=
2442

/1“3d3x sijkTr((g8ig_l)(gajg#l)(gakg_l)) , (1.7)
and each ¥, is a three-torus with periods 4:
v,={Ce(R/4nZ)*}. (1.8)

Actually, to be accurate, it is an “orbifold”, T* /Z3, but our arguments will account
for this implicitly. From now on, we work in a single sector, ¥7,, and drop the
subscript.

The electric flux quantum number is introduced by recognising that the theory
has additional symmetries, the so-called “allowed gauge transformations”, which
are antiperiodic SU(2)-valued functions,

g(x+Le)=(-1)"g(x), (1.9)

acting by the normal gauge transformation formula (1.3). Here k is the Z,-valued
’t Hooft twist vector. These are not gauge symmetries, because states are allowed to
transform nontrivially under them:

|P(24(x))) = (-1)“¥(4(x))), (1.10)

where e is the Z -valued electric flux of | ¥(A(x))).

We will show in sect. 3 that Liischer’s effective hamiltonian is equivalent to an
infinite component hamiltonian on the vacuum valley. Moreover, in sect. 4 we will
show that this wave function must vanish at C,=27n,, (n € (Z,)?). Thus we arrive
at an effective theory defined on the cube [0,27]°, with vanishing boundary
conditions.

This is a satisfying result, because it explains neatly why the vacuum valley has
the symmetry (Z,)* rather than the full group of translations on the torus. The
(Z,) arises from the allowed gauge transformations eq. (1.9) with non-trivial
homotopy, which map the cube into itself. In particular, the eight corners of the
cube correspond to eight equivalent perturbative quantum vacua, which can be
mapped into each other by these transformations. Other points, within the vacuum
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valley cube, are not quantum vacua because quantum effects raise the energy of the
system in these configurations. This can be interpreted as a quantum-induced
potential barrier separating the eight perturbative vacua.

It is now easy to see the origin of the non-perturbative effect we are discussing
here, and the concept of electric flux energy. At small coupling, a perturbation
expansion within any of the wells will give accurate results. There are thus eight
degenerate perturbative vacua. However, as the coupling increases, the energies
approach the barrier height, and the system tunnels from one vacuum to another.
The eight degenerate levels split, the true non-perturbative vacuum being a symmet-
ric linear combination of the eight perturbative vacuum states. The other seven
linear combinations transform non-trivially under the allowed gauge transforma-
tions, eq. (1.9), and thus have nonzero electric flux. The energy split is the energy of
electric flux. To avoid confusion, we should point out that even at very small values
of the coupling there is some tunneling between the wells, giving an exponentially
small energy of electric flux. However, we say “tunneling sets in” where the splitting
of the levels becomes appreciable on the energy scale of the levels themselves. This
is typically where the exponential in the semiclassical splitting formula becomes
o(1).

In this paper we show how to approximately include in Liischer’s effective
hamiltonian the effects of additional perturbative vacua. The idea is to introduce
boundary conditions “midway between the wells”, chosen to enforce the correct
symmetry of the wave function, and then work in a single well.

In sect. 2 we describe a background field calculation to compute Liischer’s
effective hamiltonian to higher orders. This calculation reveals a new coordinate
system for the zero-momentum gauge fields, which allows the Rayleigh-Ritz calcula-
tion of low-lying energies. In sect. 3 we discuss writing the theory as an infinite
component hamiltonian on the vacuum valley. Our earlier semiclassical work [4]
used either gauge-fixed coordinates, which had Gribov ambiguities, or polar coordi-
nates, which were messy in the nonspherical sector. Our new coordinates differ from
the old ones in their parameterisation of degrees of freedom transverse to the
vacuum valley. They are actually singular at certain points, but only in the way
spherical coordinates are singular at the origin, and this singularity is what causes
the wave function to vanish at the boundaries of ¥". A different choice of transverse
coordinates, with different or no singularities, can lead to a different decomposition
along the vacuum valley, and some of the subtleties involved are discussed in sects.
3 and 7.

In sect. 4 we discuss configuration space boundary conditions as an effective way
of incorporating the topological non-triviality. The intimate connection with Gribov
ambiguities is discussed in detail. We show how this problem could be approached
in general, and then argue boldly that if the adiabatic approximation is accurate on
the boundary, the boundary conditions in our new coordinates are unique and
elegant.
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The new coordinates would be a bad choice for a semiclassical analysis, but do
allow an elegant elimination of the gauge degrees of freedom in a Rayleigh-Ritz
calculation. Sect. 5 finds the low-lying spectrum of the resulting theory using the
Rayleigh-Ritz method. A numerical method is inevitable, since the hamiltonian is
nonintegrable, but we take pains to calculate matrix elements analytically and to
provide rigorous upper and lower bounds for the results.

We consider it crucial that our new results agree with our previous semiclassical
results. This is shown in sect. 6. In sect. 7 we check that the adiabatic approximation
is valid on the boundary, and conclude that it is, to within a few percent. Finally, in
sect. 8, we address the consequences our results have for many issues of physics. We
conclude with two technical appendices and an outline of our approach applied to a
simple toy model.

2. The background field calculation

In this section we rederive the effective lagrangian for spatially constant gauge
fields, using the non-local gauge fixing procedure suggested in ref. [8]. For details we
refer the reader to [4].

The gauge field 4, is split into a constant piece B,(7) and a spatially varying
piece Q, (7, x):

1
B,= Fszch A,(x)=24,. (2.1)

u
The gauge fixing then sets B, = 0 in the B sector, and introduces a gauge fixing term

and ghosts ¥, ¥ in the Q sector. The quantum modes Q, are integrated out, leaving
an effective action for B, [4]:

iSeff= ifdtgeff(B)

_ i _
= lan'QF@’?Q'Wexp[— g—gfdsz3d3x Z(B,0.,¥, \p)],
£(B,0, ¥, %) =Tr{4(F,(B+0))’ - (D.(B)Q,)" —2¥D,(B) D,(B+Q)¥

-2[0,,¥]2[0,.7]}. (22)

The primes in the integration remind us to omit zero momentum modes. Ref. [9]
gives Feynman rules for this problem.

We will first compute the one-loop part of S, quadratic in B. The diagrams are
shown in fig. 1. Momentum p = ( p,,0) flows through the graph, i.e., external spatial
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p+k

p+k pxk
Bj Bj Bi,/~ T B
p p PN, k.7 P
. k . . .
Bj Pt Bj Bj /Pi"i\ B
p C P p ~_k-"p

Fig. 1. Feynman diagrams for the one-loop effective action, quadratic in the background field B (eq.
(2.3)). For the Feynman rules see ref. [9].

momenta are zero. We obtain

o
S, (1-loop, fig. 1) = — fdzdt'dpo giPoli= )E Tr(B,(¢)B,(1"))

Z %(d—l)kikj_'_pésij
Lk/2mezd k| (k% + §p3)

, (2.3)

where d =3 — 2¢ is the spatial dimension. We will use dimensional regularisation
and minimal subtraction [2] where space-time, R X T3, is extended to R X T? [3].
Expanding eq. (2.3) in powers of p2 and combining with the tree level and a tadpole
contribution we find

S, (1-loop, quadratic in B)

(d 1) 5 1(L* 2(7d+1) .
= Nt |5 ——— Tr( B;
fdt ller(B,) AP Y Y — |k|3 r( B?)
(7d+ 1) ) 1 d'*2p,\2
; 4 glklZH—STr dtl+2 * (2'4)
The momentum sums are easily evaluated:
1 L 2s
=|— 2 2.5
> (h) “Gs). 23)

where a(2s) are lattice sums, tabulated for d =3 in [10]. Only a(3) has a pole at
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TaBLE 1
Coefficients for the effective potential (egs. (2.16), (2.17) and (3.2)) and the effective
hamiltonian (egs. (3.1) and (3.3))

&, = —0.30104661 @ = 21810429 %1072
Kk, = —6.3319840 x 1073 = 7.5714590 x 1077
K= 56289546 X 104 a; = —1.1130266 x 10~*
Kk, = —1.5687855x 1073 oy = —2.1475176 x 10~*
ks= 49676959 x 1073 as = —1.2775652 x 103
ke = —5.5172502 X 1075 p=1.059728073 x 10~3
Kk, = —1.2423581 x 1072 g =2.844952587 x 1074
kg = —1.1130266 X 10~* r=2.533812424 x 10~*

Ko = —2.1475176 x 10~
Ko = —1.2775652 x 10™3

d =3, and using Liischer’s results [3] we find explicitly:

1 -1 18a, 1
L3y — = + - .
T kPP 2n%(d-3) 11 4447
2 2
a,= 5 (In(sL)* — 0.409052802) . (2.6)
9(47)

We now choose the renormalisation scale u to be 1/L, and write g(L) for the
renormalised coupling constant in the MS scheme. Thus:

Z(1-loop, quadratic in B) = de 2k,Tr(c2) +

1 3 1 T de;\?
[ ——— + —— JE—
g*(L) "2 3692 r( dT)

d?;\?
+Ax Tr (a‘z) + -, (27)
where ¢; = LB, is dimensionless, k; and k, are given in table 1, and
Ax= —2.4285435...-10 4,
r=1t/L. (2.8)

Note that the coefficients of the higher derivative terms are small, decaying as
(11/321)/2#)?'*! for Tr[(d/d7),;]*. From now on we drop these terms, as well as
any terms more than quadratic in ¢ involving time derivatives. This is called the
adiabatic approximation, and for higher powers of B it amounts to taking B
constant in time, i.e., to calculating the effective potential.
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For the one-loop result, instead of using Feynman graphs, we will expand the
following well known result for the one-loop effective potential ¥;:

/OTdt Vi(c)= 1n[det'( —Df(B))/det'(%v(B))l/z] , (2.9)

with (D,(B))? the inverse ghost propagator and #,,(B) the inverse vector propa-
gator. The Fourier transforms of these inverse propagators are of the form k21 +
M(k) with M a 3- or 3d-dimensional matrix. Using zeta function regularisation and
Poisson resummation

T 2, Tow 1 T
e~Kkbs — e~ (nT)/ds " drs 2.10
Tko/gﬂez Vams Zn: 2‘/;;9_ j(; ( )

gives our result:

13 o §732
- 2 — -
Vi(c)= zggTrFij(B) fo ds =

X{% Y trTrexp(—s[Sw(k,.+ ad B,)* — 2iad F”,(B)])

k+0

— ¥ Trexp(—s(k,+ad B,.)Z)—g(d—z)}. (2.11)

k+0

Here

ad B,(6°) = —ie,, Blo

abe™i Ve
F/B)=i[B,B],

Fy,=F,y=0. (2.12)

Tr is the SU(2) trace in the adjoint representation, and tr is the space-time trace. We
have subtracted a constant to make V(B = 0) = 0.
The graph expansion is now replaced by an expansion of the exponentials. Using

N 2(2n - 2)!
foods ek = ( ) (2.13)
0

i (=D
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we find:

Tr((ad F,(B))’)

1
Z_
2 P’ k

8o

 (d-1)(d—6)

e )3 —1—Tr((ad B,)(ad Bj)z)

« |kl

5(d—1) . kkkk,

)

16 < |k

Tr(ad B,ad B;ad B,ad B))

_ —Tr([(adBi)Z]B)—i #Tr((adB,.)zadBj(adBk)zadBj)

+ %iz —=Tr(ad F,;( B)ad F,(B)ad F,,(B))

_ s —Tr((ad F,(B)ad B,)) - % WTr((ad F,(B))(ad B,)’)

“Tr((ad B,,)’ad B,ad B;ad B,ad B

ik Kk ek,
~ 3% ———7—Tr(ad B,ad Bad B,ad B,ad B,,ad B,)
X k| /

+ O(B?). (2.14)

For terms of O(B®) and higher the momentum sums converge and we have set
d = 3. This expression can be simplified considerably by using a complete set of
polynomials of even degree. One way is to write all the traces in terms of M;; = cc},
using ad F; ,(B) = i[ad B,,ad B,]. However, the following complete set turns out to

have physical significance:

3
Y oefe?,  i=1,2,3;
=1

o

e
10

Fj(e) Fy(

)’ 3>l>]>17 (C) abdczj’

(detc)’. (2.15)
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Note that (det c)* must be included to determine the sign of ¢/'cf, (i # j). The final
result using the tricks in appendix A, is

1
200 3yt 7o Fi(c)F5(c)

+~3(3CZCZCI”CI” 2F/f1(C)Flf1(c))

LV (c) =K clc

+x4(5c,‘jc,‘:c,’jc,’: —3cgcichel + 2F,§‘,(C)F,f,(c))

'*'"52(6?‘3?)3 + K2 C?"?(C/‘bcjb)z +i,] [efef
i i

i#j

+rgF3(c) FS (c)cleb + 1 2 Fi(c)FS (c)clel + kyo(det c)’ +0(ct).

i+

(2.16)

Terms up to and including fourth order arise exactly as in Liischer’s calculation. In

terms of lattice sums, the new «,, i=15,...,10 are:
K5= _%p+%q 281’.),

23 _ 455, 315
s P 16q+16r)’

117p+315q 945 )’

1407 ) 4865 441 )

(
(
=(-
k= (0P — g+ %5r),
(- %p
(-

Tp+1lq— 63r)

1 1 1 n?
i ) S

(277) neZz’ |n (277) neZz’ n

6
1 ny

)>

=7 —. 2.17
@) S " 217

The numerical values are given in table 1.
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Rescaling the fields by

c— g3

1
1+(K2—m)g2)c (2.18)

would reproduce Liischer’s result for the quadratic and quartic parts. However, this
rescaling would make the vacuum valley coordinates depend on g, so we do not
incorporate it. A useful feature of these coordinates is that the vacuum valley is
neatly parameterised. The vacuum valley in Liischer’s effective hamiltonian is the
set of abelian spatially constant vector potentials. Previously [4], we parameterised
this set by first fixing the gauge, which was not possible near the origin c¢#= 0. In
our new coordinates, however, the vacuum valley is uniquely defined by F,f(c) =0
for all i, j (which implies (det ¢)?=0). Thus we can introduce gauge invariant
vacuum valley coordinates

3 1 3
C=1/ Yewet=—1/ % fd3x d3x’ 49(x) A%(x") . (2.19)
a=1 L a=1

The remaining coordinates are angles, defined by choosing spherical coordinates
(C;, 8,, ¢,) for the vectors ¢; = (¢}, ¢?, c?); explicitly:

(e}, 2, ¢?) = C,(cos ¢;sin b, sin ¢,sin 6, cos 6,) . (2.20)
It is thus convenient to think of the nine ¢/ as being three SO(3) vectors with labels
i=1,2,3. An intuitive way to describe the vacuum valley is to say that the three
vectors ¢; are all lined up, their common direction being an overall gauge freedom.

We can now easily improve our result for the effective potential in two ways with
very little extra work. First, we can extend part of the one-loop result for Vi(c) to
infinite order in C;. Observe that the one-loop effective potential along the vacuum
valley is known to infinite order [3, 4]:

4 sin?(n-1C)
72L ) 2

Vi(¥,C)=
! azo  (n?)?

(2.21)

v, differs from V] in that more modes (the spatially constant but non-vacuum
modes) have been integrated out. It was calculated by Liischer [3] using gauge-fixed
coordinates, and as we have discussed extensively previously [4], is related to ¥, by

V(€)= W(e, F2(c)=0) = V\(¥,C) - %lq . (2.22)

Note the change in notation from ref. [4], where ¥, was denoted by ¥/ and



12 J. Koller, P. van Baal / Gauge theory

171(1/ ,C) by V,(C). We can thus find the higher powers of C in V;. Also, Taylor
expanding both sides of this equation gives a consistency check on our calculations.
We find the following new relations involving the coefficients @, and ¢, defined in
ref. [4] and the Riemann zeta-function § [19].

T T 1807, Z
§(5) 1 X
A, + 30K, = ——2 + —
Kot T s T g §
K, + 18k, + 45k, =0. (2.23)
The last identity follows from
2 2
P Vi(e, F2(e) =0) = 22, (C) = 2/7°. (2.24)

A second improvement we can easily make is to calculate the two-loop effective
potential along the vacuum valley. Since the B, mutually commute when F,-jz- =0,
one can diagonalise the propagators. Choose for convenience B;= Bloy/2 =
C,0,/2L. The Feynman rules of ref. [9] can again be used. There, the two-loop
result was calculated in terms of parameters A, where (a) is an adjoint SU(2)
index. We can apply the result here by using the following trick: take the SU(2)
basis a € { +, —,3} with

=\/¥(°1ii°2)a 03 = 03,

AY=C 27,
N =—-C/2m,
AP =0. (2.25)
Thus we find
(C)=W(c, Fi(c)=0)=4g’L ¥  Ar(2aA®)ar,(27A?)
a,b=(zj}f—,3)
= 52°L{(4V(C)) +24K,(C) AV, (0)] . (2.26)

In summary, we know the effective potential to two-loop and to all orders in the
fields if we restrict ourselves to the vacuum valley, whereas away from the vacuum
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valley we have calculated the effective potential the hard way to sixth order in the
fields.

Since the potential is shaped so the wave function concentrates near the vacuum
valley, it makes intuitive sense to approximate the potential accurately along the
valley, and use a simpler approximation for deviations from the valley. Roughly
speaking, the transverse term serves mainly to concentrate the wave function near
the valley. It turns out that a sixth-order vacuum-valley potential with the lowest
(fourth) order transverse piece captures enough of the structure to give good results.
A weaker approximation along the vacuum valley gets the barrier height wrong, so
that tunneling sets in at the wrong value of g.

3. Reduction to a vacuum valley problem

In this section we reexamine the question of writing Liischer’s effective hamilto-
nian as an effective hamiltonian for just the vacuum-valley cordinates C. In
previous work [4] we emphasized the severe obstacles to this, because the modes to
be integrated out had extremely non-adiabatic behaviour near C = 0. Thus, although
we could find an effective hamiltonian for C away from 0, special arrangements had
to be made near the origin. In our new coordinates, the behaviour is rather different,
and requires some new discussion.

We are interested in this issue, because it determines the accuracy of some of the
boundary conditions we deduce in sect. 4.

Because Liischer’s hamiltonian is similar to a three-particle quantum mechanics
problem, we will often use the notation r, for the vacuum valley coordinate C,. Also,

we write r,= (c}, ¢, ¢}), and to avoid confusion we denote the triple (r,, r,, 7;) by C.

1]
Compared to ref. [4], our new coordinates make the following discussion much
simpler.

Liischer’s effective hamiltonian as extended in sect. 2 can be written as:
H L1 L V. v, 31
=—-—|=+ — et + .
eff 21 g2 o (Bcj’)z T(C) I(C)a ( )

where o, =1/367% — 3«,. The “radial” or “longitudinal” effective potential Vi(e)is
independent of the angular variables. If ¥V, ; is the i-loop contribution,

VI(C) = Vl,l(c) + V1,2(c) + e
Vii(e)=V(¥,C)-2|C|/L,

gL

6k, ‘92V1,1(C)
Via(e)= T

L (ac)

2 9g 2k}

8L

(3.2)
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We normalise so that ¥,(0) =0, a fact to be kept in mind when analyzing vacuum
energies. Similarly, V1(¢)= V5 (c)+ -+ is the transverse part of the effective
potential, vanishing along the vacuum valley:

FAF2+ ay( FAF2) cbe

iy LAy

1/1
L-Vii(c)= " :g—i +a,

+a4ZF”F“c b4 o (detc)’ + - (3.3)

t U]!

with a, =1/(1872%) — 3k, + 8(k, — k3), @3 = kg, @, = kg and a5 = k,,. The numeri-
cal values for a; are also given in table 1.
We decompose the wave function by writing it in the following way:

o0

¥(c)= ¥ (nnn) '@ (C)x{& (6, 4,). (34)

n=1

where the transverse wave functions x{¢)(8;, ¢,) are eigenstates of the “transverse
hamiltonian,”

1/1 “l3op?
HuX[ )]E I —ta Elm+VT(C) Xfc)]
i= i
=V{(C)x{e)- (3.5)

Here L, is the standard 1-particle angular momentum operator. H,_ is obtained by
treating the r, in H,, as fixed parameters. The decomposition can be thought of as
using a coordinate representation for the r, and an energy representation for the
angles. Thus ¥(c) is completely equivalent to an infinite number of vacuum-valley
wave functions ®”(C). For simplicity we normalise x{¢) using d2 = sin6dfdd¢ so
that at fixed v,

<X Eg])> fdﬂ d‘Q d‘Q3X[2‘)]*(01’¢' )X (01a ¢i)=8n,m' (36)

Note that the eigenvalues of H, form an increasing sequence of C-dependent
“effective potentials.”

With this decomposition, the eigenvalue equation for H., can be rewritten as
(4,7]:

g2

) m(vnm(c))zJ“ (V(C)+7"(C)) 8, [2(C)

= E®"(C). (3.7)
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v "™(C) is a “covariant derivative”

d
Vnm(c) — Snm

J
ac © <xfé’]lggi><§$]’>

9
= —A™(C). (3.8)

The radial factor (r;r,r,) ! included in (3.4) produces a simple normalisation:
(v|¥y =Y f d’C M (C)*d™(C). (3.9)

Now, an effective hamiltonian for the vacuum valley ¥~ will be well defined if the
adiabatic approximation, obtained by truncating eq. (3.7) to n = m = 1, is accurate.
Therefore either of two conditions is sufficient: if 4"™(C) is small, the n = 1 sector
decouples from higher sectors, whereas if AE® = V,&(C) — V(C) is large com-
pared to the energy E ~ g%/°/L we are working at, the higher ®’s are small and
irrelevant. Let AE® =inf,AE® be the minimum transverse energy gap. In many
problems, E/AE® is a positive power of g (e.g., for the non-zero momentum
modes integrated out to obtain Liischer’s effective hamiltonian one has E/AE® =
O(g?/?)). In such cases the adiabatic approximation improves as g — 0, and can be
incorporated as a controlled expansion in g. However, as we will see shortly,
because the transverse fluctuations are now quartic, both L-E and L-AF are
O(g*”?), and the adiabatic approximation in perturbation theory is not directly
controlled by an expansion in g. This is why a priori one cannot work entirely
within the vacuum valley.

To see exactly where the nonadiabatic behaviour is, we turn to investigating the
transverse hamiltonian H, in eq. (3.5), and it suffices to consider just the leading
order in g to exhibit the relevant features. We thus wish to solve the hamiltonian
(we have put L =1 for convenience)

Hom S x e Ly (= o), (3.10)

i ri 2g i>)

where L, is the standard 1-particle angular momentum operator. A gauge transfor-
mation acts on each “particle” as a rotation (not to be confused with a space
rotation, which mixes the ;). Gauge invariance is therefore equivalent to constrain-
ing the total “angular momentum” to be zero:

L=L +L,+L,=0. (3.11)
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Note that an expansion in g is deceptive since by rescaling r,= g?/# one can
scale H,, to depend on g by an overall factor:

(3.12)

H,=g*’| L A2+ X [#22 = (n-n)] |-

i i>j

Thus the transverse energy is O(g?/?), and the correct expansion parameter is

#=r/g?. One easily derives the following explicit form:
12
g ?*H, = Z : +1y f2*2[sm20 sin’6;sin* (¢, — ¢;)

i>j

+sin(6, — §,) + sin(26,)sin(26,)sin*(1 (s, — ¢,))] . (3.13)

This is too difficult to solve in general, so we look at limiting cases. First, if all

7> 1, one can consider fluctuations about the vacuum valley
Using the gauge invariance we write §,= 37 + x,/F, ¢,=y,/F, to get approxi-

mately

g_2/3Htr=H(xi)+H(yi)’
1 92
H(x,;)= 352" V(x,),
2222 X xj 2
V(x)=3% L F%% 7—? ) (3.14)
J

l>j

To determine the spectrum one diagonalises the hessian of the potential V

a2 a2 A A _an
2y ry+r —rr rr
P A2, a2 A A
=| —AF FIHF —RF (3.15)
172 1 3 23 |
axi axj A A s 22 4 p2
—nn R nThn

which is easily seen to have two degenerate eigenvectors with eigenvalue A =X
and one zero eigenvalue with eigenvector (7, #,, ;). The zero eigenvalue is due to
the gauge invariance and should be ignored, so the transverse spectrum is

4
Vim = %|C|( Y (2n,+ 1)
i=1

=2|C|,3|C|,4|C],... C>g (3.16)
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Thus we reproduce the one-loop result obtained in previous gauge-fixed analysis
[3,4]. Since V@ — V> E ~ g3, the adiabatic approximation holds in this re-
gion.

Next we go to the opposite limit of all 7 small. In that case the kinetic term
clearly dominates, which means each “particle” will be in the lowest angular
momentum state. Hence to lowest order the transverse energy is given by the
potential of H, averaged over the sphere:

g2/3 1
V=5 LAt = 5 Lol (317)
3 2 ¥ 3g° ;2 ;

To find excited states, note that gauge invariance, i.e., zero total angular momen-
tum, requires

L+l>l, L+bL>l, IL+L>1,. (3.18)

Thus, in the even parity sector (see sect. 5), the first excited state will correspond to
l,=1,=2,1,=0 (assuming 7, <7, <), giving

3g2/3 3g2/3

Q== 4 =2
Va'=——+ 22
1 2

(C,<g??). (3.19)
The surprising conclusion then, is that the adiabatic approximation is also good if
all 7, < 1. This is the first indication that our new coordinates are rather different
from the ones in ref. [4]. A second surprise is that exactly the same reasoning holds
if only two of the 7, are small, since if two of the /, are zero, the conditions (3.18)
force the third one to be small too. Thus the effective potential is still given by
(3.17), which vanishes if two of the 7 are zero. A region with two 7, small is a
minimum action tunneling path for the system, called a pinchon [4, 8], and it is very
surprising to find a vanishing effective potential here, because in ref. [4], we claimed
this effective potential was 2|C| everywhere sufficiently far from |C| = 0. Indeed, a
second peculiarity is that, since the pinchons are on the boundary of the vacuum
valley cube, the wave function vanishes there, as claimed in the introduction. To
resolve this dilemma, note that the region r, < g2/ where this approximation is
valid actually vanishes as g — 0, while the region 7, >> g?/3 where the expected form
(3.16) is valid actually increases. In sect. 7 we give convincing numerical evidence
that between these two regions is a region where the adiabatic approximation breaks
down: V@ and V) come reasonably close, and (x{%)18/8F|x (&) is no longer
small for i=1 or 2. The net effect of this non-adiabatic region, which has zero
support as g — 0, is apparently to replace the vanishing condition on the wave
function with a vanishing condition on its derivative. We will not try to prove this
analytically, being satisfied in this paper with the numerical evidence, and the fact
that we can verify our semiclassical formula.
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The point of this section, then, is to observe that in these new coordinates, the
region of non-adiabatic behaviour is not confined to very near the well. Thus, to use
the boundary conditions we are about to derive, we need to check explicitly, a
posteriori, whether the adiabatic approximation is sufficiently accurate. We will do
this in sect. 7.

4. Boundary conditions and Gribov ambiguities

Gribov ambiguities [11] arise in non-perturbative discussions when one chooses
gauge-fixed coordinates for configuration space. At some finite distance from the
chosen origin, the tangent planes of the gauge orbit and the coordinate hypersurface
can partially overlap. Beyond this point, in general, Gribov copies are formed, and
the choice of gauge invariant coordinates is no longer uniquely determined by the
gauge fixing procedure.

The Gribov horizon is the set of configurations where the copies are first formed,
and is uniquely specified by the fact that at least one non-zero tangent vector to the
gauge orbit is tangent to the coordinate plane. Equivalently, these points have a
larger isotropy subgroup (the set of gauge transformations which leave that point
invariant) than neighbouring points, and this is where the Faddeev-Popov determi-
nant vanishes (or acquires an additional zero). It is imperative to note that if the set
of gauge-invariant configurations .%//% is topologically non-trivial (% the set of all
vector potentials), Gribov ambiguities cannot be avoided {12} in a linear gauge on a
compact manifold, including the torus [13]. On the other hand, the same non-trivial-
ity causes the instantons whose effects dominate any non-perturbative analysis.
Thus any attempt to add instanton effects to a perturbative analysis is bound to
introduce the Gribov problem as well [15].

Let us therefore state unambiguously where in our analysis this problem arises.
For this we will closely follow the Coulomb gauge hamiltonian formulation [16],
used by Liischer to obtain the effective hamiltonian. As he noted, the Faddeev-Popov
determinant arises in the measure for configuration space. Two wave functionals
¥[A] and O[A], being gauge invariant, are well defined on «7/¥%, and

(¥]0) =fM@A\P[A]*@[A]
- fwg@,‘fp (A)¥[A]*0[ 4], (4.1)

where A satisfies the Coulomb gauge, and

p(d)=det'(—3,D(A)). (4.2)
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The zero momentum modes are omitted in the functional determinant, and D, (A)
is the covariant derivative. Hence p is the measure for /¥, with its zeros
constituting the Gribov horizon.

Now, the crucial point is that in perturbation theory the wave functional is
rescaled with p!/?

F[A]=p(A)*¥[ 4] (4.3)

to obtain a trivial integration measure. Therefore the new rescaled wave function
vanishes at the Gribov horizon.

For SU(2) Yang-Mills on the torus, one easily verifies that p(A)=0 if A,=
(2mn,/L)o“,/2 for at least one i, with n,€ Z and s*=1. (Take an eigenvector
with k;= +2mn,/L and the other components of k zero.)

Thus ¥[A] (and therefore presumably ¥(c)) vanishes linearly in 27n,—r, at
r,=2an; for any i.

Finally, recalling that we define ®((C) in terms of ¥(c) with a factor (r,7,r;)
factored out, we conclude that ®(”(C) vanishes at the boundary of »=[0,27]>.
Note that these boundary conditions are all caused by coordinate singularities.

Having shown that the wave function vanishes at the surface of ¥", and thus in
particular at the corners where the perturbative vacua occur, we turn our attention
to the configurations midway between two perturbative vacua. Consider the gauge
transformations

g,(x) =exp(—i'zrn—1;ioas“), (4.4)

where s is an arbitrary unit vector. It transforms the vector potential 4 into

a
2wn; o,s

L 2

(4.5)

8.(x) 4,8, (x) +

Take A, abelian, and choose s such that 4,= —(r,/L)o,s*/2. Applying g, gives
((27n;—r;)/L)o,s°/2, so that in our gauge invariant coordinates,

r,—2mn,—r,. (4.6)

Thus if n,€{0,1}, eq. (4.5) maps ¥~ into itself. Since g, is a homotopically
non-trivial gauge transformation, a wave functional ¥(A4) with definite electric flux
satisfies

7 (*4) = (-1)"*¢,(4), (4.7)
which implies:

8n 1/2
p(>4) V. (A). (4.8)

E(4)= ()" | T
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From this we easily see that when A is restricted to the vacuum valley (where we
can suppress the overall factor ¢,5%/2),

p(2mn—r)
p(r)

12
¥, 2mn—r) = (—1)"1( ) ¥ (r). (4.9)

Hence if e, =1 we conclude that on the vacuum valley, the wave function vanishes
at r,= 7. Unfortunately, we are interested in the wave function ¥(c) for Liischer’s
effective hamiltonian, which is not simply a restriction of the full wave function. We
need to project onto the constant modes as prescribed by Bloch perturbation theory.
This projection is only defined perturbatively, and we would need it to infinite order
to find an exact boundary condition at r,=. This is beyond our capabilities.
Nevertheless, (4.9) motivates us to look for a set of boundary conditions at r,= .
For e, =1, the conclusion that the wave function vanishes at r,=7 should survive
the projection, so the real issue is the e, = 0 boundary condition.

A point we have ignored so far is that Luischer’s effective hamiltonian breaks
down as one approaches the Gribov horizon at r,= 2, because some of the higher
momentum modes that have been integrated out become quartic. A way to cir-
cumvent this is to adapt an idea discussed by Nahm [14], that an alternative way to
understand Gribov ambiguities is as a need for different coordinate patches in
/%, and transition functions to connect the coordinates in the overlap region of
two such patches. As was advocated in our previous work [4], one centers a
coordinate patch at each of the eight corners of the vacuum valley ¥*=[0,27]°, and
derives Liischer’s hamiltonian in the zero momentum (but for 27n # 0, not neces-
sarily constant) modes. Explicitly:

M = %gflﬁdBX (5 4(x)). (4.10)

By taking A(x) in the vacuum valley, we conclude that C{™ is to be identified with
2an,— C®, where

cim =2Te( (™)) . (4.11)

For the remaining coordinates in each patch, we can use angular coordinates just
as for n = 0. Next, note that the ground state x{¢, for the fluctuations transverse to
the vacuum valley is unique, and a smooth function of 7. If we assume for the
moment that all of the wave function is in this transverse ground state, then
dD(C™) defined in the patch at corner 27n must be identified with #(C©).
Note that the factor (r,r,7;) ! included in the definition of ®(C) (eq. (3.4)) again
proves essential, because otherwise the measure on ¥~ would not be differentiable.
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Fig. 2. Schematic illustration of avoidance of level crossing. We consider two transverse modes, and plot

the “l-particle” energy levels in fig. 2a. For the transverse mode that becomes quartic to the right (left)

we give the ground state gr (g/) and the first excited state er(el). In fig. 2b the total energies due to the

transverse modes are plotted, without incorporating off-diagonal coupling. Fig. 2c shows the effect this

off-diagonal coupling has on the level crossing of the states £/ and Er of fig. 2b. In fig. 2c, E1 and E2

are obtained in this simple example as the eigenvalues of the 2 X 2 matrix with Er and E/ on the
diagonal and 1 off the diagonal.

Thus we find the following symmetry properties:
OV 2mn,—r)=(-1)" 0D (r,). (4.12)

The situation is more complicated if some of the wavefunction is in excited
transverse states, since symmetry (eq. (4.5)) dictates a degeneracy in the
excited transverse energies at r,= 7. In general this means an excited zero-momen-
tum transverse state in one patch can become a non-zero momentum excited
transverse state in another patch (see fig. 2b). This would lead to more complicated
boundary conditions, because the latter were integrated out in Liischer’s effective
hamiltonian. However, we do not expect this problem to be too severe, because if we
take into account the off-diagonal coupling between transverse levels (by terms
analogous to A,,,), we see that in general this problem is avoided (see fig. 2¢). A
simple example demonstrates this effect. Take a two-level system with hamiltonian

H=(;\ _f). (4.13)

At g =10, the energy levels as a function of A cross, whereas for g # 0 they do not
come closer in energy than AF =2g.
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To summarise, for small g we expect the boundary condition to be good because
most of the wave function is in the transverse groundstate, whereas at large g we
expect no level crossings between zero and non-zero momentum ground states. Thus
as long as the latter can be integrated out, no inconsistencies arise. In that case,
however, since transverse excited states are populated, we should demand that both
@D and (v®) be continuous across the boundary separating the two coordinate
patches, to ensure a continuous energy density. Hence, using the symmetries (4.7),
we find the following boundary conditions at r, = :

(v) “@=0, (4.14)
which is easily seen to be equivalent to:

(%) _ i(ri\I'(c))=O. (4.15)

i

These are the boundary conditions used for the Rayleigh-Ritz analysis. There is an
additional argument why in eq. (4.14) the “covariant derivative” instead of the
ordinary derivative should appear: one is free to choose the phase of x{&), even if it
depends on C. Eq. (4.14) gives a condition independent of this choice.

After the Rayleigh-Ritz calculation is done, we need to test whether at the
boundary most of the wave function is indeed concentrated in the lowest transverse
state. We can calculate the following quantity:

f f dr,dr |<1><1>(C)|2
fi= (i+j#k), (4.16)

r_"’f/dr dr |<P(’)(C)|

which is the fraction of the wavefunction actually in the lowest transverse state, at
the boundary r,= 7. We will verify in sect. 7 that 1 — f; becomes smaller for smaller
g, indicating lim , _, ,f; =

To summarise this section then, if the adiabatic approximation is good on the
boundary of the vacuum valley, one can define a vacuum-valley wave function
there, and easily derive its boundary conditions. The same adiabatic approximation
allows one to then deduce the boundary condition eq. (4.15) on the wave function
for Liischer’s effective hamiltonian. Moreover, if the coupling with the non-zero
momentum modes (which were integrated out in Liischer’s effective hamiltonian)
can be ignored, we argued that continuity of the energy density already implies the
same boundary condition. In sect. 7 we will show that the adiabatic approximation
at the boundary is good. This would allow a restriction to the vacuum-valley but
implies furthermore that the coupling to the non-zero momentum modes can be
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safely ignored. Consequently, we believe that our choice of boundary conditions
gives an accurate description of the dynamics and that the agreement we found [6]
with the Monte Carlo data in intermediate volumes is not a “numerical accident.”

5. The Rayleigh-Ritz analysis

In this section we describe our basis for the Rayleigh-Ritz analysis and the
implementation of gauge invariance. We then discuss Temple’s inequality, which
allows us to calculate rigorous upper and lower bounds for the energies once the
hamiltonian is given. We also discuss projection onto the irreducible representations
of the cubic group.

Because of the similarity to a three-particle quantum mechanics problem in a
sphere, we construct a basis out of spherical harmonics Y, (8, ¢) and radial
eigenfunctions x,,(r) with radial quantum number n. At this point we only specify
the boundary condition for x ,,(r), which follows from (4.15):

(] xatr| =0 (5.1)

r=a

The specific choices of x,,(r) are discussed later.

The question of imposing gauge invariance is completely independent of the
radial eigenfunctions, because in our coordinates a gauge transformation is simply a
rotation of the particle states. Thus imposing gauge invariance is equivalent to
requiring that the three-particle states be singlets under SO(3):

L,+L,+L,=0. (5.2)

Let (8, 9|/, m)=1Y,,(0,¢) and combine the first two “particles” into angular
momentum eigenstates |/;/, j, m):

[y ), m)y = Z {lymamy Yl ymym, L, j, m), (5'3)

my, Ny

where |l)l,mym,) = |lim)|l,m,) and {l;l,m;m,|l,l,j, m) is a Clebsch-Gordan-
Wigner coefficient, found in standard quantum mechanics texts. Here we just
remind the reader that {/,l,m;m,|l;l,j, m) vanishes unless m; +m,=m and
|l, — 1] <j<!, +1,. Finally, we combine |/;/,j, m) and |l;m;) into an SO(3)
singlet, which requires m; = —~m and /; = j. Thus a triplet (/;, /,, /;) uniquely labels
a three-particle SO(3) singlet state, which we write as |/,/,/;). Explicitly:

[505) = Z W(111213m1m2m3)|llm1>|12m2)|l3m3>, (5.4)

my, my, My
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where

W(111213m1m2m3)

-5 (_1)13+m3 (h+1,- 13)!(11 - lz)!(lz +1- 1)
myt om0 (h+5L+L+1)

XX

{ (_1)k\/(11 + ml)!(ll - ml)!(l2 + mz)!(lz - mz)!(lz. + m3)!(l3 - m3)!

KWl — 1, — my+ k)W + L — L= k)Wl — my — k)L, + my — k)

1
X
(L—-L+m+k)

(5.5)

Factorial arguments cannot be negative, so the range of the k sum is determined
and constraints on the triplet (/;, /,, /,) appear:

L+L>l, L+bL>lL, L+hL>1,. (5.6)

This is equivalent to |/, — I,| <3</ +1,, (see above), but shows the permutation
symmetry between the particles more explicitly. The Wigner coefficients W are also
symmetric:

sg(a)(+1,+1
W(lw(l)lvr(Z)lw(3)mw(l)m'l'(z)m'”(3)) =(-1) sl 3)W(lllzl3m1m2m3) (5.7)

for any 3-permutation 7.
To summarize, our complete, gauge invariant Rayleigh-Ritz basis consists of
states |/ /,Isn n,n,; e) with

3
(clhllznin,ng; e) = ( I:[I (szf'l?(’)<9i, ¢'i|))|111213>

3
= X W(111213m1m2m3)HX&???(’)Y}im,(ai"l’i)’

my, my, ms
n,,€0,1,2,..., |L-bLl<lL<l+1,. (58)

The electric flux quantum numbers e, € Z, appear from the boundary conditions
on the 1-particle radial eigenfunctions (5.1). In practice, we always pick x so that
the basis vectors are eigenstates of some simple operator, say — 13%/(dc?)?, with
eigenvalues e({,/,l;n,n,n3).

Despite the constraint on /; (eq. (5.6)), we have a large set of quantum numbers,
and one might fear one needs too many basis vectors to get an accurate variational
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state. It is thus helpful to project onto the irreducible representations of the
symmetry group of our effective hamiltonian, which for e=0 or e=(1,1,1) is
the full cubic group O(3,Z). This acts on the i index of ¢ and thus mixes the
“particles”. The projection also removes degeneracies caused by irreducible repre-
sentations with dimension higher than 1. The cubic group has ten irreps:

A£(1), 45(1), E?(2), TF(3), T#(3), (5.9)

where p= 41 is the eigenvalue for the parity operator P (Pcf= —c¢?), and the
number in brackets is the irrep dimension. We construct these representations by
noting the cubic group is the semidirect product of the coordinate permutations S,
and the three Z, coordinate reflections P, (P,ci= —ci(i=k), +ci(i+ k)):

0(3,Z)=2Z3xS,. (5.10)
If p,= +1 is the eigenvalue of P, we obviously have
P=DP1P2P3,
PLL15) = (—1)['|111213>’
7|l linn,ng) = ,lvr(l)lvr(l)lﬂ(3)n'rr(l)nﬂ(Z)nﬂ(3)> > (5.11)

where 7 € S, is a three-permutation acting on the particle index. The projection on
the various representations can now be specified in terms of the triplets (g,, 4,, 3),
where ¢ stands for the pair of quantum numbers (/, n), i.e.,

1919293) = |Lilalsnynans), (5.12)
and we define an ordering
g<q e (I<l'orif /=10, then n<n’),
g=q = (/=0and n=n"). (5.13)

These projections are given in table 2. They are mutually orthogonal and block
diagonalise the hamiltonian.

For electric flux e # 0, e+ (1,1,1) the cubic group is broken to Z, X O2,Z)=Z,
X (Z3 % S,), where S, permutes the directions with equal electric flux. In this work
we only consider states that have positive parity p, and are even under S,. Such
states are denoted e, , where e] and e; are triplets with one and two units of
electric flux respectively. We also write e; for the singlet with three units of electric
flux, e=(1,1,1).
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TABLE 2
Projection of the basis onto the irreducible representations

Ny
|1929; AL ) = "/_a: Z 1921y 2)d=3)) >

7ES;

nzgzq, (Di=p, e=0;

1
19192455 AL ) = "\/? Z 8 T Gn(y G n(3) ) »

TES;

G >9> 4, (-Di=p, e=0;

1
|919293; EP) = Nq(ﬁlqlqz%) ~3018:92) + 3 B 2q1)

1 1
- ﬁmzqﬂlﬁ - ﬁﬂh‘hqz) ’
@>q, m>q, (-Di=p, e=0;

1919295 T ) = \/g(|q1‘12‘l3> =~ 104493));
Q> q, (FDV'=(-D=(=Dh=p, e=0;

1919293 T ) = \/qu(Iqlqzqa) + 10qa3));
41>‘ha (_1)Il+1=(_1)12+1=(_1)/3=p’ €=0,

| 9192955 €] ) = @Nq(lqlqzqs> + 1929193))5
@>q, (Di=p, e=(,01);

;efy=\LN + ;
2
|019293; €5) =3 Ny(114243) + | 929193))5
a>q, (—Di=p, e=(110);

1919293 ‘—’:) = \/%_Nq Z |9n(1)9r 2y (3)) >

L=

q1>q2>q3v (—1)I’=P, e=(15171)-

For each, only one element of the O(3, Z) orbit is given. N, is a normalisation factor different from 1
if some g;’s are equal.

Thus the A;" ground state, which is 8-fold degenerate for g — 0, splits into two
singlets 4;" and e and two triplets e and e; at larger g where electric flux
energies are significant.

Following the prescriptions in table 2, we can build a separate basis for each type
of representation, and diagonalise the hamiltonian separately in each sector.

The Rayleigh-Ritz procedure consists of simply truncating the infinite basis, to M
vectors say. Diagonalising the truncated hamiltonian matrix provides a rigorous
upper bound on each of the energy states [18]. The ordering of the basis is
important, since we want an accurate approximation to the wave function. The
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vectors were thus ordered by first truncatingto/; + I, + ;< Land n; +n, + ny < N.
Then we ordered the basis vectors with increasing &(/,/,/;n,n,n5), the sum of the
one-particle energies (see later). Finally, we truncated this ordered basis to M
vectors. This procedure more or less guarantees that the most important basis
vectors are used, as we could verify by inspecting the coefficients of the eigenvec-
tors.

However, to be completely sure no important basis vectors were omitted, we also
used Temple’s inequality to obtain a rigorous lower bound on the energy [18].
Suppose E, is a discrete eigenvalue of a hamiltonian H, i.e., there exist eigenvalues
E,_, and E, , such that E, is the only eigenvalue in the open interval (E;_;, E,, ).
Suppose ¥, is the variational state for this eigenvalue (the ith eigenvector of the
truncated hamiltonian), and is “reasonably good”, ie., (¥;|H|¥,) is smaller than
E, .. Then one has for E; the lower bound:

E>(¥|H|¥) - T(K,),

(G|H?|¥) = (%|H|¥)
K, — (L H|Y)

T(K,) = (5.14)

for any K, in the half open interval ({(¥,|H|Y,;), E,.,]. The sharpest bound is
obviously obtained for K;= E,_ , (and is the best we can do, because it saturates for
¥, an arbitrary linear combination of the exact i/th and (i + 1)th eigenvectors). Since
E, ., is not known exactly, we use a conservative estimate

K= 5((BIH|¥) + (¥4 |H| Y, ). (5.15)

Note thatif (¥, | |H|¥,,,)iscloseto E, ; then T(K,)=2T(E, ;). We will list the
Rayleigh-Ritz energies as E; = (¥,|H|¥,)(3T(K))), i.e., if we quote E,= a(b) this
means a — 2b < E; < a is a rigorous bound, while a — b < E; < a is a safe bound. In
practice we observed by varying M that E, is far closer to its upper bound than to
its lower bound.

The proof [18] of (5.14) follows from Temple’s operator inequality (H — E,)(H —
K)=0 for any K €[E,, E, ,]. Note that to compute the lower bound we need the
matrix for H2.

We now discuss the radial wave functions x,,(r), chosen to be eigenfunctions of
some convenient radial wave equation:

1 d d I(1+1)
———2—~r2-—-+ 2
2r=dr dr 2r

+ V(") an(r)zeannl(r)’ (5-16)
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together with the boundary condition (5.1). The hamiltonian in this basis is

(hlIsnyngng|Hog|l{l31n{n5n%)

1 -1
— 7
=L pe T (snlll + e, €0) Ot 81 8y 81tz 8 B0

+ (hlylynin,yn,| VT(C)llflﬁlén{”'zn'ﬁ

-1

+ <Lyl n,n,| V/(C) -

1
?+a1

Lv(r)lil3lsninsns), (5.17)

with a similar expression for the matrix of HZ, required for computing the lower
bound.

To reduce to 1-particle matrix elements we first expand V;(c) in powers of r,.
Although V,(¢) is known to infinite order (see eq. (2.22) and eq. (2.26)), we found it
sufficient to expand to sixth order. To one loop, this can be read off from (2.16). We
also added an eighth-order term to check stability; its coefficients were chosen to
minimise the maximum error in V; on C € [0, 7] to 0.3%. The expression we use for
Vi(c) is therefore:

L-V(c)=n(g) Lri?+ v () L' +v:(g) Lrir?

i>j

+'Y4(8)Z’i6 +vs(g) Z"f’}z + y6(g)r12r22r32+ Y7(g)2f,-8
i

i*j i

+v5(8) Z"ié’}z"' Y9(g) Z’i4'}4+ Y10(g)zri2("12"22"32)- (5.18)

i#j i>j

The functions y,(g) accurate to two loops are listed in table 3, and we observe that
the g dependence is surprisingly weak.

To keep track of the different types of approximations we have made, we will
divide our results into three sets:

Type I (“Minimal hamiltonian”). These comprise the majority of our results. We
neglect the sixth order part of Vi, all two-loop effects, and the eighth and higher
order terms in ¥, This is the simplest approximation we can expect to give
reasonable results, and amounts to putting a;=oa,=a;=0 (kz=Ke=1r,,=0),
Y7=7Ys= Yo = Y10 = 0, and taking v,(g) = v,(0) for i <7.

Type II (“Full hamiltonian™). Here all displayed terms are included (except for a
negligible 8th order two-loop contribution). We did some calculations to investigate
the relative contributions of the 8th order one-loop, the two-loop, and the sixth
order transverse terms. It turns out all 8th order terms can be ignored, while the
other two are of roughly the same magnitude.
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TABLE 3
Coefficients to two loops for the vacuum-valley effective potential V; (eq. (5.18))

11(g) = —0.30104661 —0.30104661 (g/27)*

Y2(g) = —1.4488847 X 103 — 9.9096768 X 10> (g/2m)?
v3(g)= 12790086 x 1072 + 3.6765224 X 1072 (g/27)?
Y4(g) = 4.9676959 x 107 % + 52925358 X 107° (g/2m)?
vs(g)= —5.5172502 X 107> + 1.8496841 X 10~ * (g/2m)?
Y6(g) = —1.2423581 X 107> — 5.7110724 X 10> (g/2m)>
17(g) = —9.8738947 X 1077 — 5.1311245 X 10~ (g/27)?
Ye(g)= 91911536 X 1076 + 9.1452409 X 10~ ° (g/27)>
Yo(g) = —2.7911565 x 1077 — 2.5203366 X 10~ 3 (g/27)?
Tio(g) = 1.8208802 X 107° + 6.0939067 X 10~ (g/2m)*

Type III (“Truncated hamiltonian”). We set all coefficients a;, x; and ¥, to zero.
Although the results are not physical, the simplification allows a number of
consistency checks and resolves an issue concerning the meaning of the 7, and 4,
representations at weak coupling.

Lower bounds on the energies are only calculated for types I and III, because the
full hamiltonian is too complicated to square easily.

Now we discuss the actual evaluation of the matrix elements, beginning with the
angular parts. Here, three types of terms are involved (¢ = ¢/ /r,):

/ rana)? 117y . .
(i) <111213|(cicj) [10305) (i#j),

i sara\2( aazra g : ;
(ii) <111213|(cicj) (Cick)2|111213> (i#j#k),
(dii ) (Ll 15| (det &) 11515)

These can all be calculated exactly, using (5.4), (5.5) and simple properties of
spherical harmonics. The numerous symmetries imply we need (i) and (ii) for only a
few values of /, j and k.

We are thus left with the radial reduced matrix elements, all of the form

Fe(n,n’,l,i,j)Efo drr2 22X O (r) X2, (r) - (5.19)
The integers i and j are small,
j=2, i=0 (Al=4),
j=1, 0<i<3 (4i=2),

j=0, 0<i<6 (Al=0). (5.20)
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For normalised eigenfunctions clearly F,(n,n’,1,0,0)=28§ but we will list the
eigenfunctions without normalisation.

At this point we must finally be more specific about the radial 1-particle
eigenfunctions x, which are determined by the 1-particle potential V(r) in (5.16),
and the boundary conditions. We list three different choices A-C.

Type A (“Plane wave”). These are the spherical Bessel functions, i.e., spherical

plane waves,

n,n’

X9 (r) =j(kr),
V(r)=0,

en=3(K), (5.21)

nl

which satisfy the boundary conditions (5.1). The boundary conditions determine the
“momenta” k{9

d
k) =0, —(z(2)| =0 (5:22)

z=k97

The matrix elements F,(n, n’, 1, i, j) were calculated exactly in terms of k{9, which
were evaluated to 16-digit precision. This is elaborated upon in appendix C.

Type B (“Harmonic oscillator”). These are harmonic oscillator wave functions
which because of the boundary conditions (5.1) have no simple w-dependence:

X (r) = re=" M (31 + 3 = 9 /(20), 1+ 1, 0r?),
V(r) =12, (5.23)

where M(a, b; z) is a confluent hypergeometric or Kummer function, regular at
z=0 [19]. The 1-particle energies were evaluated numerically from the implicit
definitions

M(L+2-e®/Q0), 1+ 1, 0r2) =0
(I+1-wn?=2a)M(a,l1+ 3, 0n?) +2aM(a+ 1,1+ 3, wr?) =0,
eQ=0w(l+2-2a). (5.24)

The matrix elements F,(n, n’, [, i, j) were calculated using 24- to 96-point gaussian
integrations. Both ¢ and F, depend in a complicated way on « and have to be
evaluated anew for each w.

Type C (“Perturbative”). Here we take harmonic oscillator eigenfunctions, and
impose no boundary conditions, demanding square integrability instead. These do
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not distinguish between the different electrix fluxes, and are used to compare with
the perturbative results of Liischer and Miinster [3]. This is partly for debugging and
partly to investigate the spin content of the 7, and A, representations at weak
coupling. Thus we take

Xu(r) =reer 2L 2 (wr?),
V(r)=to¥r?,
ey=w(2n+1+2), (5.25)

where L%(z) are generalised Laguerre polynomials [19, ch. 13]. One easily derives
analytic expressions for the matrix elements.

Our results will be classified by their type, the most common being type 1A
(minimal hamiltonian with a plane wave basis). The spherical plane wave basis is a
very good basis for larger g values, beause at larger g the wave function becomes
less peaked near the origin; its Fourier transform (effectively the coefficients of the
wave function in the plane wave basis) will therefore concentrate around low
momenta. At weaker coupling the harmonic oscillator basis tends to be better,
because w is an extra variational parameter that can be adjusted. For 0.5 < g< 14
we used w=1.5 and w=1.7. The improvement is significant, although we expect
that being able to increase the maximum value of /, +/,+/; would be most
effective. For g values where we have accurate results for both bases we have
observed up to 5 digit agreement.

We end this section with a few words about the computer programme, which was
written in the language C. The UNIX environment proved useful for our com-
plicated data handling. Angular matrix elements and 1-particle momenta were
calculated and stored in files, reducing the building of the matrix for H, or HZ; to
simple algebraic operations. We then used routines from the IMSL library to
diagonalise the hamiltonian. We used double precision throughout, but have per-
formed quadruple precision calculations to check numerical stability. The maximal
parameters were /; + 1, + ;< L =20, n; +n,+n,<N=10 and M = 800. For this
case 42 hours of CPU time on a Ridge-32 are spent diagonalising H, and 1% hours
spent calculating the lower bound. Building the hamiltonian matrix took 22 min.
Most runs were done with M = 500, requiring 2 h to calculate upper and lower
bounds. If one calculates only the first few eigenvalues (and no eigenvectors,
required for the lower bound) 5 h of CPU time is used. Finally, CPU time is
roughly proportional to M3. The calculation is thus a non-trivial computation.
However, because of the many cross checks, excellent agreement with previous
results of Luischer and Miinster [3] and with our earlier semiclassical prediction, and
the convergence of upper and lower bounds for increasing M, we are very confident
of the numerical accuracy.
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6. Comparison with the semiclassical result

This section is dedicated to a detailed comparison of the Rayleigh-Ritz results
with the semiclassical prediction. Because our numerical results are for g values
where there could be appreciable unknown corrections to the semiclassical expres-
sion, our approach will be to show that the two calculations agree up to beautifully
simple correction terms, which vanish as g — 0.

We first recall our prediction for the energy of three units of electric flux [4, 5]:

AE(1,1,1) = Ey(1,1,1) — E,(0,0,0)

=LY (1+£(g)) " 3-2AB%>%exp —_S_%Tgﬁ) ,  (6.1)
where
fo(0)=o0,
A=0.6997...,
B=0.2063...,
S=12.4637...,
T=39186...,
e=4.116719735..., (6.2)

and where the perturbative correction f,(g) is at least of order g'/3. Eq. (6.1) is the
rigorous weak-coupling expansion for AE, but as we have pointed out before [5], it
was derived using only the lowest order expression E,= g?/%¢/L for the perturba-
tive energy in the exponential. The higher order terms in E, are O(g*?), and
omitting them causes the leading (1 + O(g'/3)) correction. Thus we can increase the
accuracy and range of applicability of (6.1) by replacing g?3¢/L by the true
perturbative energy. One option is to use the high order expansion of Liischer and
Munster [3]:

E,L = 4.116719735g% — 1.174516027g*/> ~ 0.118933g>
—0.03148g%2 + O( g'/?). (6.3)

The other option is to note that within the semiclassical approximation (i.e., up to
O(A E?) corrections) the perturbative energy is midway between the energy of three
units of electric flux and the energy of zero units of electric flux. In table 4 the two
definitions are compared, and their difference (larger than our rigorous numerical
error bounds) is entirely consistent with small O(g!%/3) and O(AE?) corrections.
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TABLE 4
Type I(A & B) Rayleigh-Ritz results for the ground-state energies (in units of 1 /L)
withe=0and e=(1,1,1)
g E4(0,0,0) Ey(1,1,1) /(® E Epm AE
0.5  2.09420(—451)  2.09414(~197) 2.0941(—30) 2.09257
0.55 2.19391(-253)  2.19398(—98) 21939(-17) 219186 0.00007(*%°)
0.6  2.28578(—188) 2.28621(-79) 22860(—13) 228329 0.00043( “%%)
0.65 237026(—205) 237166(—77)  —0.5277(*3758) 2.3709(—10) 236752 0.00140( *%°)
0.7  2.44756(-269) 245119(—77) —0.5470(*1338) 2.4493(—17) 244507 0.00363(*%°)
0.8  2.58031(—562) 2.59621(—61) —0.5744(*1]0,) 2.5882(—31) 2.58194 0.01590( 2
0.9  2.68229(-966) 2.72917(—41) ~0.5956(735,) 2.7057(—50) 2.69679 0.04688(* 3%
1.0 2.75241(-1387) 2.85796(—22) —0.6113(7§;) 2.8051(—70) 279179 0.10555(*13*")
11 27924%(—1271) 2.98977(—10) —0.6217(*%,) 2.8911(—64) 2.86861 0.19735(*137")
1.2 2.80665(—1108) 3.13086(—4)  —0.6262( 1) 2.9687(—55) 292859 0.32421( %)
1.3 2.80000(—612) 3.28663(—4)  —0.6242(*}, 3.0433(—31) 297280 0.48663( *5'?)
14 277661(—378) 3.46178(—3)  —0.6153(F})  3.1192(—11) 3.00212 0.68517( ")
1.6 2.6908 3.8854 —0.5741 3.2881 3.01893 1.1946
1.8 25652 4.4238 —0.4930 3.4945 2.98364 1.8586
2.0 24129 5.0847 —0.3538 3.7488 2.89967 2.6718
22 22513 5.8639 -0.1224 4.0576 2.76958 3.6126
2.4 21011 6.7498 +0.2621 4.4255 2.59534 4.6487
2.6 1.9807 7.7276 +0.9040 4.8542 2.37849  5.7469

The perturbative factor f(g) is defined in eq. (6.4), while E,,, is given in eq. (6.3) and E is an
abbreviation for %(EO(O,O,O) + E4(1,1,1)). Where no bounds are quoted they are (far) better than the
last ones tabulated.

Thus, incorporating this improvement into our prediction, we find:

AE(1,1,1) = Eo(1,1,1) — E4(0,0,0)

=L} (1+/(g)) '6AB%*"

— S+ LLT(E,(1,1,1) + E4(0,0,0))

X exp

g

, (6.4)

We have no prediction for f(g), but from the way it was derived (i.e., using [7] the
path decomposition expansion), we expect it to be determined by the transverse
fluctuations along the tunneling path, which have a perturbative expansion in g. All
the non-adiabatic behaviour, causing powers of g2/3, should enter through the
perturbative wave function contribution to AE, which we have already accounted
for [7]. However, since tunneling is expected to become significant only at g~ 0.7,
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Fig. 3. The function f(g)/g appearing in eq. (6.4) calculated using the Rayleigh-Ritz results for the
minimal hamiltonian (type I{(A&B)) to test the semiclassical result for the energy of electric flux.

where the exponent in eq. (6.1) changes sign, f(g) is not guaranteed to be small in
the region of interest, and could be ~ 1. This is why we should be careful in
comparing Rayleigh-Ritz results with the semiclassical expression. The best we can
do is confirm f(g) is a simple power series in g, vanishing as g—0, with
coefficients of order unity.

To test all this reasoning, note that for our favourite two-dimensional vacuum-val-
ley toy model, where transverse fluctuations are exactly quadratic, we would expect
f(g) to be zero up to O(AE?) corrections. Appendix B confirms this to high
accuracy. There we provide the perturbative, semiclassical, Rayleigh-Ritz and Monte
Carlo analyses performed on this toy model as a warm-up for the Yang-Mills case.

Table 4 gives our highest accuracy data (type IA&B) for E,(0,0,0) and E,(1,1,1),
as well as the value of f(g). Below g = 0.7 no reliable estimate is possible. In fig. 3
we plot f(g)/g versus g and see remarkably near-linear behaviour over a wide
range of g. To a good approximation

f(g)=—-111g+049g%  (dotted line). (6.5)

However, the need to extrapolate from g = 0.7 to g =0 does leave room for doubt,
so we designed a rather sensitive test. We repeated both the semiclassical and the
Rayleigh-Ritz analysis for the truncated hamiltonian (type I1I)

&
2

ol o



J. Koller, P. van Baal / Gauge theory 35
In this case, the lowest order perturbative wave function and energy are exact, with
no higher order corrections. Moreover, they are equal to the lowest order wave
function and energy in the full problem. Thus

AE'=L"1 +f’(g))_16)\’Bzg5/3exp( (6.7)

-8+ T'g¥ 3%
g b
with B and ¢ the same as in eq. (6.1). However, $’, 7" and A’ are now determined
by the simple 1-loop effective potential 2|C| (|C,| <), giving the (rescaled)

double-cone problem solved in ref. [7]. So

§'=2[dCy2 2C = tn,
0

P 1
! = — 1/2
T zfodcm 275,
1

[
‘(277)1/2. (6.8)
One calculates A’ as in ref. [7], sect. 4.
TABLE 5
Type III(A & B) Rayleigh-Ritz results for the ground-state energies (in units of 1/1.)
withe=0and e=(1,1,1)
g E4(0,0,0) Ey(1,1,1) (g E 2% AE
0.65 3.08974(—1218) 3.08911(—72) 3.08943(— 645) 3.089064
0.7 3245459(—19) 3.245564(-12) 2.1884( %) 3.245512(—16) 3.245513 0.000105( *13
0.8  3.54724(-3) 3.54808(—1)  24510(*{5,) 3.54766(—2)  3.547682 0.00084(*3)
0.9  3.83535(—8) 3.83941(—4)  2.7290(3%8) 3.83738(—6)  3.837482 0.00406( *§)
10 410939(—24)  412310(—-4)  3.0625(*31%) 411625(-14) 4116720 0.01371(*3*)
L1 436712(=75)  440369(—4)  33509(133,) 4.38541(—40) 4386786 0.03657( )
1.2 460504(—18)  4.68621(—6)  3.6364('35;) 4.64563(—12) 4648778 0.08117(*}%)
13 481977(-29)  497615(—6)  3.9325(*17)  4.89796(—18) 4.903583 0.15638(*2°)
14 500887(—43)  527902(~7)  4.2459(*} 5.14395(—25)  5.151930 0.27015( %)
L5 517151(—65)  5.60011(—8)  4.5912(*1 5.38581(~37) 5394429 0.42860( *§°)
L6  530831(—84)  594422(-9)  4.9907(*5,)  562627(~47) 5.631593 0.63591( 254)
L7 542091(-103) 6.31550(—11) 54695(*%,)  5.86821(—57) 5.863864 0.89459( * 193
18  551160(—121) 6.71734(—11) 6.0592(%%)  6.11447(—66) 6.091622 1.20574( 13
L9 5.58317(—137) 7.15231(-10) 6.7983(*3)  6.36774(~74) 6315199 1.56914( *137)
20 5.63886(—150) 7.62228(-10) 7.7380(1d)  6.63057(—80) 6.534885 1.98342( *130)

The perturbative factors f'(g) and e are defined in egs. (6.2) and (6.7), and E is 2(Ex(0,0,0) +
EO (1) 1 s 1))
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Fig. 4. The function f'(g) appearing in eq. (6.7) calculated using the Rayleigh-Ritz results for the

truncated hamiltonian (type III(A&B)) to test the semiclassical result for the energy of electric flux in the
truncated model.

Numerical results (type IIIA&B) for this truncated model are in table 5, and in
fig. 4 we plot f’'(g) versus g. We find

f'(g)=3.03g  (dotted line), (6.9)

again over a large range of g.
We regard egs. (6.5) and (6.9) as excellent evidence for the consistency of the
semiclassical and Rayleigh-Ritz analyses.

7. Nonadiabatic behaviour

In this section we analyse the deviation from adiabatic behaviour. We first
describe the method of calculation, but most of this section presents and discusses
numerical results. As described in sect. 3, the wave function can be decomposed into
an infinite component vacuum-valley wave function by projection:

20(C)= [, TT(red) xfy (0, 6 ¥(c). (7.1)

Here x is the transverse eigenfunction satisfying

Hx{e1 (81 0) = Vi (C)x (&1 (O b) - (72)
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The transverse hamiltonian is given in eq. (3.5). We will perform the analysis only
for the minimal (type I) and truncated (type III) hamiltonians. Thus for type 1 we
have explicitly

1
g

1

L1
— -—?+a2

+
Z 2r2 2

i i

L-H, = +a

Z r izrjz

>

X [1 — sin’f;sin; (c052¢icosz¢j + sin2¢isin2¢j) - cos20i00520j] , (7.3)

and for type Il we put @, =a, =0 in this equation. Obviously V") is found by
diagonalising the matrix of H, in the basis |/,/,/;>. This requires only a minor
change in our Rayleigh-Ritz programme: simply restrict #; to zero and for the radial
matrix elements use £,(0,0,/, p,q)= r¥P+a) je., freeze the r, coordinates.

Clearly, when all r, are unequal, there is no permutation symmetry and the cubic
group is broken down to the coordinate reflections Z;. Thus @ in eq. (7.1) is only
non-zero if the parities, (—1)%, for XEQ] are the same as for ¥ (see table 2). This has
an important consequence: we expect transverse states involving odd parity to have
higher transverse energy than those involving even parity. Thus wave functions ¥
involving odd parities see a higher quantum induced potential barrier, and tunneling
sets in at higher values of g. This explains why, for the 4, state, the agreement
between our Rayleigh-Ritz results and the perturbative expansion of Liischer and
Minster is good up to g=1.2, where the difference is only 0.5%. Similarly,
tunneling for the 7T, representation is expected to set in later than for the E
representation, which we confirm in our variational analysis [6]. Sect. 8 gives some
details.

Diagonalising the whole hamiltonian and the transverse hamiltonian gives

¥(c)= )‘111213n1n2n3<c|111213”1"2”3> ’
X{1 (01, 04) = pi,,(C )0y, o4l i 15) (7.4)

which provides a straightforward expression for ®)(C):

3
(p(i)(C) = Z ( 1_[ ranjIJ(rj))”"(192/3(6‘)}\[1/2/3711"2»13 - (75)

{n,1} J=1

The only difficulty is that we have to “undo” the projections defined in table 2. We
next computed the “non-adiabaticity fractions” f; defined in eq. (4.16) by using
12 X 12-point gaussian integration for the two-dimensional integrals. We also calcu-
lated, for individual points C, the fraction of the wave function in each component
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of the vacuum-valley decomposition:

f(C) = T@E)—, (7.6)
T o®(C)?

The denominator was calculated independently using

3 2

o]
Z ¢(k)(C)2= Z >\111213n1n2n3]:.Eran,-l,(ri) ’ (77)

k=1 (n, 1)

to avoid calculating all transverse eigenfunctions x{/). We do, however, confirm
that f% decreases rapidly with k, and the sum of the first two or three pointwise
fractions is very close to 1.

Note that f,)(C) provides a different interpretation for f,, being the weighted
average of the pointwise fractions f(C) over one face of the vacuum-valley
boundary:

fi= hmf f dr dr, fO(C)w,(C), (7.8)

r—m

where the weight w,(C) is proportional to the square of the wave function at C:

i @ (C)

Wi(C) - W(r

noph nd
W,.(r,.)=f0f0 dr dr, Zlcb(q)(c)z. (7.9)
o

At first sight one might think the adiabatic approximation is only good if the
pointwise fractions at the boundary r,=w are uniformly small. However, the
following argument shows this is incorrect. Suppose the adiabatic assumption is
exact, and let ¥ be the E* or T, state. For each of these, #®(C) has a nodal
surface, dictated by symmetry, which intersects the boundary r,=. Thus if we
switch on some arbitrarily small non-adiabatic corrections, f,(C) =0 at the nodal
surface. The adiabatic approximation is nevertheless good because the probability
w,(C) of actually being at this point is arbitrarily small. Thus eq. (7.8) is the
appropriate measure of the accuracy of the adiabatic approximation. However, as
stated at the outset, we will not try to estimate the size of corrections as a function
of (1—£). Such an analysis would have to include the effect of off-diagonal
coupling illustrated in fig. 2, which as explained in sect. 4, could be enhancing the
accuracy of our results at higher g. Unfortunately, we are lacking an expansion
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TABLE 6
Adiabaticity parameter f;, eq. (4.16) (upper number) and integral of the wave function squared W,
eq. (7.9b) (lower number) for the states in column 1 and surfaces in column 2

g=10 g=15 g=20 g=26
r B 0.9607 0.9482 0.9173 0.9284
! =T 5590 x 1072 2.387x 107! 3.767 x 107! 5.095 x 107!
o~ 0.9856 0.9667 0.9182 0.8858
(4) nBET 3.752 X 107} 5.865 x 10! 6.702 X 10! 6,935 x 101
- 0.8951 0.8938 0.8898 0.9709
1 BET 6.801 X 1073 1.554 x 107! 4167-107! 6.659-10}
£+ S 0.9456 0.9407 0.9208 0.9522
1 1.026 1071 2.866-1071 4.404-1071 5.621-107!
e 0.9586 0.9542 0.9583 0.9769
2 5.112-1071 5.969-107! 6.195-107! 6.331-107!
B 0.9564 0.9498 0.9428 0.9653
=T 3.069-107! 4.417-1071 5299 .10 ! 59761071
T+ - 0.9753 0.9740 0.9717 0.9277
! 1 7.571-107! 7.007-107! 4.669-1071 4032-1071
e 0.9797 0.9622 0.9202 0.8664
3 9.179-1072 3.101-107! 4.565-1071 5.671-1071
- v 0.9789 0.9722 0.9670 0.9608
2 1 6.840 - 1071 6.456-1071 1.018-107° 8.114-1071
e 0.9840 0.9739 0.9350 0.8953
3 7.463 1072 2.569-1071 3.716 - 1071 4.901-107!
o 3 0.9667 0.9530 0.9444 0.9730
1 1 6.340 1072 2648 107! 5.627-107" 7.536-1071
3 0.9353 0.8959 0.8650 0.9284
3 1.671 1073 4135.1073 6.378-1073 8.571-1073
R _3 0.9310 0.8937 0.9144 0.9707
€ n= 1.636-1073 4841-1073 4537-1073 5.258-1073
_3 0.9631 0.9472 0.9580 0.9874
= 6.245.1072 3.306 107! 5271-107! 6.281-107"
. _ 0.9318 0.8972 0.9293 0.9808
€ =3 1.855.107° 6.258-107° 1.011-107° 1.240-107>

Note (A;")" is the first excited A;" state.

parameter for this type of analysis, but it just might explain why our variational
results seem to agree better with the higher statistics Monte Carlo data of ref. [20] at
g ~ 2.6 than at g ~ 2 (see ref. [6]). For more details we refer to sect. 8.

In table 6 we give our numerical results for the fractions f; (eq. (4.16)). For
practical reasons we compute f; for non-zero electric flux at r, = 3, because the wave
function is zero at r,=« if e,=1. The table also gives the integral of the wave
function squared (W) over a boundary face. We provide data for groundstates in
the sectors A", Ay, E*, T/, T,', e], €5, e;, and for the first excited A4;" state
(which we call (A]")), for g values of 1.0, 1.5, 2.0 and 2.6. Symmetries (table 2)
relate the f; within each sector as follows: f; =f,=f; for 4, and ef, f, =/, for
T,", T}, e], e5, whereas all f; are different for E*. The W, are related similarly.
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Fig. 5. Plots for the probability density of the A;" ground-state wave function at r, = 7 as a function of
r, and r, on [0, 7], The vertical axis is positioned at (0,0) and the vertical scales are the same in each
plot.

A number of interesting observations can be made through inspecting table 6. We
see the effect illustrated in fig. 2 confirmed, since f; increases beyond g =2 for most
states. The fraction of the wave function possibly leaking to the excited transverse
sectors is always less than 15%, and usually much less. From this evidence, we
expect that non-adiabatic corrections to our energy levels are no more than 5 to
10%.

From table 4 we also see that W, increases with g. The suppression of tunneling
at lower g is clearly visible in the 4, state, and to some extent in 4", e/, e; and
ey . It thus confirms that for 4; the tunneling sets in at larger g values (presumably
g ~ 1.2), whereas for the other states tunneling has already set in at g <0.8.

A third effect, which is quite dramatic, is illustrated in fig. 5. There we plot the
probability density ¥ @(9(C)? over one face (say r; =), for the groundstate A;".
The vertical scale is the same on each graph, and horizontally we plot », and r,
from 0 to 7, with (0,0) at the vertical axis. We see that towards larger g the wave
function tends to concentrate around r; = , rather than close to r, = 0, which can be
considered as the “Z,-symmetry restoration”. All other representations show similar
effects (e.g., see fig. 6 and fig. 8).

From fig. 5 we also see the effect mentioned in sect. 3. At smaller g, the wave
function peaks near to ,=0, and we conjecture that the maximum at fixed r,, r,
moves to r, =0 as g— 0, thereby effectively turning the vanishing boundary
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Fig. 6. Plots for the probability density of the first excited A;" state at » = 7 as a function of r, and r,
on [0, 7]2. The vertical axis is positioned at (0,0) and the vertical scales are the same in each plot.

condition on ®® at r,= 0 into the condition &Y /3r,= 0 at r,= 0. All representa-
tions show a similar peaking.

In fig. 6 we give the probability density for (A;"), the first excited A;" state. The
new feature exhibited there is revealed more clearly in fig. 7, which gives for the
non-adiabatic fraction (1 — f{P(C)) as a function of r; and r, for r;= 7. Again
vertical scales are the same for each g, and the vertical axis is drawn at (r,, r,) = (0,0).
What we see appearing at g = 1.5 is the nodal surface of @V(C), which for small g
is a sphere centered at C =0, with radius O(g?/?). Only at large enough g is it
expected to intersect with the boundary. As was explained earlier, at such a nodal
surface f will become zero, and fig. 7 clearly illustrates this feature. The nodal
surfaces are harder to see in fig. 6, but can still be made out.

Fig. 8 gives probability densities for the E* state at g=1 and g = 2, for each of
the faces r, = 7 (a), r,=7 (b), r; =7 (c). Here the nodes are dictated by symmetry,
and they persist down to g=0, the nodal curve at r, =« being particularly
conspicuous. Although we do not present the graph, we have observed that these
nodes coincide with highly isolated zero’s in the fractions f,, just as in fig. 7. We
leave it to the reader to visualise how the three faces in fig. 8 combine into one
continuous function.

We end this section with a discussion of the behaviour of V(" and 4,,, to
illustrate the point made at the end of sect. 3. This requires us to calculate the
quantity (8/9r;)x{{;. The problem is similar to one faced in appendix B, since it is
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Fig. 7. Plots for the nonadiabatic fractions of the first excited 4;" state at r; =7 as a function of r, and
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transverse hamiltonian H,(r,+ ¢). One easily finds a linear equation determining
cr

equivalent to calculating the first order correction to the eigenvectors of the
(3/3r,~)x”)'

0 g )] H, _3V‘§j) )

(Htr_l/tr )TX[ ]= ar - ar X[C]a

(7.10)
F
which can be converted to a non-singular matrix equation (by adding pu,)
( H, 1Lk ¢

-V j)al,k + I-‘lﬂk)”k = (Np(AH)p.qPq 84— (AH)I,k)H-k-
Here we have suppressed C dependence, and write

(7.11)
1) = 1hix05),

Hl,k= <I|Htr|k> ’

(AH)l,k'__ {

t

r|k>’

dH
ar;

Xfc)](ﬂk"#k) = .U‘l<{0k’¢k}|l>’
EXEQ](ak"Pk) = V1<{0ka¢k}|l>-

(7.12)
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Consideration of eq. (7.12) shows that the matrix AH is a trivial variation on the
matrix H, so one readily solves eq. (7.11) to obtain »,. Note that (d/ 3r,.)xfé)] is
orthogonal to XEQ] since the latter is normalised to 1.

We can now calculate 4, as defined in eq. (3.8). A useful check 1s

f(sz)gljldﬂiZ %xf’é’]({am,qu}) = i[A,.j(C)]z. (7.13)

k

We observed that the sum over i is dominated by the first few non-zero terms.
Results for g = 1.0, type III, are given in figs. 10 and 11. The former shows r; =2
and the latter ;= 3. Only the even parity sector is presented, and we plot (a):
Z [ A4u(O)]2 ) Z[454(O)], ©: V(€)= VI(C) and (d): VP(C). These
graphs clearly do show a region of intricate behaviour at intermediate values of r,
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and r,, as discussed at the end of sect. 3. We have confirmed this intermediate
region shifts towards r, =0, r,= 0 as g decreases, and that ¥,[ 43,(C )]2 becomes
negligible. As can be seen in the figures, the one-loop result holds for large enough
C, where V,{"(C)=2|C| and VP (C) = 4| C| (the transverse state with energy 3|C|
has negative parity) so that V» — V¥ = V. We have also confirmed that the
domain of validity of the one-loop result approaches the axis as r; increases.

We herewith rest our case.

8. Results and discussion

Having motivated our approach and justified our approximations in previous
sections, we will now discuss our results. Most of them can be found in the figures
of ref. [6], so instead of reproducing those figures, we tabulate the “raw” data i.e.,
the energies as functions of g, in tables 7 and 8.

Table 7 lists type IA and IB results, energy levels of the minimal hamiltonian
diagonalised in a plane-wave or harmonic-oscillator basis. Recall from sect. 5 that
the minimal hamiltonian incorporates a sixth order approximation for the one-loop
potential along the vacuum valley, and only the lowest (fourth) order contribution
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10

Fig. 11. The Monte Carlo data [20,27] compared with the Rayleigh-Ritz variational results for the
energy of electric flux ep+=AE/M(E™), versus the distance z,+= M(EY)- L (both in units of the
glueball mass). Along the vertical axis we plot for easy comparison /eg~/zp+ = VA - /zr+ which at
large z+ can be identified with the square root of the string tension in units of the glueball mass. The
crossed data points are from ref. [20], the open circles from ref. [27b] and the remaining data points are
from ref. [27a] (see ref. [5] for details on the representation of the data from ref. [27]). The full line gives
the Rayleigh-Ritz results for the minimal hamiltonian (type I(A&B)), the dashed line gives the
Rayleigh-Ritz results for the full hamiltonian (type IIA) and the dotted line reminds us that we expect
our approximations to break down beyond zp-~ 5, presumably due to the onset of non-zero action
tunneling.
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TABLE 7
Type I(A&B) results for the energies (in units of 1,/L) of the lowest states in the listed O(3,Z)
symmetry sectors, as well as for (A", the first excited state in the 4" sector

g Al 47y Ay E* T Ty el e ey
0.8 2.580(6) 3.540(450) 6.416(6) 3.458(165) 3.547(565) 2.586(15) 2.593(15) 2.596(1)
0.9 2.682(10) 3.651(550) 6.831(2) 3.558(142) 3.630(511) 2.698(10) 2.714(8) 2.729(1)

1.0 2.752(14) 3.763(650) 7.208(0) 3.656(72) 4.651(490) 3.661(472) 2.786(7) 2.821(4) 2.858(0)
11 2.792(13) 3.878(450) 7.544(0) 3.761(31) 4.915(142) 3.690(325) 2.853(5) 2.919(2) 2.990(0)
1.2 2.806(11) 3.999(350) 7.833(0) 3.873(18) 5216(28) 3.719(151) 2.904(3) 3.0101) 3.131(0)
1.3 2.800(6) 4.134(132) 8.070(1) 3.996(9) 5.550(16) 3.750(73) 2.942(2) 3.100(0) 3.287(0)
1.4 2.776(4) 4285(83) 8.255(1) 3.783(6) 5.919(8)  3.783(22) 2.971(1) 3.192(0) 3.462(0)
15 2.77392) 4.454(33) 8.390(1) 4.280(4) 6323(6) 3.818(9)  2.996(1) 3.290(0) 3.660(0)
1.6 2.691(2) 4.641(12) 8481(1) 4.444(3) 6.763(5) 3.857(7) 3.0181) 3.399(0) 3.885(0)
1.8 2.565(1) S.074(4) 8.552(2) 4.823(3) 7.754(4) 3.951(5) 3.068(1) 3.660(0) 4.424(0)
20 2413(1) 5.590(2) 8.526(2) 5277(2) 8.887(3) 40734  3.141(1) 3.999(0) 5.085(0)
22 2251(1) 6.194(1) 8.481(2) 5815(2) 10157(3) 42353) 3.256(1) 4.428(0) 5.864(0)
2.4 2101(1) 6.884(1) 8.488(1) 6.442(1) 11.554(3) 4.446(3) 3.428(1) 4.949(0) 6.750(0)
26 1.981(1) 7.652(1) 8.594(1) 7.159(1) 13071(4) 4714(2) 3.663(1) 5.554(0) 7.728(0)

2.8 1.902(1) 8.486(1) 7.961(1) 3.961(1)
3.0 1.870(1) 9.376(1) 8.837(1) 4318(1)
3.2 1.885(1) 10.314(1) 9.776(1) 4.725(1)
3.4 1.942(1) 11.293(1) 10.767(1) 5.176(1)

The lowerbound is obtained by subtracting the digits in parenthesis.

perpendicular to the vacuum valley. This is the simplest approximation one can
expect to yield reasonably accurate values for the energies. Above g=1.2 we used a
basis of 500 plane waves (spherical Bessel functions), whereas below g = 1.2 we used
up to 800 plane waves or harmonic oscillator wave functions to improve accuracy.
Table 8 lists type IIA results, the full hamiltonian of sect. 3, diagonalised using
plane waves. These tables also contain some new results, namely those for the T;
representation, and for g values beyond 2.6 (z;>5).

We begin with a few words on the accuracy. For (A;') (the first excited A4,
state), Ty, E* and T} we still have difficulty bringing the lower bound close to the
upper bound, despite our use of the harmonic oscillator basis. Although there was
substantial improvement at g=0.8 and 0.9, it is likely that increasing /; +/, + /3
beyond 20 will be much more helpful. Doing this is quite feasible, but it would be
time consuming and is too academic to pursue. The reason is that in general the
upper bound is much more accurate than the lower bound is willing to reveal. For
example, at g = 0.8 the type IA result for 7 is 3.611 (2572). The improvement
lowers the upper bound by only 2%, but reduces the uncertainty by a factor 5. For
the (A;") at g =0.8 we also find a 2% change, while for E * it is only 1%. However,
for higher g the change is always less than 0.3%. Table 9 gives further evidence for
an accuracy of better than 1% at low g values. There we list the energies
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TABLE 8
Type IIA results, as in table 7
g A7 47y Ar E” i 7 2 ey e
0.8 2.558 3.486 6.389 3.419 3.502 2.569 2572 2.575
0.9 2.646 3.576 6.790 3.489 3.557 2.664 2.681 2.698
1.0 2.698 3.665 7.147 3.564 4.546 3.559 2.735 2.774 2.814
1.1 2.713 3.752 7.456 3.644 4.784 3.558 2.781 2.852 2.931
1.2 2.699 3.843 7.710 3.727 5.054 3.554 2.805 2.921 3.054
1.3 2.659 3.944 7.902 3.817 5.355 3.547 2.812 2.985 3.190
14 2.598 4.057 8.032 3.915 5.686 3.539 2.808 3.047 3.343
1.5 2.518 4.184 8.102 4.024 6.048 3.529 2.794 3112 3.517
1.6 2.423 4,325 8.116 4.145 6.444 3.518 2.774 3.185 3.717
1.8 2.187 4.654 8.000 4.426 7.336 3.497 2.727 3.367 4,199
2.0 1.904 5.055 7.750 4770 8.359 3.486 2.690 3.620 4,800
2.2 1.591 5.533 7.462 5.187 9.506 3.498 2.684 3,958 5.516
24 1.276 6.091 7.222 5.688 10.771 3.547 2.728 4.384 6.335
2.6 0.982 6.719 7.087 6.274 12.215 3.643 2.831 4.891 7.243
2.8 0.725 7.405 6.939 2.994
3.0 0.511 8.140 8.469 3.211
3.2 0.341 8.914 9.308 3.475
34 0.209 9.722 10.181 3.777
These include all corrections discussed in the text.
TABLE 9

Type I(A&B) results for the first excited A" and the lowest T state with 0 and 3 units of electric flux,
compared with the perturbative prediction Ep [3]

(4) 7
g E(0,0,0) E(1,1,1) E Ep E(0,0,0) E(,1,1) E Ep
0.5 3.105(420)  3.109(173)  3.107  3.103
0.55  3.213(410)  3.244(128)  3.228  3.230
0.6 3.297(374)  3.376(110) 3336 3342
0.65  3.365(342)  3.510(101) 3.437  3.441
0.7 3.427(352)  3.649(91) 3538 3527 3.431(532)  3.487(153) 3459  3.458
0.8 3.540(450)  3.949(61) 3.744  3.662  3.547(565)  3.712(140)  3.629  3.603
0.9 3.651(550)  4.289(31) 3.970 3752 3.630(571)  3.944(26) 3787 3.761
1.0 3.764(650)  4.674(12) 4219 3809  3.661(472)  4.199(5) 3.930  3.819
12 3.999(350)  5.588(1) 4794 3780  3.719(325)  4.799(0) 47259  3.904

The quantity E is the average é(E(O, 0,0) + E(1,1,1)), and we expect Ep— E = O(E(1,1. 1) -
E(0,0,0))?). All energies are in units of 1/L.
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for (A7 Y,—0, (A7 Yec@.1.1y> (T2 ) e=0> (T57) o= 1,1,1)> the average of these two energies
for each representation, and the perturbative prediction of Liischer and Miinster [3].
As explained in sect. 6, the average should equal the perturbative result, up to
corrections vanishing rapidly once tunneling effects are small. The agreement is
extremely good. Table 9 also shows that for (4;") (and E™) tunneling sets in
around g = 0.5, but somewhat later for T,'.

We now come to the new results for the 7T;" representation. This is an important
state because it confronts one with an issue, which is as follows. In a situation where
the cubic group can be enlarged to the full rotation group, the irreducible represen-
tations we have been discussing combine into angular momentum multiplets, a fact
used extensively in the Monte Carlo analysis [21]. In particular, in a large volume
one expects restoration of rotational invariance, both on the lattice and in our
continuum calculation on a torus. One therefore conjectures that the energy gap
between each representation R # A" and the A;" groundstate (which is the true
vacuum) gives the mass of the lowest angular momentum state containing R (and
(A;") supposedly gives the 0* mass). Thus, in refs. [20] and [21], spin 2 is associated
with the £ and 7, representations, spin 1 with the 7, and spin 3 with the 4,
representation. On these grounds, it is tempting to conjecture that our 77" state will
correspond in larger volumes to a spin 1 state, especially since they are both triplets.

The above claim apparently contradicts a statement by Liischer and Miinster [3]
that the J =1 states cannot be studied within the context of the zero-momentum
effective hamiltonian. The resolution of this contradiction shows one must at least
be careful about simplisticly deducing infinite volume results from our intermediate
volume energies. Liischer and Minster observe that the lowest order effective
hamiltonian, valid at small g, possesses full rotational symmetry, and give an
argument that in general prohibits any odd spin multiplets from forming as g — 0.
However, this symmetry is in a sense accidental, and there is no reason why the
energy levels should combine into multiplets in the same way at g — 0 as in the
infinite volume limit.

The question thus arises, to what spin multiplet the 77" (and A;) belong as
g — 0. This can be answered as follows. The lowest order effective hamiltonian is
what we have called the truncated (“type III”") hamiltonian, and one can scale out
g, where upon taking g— 0 is equivalent to moving the boundary condition to
infinity. Thus we have a problem of type IIIC, in the language of sect. 5. One can
find the eigenstates, and settle the low g spin assignments by identifying degener-
acies between different representations of the cubic group. In table 10 we collect the
results. The conclusion is that 7] and A; belong to J =4 and J = 6 respectively.

As mentioned above, there is no reason to expect these spin assignments to hold
for a large volume, and the reason we wish to be cautious about identifying our
results at z,+~ 5 with certain spin states is that the volumes we probe are still too
small to restore rotational invariance. This is clear from the fact that the E* and
T, groundstates differ substantially in energy. However, the level rearrangements
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TABLE 10
Low g spin assignments. ¢ = L - E/g*/?, computed using type I1IC at g=1

J £ R
0+ 4.1167(0) Al
2+ 6.0145(47) EN, T
0 6.3863(0) Al
4" 7.7355(103) Al EN T T
2+ 7.822(10) EY, Ty
0 7.974(0) A
0~ 8.7867(0) A;
0* 9.25. .. Af
6+ 9.3273(241) Af AT EN T, AX TG
2- 11.331(0) E, Ty,
0~ 12.055(2) AT
4~ 13.72127) AT ET, T, Ty
6~ 15.988(39) AT, AT E, T 2X Ty

We list only the eight lowest even parity states and five lowest odd parity states.

are somewhat restricted because we do not expect crossing of levels within a
representation of the cubic group, since O(3, Z) is a good symmetry at all values of
the coupling. This indeed makes it very tempting to identify (A4;")" with J* =07,
T\ with JP=1% E* and T, with JP=2% A4S with JP=3" and 4, with
JP?=0". It supports the conjecture made in ref. [20] that the 2* glueball mass is
lower than the 0" mass, which is allowed by rigorous mass inequalities [22]. But
again we emphasize that we do not yet know how, for example, the E* and 7" will
merge into a 2% multiplet at large volumes. The natural choice for the 2+ mass as a
“weighted” average of the E* and T,' mass might require “negative weights.”

We now move on to a discussion of mass ratios, expressed as functions of z, the
renormalization-group-independent parametrisation of the box size. As was stressed
in ref. [6], we consider these results to be particularly reliable. For a given
representation R, one can define

zg=L-Mx=L-(Eg—E,.). (8.1)

We chose z,.=L-(E 4+ — E,) as our parameter in refs. [5,17], and z,. in ref.
[6]. This allowed easy comparison with the Monte Carlo results of ref. [20]. The
mass ratios can be expressed as zp /2 r, and we will always relate masses to z-. In
ref. [6] we found z,./zp+~ 1.1 and z; /z;.~ 0.50, both almost constant over the
range zp.= 2-5. A similar constant behaviour occurs for 77 : gy /zp+=121, easily
deduced from tables 7 and 8. Again [6], the higher order corrections included in
table 8 lead to less than a 1% change in zyy/zg+. For AT we observed a strong
volume dependence, with z 47/ Zp+ dropping from ~5at zg.~1to ~1at z,.~ 5.
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We have drawn the line on producing detailed results at 4, (for which z,;/zg.~
3.6) and at zz+=>5. The former needs no justification, but the latter choice is of
crucial importance. Thus tables 7 and 8 contain some results beyond this point. Let
us first remind the reader of the physical reasons we have to expect our approxima-
tions to break down at zg+=z,.=5. It is the distance where the energy for the
Nambu-Goto string becomes imaginary, and it is the distance scale set by the
deconfining temperature 7, [7,16,23,24,25]. A more technical reason is that there is
still one feature we have not incorporated in the effective hamiltonian, which is the
presence of non-zero-action instantons, i.e., the §-dependence of the energies [26]. In
analogy to the present case of zero-action instantons, where the energy of electric
flux is the most suitable quantity for detecting the onset of tunneling, the topologi-
cal susceptibility x, is the most suitable quantity for detecting the onset of
non-zero-action tunneling. Although the energy levels will depend smoothly on g as
this tunneling sets in, just as in the present case, their values will deviate substan-
tially from the values obtained when neglecting these tunneling contributions. Thus
the true energies will begin to deviate from the energies we calculate here, just like
our energies began to deviate from the perturbative formulae of Liischer and
Miinster. Indeed, if we consider the results in tables 7 and 8 beyond zz.= 5, we do
find a deviation from the Monte Carlo results. To illustrate this we reproduce in fig.
11 the fig. 2 of ref. [5] (which was based on the data of ref. [27]). We augment the
figure with Monte Carlo data from ref. [20] and our results from tables 7 (full line)
and 8 (dashed line). (We have assumed, as was done in ref. [28], that the masses
listed in ref. [27a] are for the E(2") and not the 4,(07) state. This will be true if the
E(27%) is far enough below the 4,(0%) so that there was only one intermediate state
in the correlation measured in ref. [27a].)

In ref. [24] one of us mused on the usefulness of studying volume dependence of
X, conjecturing that x, drops to zero when approaching z=35 from above.
Actually, those investigations had already been done, in the guise of a study of
temperature dependence [29,30]. The results are however conflicting. Without
passing judgement on calculations as complex as these, we consider the results of
ref. [29], which do show strong suppression of x, in the deconfined phase, to be
more appealing, because they are based directly on instanton dynamics. Direct
analogues of instantons occur in lattice gauge theory as (approximate) saddle points
in the action, and there is no need to take a continuum limit to use the concept.

All of these arguments strengthen our belief that z .= 5 is where all the action is.
What the dynamics is, we can now only guess. One guess would be the formation
(driven by non-zero-action instanton effects) of domains with a size corresponding
to z ~ 5. An electric flux string might then comprise “beads” of domains with e # 0
(a picture surprisingly similar to the proposal in [31]). After all, the energy of
electric flux per unit length we have calculated is remarkably close to the string
tension. Rotational invariance could be restored as in the Copenhagen vacuum [32]
or the Ising model. Such domains would be magnetically neutral. An updated
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Fig. 12. The chromomagnetic energies to two loops [9] compared with the magnetically neutral vacuum

energies on a torus. The dashed line (a) is the vacuum energy E(A;") obtained from table 8, which

includes the higher order corrections to the effective hamiltonian, whereas the full line (b) gives E(A;")

from table 7, where higher order corrections were ignored. The vacuum energies for non-zero magnetic
flux m € Z3 are labelled (c) for m = (1,0,0), (d) for m = (1,1,0) and (e) for m = (1,1,1).

version of fig. 3 in ref. [9], which is presented in fig. 12, seems to indicate this. In
this figure, the chromomagnetic energies on a torus are compared with the magneti-
cally neutral vacuum energy. The latter was obtained from table 7 (full line) and
table 8 (dashed line) by adding the “zero field” contribution (see sect. 3 and ref.

[9D):
(-2a(4)/m>+ 3(a(2)g/m?)’) L~ = (~5.025221 + 27 2g?/8) L}, (82)

Since the energy of the magnetically neutral state is always lower than the chro-
momagnetic energies, magnetically neutral domains in the scenario of ref. [9] seem
to be preferred. Of course, this argument could be affected by higher order
corrections and the effects of non-zero-action instantons.

Things are however not as simple as they seem. The duality relations of ’t Hooft
[1] put important constraints on the behaviour of chromomagnetic energies in large
volumes, and ’t Hooft’s algebra for the 4 and B operators [33] rules out a vacuum
of uncorrelated domains. These fundamental constraints are of a kinematic nature,
and deserve more attention in building a model (or even a picture) for the
Yang-Mills vacuum. They will be indispensable for understanding what confine-
ment is about, and cannot be ignored.

Another important issue will be the connection with Liischer’s large volume
expansion for the glueball mass [34]. The expected [3, 35] plateau for the glueball
mass M as a function of z found in ref. [6] cannot, however, be interpreted as the
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infinite volume glueball mass for three reasons. First, as we mentioned before, there
is no restoration of rotational symmetry below z ~ 5. Second, we used the two-loop
beta function to convert z to a physical mass, which for g~ 2.6 is certainly
questionable (higher loop calculations for both the beta function [36] and our
effective hamiltonian are required to establish the accuracy). Third, and physically
more important, Liischer’s result predicts the asymptotic value will be reached from
below. We therefore expect a dip to occur in M(z) around z ~ 5. Interestingly, this
has been observed [37] for the available SU(3) Monte Carlo data.

In conclusion, we believe we now understand the dynamics of non-abelian gauge
theories in intermediate volumes, and that our present calculations have brought us
to the point where confinement and restoration of rotational symmetry sets in. Only
now can we meaningfully start to ask what the dynamical contribution of non-zero-
action instantons will be. Necessarily this question needs to be addressed outside the
sector of zero momentum configurations. But the latter might still play an important
role if indeed domain formation occurs as we speculated above. We hope that the
methods we have developed to include pinchons (the zero-action instantons) can be
adapted to include the non-trivial topology classified by the Pontryagin number (eq.

(1.7)).

We are grateful to Werner Nahm for a discussion on Gribov ambiguities and for
his encouragement. We thank Jos Vermaseren for the check on part of our algebraic
manipulations. This work was supported in part by NSF grant numbers DMS-84-
05661 and PHY-85-07627 and by DOE grant number DE-FG03-85ER25009.

Appendix A

We give here a number of useful SU(2) and lattice sum identities, used in the
background field calculation. We use the following notation: If 4 is an SU(2) Lie
algebra element,

a

g
A=A, (A1)

then in the adjoint representation its matrix is A = ad 4 where
A= —jg , A (A2)
Thus the adjoint matrices act on the Lie algebra vectors as
BA =[B, 4]. (A.3)

The following identities reduce the traces of products of adjoint matrices in eq.
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(2.14) to inner products of Lie algebra vectors. The fundamental results are
AB=A-B1- BA",
ie., (AB)** = (4°B°)8“® — B4,
Fy=i(cef —cf),

F e, = —¢(detc). (A.4)

L

For the product of four adjoint matrices, Liischer [3] has already given useful
identities, so we will only discuss products of six adjoint matrices.

Tr[(e)(e))(e.)’] =3(ci- ) (er ) = (e, ¢ )¢ e )er- ¢,)
=2(c?)’ - 3F%? - 3(det ¢)?, (A.5)
Te[(e,)e; (e)’¢;] = (e c.)* +2(c, ¢)c; ) (e ) = (e, ¢,) (e )
=2(c?)’ = 2F %2+ 6(det ¢)°, (A.6)
Tr[e;c;eie,e,6,] = 2(c;- ¢,)(c; ¢ )i ¢)

=2(c?)’ — 3F%2 + 6(det c)’. (A7)

Here we sum over indices occurring more than once, unless an explicit summation
symbol shows otherwise. Note that rotationally invariant expressions such as those
above can be written in terms of the three independent rotationally and gauge
invariant objects

= (cf)*= 2,

P (F)'= Tk,

i*j

det ¢ = x,x,x;. (A.8)

Here x; are the polar coordinates [4] of the matrix c?, i.e., with a suitable rotation
and gauge transformation ¢/ can be made diagonal with x; on the diagonal. Other
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rotational invariants are:

Te[(F,)(e.)’] = (B, F,) (e c) + (E,-e)’

224 6(det ¢)*, (A.9)
Tr|(F,e,)’] = 2(F;- ) = 12(det ), (A.10)
Tr[F,F,F,,] = —6i(det c)’. (A.11)

Thus we are left with the last two terms in eq. (2.13), which break the rotational
invariance. The following momentum sums occur:

II

%-kl— qZ

Iklg’
k2k?
r=% s s=Y 5,
X Ikl11 % \k|?
2 21,2 274
kiksk; kik;
= . = . Al12
% |k|11 u 7 |k|11 ( )

In these expressions i and j are fixed and unequal but ¢, r, s and u do not depend
on their value. They are related as follows:

u=13q—;3r. (A13)

We find:

Zkkkh

n [k[® [(cn)zcicjckc/]

= (g-39) L Te[(¢))(e)']

(Tr[ (¢;) ] + 2Tr (c) c; (ck) c ] - lTr[(c jk)zl) (A.14)
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and

Kk ke ke k ik,
Z________

PR Tr[e,c;e06,,]
K

=(r—15u+ 3Ot)ZTr[(ci)6]
+3(u— 3I)Z(2Tr[(ci)z(cj)4] + 2Tr[c,.(cj)3c,-cj] + Tr[ci(cj)zci(cj)zl)

+t(2Tr[(ci)2(cj)2(ck)2] + 6Tr[(c‘.cj)2(ck)2] + 3Tr[c,.(cj)2ci(ck)2]
+Tr[(c,-cjck)2] + 3Tr[c,-cjckcjc,-ck]). (A.15)

The rotationally invariant terms have been listed already, except for one, which is
readily reduced to known ones:

Tr((cicjck) ) Tr(e;c e 6,6, ) — ((I",-jck)z) . (A.16)

Similar manipulations yield:
ZZTr[ci(cj)Bc,. ] = (Tr[(c) (¢;) ] Tr[(c 2( 2] + Tr[c,(cj)zci(cj)zl).
(A.17)

The following four identities complete the conversion to the invariants of eq. (2.15).

ZTr[(ci)‘s] =2%(¢,-¢)’, (A.18)
LTrl(e) (o) ] = Do) (ee) = (Fy F))(eg). (A1)
ZTT[(C ] Z Fij)(cj'cj)a (A.20)

ZTr[ci(cj)zci(cj)z] = 22_((".“ Ci)(cj'cj) - (Ej'l:;‘j))(cj'cj)‘ (A-21)

As mentioned in sect. 2, one can also write the one-loop effective potential in
terms of the invariants M;; = c; c;, which is the form in which we obtained the sixth
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order term using a symbolic manipulation programme:
VIO = (dhp = fis + $0)(T M) + (0= 3p — o) Te MITe[ 1?]

+ (s — Rp— WOTAMIE MG+ (Rp - s +21)Te[ M°]

+(4ng3 - %P - %lt)ZMii(Mz)ii_F (%P — s+ %I)Z(Mii):;' (A.22)
i i

Appendix B

In this appendix we discuss the perturbative, semiclassical, variational and Monte
Carlo analyses performed as a feasibility and warm-up study for SU(2). The model
is the 2-dimensional vacuum valley of ref. [7]:

g2 ( 82 32

H= -\ =+ —
219x2 7 ay?

1
+ —(X2-1)*Y2. 1

The perturbative expansion for the well at X =1 is obtained by substituting

X=g*x+1,
Y=g, (B.2)
giving:
23 = 1/ 92 92 2x2p2 2/3,3.2 1 1,4/3,4.2
g ——E a—xi+a—yz+xy +2g Xy + 587 xTy . (B3)

The energy eigenvalues are classified by the parity in y, and were calculated
using a Rayleigh-Ritz algorithm. Our basis was ¥(x, y) = (x|n; w)(y|m; w, ) =
{x, y|n, m), where (x|n; w) are 1-dimensional harmonic oscillator eigenfunctions,
and the frequencies w, and w, were used as variational parameters. The resulting
perturbative expansions for the ground-state energy in the even(+) and odd(—)

y-parity sectors are:
E*(g)=0.87959730g%° ~ 0.21065396g> + O( g%),
E~(g)=1.8879261g%° —0.23230415g2 + O(g*) . (B.4)

The lowest order result is obtained by diagonalising the matrix of H; in the
appropriate sector, where H, is the single-well hamiltonian [7]:

1{ 92 a2
Hy=——|— + — | +2x%?2. B.5
0 2((9)(2 8})2 X7y ( )
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For these ground states, which are even in x, the first order correction vanishes
because the first order term in H is odd in x. Thus we can write

VE= it + g2yt 4
E*=g?EF + g?Ef + -+,
H=g2/3H0+g4/3H1 +82H2’
H,=2x%3,
H,=1x%?, (B.6)

We briefly discuss our approach to computing E,, since a similar method is used in
sect. 7. In general

E2i=<‘Poi|H1|‘I'1i>+<‘P0ilH2|‘I'oi>a (B-7)

and a useful observation is that we can obtain ¥;* by using a routine from the
IMSL library to solve the linear equation

(Hy— E¢t) ¥ = —H ¥ . (B.8)

This avoids having to find all eigenvalues and eigenvectors of H,. The point is
simply that ¥;* and H,¥;* are odd in x, so we can restrict eq. (B.8) to the odd
x-parity sector where it is non-singular. It is then easily written as a matrix equation
in our Rayleigh-Ritz basis, and solved. Eq. (B.4) was calculated using up to 351
basis vectors and w, = w, ~ 2.0.

Next we discuss the semiclassical analysis. The perturbative ground state wave
function in the well at X = +1 must be combined with one at X= —1, and an
energy split appears between the even and odd x-parity combinations. Energies will
thus be classified by the x-parity and y-parity, with the notation E (¥-Parity}y-parity)
Perturbatively one has E**= E~*= E *. The result for the ground-state energy split
obtained in ref. [7] was

AE=(E*"*—E™ %)
=2g”|C(g)exp(—mg ' +eog /), (B.9)
(note the typing error in eq. (5.45) of ref. [7]). Here all corrections are absorbed into

the definition of C(g), and ¢, is the lowest order perturbative energy, calculated
from (B.4) to be &, =1im,_, g~ *?E*=0.87959730... . As in sect. 6 we rewrite this
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Fig. 13. The Rayleigh-Ritz results for the asymptotics of the single-well wave function as defined in eq.
(B.12).

equation as
bia
AE=(1+f"(g)) '2g%3|C|%xp 2—g(E+++ E *—1)], (B.10)

where f’(g) —» 0 as g— 0, and C is the coefficient of the asymptotic form of the
perturbative wave function along the vacuum valley y = 0 (eq. (5.46), ref. [7]):

C= lim C(x),
(2x)"” )
C(x)= W—exp(%(Zx— 280)3/2)/(1)) Yy (x, y)e ™. (B.11)

We must thus evaluate ¥,(x, y) to high accuracy and apply the above projection.
As in the SU(2) case of ref. [4], we cannot explicitly take the x — oo limit because
the tail of the wave function is inaccurate. However, for large enough x we expect
C(x) to be almost constant, and the point where this occurs can be shifted to
smaller x by including analytic corrections to the asymptotic form divided out in
(B.11). Thus in fig. 13 we plot

B(x)=C(x)/h(x), (B.12)
where h(x) is asymptotically 1 and satisfies

1 42 1
e — x4
2dx? X7 T6x2

h(x)=¢eyh(x). (B.13)

We see B(x) indeed stabilises rapidly to a constant value, until numerical inaccu-



J. Koller, P. van Baal / Gauge theory 59

TABLE 11
The Rayleigh-Ritz results for the toy model. f”(g) is defined in eq. (B.13)
and E* are given in eq. (B.4)

g ETET EC-ET [Ug JEUYET) EN®  ET E(®)

0.09 0.17487575 0.17487654 0.00000079 -—0.0014 0.17487615 0.17494313 0.37724 0.3772703
0.1 0.18729819 0.18730214 0.00000395 -0.0158 0.18730016 0.18739695 0.40437 0.4044183
0.2 0.2890532 0.2933515 0.0043107 -0.0016 0.29120238 0.29239189 0.635790 0.6363695
0.25 0.3256065 0.3414209 0.0158144 0.0327  0.33351369  0.33590255 0.733062 0.7347050
0.3 0.3540396 0.3901446 0.0361050 0.0842  0.3720921 0.37522430 0.820595 0.8251487
0.35 0.3770573  0.4407058 0.0636485 0.1483  0.4088816 0.41104178 0.898229 0.9091703
04 03969677 0.4935331 0.0965654 0.2193  0.4452504 0.44381425 0.965727 0.9877553
0.45 0.4152398 0.5487022 0.1334624 0.2935  0.4819710 0.47386862 1.023656 1.0616055
0.5 0.4327243 0.6061322 0.1734079 0.3685  0.5194283 0.50144809 1.073428 1.1312429

racy causes it to drop to zero. We thus obtain
C =0.4083 + 0.0002 (B.14)

from the plateau in fig. 13, which is data from the perturbative variational
calculation with 351 basis vectors and w, =w, = 2.

We wish now to compare these predictions with a Rayleigh-Ritz analysis of the
full hamiltonian, eq. (B.1). Note how this differs from the perturbative calculation,
where we applied the Rayleigh-Ritz method to only the single well hamiltonian H,
in eq. (B.3). As a basis we again took products of harmonic oscillator eigenfunctions
in the x and y directions.

Despite the fact that our x-oscillators are centered at X =0 (whereas at smail g
values the wave functions are localised around X = +1) we could obtain accurate
results even at low values of g. This was achieved by tuning w, and w, separately,
and we never required more than 231 basis vectors. Table 11 lists the results,
showing the number of digits we believe to be significant, although no rigorous
bounds were calculated for this toy model. We find very good agreement with the
perturbative and semiclassical predictions, and observe that f(g) = O(AE(g)), just
as anticipated in sect. 6. Actually, f”(g) is remarkably well fitted by f"(g)=
2.3AE(g), given that uncertainty in C leads to an error of +0.001 in f”(g). This
therefore substantiates our claim in sect. 6 that the perturbative factor f(g) in the
semiclassical formula has no O(g??) term and is determined by the transverse
fluctuation along the pinchon, leading to O(g) corrections for SU(2) and O(A E(g))
corrections for the toy model. Table 11 also shows that {(E**+ E~") and E*~
agree with the perturbative predictions E *(g) of eq. (B.4) to high precision.

We end this appendix with a short discussion of the Monte Carlo analysis we
carried out for the toy model. We follow in detail the approach described in refs.
{38, 39]. The time step size (a) varied from 0.2 to 0.5, and the number of sites (N ) in
the time direction was usually 10 000. For some runs we took N =1000 to
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Fig. 14. Rayleigh-Ritz and Monte Carlo results for the toy-model energies: (a) AE=E~*— E*™,
(®) E** and (¢) E*".

investigate temperature dependence. We averaged over N, = 100 ensembles, sam-
pling occurring every 5th sweep through the time lattice. We used n = 5 Metropolis
hits per site, and intervals |[x — x| <4, and |y —y’| <4 were chosen for updat-
ing, with 4, =4 =2 gva . Finally, N,= 500 sweeps were performed before starting
to sample, to ensure thermalisation. To check on thermalisation, we calculated (x),
(y), {x*) and (p?) for each ensemble, and demanded that (x) and (y) be close
to zero and that (x*) and { y*) remain constant apart from statistical fluctuations.
At low values of g (= 0.25) we had to increase to N= 2000 to ensure this, which
was achieved by taking the last path of a run as input for the next, at the same
values of the parameters. We also did a “cooling run,” starting at g=0.5 and
decreasing in steps of 0.05 to g= 0.25, by taking the last path of the run at g as
input for the run at g — 0.5. For this cooling run we took a =0.5.

In fig. 14 we compare our Monte Carlo results for (a): AE=E~"—E**, (b):
E** and (c¢): AE’'=E*"— E** with Rayleigh-Ritz variational results. The energy
difference AE = E~"— E** was measured with the time correlation {x(0)x(¢)) ~
e 2E* The ground-state energy E** follows from the virial theorem [38,39]
E*"={(2x*-1)}x?>-1)y?), and the energy difference AE'=E*"— E** was
measured using the time correlation (y(0)y(¢)) ~e 4%"% Since we expect sys-
tematic errors to be much larger than statistical errors, fig. 14 displays the range of
values obtained by varying a, N and N, within the above-mentioned bounds. At
lower g values, thermalisation problems are clearly visible in the energy differences,
whereas for the ground-state energy, finite-a corrections will dominate. The discus-
sion of Shuryak and Zhirov [39] on these errors is appropriate.

Figs. 15 and 16 give the scatter plots for g = 0.25 and g= 0.5 (¢ = 0.5, N =10 000,
and N, = 2000 and 500 respectively). One can clearly see the onset of tunneling.
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Fig. 15. Scatter plot for the toy-model at g=0.25. We took the last path based on N = 10 000, ie.
(X(1,), Y(1,)) for i =1 to 10 000.
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Fig. 16. Scatter plot for the toy-model at g = 0.5. We took the last path based on N =10 000, i.e. (X(¢,),
Y(¢;)) for i =1 to 10 000.
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Appendix C

In this appendix we show how to obtain analytic expressions for the plane-wave
radial matrix elements

Fe(n7 n,7 la i’ J) = /(;Wdrr2+2i+2jjl(kr(:zr)jl+2j(kft(’e,)l+2jr) . (Cl)

The momenta k() depend on the electric flux (e), and are essentially roots of either
the spherical Bessel function j, or of its derivative:

j(mk®) =0,

d
g;(zjn,l(z)) z=7rkf,0)1= 0. (C-2)
We first simplify by defining
JOw. 20,2 q) = [ apy oo 2i(my) iz (29). (C3)
so that
Fi(n, w1, p,q) =m0 24f (k) mk )00 1, P, ). (C4)

The integral in eq. (C.3) can be calculated analytically for arbitrary w and z. The
method is iterative, and we will briefly outline the algorithm.

For p=4¢=0, | any integer, the integral is known [19], being given by the
Lommel formula

foldyyzj,(zy)j,(wy) _ jl(z)(wj1(w))2' —jIZ(W)(Z]}(Z))' . (C.5)

zZ°—w

Using the recursion relations for spherical Bessel functions, one can derive the
following recursion formulae for f:

2

flw,z,1+1, p+1,0) = (zw)’ (zw) ' f(w, z,1, p,0), (C.6a)
dwd:z
d/1d
f(w,z,1,p,q+1)=z""2a+1 — ——[z#(”z‘”f(w,z,l,p,q)]). (C.6b)
dz\z dz

In principle, eqgs. (C.5), (C.6a) and (C.6b) determine the integrals, but they can be
turned into a more convenient form as follows. Note that (although it is not
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obvious) the ansatz
f(W’ z,1,p, Q) =4, 'jl(W)jl+2q(z) + 4, 'J'I(W)(Zj1+2q(z))/
+Ay- (wj,(w))'j,”q(z) +Ap- (Wj,(w))’(zj,+2q(z))’, (C.7)

is preserved under (C.6), with A, , rational in w, z, /, p, g. Thus we obtain recursion
relations for the rational functions, which can be iterated using an algebraic
manipulation programme.

To obtain matrix elements, one has to substitute the relevant values for w and z,
which further simplifies the result, since all except one of the terms in (C.7) then
vanishes. However, a complication is that the coefficients 4, involve 1 /(z? — w?),
so that to set w=_z for the diagonal elements one first has to expand to some
reasonably high order in (w — z) and let the pole terms cancel (which they do). A
further simplification is that when one normalises the wave functions, even the
factors of j, and its derivative drop out of the final answer, so the radial matrix
elements are rational functions of the k{°.

We are grateful to J. Vermaseren, who developed a very quick computer al-
gorithm, that enabled us to confirm our results independently. Of course, one can
also evaluate (C.3) numerically as a check, which we have done.

We do not discuss radial matrix elements in the harmonic oscillator case, since in
the case with a boundary at = we had to resort to numerical integration, whereas
with the boundary at infinity, we believe the simple results must be well known.
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