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Inspired by the Savvidy-Copenhagen vacuum picture, we present a calculation of the 
chromomagnetic energy of pure SU(2) gauge fields defined on a torus. We avoid the perturbative 
instability of the Savvidy state by introducing magnetic flux througJa 't Hooft's twisted boundary 
conditions. The energy as a function of magnetic flux and volume is calculated to two-loop order. 
Nonperturbative effects related to tunneling processes are briefly discussed. We consider this 
calculation as a first step in a program aimed at exhibiting possible instabilities of the perturbative 
vacuum. 

1. Introduction 

Low energy hadron phenomenology using Q C D  based models, bJgh-Q 2 jet 

physics, and numerical simulations using lattice cutoff  and Monte  Carlo techniques, 

all indicate that  Q C D  correctly describes the strong interaction. It is a commonly  
accepted conjecture that the infrared singularities encountered in perturbat ion 

theory are cu t  off  by  nonperturbative effects that give rise to color confinement  and 

chiral symmet ry  breaking [1]. 

Monte  Carlo  calculations based on a lattice regularization have been successfully 
used to obta in  predictions from Q C D  using only the scale parameter  as input. We 
do believe, however, that analytical methods are equally necessary in order to 
unders tand  the physical mechanism behind the nonperturbative effects. I t  is fair to 

say that  a lmost  all analytical approaches are based on assuming an instability of the 
perturbat ive vacuum. We can mention the various variational approaches [2], the 

saddle point  approximations around instantons [3], monopoles  [4] or constant  
ch romomagne t i c  fields [5], and the glueball condensate picture [6]. To establish the 

presence of  such an instability (often referred to as "condensat ion")  in an unam- 
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biguous and calculable way, is obviously an important step towards a better 
understanding of nonperturbative QCD. 

In this work we combine the ideas of the Savvidy-Copenhagen vacuum [5, 7] with 
the techniques used to describe Yang-Mills fields on a torus [8], to develop a 
framework for studying chromomagnetic instabilities. 

This paper is organized as follows. In sect. 2 we briefly discuss the Copenhagen 
vacuum and argue that the analysis on the torus is a good alternative. Sect. 3 gives 
the one-loop result for the vacuum energy as a function of volume and magnetic 
flux (for convenience we restrict ourselves to SU(2) and symmetric tori), and sect. 4 
contains the corresponding two-loop calculation for nonzero magnetic flux. In sect. 
5, we outline the use of a nonlocal gauge fixing procedure, that allows us to extend 
the calculation to zero magnetic flux. Sect. 6 describes various nonperturbative 
contributions related to tunneling, and in passing we also give the glueball mass to 
lowest order in the coupling constant for tori with nonzero magnetic flux. We 
conclude with some speculations about possible chromomagnetic instabilities of the 
perturbative vacuum. 

2. Removing the perturbative instabilities 

The so called Savvidy vacuum [5] is based on a (strong) background chro- 
momagnetic field. Because of the strong color Zeeman effect, this state is energeti- 
cally favoured over the perturbative vacuum. Early on, however, it was realized by 
Nielsen and Olesen [7] that this state is perturbatively unstable. They went on to 
demonstrate, that by exciting the "unstable mode" (or tachyon) in a periodic 
structure, the energy density could be lowered even further. Because of the periodic- 
ity it was not too surprising that the configurations found in the Copenhagen 
vacuum satisfied 't Hooft's twisted periodic boundary conditions [8]. To be specific, 
the so called ~3 configurations, which minimize the energy within the ansatz based 
on the tachyonic mode, satisfy twisted boundary conditions in the (x, y)  plane and 
are independent of z [9]. If we introduce periodic boundary conditions in the 
z-direction as well, the Copenhagen ansatz becomes equivalent to a gauge field 
configuration on the torus. 

The twisted boundary conditions are given by, 

Ak( x + a 0) ) = ~-~j( X ) A k (  X)~-~; I (x )  -- iI2j( x)ak~2j-l( x ) ,  (1) 

where a 0), j = 1, 2, 3, are the lattice vectors spanning a lattice A (the torus is given 
by T 3 = R3/A) .  A consistency ("cocycle") condition requires, 

$2j(x +a(k))g2k(x) =exp(i2~rnjk/N)12k(x +aO))~2j(x),  (2) 

where the element of the center of the group SU(N) (present because of the absence 
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of fields in the fundamental representation) labels the quantized magnetic flux, 

I 
m i = ~e i jkn jk ,  (3) 

which is a Z N vector, i.e. m i is integer modulo N. One can always choose a gauge 
where the gauge functions ("cocycles") $2j(x) are coordinate independent, leaving a 
local gauge invariance ~2(x) such that the cocycles Dj(x), ( j = 1 , 2 , 3 )  remain 
invariant (see sect. 6). 

There are severe problems with the Savvidy state since it is unstable for arbitrary 
weak background fields. One instability is removed by exciting the unstable mode, 
but it is not clear whether the resulting ~3 state suffers from further instabilities 
[10], Modulo these problems, however, the Savvidy and Copenhagen vacua do 
provide examples of states with an energy density lower than the perturbative 
vacuum. 

In our approach, we are so far not able to demonstrate any instability of the 
perturbative vacuum, but we shall argue that further work along these lines might 
succeed in doing so. The great advantage of our method is that the states we 
consider, i.e. SU(2) Yang-Mills theory on a torus, or equivalently, a periodic array 
of Z 2 magnetic fluxes filling all space, are free from instabilities and amenable to 
rigorous analytical methods. Instead of varying the background magnetic field, we 
use the size L of the torus as an expansion parameter. (This was discussed in detail 
for zero magnetic flux in ref. [llb].) For small L, perturbation theory [12] (including 
tunneling effects [11]) can be used and allows us to study the physics as a function 
of L and compare with Monte Carlo results. This, we believe, is also the appropriate 
method for demonstrating chromomagnetic instabilities. 

3. The vacuum energy to one-loop 

It is clear that A k = 0 satisfies any of the boundary conditions of eq. (1) for 
~ fd  x Tr[Fjk(x) ]. The energy constant I2j and zero classical energy [13] V ( A ) =  1 3 2 

associated to the presence of magnetic flux consequently resembles a Casimir energy 
in being purely quantum mechanical in origin. For nonzero magnetic flux, m ,  we 
use Feynman gauge* and have the standard gauge fixed lagrangian, with ghost field 
6. In a gauge where all ~2j are constant, the boundary conditions read, 

At~(x  + Lek) = ~ 2 k ( m ) A ~ ( x ) ~ 2 ; l ( m ) ,  (4a) 

xO(x + = (4b) 

* For zero magnetic flux a modification will be discussed later. 
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with 

Iak(0,0,0 ) = {12,12,12}, 

/2k(0,0,1 ) = {iol, i%,12},  

Iak(0,1,1 ) = {i%, i%, io2}, 

12,(1,1,1) = {i%, i%, io3}, (5) 

where o, are the Pauli matrices. The fluxes ((0, 0, 1), (0, 1, 0), (1, 0, 0)} and 
{(0,1,1),(1,0,1),(1,1,0)} are degenerate in energy because of the cubic symmetry. 

Expanding the fields in Fourier modes, gives a convenient way of realizing the 
boundary conditions, eq. (4), in terms of momenta 

1 a ____ , ( 6 a )  = a A~,(k)exp i - - ( k  +)~(a)(m))'x A.  ooA , A (x) £ L 
k ~ Z  3 

l_a ~lj(a) l~(a)(x) = E +(")(k)exp i - ~ ( k + X ( " ) ( m ) ) . x  , (6b) l P ~  2 V a T  , 

k E Z  3 

with X(")(m) explicitly given by, 

2X(")(0,0,0) = ((0,0,0) ,  (0,0,0),  (0 ,0 ,0)},  

2k(")(0,0,1) = { (0 ,1 ,0) , (1 ,0 ,0) , (1 ,1 ,0)} ,  

2)~(a)(O, 1,1) = ((0,1,1),  (1,0,0), (1 ,1 ,1)) ,  

2X(a)(1,1,1) = ( (0 ,1 ,1 ) , (1 ,0 ,1 ) , (1 ,1 ,0 )} .  (6c) 

We see that for m 4= 0, color and space-time indices mix, since the translational 
invariance is realized only modulo a gauge transformation. For SU(N) the situation 
is slightly more complicated, but choosing an appropriate basis for the Lie algebra 
dictated by the twist [14], one obtains similar simple results. Note that it is 
important for consistency that Ea(-1)n,,k(a)(m) is integer for any n ~ Z 3, which 
implies that momentum is conserved at the vertices as required by translational 
invariance. 

We have not yet specified the time dependence. If we are only interested in 
perturbative results, where the electric flux (see sect. 6 for details) plays no role, we 
can either take continuous timelike momenta, or assume periodicity in time over a 
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distance t = T giving 
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P('~)=( 2~rk°T ' L2~r(k+X(~)(m))) " 

It is well known that one can calculate the one-loop effective potential in two 
ways. Either as a Casimir energy summing up the zero point energies for the 
individual modes in the harmonic approximation, or by calculating a functional 
determinant for the inverse propagator after removing the zero eigenvalues. The 
inverse propagator is just 0 2, and consequently has a zero mode only for the case of 
zero magnetic flux. This is the by now well known quartic infrared problem which 
we will handle by modifying the gauge fixing for m = 0 as described in detail in ref. 
[15]. The lowest order one-loop result is, however, not influenced by this and we get 

27r 3 
E l ( m ) =  T E E IIk + k(a)(m)l l  • (7) 

a=l  k~X 3 

Techniques similar to those employed in ref. [12] give (up to an irrelevant constant), 

1 3 
E1(m)= ~-~ ~., V(2~rk(~)(m)), 

a= l  

2 ein • C 

g(c) = 'tr2 5 0  (n2) - - - ' ~  = 2 ~ 112~rk + C][ + const. (8) 
= k~Z 3 

The easiest way to evaluate these sums is by using the results of ref. [16] which 
yields, 

V(O, O, O) = - 2a (4)/ ,r  2, 

V(*r,O,O) = V(O, ~r,O) = V(O,O, ~r) = - 2b(4)/~r 2, 

V(rr, ~r,O) = V(rr,O, ~r) = V(O, ~r, ~r) = - 2c(4)/~r 2, 

where 

V(~r, 7r, or) = - 2d(4)/~r 2 , 

1 
a ( 2 s ) =  Y'~ 

n~O ( n 2 )  "'  

b(2s)= E (-1)"1 

(9) 

( _  1)",+"2 (_ l )n ,+"2  +" , 
c(2s)  = £ (n2) ,  , d (2s)  = £ (n2) ,  (10) 

n * O  n ~ O  
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Fig. 1. The graphs for the Feynman rules of eqs. (11) and (23). 

4. The  two-loop result for m *: 0 

Next we calculate the two-loop contribution for m ¢ 0, where the propagator is 
not plagued by zero modes. This two-loop result will be proportional to g2/L .  Since 
the one-loop result is g-independent, the two-loop result should be finite and we 
need not consider counterterms. The Feynman rules are standard and given in fig. 1 
(all momenta are flowing into the vertices) with the ~ given by 

~'rl = gEabc[ g/z=,( k(a a) - q(b, ) + g.o( q~b) _ r(C, ) 

q-gatt(r ( c ) -  k~a))]~4(q(b) q- k (a) q- r(O),  

~#'2 = -- ig2 [ e~bee~de( g.og.p - g.pg.o ) + I~ace~bde( gttvgo# -- g.og.o ) 

q-eadeecbe(g~og.o-- g..goo)] 

X ~ 4 ( p ( b ) +  k (a) "l- r (d) + q(~)), 

Y/'3 = geabcr~(C)84( k(a) + q(b) + r(C) ) ,  

i~ab 

= (k<°))  2 + i ~ '  

iS,,ag~,~ 
= (k~°~) ~ + i ~  (11) 
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p(b) ~ p(b) 

= = i / k (o) \~ 

X / 

Fig. 2. The graphs for the two-loop diagrams occurnng in eqs. (12), (13) and (24). 

The two-loop vacuum energy is now the sum of all connected two-loop diagrams*. 
Since dumbell diagrams give zero (color and/or momentum conservation) we only 
need to consider one-particle irreducible diagrams. Hence we have (see fig. 2 for the 
graphs of ~i) 

E2(m ) = i ( 1 ~  , - 1~ 2 "}- 1 , ~ 3 )  . (12) 

Adding the first two diagrams yields, 

- i g  2 [(k (a) + p(b))2 + (p(b))2 + 2(k(a))q 

~ - ½ ~ 2 =  2T-~ k,p ~ a*b*c ~ [(k('O+p(b')2+iel[(p(b))2+ielI(k(a))2+ie] 

- 2ig 2 1) 1 ) (13) 
~p (p(b))2+ie " 

We only performed algebraic manipulations to obtain this result, which is easily 
seen to be proportional to the last diagram, if3, in eq. (12). Using the identity 

l i r a  l y ,  1 _ - i  (14) 
T . (2~rn/T) 2 - k  2 + ie 2[Ikll ' 

the final result for the two-loop vacuum energy for nonzero magnetic flux is 

g2 

E2(m) = ~ E W(2~rk(~)(m))W(2~rk(b)(m)), 
a ¢ b  

1 2 e i . .c  

W(C) = 4£k 112~rk + Cll ~r2 .~.o n2 ' (15) 

* For a similar calculation at finite temperature, see ref. [17]. 
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where W(2~']k (a)) can be obtained from ref. [16] by 

W(0, O, 0) = 2a (2)/rr 2, 

W(~r,0,0) = W(0, ~r,0) = W(0,0, ~r) = 2b(2)/~r 2 , 

W(~r, ~r,0) = W(~r,0, ~r) = W(0, ~r, ~r) = 2c(2)/7r 2, 

W(~r, ~r, or) = 2d(2)/~r 2 , (16) 

with a(2), b(2), c(2) and d(2) defined in eq. (10). Note that W ( C )  = 0 2 V ( C ) / 0 C 2 .  

5. The two-loop result for m = 0 

Next we discuss the case m = 0. A naive expansion in Feynman graphs yields an 
infrared divergence due to the zero momentum states. This problem was carefully 
studied by Liischer in a hamiltonian approach [12], and by one of us in a lagrangian 
approach [11,15]. The latter is convenient for calculating the vacuum energy in 
two-loop order. The procedure followed, is to integrate out all spatially nonconstant 
modes to obtain an effective lagrangian in terms of the spatially constant ones. The 
vacuum energy is then the ground state energy of the effective hamiltonian obtained 
from this effective lagrangian. Up to a constant, this effective hamiltonian was 
determined to one-loop, and to fourth order in the spatially constant vector 
potentials by Liischer, 

Her ~ = E ~o)(0) + H ' .  (17) 

The vacuum energy was calculated (in the MS scheme) by Liischer and Miinster [12] 
with the following result, 

L(E(O)- e'°)(O))= + + g %  + (18) 

The higher order terms are influenced by two-loop contributions to H ' ,  and only •4 
in this expression is scheme dependent. Hence, what remains to be determined to fix 
E(0) to O(g 8/3) is E(°)(0), which is the vacuum energy for zero external field (i.e. 
spatially constant vector potentials). 

We have already mentioned that El(°)(0), is given by eq. (8). Now we will 
demonstrate that E(°)(0), is also given by eq. (15), restricting the sum over k to 
k 4: 0. (This does yield the value of W(0, 0, 0) given in eq. (16).) Before we review the 
particular gauge fixing needed for the m = 0 case, it is obvious that integrating over 
spatially nonconstant modes leads to the same Feynman rules, except for the 
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constraint k 4:0 in the propagator and a possible nonlocal interaction [15]. The 
contribution to E20)(0) due to local interactions is still given by the diagrams of eq. 
(12), except that now one has the constraint k 4= 0, p :g 0, and k + p 4: 0. This means 
that eq. (13) is not proportional to the last diagram in eq. (12), because that diagram 
gives eq. (13) with only k 4= 0 and p 4:0 as constraints. Therefore we have 

e2(0)(0)Xo c 692 W(O) 2 12g 2 1 1 
- 64L TL 3 ~-" (k 2 + ie) (p2 + ie)" (19) 

k ,p  
k~O,p~O 

k+p=O 

Since the interactions are local, the nonlocality of the last term is of course due to 
the nonlocality of the propagator. It would therefore be highly desirable if this term 
is exactly cancelled by a nonloca! interaction. That this indeed happens can be 
considered as a significant test of our method for dealing with infrared divergences, 
without breaking gauge invariance. (A similar subtle behaviour should guarantee the 
Slavnov-Taylor identities to be satisfied identically.) 

To appreciate the cancellation we will review the procedure to deal with the 
spatially constant modes [15]. Let P be the projection on these constant modes, i.e. 

1 
PA t = ~ fT3d3xA~ ( x ) '  (20) 

and introduce the following nonlocal gauge fixing function, 

1 
X = ( 1 -  P) (O.A~+ i [PA~ ,A~] )  + -~PAo,  (21) 

which can be viewed as a background gauge [18] where the background field is 
dynamical and not inert under gauge transformations. In the process of deriving the 
ghost lagrangian one has to vary PA t as well. This mixes spatially nonconstant 
vector potentials with spatially nonconstant ghost fields, and leads to the following 
nonlocal ghost interaction (see ref. [15] for details, Q~ = (1 - P)A,) ,  

= 2g2Tr([, . Q,I p (22) 

which gives the vertex ~6 in fig. 1: 

3V" 6 = - ig 2gl~ug a cegbde ~ ( Po "}- qo + ro + SO) ~i, +s" 8q +r. (23) 
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This  ver tex gives a nonzero contr ibut ion* to Ezra)(0) 

E~ °) (0)nonloe = - l i &  4 

12g 2 

TL 3 k,t, 
k~O,p~O 

k+p=O 

There fore  the final result for E2~°)(0) becomes 

e~ '°)(0) = E~ °) (O),o~ + E~ °)(o)°o~o~ = - -  

as promised .  

1 1 

(k  2 + i e )  ( p 2 + i e )  " 

3g 2 w(0)2 ,  
32L  

6. Non-perturbative corrections 
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(24) 

(25) 

Put t ing  the one-  and two-loop results together and substi tuting the numerical  
values  for  ei, a ,  b, c, and d we find, 

LE (0, 0, 0) = - 5.025221 + 4.11672g 2/3 - 1.174516g 4/3 

+ 0.186940g 2 - 0.03148g8/3 ' 

LE(O, O, 1) = + 0.0788727 + 0.00153208g 2 , 

LE(O, 1,1)  = +0.540126 + 0.00759857g 2 , 

LE(1 ,1 ,1 )  = +0.655615 + 0.0128930g 2. (26) 

In  eq. (26), g is the running coupling constant ,  which to two-loop order  reads, 

12~r 2 6127r 2 ln ( - -  21n (AMsL) )  

g 2 ( L )  = 11 ln (AMsL ) 1331 ( l n ( A M s L ) )  2 (27) 

I t  is useful  to re-express the result in terms of Liischer 's renormal izat ion group 
invar ian t  scale pa ramete r  z defined by  [19] 

z = M , ( 0 + ) L  

= 2.2696390g 2/3 - 0.7975278g 4/3 - 0.319g 2 - 0.145g s/3 , (28) 

* Note the minus sign for the ghost loop, see graph ~4 in fig. 2. 
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T 
hJ 

i 0 

i 

! 

I 

0 1 2 
g > 

Fig. 3. Behaviour of the vacuum energies versus z as given by eqs. (29). 

where ML(0 +) is the 0 + glueball mass for zero magnetic flux, and the g2/3 
expansion is taken from ref. [12b]. We find, 

LE (0, 0, 0) = - 5.025221 + 1.813821z + 0.0528137z 2 

+0.0818z 3 + 0.1097z 4 + • . .  , 

LE(O,O, 1) = +0.0788727 + 1.310423.10-4(Z 3 + 1.054169z 4) + . - . ,  

LE(O, 1,1) = +0.540126 + 6.499225-10-4(z 3 + 1.054169z 4) + "-" , 

L E ( 1 , 1 , 1 )  = +0.655615 + 11.027705.10 4(z3 + 1.054169z 4) + - . -  . (29) 

These results are shown graphically in fig. 3, where one clearly sees that LE(O) 
increases much faster than LE(0,0,1).  However, the point of crossing will occur 
beyond z = 1, where the perturbative expansion in the zero magnetic flux sector can 

no longer be trusted due to a tunneling phenomenon described in ref. [11]. This 
tunneling lifts the degeneracy between states with different electric flux, and in the 
weak coupling approximation, the perturbative energy is decreased by half the 
energy of the electric flux (AE),  

L E ( O , O , O )  ~- t E ( 0 , 0 , 0 ) p e r  t -  1 A E "  L ,  

LA E = 0.00767z 1/2 exp( - 42.6169z- 3/2 + 34.2001z- 1/2)(1 + . . -  ) .  (30) 

The tunneling was found to set in at z -  1 (roughly where the exponent changes 
sign). We have to go beyond a semiclassical approximation to evaluate LE(O) 
including this tunneling contribution. Since the tunneling can be described in terms 
of an effective hamiltonian [11,15], with a finite (6) number of degrees of freedom, a 
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numerical calculation, presently under investigation, is feasible. Moreover, since the 
tunneling is similar to that of a double well, one expects the ground state energy 
first to go down (at the point where the tunneling becomes appreciable). At the 
same time, the ground state energies for tori with nonzero magnetic flux should 
behave smoothly as a function of z. The latter is expected from the small magnitude 
of the two-loop contribution as compared with the zero magnetic flux case. 

To understand this better, we need to analyze the sources of nonperturbative 
contributions. This is easily done in the hamiltonian formalism, where we expand 
around the minimum of the classical potential V ( A )  to obtain perturbation theory. 
Even after having removed the homotopically trivial gauge transformations, this 
minimum is in general not unique. Since the minimum is given by a curvature free 
potential (F~j = 0), disconnected minima are related by homotopically nontrivial 
gauge transformations. Tunneling between these vacua is dominated by nonzero 
action configurations. On a torus the homotopy is determined by k ~ Z 3 and ~, ~ Z, 
i.e. by the twist in the time direction and the winding number respectively. The 
associated action is [20] 

s =  8~21,, + ½k'ml. (31) 

Nonzero action (for all v) requires k • m ~ 0 mod 2. This leaves us with those vacua 
that allow for zero action tunneling. This can only occur if the homotopically 
nontrivial gauge transformation (necessarily with k .m = 0rood2) has its image 
point in the same path-connected vacuum component as the original point. 

This allows for two possibilities: 
(i) There are isolated configurations that are left invariant by homotopically 

nontrivial gauge transformations. This happens at m 4: 0. 
(ii) There are points that are not fixed under these gauge transformations, in 

which case the connected components have nonzero dimension. This is realized for 
m = 0 and was discussed at great length in previous publications [11,15]. In this case 
the vacuum valley acquires an induced potential, which has only isolated minima 
(one can show that the vacuum valley has points fixed under homotopically 
nontrivial gauge transformations, but these points correspond to maxima in the 
induced potential). 

The situation is pictorially represented in fig. 4. 
Tunneling through a quantum induced barrier sets in much earlier than through a 

classical potential barrier. The first one has a potential height of O(g°), the second 
of O(g-2).  On the other hand, zero action solutions are also present for m :g 0, but 
are apparently not associated with tunneling since the classical vacuum is isolated. 
From the fact that this classical vacuum remains fixed under the homotopically 
nontrivial gauge transformations, it follows that the neighborhood of this vacuum is 
mapped onto itself and the perturbative wave functionals form representations of 
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V 

t 

,,/e ",~,~" *'- >x~/ / e  

---*- A 

V 

t 

- - -~A 

Fig. 4. Schematic representation of the classical potential V(A) for zero and nonzero magnetic flux. The 
dashed potential for zero magnetic flux is quantum induced. The lines with arrows indicate homotopi- 

cally nontrivial gauge transformations, For the dashed lines the associated classical action is zero. 

the h o m o t o p y  group of these transformations. The ground state obviously corre- 

sponds  to the trivial representation. 

Let  us now be more explicit about  these representations (see ref. [21] for an 

extensive discussion). An  allowed gauge t ransformation satisfies the relation 

~2( x + L e j )  = ( - 1 )  kq2j~2( x ) [ 2 ;  ' , (32) 

which is equivalent to say that aA satisfies the same boundary  conditions as A. 
k ~ Z 3 is the twist in the time direction which (ignoring the winding number  [20]) 

classifies the homotopy  group. We will denote a representative of  the h o m o t o p y  

group by O k. Physical states form representations of this homotopy  group and are 
classified by  the electric flux e ~ Z 3, 

[~2kllq,,) --- ei '~"klg,,). (33) 

The  gauge transformations U k, which leave the vacuum A = 0 invariant, are clearly 

constant  and satisfy, 

U k = ( - - 1 ) k J ~ j U k ~  1 . (34) 

I t  is well k n o w n  that this equation has solutions iff k • m = 0 mod 2, consistent with 

the zero act ion requirement. Furthermore,  they generate a subgroup S m of the 
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Fig. 5. The low-lying spectrum for magnetic flux (0,0,1). The fine structure due to tunneling, 
2 2 , , . 

A E = O(e-(4,~ /g )) is not to scale. We have gwen the elecmc flux for the lowest levels. 

homotopy group, and those representations which are identical when restricted to 
S m are degenerate in perturbation theory. To be specific, we will choose m = (0, 0,1) 
(see also ref. [llb]).  For this we have S,, = Z~ = (k  ~ Z231k3 = 0) and consequently 
the electric fluxes which only differ in e3, will be perturbatively degenerate. The 
generators of S,, can easily be written down using eq. (4) 

U(o,o,o) = 1 2 ,  

U(1,0,0) = io2, 

U(0,1,0) = i o l ,  

U(1,1,0 ) ~-- io 3 . ( 3 5 )  

The action of U k on the Fourier coefficients in eq. (5) is also easily implemented and 
translates into multiplication with _+ 1. 

The spectrum obtained by using the hamiltonian formalism in the Coulomb gauge 
(compare to ref. [12b]) is depicted in fig. 5, where we normalized to E ( e  = O) = O. 

The remaining degeneracy is due to the subgroup of the cubic group 0(3, Z)  which 
leaves m fixed, and the first excited state represents the mass gap (m = 2~r /L) .  The 
fine structure is due to tunneling, dominated by nonzero action and yields A E 0c 
e -(4'~2/g2). Similar results hold for the other nonzero magnetic fluxes. Hence we find 
for nonzero magnetic flux, energies of electric flux and glueball masses proportional 
to 1 / L  [ l lb] .  

In conclusion we have established that for m 4:0 and e = 0 the ground state 
energy gets a nonperturbative contribution due to tunneling associated with nonzero 
action solutions and can hence be fully ignored in the region where the tunneling 
becomes significant for m = 0. It is therefore likely that we can settle whether any 
"level crossing" occurs within the context of a perturbative calculation (i.e. using 
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the perturbative expression for the effective hamiltonian to calculate the vacuum 
energy for m = 0 beyond the semiclassical approximation). 

The issue of level crossing can also be analyzed numerically by means of Monte 
Carlo methods, using lattices elongated along the temporal direction. The twisted 
boundary condition in the short, or spacial, directions can be imposed as described 
in ref. [22]. Monte Carlo calculations for symmetric lattices and nonzero twists have 
been performed a long time ago [23], whereas elongated lattices were employed 
recently in the zero magnetic flux sector [24]. 

7. Discussion 

In this section, we discuss how to rigorously demonstrate the presence of 
instabilities in the perturbative vacuum, and make some speculations about the 
nature of the QCD ground state. 

First, if a level crossing (of the type discussed at the end of the preceding 
paragraph) occurs, then there is a possibility that it is energetically favourable for a 
box with m = 0 to "split" into two boxes with m :~ 0 by self-imposing suitable 
boundary conditions. It is an open question whether or not this will occur at a z 
value where our calculational methods are applicable (we also need to extend our 
analysis to asymmetric toil). If, however, this happens, we will have an unambigu- 
ous demonstration of the instability of the perturbative m = 0 vacuum for a torus. 

Any speculation about the real QCD vacuum is of course much more dangerous. 
We can only calculate energy differences between periodic structures with different 
Z 2 magnetic fluxes, but we have no way to demonstrate that such states should be 
favoured to start with*. In spite of this we shall end with few comments and 
speculations about the QCD ground state. 

Hopefully, it was made clear in the previous section that it is important to get a 
good understanding of the various tunneling contributions. Besides the analytically 
well understood Z 2 symmetry restoring transition around z = 1, ref. [ l lb]  also 
presented some numerical evidence for a transition around z = 4.6. We will now 
give three arguments in favour for such a second transition, where the region 
beyond z = 4.6 will be assumed to be the confining phase. This has clear implica- 
tions for the chromomagnetic instability as discussed below. 

The first argument was given in ref. [ l lb] and is based on the Nambu-Goto string 
which supposedly describes the long distance features of QCD, but which neces- 
sarily breaks down around z --- 4.6, due to the tachyon [25]. 

The second reason, is based on finite temperature intuition, which suggests that a 
deconfining transition should occur when one of the space-time directions become 
short. If we then simply take L = 1 / T  c as the size where a similar transition should 
occur in our finite volume calculations, we again obtain z = M(O+) /Tc  = 4.6. For 

* This would amount to prove that self-imposition of (twisted) periodic boundary conditions would be 
dynamically favoured. 
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this we have used ¢ o / M ( O  +)=  0.3 [26, 27] and T J  ~ - =  0.74 [27, 28]*. Since much 
of the finite temperature intuition is based on the absolute value of the Polyakov 
loop Wt = ½lTr[ifoTdtAo(t)][, it is worthwhile to point out how its analogue in the 
finite volume case, ~ = ½lTr[ifoLdXAl(X)][ behaves. Obviously one has (W~) = 1 
for z < 1, whereas for z > 4.6 (assuming this to be the confining region) (W~) = 0. 
However, although it changes rapidly around z = 1 (and possibly around z = 4.6) 
there is a continuous and smooth behaviour in between these values. This whole 
region is therefore absent in the finite temperature analogue (Wt), which will be 
roughly one for T > T c and zero for T < T c. 

The third reason for a second transition is based on the assumption that nonzero 
action tunneling should be "visible" in graphs of physical quantities as a function 
of z. Since such nonzero action tunneling sets in so much later than the quantum 
induced one, z = 4.6 could be a likely candidate. 

In the light of the above observations, we will end with some speculations. We 
expect the formation of vacuum domains to be associated with a transition driven 
by chromomagnetic instabilities at z = 1. For the same arguments as in the original 
Copenhagen vacuum [7], we also need a transition to a "liquid" phase (this among 
other things restores rotational invariance), which is assumed to be confining. It is 
tempting to identify the transition at z = 4.6 discussed above, with the "melting" of 
the chromomagnetic domain structure. Of course, we cannot at this point rule out 
other scenarios. For example, the domain formation could coincide with the 
transition to the "liquid" phase, in which case it is doubtful whether the picture is of 
any use at all. 

Having said this, let us now discuss the possible nature of the domains. The 
simplest possibility is that the domains which "melt"  are just the Z 2 fluxes 
discussed earlier. However, large Nc studies [30] and the approximate scaling of the 
adjoint string tension at moderate distances [31] indicate that objects with nontrivial 
Z N structure are not relevant for understanding the confining region. Thus it is 
quite possible that the domains carry no net magnetic flux, but rather are bound 
states of N (or a multiple of N)  magnetic fluxes. Hence, for SU(2) we might think 
in terms of magnetic dipole formation. The presence of an instability of the 
perturbative torus vacuum against splitting, as discussed above, could be an 
indication of formation of such magnetically neutral domains. 

We thank Janos Polonyi for discussions and P.v.B. acknowledges a fruitful 
interaction with Andreas Gocksch, Julius Kuti and Apoorva Patel, on the nature of 
the deconfining transition. We are especially grateful to Jeff Greensite for sharing 
his insights about confinement and offering us valuable criticism. 

* That these two different arguments give the same value for z, underlines the relevance of the string 
picture in the description of the finite temperature phase transitions for SU(2) gauge theory [25, 29]. 
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