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We examine the asymptotic behaviour of the ground state tunnel-splitting of the multidimen- 
sional double well, with non-quadratic minima, where instanton techniques are inapplicable. We 
apply the recently developed path decomposition expansion for two model problems; the 
important effects of the transverse degrees of freedom are explored. In particular we discuss 
tunneling in the presences of a vacuum valley, which describes features exhibited in SU(2) gauge 
theories in a finite volume. 

I. Introduction 

The ground state tunnel-splitting of the multidimensional symmetric double well 
has been a subject of extensive study in recent years [1-3], since it serves as a model 
for a large range of non-perturbative physical phenomena. If g is the dimensionless 
quantum parameter of order h, the leading order contribution in g, called the 
semiclassical approximation, was evaluated using the instanton formalism [1], the 
multidimensional WKB [2], or the functional methods of ref. [3]. In all these cases 
the potentials were limited to ones with quadratic minima. 

This paper will discuss a unified approach to derive the asymptotic expression for 
multidimensional tunneling problems and bounds on the error. We will concentrate 
on situations where instanton techniques breakdown and discuss two particular 
types of multidimensional problems, for each of which we solve one example 
explicitly. These problems are inspired by SU(N) gauge fields on a torus [4]. Solving 
the tunneling problems for this case allows one to calculate the energy of electric 
flux in weak coupling. 

The first problem concerns a double-cone potential in 3 dimensions: 
( 0 0 2 8 2 3 2  ) 

H = - ½g2 + - - + - -  + [ ( [ x [ - 1 )  2+y2+z211/2 .  (1.1) 
Oy 2 OZ 2 
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Standard instanton techniques break down in this example for two reasons. First the 
instanton path, still well defined, only spends a short time near the classical minima 
x = ( + 1,0, 0), secondly the transverse fluctuations diverge while approaching these 
minima. The expression for the ground state energy splitting will turn out to be: 

A E =  AgS/3exp( - Sg 1 + Teg 1/3)(1 + O ( g l / ' ) ) ,  (1.2) 

where A, S, T and ~ are constants to be specified later. This result exhibits two 
rather interesting deviations from the canonical result for potentials with quadratic 
minima. First the correction (exp(T~g ~/3)) to the leading result ( e x p ( - S / g ) )  is 
exponential, which is related to the fact that the instanton path only spends a short 
time near the classical minima. This feature is also present for analogous one-dimen- 
sional problems [5]. We will discuss one such one-dimensional problem, namely the 
W-potential: 

g2 02 
H 2 0 x  2 + l l x l - 1 1 .  (1.3) 

(Note the equality of this potential with that of eq. (1.1) along the x-axis.) It gives 
rise to an energy splitting: 

k E =  ~g2/3exp( -  Sg-  l + T~g--1/' ) . (1.4) 

This brings us to the second deviation of eq. (1.2) from the canonical result, that is 
the powers of g in ~E.  Although it would be too naive to expect the canonical 
result g l /2  one would expect the same power as in eq. (1.4). That is, g2/3 instead of 
g5/3. We will show how to understand this deviation in terms of transverse 
fluctuations which, as remarked before, diverge when approaching the minima. 

The second problem we will analyse in detail, is that of a vacuum valley not 
related to a symmetry of the hamiltonian. This means that the shape of the potential 
transverse to the vacuum valley depends on the parameters describing this valley. 
Generically, but not generally, the potential is quadratic in the transverse direction. 
Quantizing the transverse degrees of freedom leads to an effective potential V 0 along 
the vacuum valley. V 0 is just the zero-point energy for the transverse fluctuations; 
by assumption depending on the parameters of the vacuum valley. If V 0 is again of 
a double-well shape we would have reduced the problem to a lower dimensional 
one, but this is only true if the effective potential V 0 leads to an accurate 
approximation for the full problem. To verify this, one has to invoke the adiabatic 
approximation. A situation where this approximation will break down is when the 
potential is quadratic in the transverse direction except for isolated points, where it 
is quartic. The important observation is that for the aforementioned problems of 
gauge fields on a torus, the presence of a vacuum valley is related to the topology of 
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the torus and cannot be avoided. On the other hand, the nature of gauge groups 

guarantees the presence of quartic points, once a vacuum valley is present. 
The simplest toy model which exhibits a vacuum valley with quartic points is: 

02 02 
H =  _½g2 

~7x2  + - -  3y 2 

1 
+ - - ( x  2 -  1)2y2; (1.5) 

2g z 

it is identically zero along the x-axis and the zero-point energy for the quadratic 
fluctuations in the y-direction is given by: 

V 0 ( x )  = 1 2 - 11.  ( 1 . 6 )  

As mentioned before, the breakdown of the adiabatic approximation (close to 
x = + 1) prevents one from calculating the ground state energy splitting using the 
effective one-dimensional hamiltonian: 

g2 02 
H -  2 cgx ~ + V°(x)"  (1.7) 

Eq. (1.7) would lead to: 

A E = A , g Z / 3 e x p ( _ S , g  1 "b Ttetg 1/3). (1.8) 

Also, a direct application of the multidimensional WKB method is not possible 
since the classically allowed region is connected for all positive energies. Neverthe- 
less we will show how one still can do a semiclassical computation yielding a result: 

A E = . ~ ' g 2 / 3 e x p ( - S ' g  1+ T,~g-1/3), (1.9) 

where only A' and ~' differ from A' and e' in eq. (1.8) determined by the 
one-dimensional problem of eq. (1.7)..~' and ~' are determined by the perturbative 
part of the full two-dimensional problem. 

There are other places in field theory where vacuum valleys (flat potentials) arose, 
namely in supersymmetric models. The analogue of V 0 vanishes in all orders in 
perturbation theory due to (unbroken) supersymmetry, which is a blessing for the 
hierarchy and cosmological constant problem [6], but a curse for the evaluation of 
the Witten index in supersymmetric QCD on a torus [7]*. Our techniques are not 
applicable to these problems. 

* A problem still not resolved satisfactorily, is associated with the fact that in weak-coupling (for zero 
magnetic field) one cannot separate the spatially constant diagonal modes from the off-diagonal ones 
when expanding around A = 0. 
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We will use the recently developed path decomposition expansion (PDX) [8] for 
the two model problems, eqs. (1.1) and (1.5). The PDX gives in theory an expression 
for the energy split, accurate up to exponential corrections and possibly provides a 
framework in which our results can be made rigorous in the sense of ref. [3]. In 
practical applications the PDX provides a natural and straightforward expression 
for the connection formula, but is further equivalent to a suitable generalization of 
the WKB methods of ref. [2]. 

The rest of this paper is organized as follows: sect. 2 describes the PDX method 
and results, and the role of the decomposition surfaces in controlling the higher 
order corrections. Sect. 3 applies this method, as a simple pedagogical exercise, to 
the one-dimensional quartic and " W "  potential (V(x)  = I[xl - I I)- Sect. 4 derives 
and discusses the result for the 3-dimensional double-cone potential (1.1) and sect. 5 
gives a careful analysis for the 2-dimensional vacuum valley (1.5). We conclude with 
a brief summary of the results. An appendix contains some details on the error 
estimates. This paper replaces an earlier version entitled: "Transverse fluctuations 
in multidimensional tunneling: non-adiabatic effects and induced potentials". 

2. The path decomposition expansion [8] 

The path decomposition expansion (PDX) is a Green function identity, which 
relates the solutions of the Schr~dinger equation on the full configuration space, to 
the restricted Green functions, which are defined on parts of configuration space. 
These restricted Green functions satisfy Dirichlet boundary conditions on the 
so-called decomposition surfaces which break up configuration space. This enables 
one to use separate, and different, approximation schemes for each region and then 
use the PDX as essentially a multidimensional connection formula. In ref. [8] the 
semiclassical evaluation of the tunnel-splitting was carried out by a multiple 
steepest-descent approximation for the decomposition surface integrals (see eq. 
(2.2)) of the wave functions and the restricted Green function defined in the 
classically forbidden region. The latter was determined by the semiclassical ap- 
proximation (cmp. refs. [2] and [9]). Here we shall briefly review only the necessary 
steps leading to the determination of the ground state energy splitting A(g) for the 
hamiltonian H with a symmetric non-negative potential V: 

g2 02 

H 2 Ox 2 + V ( x )  

V(-]-¢I) = 0 , ¢1 = (1,0,0 . . . .  ). (2.1) 

V has the reflection symmetries V(Pix )=  V(x), i = 1 , 2  . . . .  N, where Pix= 
(x 1 . . . . .  - x  i . . . .  xN) and we assume that V(x),  for each fixed x 1, is minimal at 
x 2 = x 3 . . . . .  x u = 0. This implies that the tunneling path (instanton) lies on the 
x~ axis. A straight tunneling path greatly facilitates the calculation of the transverse 



A. A uerbach, P. van Baal / Multidimensional tunneling 

Well 1 

21 

_ . . . .  W e l l 2  _~ 

Fonnelipg Poth 

~_Transition re.9"o n_: ~ 

I I 
T- 2 

X 

97 

Fig. 1. The elements of the path decomposition expansion for a double-well potential. The wave 
functions +(') are defined in the regions "Well i" ;  the shaded areas correspond to the classically allowed 

regions. The contribution to the transition Green function is dominated by the tunneling path. 

fluctuations. The applications we have in mind do satisfy this property, whereas a 
generalization to curved tunneling paths is straightforward [8], without altering the 
main conclusions of this paper. 

We begin by breaking configuration space into two overlapping "wells" bounded 
by surfaces 2 x and 22, each of which contains one minimum and the barrier region 
(see fig. 1). We define restricted states and energies (~i) ,  E~ i)) i =  1,2, such that 
~b(~ ) satisfies vanishing (i.e. Dirichlet) boundary conditions on 22 (similarly ~,~2) 
vanishes on Z1). We choose 21 = {xix 1 = - ( 1 -  d)} and 2 2 =  {xlx 1 = ( 1 -  d)} 

= (1) _ E~2). This and thus ~2 PI21 . This implies to all orders in g a degeneracy, E, - 
degeneracy is lifted only by tunneling, which is given by the coupling between the 
two restricted hamiltonians and is expressed in terms of the transition Green 
function G tr, which vanishes both on Z,  and 22 and satisfies the SchrSdinger 
equation in the transition region (see fig. 1): 

M,,,,,(F_.) _¼g2f f (1) (2, O Gtr( E).  (2.2) = d&xdx2y~,  ( x ) ~ , , ( y ) * × O . l  .2 , x , y ;  

In this equation d z x  is the surface element of 2 i and 0,, its normal derivative. G tr 
is the energy Green function defined by the sum of paths, restricted to the transition 
region, which excludes the minima. To be able to apply the standard semiclassical 
techniques to evaluate G tr one uses the method of images [10] to find: 

G t r ( x , y ; E ) =  • ( -1)kG"(Rkx ,  y ; E ) ,  
k ~ Z  

(2.3) 
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where we defined the k th multiple image of x by: 

R,x= (2k(1 - d)  + ( - 1 ) * x , -  xl)e I + x (2.4) 

and G u is the unrestricted Green function obtained by taking as potential VU(x) 
the periodic extension of V(x): 

VU(x + 2k(1 - d)e,) = VU(x),  VU(x)  = V(x) for Ixll ~ (1 - d ) .  

(2.5) 

To verify if G tr in eq. (2.2) satisfies the proper boundary conditions one uses the 
properties 

Ou(P~ x, PlY; E )  = CU(x, y; e ) ,  

OU( R,x, RiY; E) = GU(x, Ri+,y; E ). (2.6) 

Furthermore one fixes an overall constant by requiring that G tr satisfies the 
SchrSdinger equation with the appropriate a-function singularity. 

The E-dependent hamiltonian on the overcomplete basis { ~bl, ~) + ~b~ ) } is given by: 

H(E) = ( gM(E)] (2.7) 
gM+(e) 1' 

w i t h  E C2) = E ~) = diag(E0 (1), E[ ~), E2 (1) . . . .  ). By choosing d such that E << V for the 
whole transition region, we can guarantee that M(E) is exponentially small in g 
and to first order in Moo(E(o 1)) - e x p ( -  cons t /g)  we find for the energy split of the 
even and odd ground states: 

ZX(g) = 2glMoo( E~o') I. (2.8) 

Substituting (2.3) in (2.2) we find 

A(g )  = 2g 3 f fd~xd~2yq/o'(x)q/o2)(y)*O.O.G"(x,y;E) (2.9) 

up to exponentially small relative errors. A factor 4 w.r.t, eq. (2.2) is familiar from 
hard wall boundary conditions and also reflects the fact that in eq. (2.3) only 4 
terms are of the same order; the other terms are exponentially suppressed. 

The power of the PDX technique lies in that it allows us to calculate q,(d ) and G u 
using separate approximations. G u is only accurately known deep enough in the 
transition region, that is for d large enough. ~b(0 i) and E0 ") are only known up to a 
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few orders in perturbation theory, which in particular means for d too large, that 
q/0 ° ~, is not accurately described by the truncated perturbative series. In the 
examples, we will show that there exists an optimal choice of d (or a > 0, with 
d = gO), for which the relative error in A(g) due to the above described approxima- 
tions is a positive power of g, giving an upper bound for the actual higher order 
corrections. In particular we will truncate the perturbative expansion for ~b~0 i) and 
Eo u~ at its lowest non-trivial order. To be precise, let (4,t0 °1, E0 t°l) be the ground state 
for the lowest order single-well potential Vi01, given by the power-law behaviour of 
V near its minimum: 

V[0l(x ) = lim r ~V(rx - ex), (2.10) 
r ~ 0  

with fl such that V[o I is neither zero nor infinite*. We can replace ~b 0 in eq. (2.9) by 
+~ol if we can choose d such that, for ~1 small and perpendicular to e 1, the 
single-well error given by: 

esw - ln(~ol)((d _ 1)e 1 + ~l)/~b[o°](del + "q)) (2.11) 

vanishes as some power of g. For the appropriate choice of d =  g~ the relative 
errors esc in the semiclassial approximation for O., O,GU(x, y; E) and the steepest- 
descent approximations in the surface integrals should also vanish as some power 
of g. 

3. One-dimensional examples 

As a purely pedagogical exercise we will demonstrate the PDX for some simple 
one-dimensional examples. For the ones we will discuss, A(g) can actually be 
determined up to exponential corrections, but this is in general not possible for 
non-separable higher dimensional problems. Thus we want to use these simple 
examples to explain the method of the error estimates. 

The semiclassical expression for a one-dimensional potential with decomposition 
points at +(1 - d)  is given by [8]: 

A(g)  = 2g~2(V(1 - d)  - Eo)I q/ol)(1 - d)12 

Xexp(--~fdlqd~/2(V(x)--Eo) dx) (1  + O(Gc)) .  (3.1) 

Eq. (3.1) is equivalent to using the WKB method with the correct connection 

* We assume tha t  at  least  the ground state wave funct ion for V is localized, o therways  the not ion  of 
t unne l i ng  is i l l-defined. 
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formula (depending on fl, see eq. (2.10)). One can easily verify the well known 
results of, for example the double harmonic oscillator [11] V(x) = ½(Ixl - 1)2. 

Let us examine the quartic double-well potential V(x)= l tx2 ~, - 1) 2 in somewhat 
more detail. The single-well potential is given by VEol(X ) = ~ 2 ~x and when we 
substitute x = - 1 + g~/22 we find: 

)(102 ) 
H = g 2 0x  2 q- ~r()~) .~ g 2 0.,~ 2 + ~.~2 __ ½gl/2~3 q._ lg.~4 . (3 .2)  

This determines the perturbative series 

i.e. 

E o  = + o ( g 2 ) ,  @o(X)  = g 1/4q"/'-1/4e-1/2A2 -~- 0 ( g 3 / 4 ) ,  (3 .3 )  

E0[01 1 = = g (3.4) 

As was discussed by de Vega et al. [2] we choose d such that d -  dg-1/2 >> 1, to 
ensure accuracy of the WKB approximation (in this case giving O(d -2) relative 
errors), and d3gt/2=d3g-1 << 1 so that the potential can be approximated by 

Viol(X ). Hence one can choose in this problem d = g" with ~ in between ~ and ½. In 
the appendix we argue that this indeed implies control over the error in A(g). We 
will consider the general situation specified by the positive parameters fl and ~, (cf. 
eq. (2.10)) such that: 

V ( - 1  + x )  = Ixl'a(1 + O(Ixl~')). (3.5) 

(An overall constant is irrelevant in our discussion and will always be put equal 
to 1.) 

Let us give here an heuristic argument. For distances large compared with the 
classical turning point and small w.r.t, the decomposition surface at 1 -  d, ~1) 

behaves as (£c d the classical turning point): 

) 
- 

This g-dependent constant C enters in the expression for A(g) and continuity of 
C(g) in g = 0 would give the required result. To make sense, C(O) should corre- 
spond to the constant C [01 defined in a similar way for the single-well potential. The 
main reason to worry about the validity of this argument is of course that the only 
(obviously) information we have is that f(l~b(t)(x)] 2 - ]~b[°](x)[E)dx --* 0 for g ~ 0, 
allowing for relative errors growing exponentially in the tail of the wave function. 
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The appendix will basically quantify our intuition and we derive the bound 
O(gd -~+ 2)/2) + O(g-ld ~+1+~/2) for esc + esw and CI°l/C(g) - 1. 

For the quartic double-well d = gZ/5 yields an upperbound of esc + e~w = gl/5 for 
the total relative error, which suffices to claim control over higher order corrections. 
Note that the actual higher order correction is O(g) [1]; our discussion did not aim 
at reproducing this but rather to provide an analysis which can easily be generalized 
to more complicated situations, especially where instanton techniques are not 
available. 

It is also instructive for comparison with the multidimensional problems in the 
subsequent sections, to solve the tunneling problem for the " W "  potential given by: 

Vw(x) = I lx l  - 11.  ( 3 . 7 )  

In this case (+~o ~), Eo ~'~) and (~kt0 °1, E0 I°1) coincide (perturbatively) and ~p~o °l is given by 
the Airy function Ai(x) [12] with E0 t°l = 2-1/3z'og2/3 , where z0(= 1.018...) is the 
first zero of A i ' ( - x ) .  We find easily: 

2 - 4/3g 2/3 
Aw (g ) - -  ~rzrAi~-z---?) 6 1+ Z~27/6g 1/3)( 1 + O ( g l / 3 ) ) ,  (3.8) 

which can be verified by writing down an exact transcendental equation for 
E and expanding in g to the relevant order. The W-potential provides an 
example where the instanton technique breaks down; it would predict A ( g ) =  
Agl/2exp(_ ~f~g-1). The term of order g 1/3 in the exponent of eq. (3.8) comes 
from g-lEofl_l(2V(s))-a/2ds, which is related to the time duration of the tunneling 
solution. It converges for potentials with Vto I - Ixl ~ and 0 </3 < 2, whereas for/3 1' 2 
it becomes logarithmically divergent explaining the extra power g 1/2 in A(g) for 
quadratic minima [5]. Since for these non-quadratic minima (0 </3 < 2) the classical 
paths do not spend an infinite time in the minima regions, the dilute gas approxima- 
tion of the standard instanton methods will breakdown. 

Finally for later purpose we consider a slight modification of the W-potential: 

V ( x )  = 1 2 5Ix - I I. (3.9) 

This has VEol(X ) = Ix[ and the rescaled hamiltonian is obtained by putting x = - 1  
+ g2/3S¢, yielding: 

H=g2/3 (  21 09~ zO 2 _1_ i.~ - ~g2/3.~21)_ , (3.10) 

from which one can estimate the errors esw + esc to be O(gd 3/2 --F g-ldS/2); hence 
we choose d = gl/2 yielding esw + esc = gl/4, although the actual higher order term 
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will most certainly be O(gl/3), like in (3.8). In this case the result for A(g) is: 

a ( g ) = g 2 / 3  
2 - 4/3 

~rz6Ai(-z6)iexp(-'~Trg ' + 2 1/3"l'fZ;g-1/3) X (1 + O(g~)) ,  (3.11) 

with ¼ < x ~< {. Note that the prefactor is the same as for eq (3.8). 

4. The double-cone problem 

The 3-dimensional double-cone potential is given by: 

VDc(X ) = [ ( [ x t l -  1) 2 + x 2 + x2] 1/2 (4.1) 

Along the tunneling path (minimum action path: - 1 < x 1 < 1, x 2 = X 3 = 0) we find 
the same barrier as for the W-potential. However, the transverse degrees x 2 and x3, 
are not separable in the Schr6dinger equation. We will be able to solve explicitly the 
transverse fluctuation equations, which enter the semiclassical approximation. If the 
adiabatic fluctuation approximation (AFA) [8] would be applicable these transverse 
fluctuations would lead to a O(g) correction of the potential. This would only 
modify the prefactor in comparing A for the double cone and the " W "  potential. 
But for the double cone the AFA turns out to be wrong, as we demonstrate below. 

We use the results of ref. [8] to evaluate ADc(g): 

ADc(g ) = 2g~/2(V((1- d)el ) -  Eo)I ~p~°l(gel)12 

1 
×exp[-gfalf:J(2(V(sea)-Eo)ds]A(d)(l+O(g~)), (4.2) 

where ~p[o °] is the ground state for the "single-cone" potential V[o](X ) = Ix[: 

21/6Ai(ZW3g 2/3(1x]- Eoi°])) 

4,[0°1 (x)  = gl/3(a~r)l/2Ai, ( - z0)[x] (4.3) 

Here Zo( = 2.338... ) is the first zero of A i ( -  x) and Eo [°1 = 2-1/3zog2/3 (equal to the 
perturbative part of Eo~°). The contribution from the transverse degrees of freedom 
(x 2 and x3) are contained in A(d), given by: 

A(d) = 2~rg[0(T ) +C(a)q(T)] 1 (4.4) 

The fluctuation q(t) is a solution of the "stability equation" (cf l t )= (d/dt)q(t)): 

02V 
= = ( 4 . 5 )  
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with the initial conditions: 

q(0) = 1, 

x(t) 
motion: 

103 

o2 I 
q(O) = q/' (d)  = l  g-~olim - gff~x2Z ln([ ~V to°] (x) I) x=del ~X[2/d. (4.6) 

is the classical path x(t)= x(t)e r which obeys the euclidean equations of 

~= #(V(xe,)- Co), (4.7) 

with the boundary conditions 

x(O) = d -  1, x (T)  = 1 - d, (4.8) 

where T is obtained from eq. (4.7): 

ds 

T= d-1 (2(V(se , ) -Eo)  f ,  a . (4.9) 

We will drop the E o dependence since we will only need A(d) to leading order 
(introducing an extra relative error of O(g 2/3) in ADc(g ), which is irrelevant). 

The DC potential provides an example of a rapidly varying transverse frequency: 

/22(t) = 2(t o + ~ r - l t -  1r[)  ~, 

,0= 2v~-d, T = 2 ( v ~ - t 0 ) .  (4.10) 

The parameter which governs the adiabatic approximation, 1~2~2 -21 = 2-~/2 is not 
small and we need the exact solution to eq. (4.5) to evaluate A(d). We find: 

t (1 + ,~to) 2, t ~ ~T, 
q ( t ) =  i ~ d _ 3 / 2 ( l + ( T _ t ) / t o  ) t - ~ ( l + ( T - t ) / t o )  2, t>~+T. 

(4.11) 

Using eqs. (4.4) and (4.6) we obtain (up to 0(g2/3)): 

A (d)  = ~Trv~- d 2g. (4.12) 

The final result for ADc(g ) then becomes: 

21/6 
)2exp( 4 /~g  1 + 2 7 / 6 Z o g - 1 / 3 ) × ( l + O ( g l / 3 ) ) .  ADc(g ) = g5/3 8~rai(-zo 

(4.13) 
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The extra power of g, relative to the result for the W-potential (3.7), is therefore due 
to the breakdown of the adiabatic approximation for the fluctuation equation. 

Note that (4.13) is d-independent up to the displayed order, which is a con- 
sistency check on our approximations. In many cases a three-dimensional potential 
is spherically symmetric at its minima; for these potentials it is then useful to note 
that always A ( d )  = const gd 2. This will be proven in a future publication. For these 

spherically symmetric Viol(X), q~ to°](x) = (1/I  x l) ¢ to°l(I x l) and hence we see that the 
d 2 in A ( d )  cancels against the explicit 1 / d  2 in Iq, to°l(deOI 2. 

5. The vacuum valley problem 

The following problem deals with a case where the transverse fluctuations 
determine the exponential contribution to the tunnel-splitting. We will study the 
following two-dimensional hamiltonian as the simplest example: 

/ 4  = - _ _  + + x 2 - 1 ) 2 y  2 ( 5 . 1 )  
Ox 2 

The essential features of this toy model are the vacuum valley at y = 0 and the 
breakdown of the quadratic approximation for the transverse direction (y)  at 
distinctive points in this vacuum valley (namely at x = _+ 1). This model exhibits 
certain features of gauge fields on a torus [4]. 

For g ~ 0 the potential reproduces in the classical case the constraint y = 0, 
leaving a free motion in the x-direction. It is well known that in quantum 
mechanics, the dynamics depend on the form of the constraining potential [13]. The 
easiest way to see this is to derive the effective potential along the vacuum valley in 
the adiabatic approximation, 

V o ( x )  = ' 2  ~lx - 11, (5.2) 

by "integrating out" the y-coordinates. This potential has two degenerate minima at 
x = + 1, and we expect a non-perturbative splitting of the even and odd ground 
state energies due to tunneling through this effective potential barrier. 

From the V-shape singularity of V 0 at x = _+ 1 one sees that the adiabatic 
approximation will breakdown sufficiently close of these points and V o cannot be 
used to derive the single well ground state energy and wave function in lowest order. 
Nevertheless it does indicate that the perturbative ground state is obtained by 
expanding the potential in eq. (5.1) around x -- _+ 1, y = 0. The single-well potential 
is given by 

1/"[o I = 2g-2x2y 2 (5.3) 
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and the rescaled single-well hamiltonian (with x = - 1  + g2/32c, 

comes: 

y = g 2/3~ ) 
105 

be- 

H = g 2/3 
032 032 

1 

- -  ~ - ~  + 2 ) 2  
q-- 2)~2~ 2 -- 2g2/33~3) 2 q- ~c,4/3~-4{'~2 

2 0  ~ d '  (5.4) 

The hamiltonian -12(82/03~2q-82/0y2)q-2.~2) 2 has a discrete spectrum with 

localized wave functions [14]. 
In contrast, if we would use the hamiltonian 

(o2 o2) 4t, 2 H~ = - lg2 ~ + _ _  + 1)2 q_ a2) y2, 
Oy z (5.5) 

the effective potential in the adiabatic approximation would be completely regular: 
1 2 V0(x; a)  = ~ / ( x  - 1) 2 + a 2 , and the whole calculation of A(g), up to the order we 

are interested in, reduces to a one-dimensional problem for the hamiltonian 

g2 02 

H =  2 ax 2 + V°(x; a ) .  (5.6) 

The aim of the present discussion is to show that when the adiabatic approximation 
breaks down near the perturbative regions the exponential contribution to A(g) is 
still governed by the adiabatically approximated effective hamiltonian along the 
vacuum valley; which in the present case becomes: 

_ g 2  02 

Had 2 Ox 2 + ~ l x 2 -  11' (5.7) 

but one needs to use the full two-dimensional wave function and energy to compute 
the prefactor. Essential is that our analysis will also provide control over the error 
due to the breakdown of the adiabatic approximation. 

We will still choose the decomposition surfaces as in fig. 1, but the transition 
region will always contain part of the classically allowed region for E > 0. Hence, a 
naive semiclassical approximation for G tr is impossible. But the adiabatic approxi- 

mation will be applicable in the transition region and the larger we choose d the 
better the approximation becomes. Our derivation therefore stays as close as 
possible to the notion of an effective potential V 0 by writing the hamiltonian in a 
mixed "transverse energy" and coordinate representation: 

( 12 o _ A , m ( x )  + 8 , ,mr , (x ) .  n n m ( X )  = __ ½g2 ~nm~ x (5.8) 
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The wave function q,(x, y) is expressed in this mixed representation by the 
expansion: 

(n) (n) ~b(x, y) = Y'A~ (x)xtq(Y),  (5.9) 
n 

where (") X Exl (Y) are the "frozen-x" normalized eigenfunctions for the hamiltonian H, 
i.e. we define: 

_ g 2  02 1 _ 112 21~(n)  (n) 
2 -t- ~ X2 *1 ? ] a l x l ( Y ) =  Vn(x)XIxl(Y) . (5.10) 2 Oy -e, ( 

Finally, the antisymmetric matrix A,,m(X ), playing the role of a "gauge field" [15], is 
given by: 

, 0  (m) (n) A,~(x)= fxlxl(Y) ~xXtxl(Y)dY" (5.11) 

Note that Vo(x) in eq. (5.10) coincides with the adiabatic approximation of the 
effective potential. 

Next we want to compute the transition Green function which, as in sect. 2, can 
be expressed in an unrestricted Green function by extending V,(x), A,~(x) and 
XII~{(Y) periodically in x. G u will have the following path integral form: 

I J0 ] fo T(½22+E)dt K(y ,y ' , f x ( t ) } ) .  GU(x, x', E) = ~dT f"(r)="'Dxexp 
x(O) = x 

(5.12) 

The kernel or propagator K is given by: 

[:c( K(y, y', {x( t )} )  = f>,(r)=>, Dyexp ~ 2  . . . .  dt . (5.13) 
"v(o)=y 2g 2 

This is purely quadratic in y for our simple toy model and actually allows for an 
"exact" solution [17], to which we will come back further on. In the mixed 
representation we have: 

, (m), , e ) x N ( y ) ,  G.,,,(x, x', E) = f dydy  Xtxq (Y )GU( x, x'; ("~ (5.14a) 

~°, , , ({x( ,)})= f ~,,~,,'-<'>* <"> - ~ - y  ,,~,(T)j(y')K(y, y'; {x(')})Xr,,o>1(Y) 

(5.14b) 
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Note  that Gin,, satisfies the equation: 

I:Im. ( x ) a . k  ( x ,  x '  ; E )  = - gS.,k8 ( x - x '  ) , 
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(5.15) 

where the hat denotes the above described periodic extension. It is defined indepen- 

dently of the path integral representation. 
Substituting (5.9), (5.10) and (5.14) in eq. (2.9) gives the following expression for 

3(g): 

A ( g )  = 2 g 3 l e O ( o " ) ( x ) e o ( o ' ) ( x ' ) * D , k ( x ) D , , , ( x ' ) G ~ , ( x  , x ' ;  Eo) ] , (5.16) 

with x = - x '  = 1 - d, E 0 = Eo (x) = E0 ~2) and D m , ( x  ) the covariant derivative: 

O 
O , , m ( X ) = ~ n m ~ x  - A .... ( x ) .  (5 .17)  

The aim is to show that in eq. (5.16) only the n = m = k = l = 0 term survives and 

that Goo(X, x ' ;  Eo)  is determined by /~a~ in eq. (5.7). We want to be careful and 
keep track of the errors involved, and will give two separate accounts. The first is 

heuristic and based on analyzing the situation for eq. (5.5) with a 4= 0. The second 
discusses the exact evaluation of K [17]. We will also discuss a relation with the 
adiabatic theorem, without elaborating on it in detail. 

Let us note that we can treat the hamiltonian of eq. (5.5) in exactly the same way, 
now with V,, and A,, ,  depending on a. It is actually not hard to explicitly calculate 
these quantities: 

Vn(x;  a )  = (n  4- l )~ / (x2  - 1) 2 4- a 2 , 

x(x2-a) 
A .... (x; a)= 2[(Y71~-2+a2 ] ((n(n- 1)-a._2,,.- ~m(m- 1)8m_2,, ,  ) . (5.18) 

One could ask for no better illustration for the breakdown of the adiabatic 

approximat ion when a -- 0. In that case Anm(X; 0) becomes infinite at x = + 1. It is 
therefore impossible to obtain perturbative results from an adiabatic approximation. 

To  see this most dramatically, let us consider a =g 0 and make a weak coupling 

expansion. The perturbative expansion for E 0 is given by 

E0 (a )  = l S a + g / 2 v ~ a  . . . . . . .  ½ a ( l + v ~ g a  3/2+ ) ,  (5.19) 

which behaves distinctly different from the result for a = 0, obtained from eq. (5.4); 

Eo(0  ) = E0g 2/3 4- 0 ( g 4 / 3 )  . (5 .20)  
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Another way of phrasing the same problem is: one cannot interchange the a ~ 0 
and g ~ 0 limits. 

The proper expansion parameter in eq. (5.17) is ga -3/2, which becomes bad for 
a --* 0, hence we should identify en~ = ga 3/2 as the error due to the breakdown of 
the adiabatic approximation. For the case a =~ 0 it is thus reasonable to expect the 
following result: 

a ( g ;  a ) =  2g[q¢o°)(1- d; a)[2~/2( Vo(1- d; a ) -  Eo(a))  

X e x p ( - g  lfjl~lddx~/2(Vo(x;a)-Eo(a)) ) 

X(1 +O(ga 3/2)+O(gd 2al/2)). (5.21) 

(O(gd-2a x/2) is the relative error due to the semiclassical approximation.) Since this 
involves (through eq. (5.14)) only V n and An, . for Ix 2 -  1] >_ d, these functions for 
a = 0 behave as if a = d, This then would yield the following result for the 
hamiltonian of eq. (5.1): 

A(g )  = 2g[O~o°)(1 - d)12~/2(Vo(1 - d)  - Eo) 

 exp(. 'fj x d j2t o. - ot)t +ot    '2tt 
We will now give a more careful derivation and again (for illustrative purposes) 

consider the hamiltonian of eq. (5.5), with arbitrary a. Hence we evaluate (go:(t) = 
I x ( t ) 2 -  11): 

f ] , = [v,T,=,, ,  ± r T , ,  .2 ,~ : ( , )y2)  
K(y,y , (w(t )})  -)i(o)=.v D y e x p [ g J o  stY - dt , 

= ,~(0), ~ ' =  ,~(T) ,  x = x (0 ) ,  x ' =  x ( r ) .  (5.23) 

The result [17] can be formulated in terms of the solution s(t) of the equation: 

~(t) + ~ 2 ( t ) s ( t )  - ~ 2 s  ' ( t )  = 0 ,  

s(O) = 1, ~(0) = 0 .  (5.24) 

This equation is equivalent to the complex equation: 

fi(t) +w2(t)u(t) = 0 ,  u(0) = 1, h(0) = i ~ ,  (5.25) 
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where u(t) can be expressed in terms of s(t) by: 

u( t ) = s( t )exp( i~T( t ) ) , 

"r(t) = fotS 2 ( t ' ) d / ' .  (5.26) 

If we introduce the following parameters: 

T= ~(r ) ,  c = s (T) ,  ~ = (~'/~)1/2c, 

d 
b = d-7 [In s ( t ) ]  ,=r .  (5.27) 

one finally gets [17]: 

( ~ )1/2 
K(y ,  y' ,  {o~(t)}) = 2vrcgs~n(~T) j exp(iby'2/2g) 

[ }l X exp 2g s in(~T)  {((Y'/C)2 + Y 2 ) c ° s ( ~ T )  - 2y(y ' / c )  

= c - 1 /2exp(  iby'2/2 g ) ~:~ ( y, y' /c;  T ) .  ( 5 . 2 8 )  

In here, K~o(z, z'; T) is the harmonic oscillator propagator for fixed ~0. One can 
therefore derive the following identity: 

fK(y, y', ( ~ ( t ) } ) X l ~{ ( y ) dy= exp ( - i ( 2n  + 1)½~f )  

Xexp(iby'2/2g)~ 1/2Xl~)l(y'/~ ). (5.29) 

be, the r.h.s, is normalized to 1. We can now easily compute As it should 
K,,,,,(( x(0}): 

with: 

K. , . ( ( x ( t ) } )  = e x p ( -  i(2n + 1)~T)Pm.( (x ( t ) }  ) , 

P . , . ( ( x ( , ) } )  - 
2 (n+m)/2 0¢ 

(n!m!O~r) 1/2 f ~dzHm(z)H"(z/cle-XZ'- '  

(5.30) 

X = ½(1 + ~-2 -- i b / ~ ' ) .  (5.31) 
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Before we continue, we should investigate the expressions for b, ~ and T more 
closely. 

If we exhibit the implicit g-dependence of ¢0 by defining: 

v( t )  = gco(t), ~ = g ~ ,  ~' = g~ ' ,  (5.32) 

then we can solve s(t)  iteratively: 

[~2(t ) g2~,,(,)] ,/4 
s .+1 ( , )=  [ ~2 + ~2s.(,~ . (5.33) 

This establishes the expansion for the various parameters; to lowest order one finds: 

~ f =  l/~vo(x(,))dt + o(~), 
g~o 

b 
- - = O ( e ) , -  - ~ = 1 + 0 ( e 2 ) , -  - 

X 7 X / 

gb g .~(x2-  1) 

e = t/--T = ( ( x 2 1 ) 2 + a 2 ) 3 / 2  . (5.34) 

We leave it to the true perfectionist to evaluate Pm,,({x(t)}) exactly by using 
generating function techniques. We will be satisfied with the following result: 

Poo({X( t ) } )=[½~(  1 + ~  2 ib/~a,)] 1/2 

P,,, = 0 for n + m odd, (5.35) 

which is exact. Furthermore we have the estimates: 

P, , , , ( {x( t )} )  = Poo({X(t)})2n+l(1 + nO(e2)),  

Pn+2i, )2,,+12/( (n + 2i)[ ,+(= poo({x(,)} 
1/2 

O( e' ) , (5.361 

It is important to observe that for any (x(t)}" 

lim Pnm( { X( t ) } ) = 6 ..... (5.37) 
g ~ O  

but this convergence is far from uniform; we will come back to this in a moment. 
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We have from eqs. (5.12), (5.13), (5.14), and (5.30): 

G,,,,,(x, x'; F.o) = [ ~ d : r  [x'T~=X'Dx 
" 0  ~ x ( O )  = . , :  

t,l l x e x p  ~o - - x , 

where 

i T 

lim Wm,({x( t )}  ) = 6 , , , .  (5.39) 
g ~ 0  

For Wm,({x(t)}) the same remarks w.r.t, convergence can be made as for 
P.,,,((x(t)}). 

Obviously for a 4= 0 eq. (5.34) will lead to ~ ~< O(ga-3/2). For a = 0 and d such 

that V o ( 1 - d )  >>E 0 (note that V , ( x ) >  Vo(x)) we can use a steepest-descent 
approximat ion for each m and n in eq. (5.38), and because In Wm, is a power series 
correction in g to the action ~_k 2 -  V,,(x), the saddle point can be obtained by a 
series expansion, where the next to leading order introduces a O(g 2) correction and 

can therefore be neglected (i.e. W",, does not upset the saddle-point approximation.) 
One now easily derives eq. (5.22). The error includes an estimate for the non-deriva- 

tive term in Do2(X' ), occurring in the expression for A(g)  (eq. (5.16)). Note that 
K .... is exponentially suppressed w.r.t. K" o for n 4: 0. The estimates for the P"o, 
rn 4= 0 guarantee that ~ , , .  0Pm0~0m)(1 -- d)  converges and is bounded by O(e). 

We will now briefly comment on the relation to the adiabatic theorem. This 
theorem studies the hamiltonian of eq. (5.10) under slow variations of its parameter  
x. We will follow the discussion of Messiah [16]. One has: 

e,,(s) = V, (x(s ) ) ,  (5.40a) 

(p~(s) = J j , ( t )  d t /g ,  (5.40b) 

d x ( s )  
K," ( s )  = exp(iO,(s))A, , , (s)exp(-iq%(s))  ds ' (5.40c) 

w , " ( s )  : w,,"({ (5.40d) 

In (5.40d) Xs(t ) simply means x(t)  restricted to the interval [0, s]. We now easily 
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derive (using eqs. (5.14)) and (5.39)): 

dW,, , (s)  

ds 
- iKm,(s )Wk, ( s  ) , Wm,(0 ) = 3 , , , .  (5.41) 

Or if one introduces [16]: 

s d x ( t )  
Fm,(s) =foeXp(i(~m(t) - ~ , ( t ) ) ) A m , ( t ) ~ d t ,  (5.42) 

we find: 

. d x ( t )  
Wm,,(s ) = 3,~, + Fmk(S)Wk,(S ) -- i f, o Fmk( t )Ak t ( t )Wl" ( t )~[  -- dt. (5.43) 

It is easily seen that A and F are not bounded matrices. 
We can therefore not apply the standard argument of ref. [16] to conclude that 

IV,,,, -- 3ran. This standard argument for bounded A guarantees uniform convergence 
of Win, to 3m,. But we have previously seen in an explicit way, that this cannot be 
true for the harmonic oscillator. However with the hindsight of convergence, eq. 

(5.43) with the standard estimates of Fro, [16], is consistent with Wren -- 3,, n = O(e). 
It should be possible to derive the properties of W,, n from eq. (5.43), but we will not 
dwell upon this here. 

From the behaviour of the Green function G u one also derives the following 
asymptotics for q¢o °). 

q S ~ o ° ) ( 1 - d ) = C ( g ) g - 1 / 6 ( d  2-2d -2Eo) -a /4exp  - g v h+2Eo ~/x 2 -  1 - 2E 0 d x ) .  

(5.44) 

The explicit power of g t/6 was extracted from the scaling behaviour as indicated 
above eq. (5.4). Combining this with eq. (5.22) yields: 

A ( g ) =  2g2/3lC(g)12exp(-½crg ' q-- Eog-2/3~)(I q- O(gd 3/2)q_ O(gl/3)). 

(5.45) 

It is now very likely that also in this case C(g) has a smooth limit for g--* 0 and 
that C - C(0) is given by the single-well problem (but we have not yet bothered to 
prove this). In conclusion one replaces C(g) in eq. (5.45) by C, where C and e 0 are 
defined by the ground state for the single-well hamiltonian (this will only introduce 
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a relative error which vanishes for g ~ 0): 
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(2x) 1/2 
C =  l i m -  

x~oc q71/4 
exp( ~(2x - 2eo) 3/2) f d y ~} Iol (x, y )e -xy2 , 

- ~ Ox---5 + ~y2 + 2x2y 2 ~[Ol(x, y)  = eo~[°l (x, y ) ,  

f[~}[Ol(x, y ) 1 2 d x d y =  1. (5.46) 

We want to stress that in many higher dimensional problems like eq. (5.46), q~[ol 
cannot be solved exactly, in which case e 0 and C have to be calculated numerically. 
Of these, e o is most easily accessible. 

We want to end this section by remarking that V o need only be known to lowest 
order in g. Our example, eq. (5.1), is special in the sense that V0= l [ ( x 2 - 1 ) [  is 
exact, which is due to the fact that y occurs quadratically in the hamiltonian. In the 
field theory terminology, the one-loop approximation for V o is exact. In general 
however we can have higher powers of y, e.g. g2V(x, y )=  2 - -  

! ( x 2  1)2y2 +y4.  In 

that case Vo(x ) = ½ [x 2 - 112 + g2/(4[x2 - 1 [) + O(g4 / lx  2 - 1 [2). If we write A(g) 
as follows: 

A(g)  = A g Y x p ( g - ' ( -  S + EoT))(1 + O(g~)) ,  (5.47) 

it is easily seen that the higher loop corrections to V 0 do not influence S, T, 7. But 
since Vt01 changes drastically, E 0 and C are rather different. 

6. Summary 

We have shown that the path decomposition expansion is well suited to handle 
tunneling problems with non-quadratic minima. When these minima are isolated 
(and in particular rotationally symmetric in lowest order) the analysis is a generali- 
zation of ref. [2] and we find in d dimensions*: 

A( g) = Ag( a 1)/2+2~/(~+2)exp(-g-lS + eoTg(t~ 2)/(~+2))(1 + O(g~)) ,  (6.1) 

where  S =  f l l ~  d x ,  r = f l _ l ( 1 / ~ ) d x  , W[o](X)= Ix[ fl, K > 0  a n d  
2 < fl < 2. Furthermore e o is the ground state energy for the single-well hamiltonian 

~0 2/3x2+ Ix[ • and A can be calculated from the transverse fluctuations and 
the asymptotics of the normalized single-well ground state wave function. For/3 1' 2 

* For the one-dimensional case part of this result (terms proportional to S and T) was derived by 
B. Simon [5]. 
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there is a discontinuity in this formula as explained previously (T diverges) and for 
13 < ~, E 0 behaves as tog ~, with v = 2f i / ( f l  + 2) < l ,  so that there will appear extra 
terms in the exponent, that can no longer be absorbed in the relative error O(g~). 

As the most important and novel result we consider the vacuum valley problem 
where the adiabatic approximation fails in the perturbative regions. We propose the 
following algorithm for evaluating Zl(g): 

(i) Calculate the l-loop effective potential in the adiabatic limit along the vacuum 
valley and suppose it is O(1), and has degenerate isolated minima. 

(ii) Calculate the ground state energy E f°l and wave function ~I01 for the 
single-well potential centered around the aforementioned minima to extract the 
constant e o and wave function a-(°)tx), where (o) • ei01~ . q, f01(x) is defined as for eqs. (5.8) and 
(5.9), but now using Vrol(X, y). x denotes the vacuum valley parameters (m in 
number). 

(iii) Calculate /~(g) for the m-dimensional hamiltonian with as potential the 
l-loop approximation for Vo(x ), but use for the energy and wave function, E 0 and 
q,}°](x), as determined from the full problem (step (ii)). 
We proved this for the particular 2-dimensional example, but are confident that a 
generalization is straightforward. 

Especially for the vacuum valley problem the path decomposition expansion is of 
significant help in separating the perturbative and tunneling contribution and 
providing the appropriate connection formula. The methods described are being 
applied [4] to SU(N) gauge fields in a finite cubic volume, where A(g) gives the 
energy of electric flux, to be used to probe a possible string tension. In that example 
the vacuum valley is 3-dimensional and the one-loop approximation for Vo(x ) is of 
the conic shape near its minima. 
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Appendix 

This appendix will deal with some of the details for the error estimates of A(g) in 
the one-dimensional case. At the end we comment on the higher dimensional 
situation. For a potential of the form of eq. (3.5) we get the following scaling 
properties 

1 + X = ~g2 / (2+B) ,  E = ~g2B/ (2+B)  

V ( x )  = gz"A2+I~)F'(2), ~ ( x )  = g x/'2+/~'~(2). (A.1) 
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For the purpose of both establishing control over the error and independence of d 

within this error we introduce a range of d-values, specified by 

d a - g~' ~< d ~< g~2 - d2 ' 0 < a 2 < %.  (A.2) 

The constraint for a x comes from requiring that d should be far inside the 
classically forbidden region: 

2 
a2 < al < • (A.3) 

2 + / 8  

A non-zero lower bound on a 2 will follow after we have discussed all the ap- 
propriate requirements. 

Wherever we do not specify a suffix (1) or [0] the expressions are supposed to be 
valid for both the single-well and restricted problems, with g sufficiently small 
(g  < go)- We will rewrite the SchriSdinger equation in a WKB inspired fashion. We 
choose ~(~)  such that u2(~) is positive definite, where: 

/./2(X) = 2(V(~)  - E + r t (~))  > Uo 2 . (A.4) 

Apart from this implicit constraint on the function ~ we further require it to be 
g-independent (for g < go) and have compact support contained in the disk D t of 
radius d 1 centered at the minima of V (and sharing the symmetries of V). As usual 
one introduces the coordinate y and wave function X(Y): 

fo ~: 
y(£c) = u (x )dx ,  (A.5) 

(A.6) 

We choose the positive root for u(x),  and X(Y) satisfies the SchrSdinger equation: 

d2x 

d y  2 - - - + ( l + 2 W ( y ) )  X=O, (A.7) 

where the bounded potential W is given by: 

1 d 2 ~  - r/ 

W =  2~/'u dy  2 U 2 "  (A.8) 

Especially for the single-well potential W is very well behaved. By choosing 
judiciously it can be made monotonic and negative definite, behaving asymptotically 
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as y 2. Therefore: 
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XI°1(Y) = C[°l(1 + O([yl -1) )e  lyt. (A.9) 

We observe that Xm(y)  cannot satisfy an identical asymptotic expression due to the 
presence of the decomposition surface 22 where the wave function has to vanish. 
However this effect will be negligible far enough removed from Z2, that is for 
d 2 << 1, which is guaranteed by a 2 > 0. We will define the equivalent of eq. (A.9) in 
terms of: 

C(t)(g) - eY(d)X°)(y(d)). (A.IO) 

Then X ( 1 ) ( y )  behaves as eq. (A.9) in the annulus D 2 - D 1. (Apart from the O(lYl 1) 
it also contains O(ly(d)l  1) corrections). It is also clear that up to exponential 
corrections all the probability of the wave function X ~1) is contained in the disk D 1 
(and certainly in the disk D 2 of radius d2). The same is obviously true for X f°]. So 
for Yo in (D2 ~1) - D[ 1)) A (D2 [°1 - D~ °1) we have due to the normalization of X: 

2 I x[ol  12 (1) 2 X(1) 2 
(A.11) 

up to exponential corrections (D o is of course the disk of radius Yo in y-space). 
This trivial observation is instrumental in concluding equality of [CI°]] 2 and 

]Cml 2. For consider the functions f±(y) defined on R + in terms of X and C by 

f ±(y) =X( +y)eY/C. (A.12) 

Then due to eqs. (A.9) and (A.10) f+(y) behaves as 1 + const /y  in D 2 - D a. The 
equation for f ±  is given by 

d ~ ± ( y )  d f ± ( y )  
+ - -  + W(±y)f+(y)= 0. (A.13) 

2 d y  2 dy  

If we can show that not only in D 2 - D 1 but in the whole of D 0, f~ l  and f 9  ) are 
bounded and coincide up to a positive power of g, then this guarantees by eq. 
(A.11) the desired result. 

Actually this is sufficient to claim control over the error for A(g) since in terms of 
C (1) o n e  easily derives 

A ( g ) =  2g2/~/(2+~)1C(1)12(1 + O(y(d) a)) 

(2fol~/2(V-E+g2lU~2+l~'rl) dx ) × exp - g (A.14) 
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and all what remains to be calculated is C [°1 from the single-well asymptotics. 
(Note: expanding the integral in powers of g, 71 will lead to a O(g) contribution due 
to its support of O ( g  2/(2+B)) in x-space - this contributes to the prefactor!) 

Let us now study solutions to eq. (A.13) more carefully. We will only consider the 
y > 0 sector, the analysis for the y < 0 sector is identical. Since X behaves asymptot- 
ically as e -+ Y, the general solution of eq. (A.13) can be written as: 

f ( y )  = clh(y ) + c2kCy ), 

lim h ( y ( g " ) )  = 1, 
g-+O 

lim e- ZY(g")k( y( g~) ) = 1. 
g--+0 

(A.15) 

(A.16) 

( dj ) u(y)= f(y),-d-fy(y ) ; 

it satisfies the first-order equation 

d u ( y )  [ 0 1 ]  (A.18) 
d ~ - A C y ) u C y ) ;  A ( y ) =  2W(y)  2 " 

Its solutions are given by: 

uCy) = ~(y)~-aCYo)uCYo) , 

h(y) 
~ ( y ) =  dh 

h-;y (y/ 

Subtracting the equation for u I°l from that for u (1) we find the following expression 
for Au = u (1) - ut°l ( A W -  W (1) - Wtm), with y <Y0: 

a u ( y )  = ~[°J(y)~Em-l(yo)aU(yo) 

[ 0AW(~.) 00]u(a)(~')d~'" (A.20) + 2fvcbt°l(y)Cbt°l(~)-' 
,,i. 

Yo 

Using the fact that the wronskian for two solutions of eq. (A.7) is constant we 
derive: 

d 
d y  (e-2ydet(~t°J(Y))) = 0 .  (A.21) 

(A.17) 

k(y) 
dk (A.19) 

Uy(y) 

Since W is regular we furthermore have that h, dh/dy, e-2Yk and e 2ydk/dy are 
bounded uniformly on D o by a g-independent constant M >  1. This will be 
sufficient to prove limg~oSUPDolfE°l(y) --f(1)(y)[ = 0. 

Let u be the vector: 
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Substituting the asymptotics for the equations we easily derive: 

de t (~[°] (y))  = 2e2y, 

and hence for y < Y0: 

(A.22) 

and leads to: 

This error is minimal for: 

2 
% -  2 + 7 + f l '  (A.29) 

e~ = e~w = O ( g V / ( 2 + r + B ) )  - 

This completes the one-dimensional analysis. 

(A.30) 

I~E°l(y)~I°l(y0) 11 __<_ 4M 2. (A.23) 

Therefore we get the following bound on Au(y <Yo): 

Since IAu(yo)[ = O(yo  1) (which also equals the relative error (es,,) in G tr due to the 

semiclassical approximation) vanishes as a positive power of g for a 2 as in eq. (A.3), 
it suffices to restrict D z such that f~'°lAW(y) [ dy vanishes (yo=Ylol(d2)). It is 
natural to further restrict d 2, such that 9[01(2 ) - 19(2) and Y[01(2) - y m ( 2 )  is small 
on D2; this guarantees the required property for f~"'IAW I dy. Recall that the 
corrections to 1~(2) are determined by 7 > 0 in eq. (3.5), this also fixes 

E(I) - E[ol ~< O(gev/(2+B) ), (1.25) 

and we leave it to the reader to verify: 

sup ]y[ol(Sc)-y(l~(.~)l<~O(gZv/(2+B)d~+l+B/2). (1.26) 
?t-E D 2 

This also bounds Jg'"IAW(y)I dy. The lower bound on ~2 is therefore 

2 
O~ 2 > (A.27) 

2 + f l + 2 7  

AS required this implies vanishing I9(d2) - I~10](d2) for fl ~< 2, to which we restrict 
ourselves in this paper. Furthermore one easily verifies that: 

IlCt0][ 2 - IC(1)121 <~Gw<~O(g-ld~ +1+l~/2) +0(gd2(1~+2)/2). (1.28) 
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In higher dimensions we will consider the case of  isolated minima, with spheri- 

cally symmetr ic  Vi01: 

V ( - e  I + x )  = [xlB(1 + O(IxlV)) .  (A.31) 

We can choose  the disks D a and D 2 similar as in the one-dimensional case, 

especially the bounds  on a~ and a 2 we choose identical. Again one can prove (use 

results of  ref. [3]) that up to exponential corrections the wave function is contained 

in the disk 0 2 . One can now show that as in the one-dimensional case: 

sup (A.32) 
3 . E D  2 

we will not  give details here. Basically one splits the wave function into a spherical 

and non-spherical  part. F rom perturbat ion theory we know that up to O(g  2~/~2+~)) 

all of  the wave function is contained in the spherical part, which than can be treated 

as in one dimension. The only thing we still have to worry about  is the surface 

integrals for the decomposi t ion surfaces, but  this is easily seen to give a relative 

error  smaller than eq. (A.32). 

In summary ,  one chooses a disk D around the min imum x --- - e  1, which contains 

the wave funct ion with probabili ty 1 up to exponential  corrections, but  is still far 

separated f rom the decomposi t ion surface $2- This disk shrinks to the minima for 

g ~ 0 in the original coordinates x, and in it the single-well and restricted wave 

funct ions satisfy the same SchriSdinger equation up to small perturbations in the 

potential .  Extract ing the exponentially decaying part  of  the wave function leaves 

one  (up to a constant  C)  with a bounded function h, which tends to 1 on the 

b o u n d a r y  o f  D. Stability of  this bounded  solution in the interior of D guarantees 

that  the difference in h tends to 0 for g ~ 0 uniformly on D, where the error is 

de te rmined  by the difference in the boundary  condit ion and (an accumulat ion of) 

the difference in the potentials. Using the fact that  both wave functions are 

normal ized to 1 also guarantees that the constants C become equal for g ~ 0. This 

than implies esw --* 0 for g ~ 0. 
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