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We present the weak coupling non-perturbative expression for the energy of 't Hooft type 
electric flux. Combining this with Liischer's perturbative scheme for the glueball mass M(0+), we 
propose a method to estimate the ratio o'/M(0+) 2, with o- the string tension. 

I. Introduction 

It is believed that pure gluon dynamics is responsible for confinement through 
the formation of electric flux tubes. This is a long-distance phenomenon, which is 

plagued by infrared divergences and the strongness of the coupling constant. 

Nevertheless, these features are considered crucial for the confinement problem, 
but they make calculations practically impossible. A way to avoid both problems 

at the same time is to formulate the Yang-Mills gauge theory in a finite volume. 
This provides an infrared cut-off and guarantees a small coupling constant for a 

sufficiently small volume. By choosing the appropriate boundary conditions one 
can hope that a connection can be made between the short- and long-distance 
behaviour. 

By formulating pure SU(2) gauge theories on a cube of size L × L x L one can 

use twisted boundary conditions [1] to introduce the gauge invariant notion of 
electric flux. Hence this paper will describe results for SU(2)/Z2 Yang-Mills on the 

torus T 3 [2]. The centre Z2 of the gauge group SU(2) seems to play an important 
role; for one thing it does not allow dynamical quarks in the fundamental representa- 
tion. This is similar to breaking the string by production of a quark-anti-quark pair. 
The physical interpretation of twisted boundary condition is, that they simulate 

static quark sources, "spread" out over the sides of the cube. These boundary 
conditions are especially well suited to calculate the energy of electric flux. Although, 

at this stage, we will not be able to prove electric flux tube formation; assuming  

formation of  strings for large-L implies [1] that AE behaves as o-. L with ~r the 
string tension and AE the energy of 1 unit of electric flux. 

ZN vortices have been proposed to describe the dynamics for flux tube formation 
[3]. Recently this mechanism has been questioned, based on a relation between the 
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fundamental string tension and a (scaling) linear piece in the potential for other 
representations [4]. Most dramatically for N-->oo, where confinement seems to 
survive (for a review, see [5]), one has an adjoint potential twice the one for the 
fundamental representation, if factorization is rigorously true [6]. But the adjoint 
representation is invariant under a ZN transformation. Apart from this, there are 
other reasons why one suspects that the centre of the gauge group does not play a 
direct dynamical role [7]. Our method of calculation is independent of the specific 
dynamics for confinement, but might give a clear hint towards a better understanding, 
if the short-to-long distance connection leads to an acceptable result. 

This paper will concentrate on the general principles. Sect. 2 describes SU(2) 
gauge fields on the torus and the definition of 't Hooft type electric flux. In sect. 3 
the calculation of the energy of electric flux is exhibited, by pointing out the similarity 
with certain toy models [8]. We also explain how Liischer's perturbative results [9] 
can be obtained from a lagrangian point of view, introducing a new type of gauge 
fixing. Sect. 4 gives the results for the energy of electric flux in weak coupling by 
expressing A E / M L ( O  ÷) as a function of the universal expansion parameter [10] 
z = ML(O+)L, where ML(0 ÷) is the glueball mass in a finite volume L 3. In this way 
we obtain a renormalization group independent function, whose behaviour for large 
z is also known (supposing flux tube formation). We propose a "minimal" short-to- 
long distance connection which gives a way of estimating tr/M(O+) 2. In sect. 5 

we discuss the results. 
Technical details, generalization to SU(N)  and a final numerical determination 

of one of the constants will be published soon. 

2. SU(2)  Yang-Mi l l s  on a torus 

The space we work on is the 3-dimensional torus, specified by a cube L x L x L. 
In the absence of magnetic flux the gauge potentials can be chosen periodic [9] and 
Gauss's law specifies the remaining gauge freedom (ei the unit vector in the ith 
direction): 

f 2 (x+  Le,) = (--1)k'~Q(x). (1) 

k (integer mod 2) is a topological invariant (the twist hi4 [1]). States in the physical 
Hilbert space are labelled by the representations of the homotopy group. The variable 
conjugate to k is e (integer mod 2) and defines the electric flux [1, 11], in complete 
analogy with the instanton 0-parameter [12] (also present on T 3, but ignored here). 

For weak coupling we consider the minimum of the classical potential given by 
(1/4g 2) St3 Tr (F2), with F~,~ the Yang-Mills curvature. For SU(2), up to a periodic 
gauge, this minimum is at [9] 

A = ctr3/2L, c spatially constant,  (2) 

where c and c+2zrk  are gauge equivalent with a gauge function of the type (1). 
Hence the potential exhibits a vacuum valley. One might expect that the ground 
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state wave function(al) spreads out along this valley. However  the shape of the 
potential perpendicular  to the vacuum valley depends on c. Perturbative wave 
function(al)s will be concentrated around points where the potential is widest [9]. 
This can be thought of  to be due to the zero-point fluctuations in the perpendicular 
direction depending on c, hence inducing an effective e-dependent potential. The 
one-loop approximation for this potential was calculated by Liischer [9]: 

4 V sin2 (n]  c) 
V , ( c ) = ~ . ~ o  7r2(n2)2 • (3) 

It has the following properties [13] ( c ~  27rk+ d): 

V,(c) = 2 t - ' l d l ,  Idl < 1, (4) 

V,(c)=- V,(ce,)= Idl(a -Ial) ao sin 2 (½nc) 
LTr LTr n = 1 

( d c  [-27r, 27r], al = 2.7052746 x 10 -2 , a2 = 1.6048745 x 10 -5 , 

a 3 = 1.6065690 x 10 -8 , a4 = 1.9385627 x 10 1~ . . . .  ) .  (5) 

Perturbative wave function(al)s are therefore concentrated around c -- 2rrk and there 
is a degeneracy in e for all orders in perturbaton theory [9]. The energy split between 
states with different electric flux e is thus caused by tunneling through a potential 
barrier, induced by quantum corrections and will only be suppressed by a factor 
exp ( - S / g )  instead of the familiar factor exp ( - S / g 2 ) .  Vacuum valleys imply zero- 
action instanton solutions (the so-called twist-eating solutions [ 14]), which dominate 
over the non-zero action instantons [15]. Because their action is quantum induced 
by the squeezing of the potential in-between two perturbative vacuum states we 
propose to call these configurations pinchons. 

3. (Non-)perturbative calculations 

A complication in the calculation is caused by the fact that at c = 2rrk, the quadratic 
approximation in the perpendicular direction of  the potential breaks down. Explictly 
for k = 0, the potential is quartic in the spatially constant off diagonal modes. 

The l - loop approximation therefore breaks down at c = 2¢rk. For perturbation 
theory, expanding around A = 0, Liischer therefore integrated out the non-constant 
modes, to be left with an effective hamiitonian in the constant (including off- 
diagonal) modes. In weak coupling the l - loop approximation is sufficient to deter- 
mine the low-lying energies. 

In the iagrangian formalism this can be reproduced by choosing the following 
non-local gauge fixing (P  the projector L - 3  ~T3): 

X = (1 -- P)(3~A~, + i[PA~, A~]) + PAo.  (6) 
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The effective lagrangian in l- loop can be obtained in a background type of calcula- 
tion. [But except for the finite part in the renormalization of the coupling constant 
the l - loop result can be uniquely obtained from a Taylor expansion of V~ in eq. 
(3), giving the following expressions for the parameters K~, K 3 and K4 as introduced 

in ref. [16]: 

K l = - -  1-- ~', K3=(1807r2) -1,  
1 

Substituting the values of  a,  reproduces the numerical values of  ref. [16] for K~ and 
K4 to 8 significant digits!] In lowest order the effective lagrangian is simply (such 

t h a t S = S d t L 0 :  

L 3 
= ( F ~ ) ,  (8) L~ 7 - 7  Tr 2 

4gR 

with A,, spatially constant and in the axial gauge Ao = PX = 0. The energy of the 
ground state behaves as E = L- lg~3(e  +0(0°2/3)); gR is the renormalized coupling 

constant. 
There are some reasons why (6) is not suitable for non-perturbative calculations 

and one is led to a gauge fixing which allows us to compute an effective lagrangian 
in c with the same cubic symmetry as V~. This would reduce the problem to a crystal 
type calculation for the low-lying energy levels, with the lattice momenta  restricted 
to e. The appropriate  non-local gauge fixing is 

X3 = (1 - Pa)(O~,A~ + [ PaA~, A~,]) + P3Ao, (9) 

with P3 the projection on the constant diagonal modes: 

P3A~, = ~3 I ~  Tr (A~,o'a)/2L 3 . 

One can easily verify that for Idl ~ g2/3 (with c - - 2 ~ ' k +  d), up to the relevant order, 
the l - loop approximation is given by [13] 

L~ 2 
L,--2g2R V , (c ) .  (101 

In the neighborhood of  c = 27rk this approximation breaks down. However  the full 
effective lagrangian has the cubic symmetry of Va(c) because X3 is invariant under 
the gauge transformations which map c into c + 2~rk. A word of caution: There will 
be ghost zero modes, related to gauge transformations which leave A ,  invariant; 
they should not be confused with Gribov ambiguities [17]. 

In a hamiltonian formulation one can define Lfischer's effective hamiltonian [9] 
in the spatially constant potentials with c in the unit cell Icil <~ 7r. For the other cells 
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(Ic,-2~-k,l<~ ~-) one derives the same effective hamiltonian, but as a function of 

appropriately gauge transformed fields. As will be explained in a subsequent paper, 
suitable identification will lead to a (in c) periodic hamiltonian with a finite number 

of degrees of  freedom. To the relevant order in the coupling constant and fields, 

required for the tunneling calculation 

Heff--g2R2L (Oz'~) ~02 1 2 2g2R Tr[z,,zj]2-- Icl+ V,(c), Ic, (11) 

with gR the renormalized coupling constant and 

g Z a 
a = - - =  era. (12) 

L 2L 

The vacuum valley is labelled by z a=  cra (r is a fixed unit vector). From this 
hamiltonian a one-loop effective lagrangian in the variable c leads to the same result 

as eq. (I0), for g~/3~[c,l<~ ~. 
The path decomposition expansion of ref. [18] tells us how to match perturbative 

and tunneling contributions for a situation where ordinary instanton techniques 

break down. The perturbative contribution is just the lowest (non-trivial) order 
ground state wave function and energy. The latter was already determined numeri- 

cally by Liischer and MiJnster [16]; for the wave function identical techniques will 

be used. Here we will "derive" the expression for AE by referring to toy models 

which exhibit the main features of our present problem. This will fix AE up to an 
overall constant. The simplest toy model describing the features of a vacuum valley 

and quartic mode problems is given by the hamiltonian 

g2 [ 02 a 2 \ 1 2 
H:-~- ~Tx2+~y2} +~7g2 (x - 1)2y 2 . (13) 

From the detailed analysis of ref. [8] it follows that AE is determined up to a 
constant by the l-loop approximated potential (for eq. (13): Vl(x)=½Ix 2-11) pro- 

vided one uses the true perturbative ground state energy. By analogy, eq. (10) can 
be used to calculate the energy of electric flux up to an overall constant. Since V~(c) 
behaves as [¢1 for e close to zero we find 

AE = .4g~/3 exp ( -g~ '  I;= ~/2L( V,( c) - Eo) dc) . (14) 

T h e  gSR/3 can be inferred from the expression of  AE for the double-cone model [8] 

H -  lg2 02  4(Ix, (15) 
2 ox 2 

and Eo is the true perturbative gound state energy. Furthermore one can verify that 
the path of minimum action connecting two nearest-neighbor minima of V~(c) is a 

straight line. 
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In the a p p r o x i m a t i o n  a .  --- 0 (see eq. (5)) one  finds S = ~2o~ 2 L x / ~ ( c )  dc --- ½zr2 2x/2~ 

and  T = ~  ~ ( 1 / ~ ) d c = ½ 7 r ~ .  We will call  the ins tan ton  so lu t ion  for the 

l ag rang ian  o f  eq. (10) the  p inchon  solut ion.  In  the  a p p r o x i m a t i o n  a .  = 0 this p inchon  

so lu t ion  becomes  

c ( t )  = 2~re ") sin 2 (~rtgR/TL). (16) 

4. The short-to-long distance connection 

We now presen t  our  results.  In weak coup l ing  for  SU(2) ,  AE is given by  (see eq. 

(14); an expl ic i t  factor  L -1 appea r s  for  d imens iona l  reasons) :  

A E = A L - l g ( L ) 5 / 3  e x p ( - S g ( L ) - I +  Teg(L) - I /3 ) ( I+O(g(L)8 ) ) ,  (17) 

with 6 ~> 1 and  

S = 12.4637 • • • ,  T = 3.9186 • • • ,  e = 4.11672 • • •. (18) 

The ca lcu la t ion  o f  the p re fac to r  A is p resent ly  unde r  inves t iga t ion  and  is expec ted  

to be s ignif icant ly  smal le r  than  1 [8]. g(L) is the r enormal i zed  coupl ing  cons tant  at 

the scale L. To lowest  o rde r  we have 

F -  11 I n ( A L ) ]  1/2 
g ( L )  = 1_ 1 2 ~  2 

(19) 

One  is sad ly  ra ther  ignoran t  about  the l a rge-L  behav iou r  o f  this equat ion .  This 

wou ld  make  a fit to the  s t rong coupl ing  d o m a i n  vir tual ty  imposs ib le .  However ,  g(L) 
can be expressed  in Li ischer ' s  universal  expans ion  p a r a m e t e r  z = ML(O+)L [10], 

where  ML(0 ÷) is the  g lueba l l  mass  for a finite volume.  Expans ions  in z are renormal iz-  

a t ion  g roup  independen t .  One can inc lude  in z all h igher -o rder  cor rec t ions  to eq. 

(19) (even inc lud ing  in p r inc ip le  non-per tu rba t ive  correct ions) .  Express ing  eq. (17) 

in terms o f  z, shou ld  hence  give a result  re la t ively  insensi t ive to these correct ions .  

Fo r  the  case o f  SU(2)  gauge  fields on T 3, z was de t e rmined  by Li ischer  and  Mfinster  

[16]: 

z =-- ML(O+)L = clg(L) 2/3 + c2g(L) 4/3 -b O ( g ( L ) 2 ) ,  (20) 

with 

cl = 2.269 • • •,  c2 = -0 .7974  • • • . (21) 

To e l imina te  all L and  renormal iza t ion  group  d e p e n d e n c e  we cons ide r  AE/ML(0  +) 

and find 

AE/ML(O +) = ACl l~ ,  3/2 exp ( -S~-3/2+ B~'-l/2)(1 + O ( ~ 3 6 / 2 ) )  , (22) 

with 

B = Te -3c2S /2c l  = 22.701 • • • ,  2 =  z /c l  • (23) 
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Fig. 1 gives the g raph  for  this funct ion.  We see that  tunne l ing  sets in a r o u n d  z = 2 

and  there  is a r emarkab l e  l inear  behav iou r  be tween  z = 2.5 and  z = 3.5. Cons ide r ing  

the prev ious  a rguments  it is t empt ing  to bel ieve  that  eq. (22) is accura te  up  to z - 3.5, 

with the on ly  error  de t e rmined  by  the pe r tu rba t ive ly  ca lcu lab le  0(:?  38/2) term. 

For  large z eq. (22) shou ld  behave  as 

A E / M L ( 0  +) : (z + Co) (~ r /M(0+)  2) + O ( 1 / z ) ,  (24) 

where  we a s sumed  fo rma t ion  o f  strings [1] and  that  ML(0 +) tends  exponen t i a l ly  

[19] to the inf in i te -volume gluebal l  mass  M(0+) .  We therefore  match  eq. (22) to eq. 

(24) at z, = 2 . 9 1 9 5 . . . ,  where  the second  der ivat ive  o f  AE/ML(O +) (eq. (22)) is 

ident ica l  zero. This y ie lds  for z > z~: 

A E / M L ( O  +) -~9.1 x 1 0 4 ( z - 2 . 2 4  - .  . ) A ,  (25) 

hence  o - / M ( 0 + )  2 --- 9.1 x 104A which,  c o m p a r e d  to the value  [20] o f  0.1 - 0.2 ob ta ined  

by  Mon te  Car lo  ca lcula t ions*  means  that  A shou ld  be o f  the o rde r  10 -6, which is 

qui te  feasible .  Note  tha t  AE conta ins  a negat ive  cons tan t  con t r ibu t ion  which is not  

present  in the stat ic q -  q po ten t ia l  [22]. This  is o f  course  due to the fact that  the  

charge  in our  ease is " s p r e a d  out" .  

AE/M(O +) 
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/ 
/ 

/ 

/ 

/ 
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I I I 
0 2 4 6 8 

, Z  
Fig. 1. The graph for the short-distance behaviour of AE/ML(O +) (eq. (22)) in units of 105A, matched 

to the long-distance linear ansatz (eq. (24)). 

* Recent glueball estimates favor o'/M(O+)z-O.1 [21]. 
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5. Discussion 

We studied in this paper  a method for calculating energy of electric flux at weak 
coupling (small L), whose non-zero value is caused by non-perturbative effects. In 
going from small to large distances a cross-over in AE and ML(O +) will occur, 
supposedly at the same value of L. Studying A E / M L ( O  +) as a function of the 
universal expansion parameter  z = ML(O+)L gives two reasons to believe that in this 
function no cross-over will appear. First it might cancel out in the ratio AE/ML(O+),  
second (if present) it will be smoothed due to the cross-over in z (L )  (a small range 
in L around the cross-over corresponds to a large range in z). 

Since we have no control over the reliability of  our "minimal"  scheme for the 
short-to-long distance connection, the value of t r /M(0+)  2 c a n n o t  really be considered 
as a prediction. We can however compare our results with Monte Carlo data (even 
for SU(3) we have to resort to these since a glueball has not been seen yet, and 
dynamical quarks are not incorporated in the calculations). I f  our estimate will 
roughly correspond with these Monte Carlo data the pinchon must somehow be 
relevant for flux tube formation. It can however only be a first step in our understand- 
ing since the pinchon corresponds to spatially homogeneous excitations. It is also 
interesting to point out that its dual in the sense defined by 't Hooft  [1] is a magnetic 
domain wall, with a possible implication for the vacuum structure of  QCD. 

The reason why the expression for AE is also interesting in its own right, is that 
it can (more directly) be compared to numerical simulations. So far only data for 
square 4-dimensional lattices* are available [14, 23]. For small coupling where the 
correlation length becomes larger than the linear dimensions of  the lattice ( z ~  1) 
one however begins to see finite-temperature effects. Since our calculation is for 
zero temperature,  the extension of the lattice in the time direction has to be kept 
considerably larger than the correlation length. For z-~ 0 this temporal  extension 
has to grow as 1/z  but for intermediate values of  z (not too weak a coupling for a 
given spatial extension) Monte Carlo calculations should still be feasible. In lattice 
units AE can be determined by [1] 

A E e =  lim---~-I l n [  1 0 ] 
N ~  Nt 2Nt 03 In (Z t /Zu)  , (26) 

where Zt(u) is the twisted (untwisted) partition function [23] for a lattice of  size 
N~ x Nt at coupling fl = 1/g  2. I f  at the same time the glueball mass in lattice units 
(M(0+)e) is available (for the same/3 and Ns), one has simply 

A E / M L ( O  +) = AEe/M(O+)e ,  z = M(O+)e • N s .  (27) 

Feasibility of  these numerical simulations will probably lie just within the present 
day computational  limit. 

* That is with twisted boundary conditions. 
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To t h a n k  e v e r y b o d y  w h o s e  d i s c u s s i o n s  c o n t r i b u t e d  to  t h i s  p a p e r  w o u l d  b e  i m p o s s -  

ib l e  he re .  B u t  I d o  w a n t  to  m e n t i o n  A s s a  A u e r b a c h ,  G e r a r d  ' t  H o o f t ,  B a r r y  S i m o n  

a n d  M a r t i n  Ro~ek .  F i n a l l y  I a m  g r a t e f u l  to  M a r t i n  L i i s c h e r  f o r  h i s  h o s p i t a l i t y  at  

D E S Y ;  h i s  c r i t i c i s m  a n d  a d v i c e  w as  c r u c i a l  to  m y  t h i n k i n g  o n  t h i s  s u b j e c t .  

T h i s  w o r k  is s u p p o r t e d  in  p a r t  b y  t h e  N S F  g r a n t  # P H Y - 8 1 - 0 9 1 1 0 A - 0 3 .  
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