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We construct two types of twists for the SU(N ~ ~)  twisted-Eguchi-Kawai model, which 
mimic a periodic boundary condition in the temporal direction only and over an arbitrary extent 
N 0. In this way we introduce finite temperature (T= No 1 in lattice units) in the single-point 
model. In weak coupling one gets the correct planar expansion. 

1. Introduction 

Recently much attention has been given to the reduct ion [1, 2] of  the Wilson 
S U ( N  ~ oo) lattice gauge theory [3] to a s inglepoint  model. A model  with twisted 

boundary  conditions looks very promising for numerical [5] and analytic [6] calcula- 
tions. Also the problem of how to incorporate  finite temperature in (partially) 

reduced models has been considered [7-9]. In this paper  we present general twists, 
which achieve this for a single-point model and which we will call " h o t  twists." 

These can be used in Monte  Carlo simulations to s tudy the large-N deconfinement  
transition at the critical temperature T~. Preliminary results indicate that T~ - 37~-, 
where o is the string tension. We extracted f rom [5] A L - 3- 1 0 - 3 f o  - and f rom [8] 

T c - 103AL *. Remember  that for SU(2) and SU(3) T c - 0.5fo- [10]. The model  with 
our  hot twist (4.7) may  be used to determine, better than in [8], the value T c / A  L" It 
seems feasible to observe renormalization group scaling while keeping the spatial 
finite-size effects small. 

In ref. [11] it is argued that the confinement  mechanism for N- - ,  oo should be 
different, since factorization tells us that the string tension for adjoint quarks is twice 
that for fundamental  quarks. Studying deconfinement  for infinite N might shed 

some light on this issue. 

* Present address: Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, 
USA. 

* We assumed equal A L for the twisted [5] and the quenched [8] Eguchi-Kawai model. 
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The program of this paper is as follows. In sect. 2 we briefly discuss the reduction 
procedure at finite temperature. In sect. 3 we show that non-perturbatively, i.e. at 
the level of the loop equations, there is agreement for N ~ oo between the one-point 
model with hot twists and the Wilson theory at finite temperature. In sect. 4 we 
construct the appropriate hot twists. Sect. 5 deals with the weak-coupling limit, in 
which one retrieves the planar expansion at finite temperature. Finally in sect. 6 we 
give some further discussion of our hot twists, notably their potential value for 
Monte Carlo simulations. 

2. Reduction 

We start from the pure SU(N) gauge theory on a hypercubic lattice (spacing 
a = 1) in euclidean space-time with dimension 4, where indices are denoted by greek 
symbols (/z, ~, . . . .  ). If necessary we distinguish the time (space) direction by/~ = 0 
(i, j ,  k. . .  = 1,2, 3). On a lattice of size A = N O × A s with periodic boundary condi- 
tions in the time direction the partition function Z w and the action S w [3] used 
are*: 

Zw=f., A dU"(x)exp(-BSw)' (2.1)  

S w  = y" Tr(1-U~(x)U~(x+~)U~(x+f,)tU~(x)*). 
I z ~ , x e A  

(2.2) 

This gives the gauge theory at equilibrium temperature T = No t, as long as the 
extent of the spatial directions is much larger than N o. Eguchi and Kawai [1] showed 
that for N---, oo the theory (2.1) is equivalent to the reduced single-point model 
under the reduction: 

R : U~(x) --* U~. (2.3) 

For weak coupling (fl --* ~) ,  modification of (2.3) proved to be necessary, first done 
with a quenching procedure, see [2] and references therein. Later Gonzalez-Arroyo 
and Okawa [4, 5] proposed the more elegant approach of introducing appropriate 
twist Z, .  e Z N (the discrete centre of SU(N)). 

This twisted-Eguchi-Kawai (TEK) model is defined by: 

ZTEK = f I - I  dU~ e x p ( -  flSTEK) , (2.4) 
/L 

STEK= E Tr(1 - Z~.U~U.U.tU~ *). (2.5)  

* Here and in the following fl is the inverse coupling constant squared and not the inverse temperature! 
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The twist Z~  will be labelled by the twist tensor n~. = - n . ,  through: 

(2.6) 

To guarantee in weak-coupling agreement of the internal energy, we demand the 
twist to be orthogonal: 

gn#rn aBegvotB -- oN, (2.7) 

with o integer. Furthermore the twist must be such that the corresponding 
minimum-action solution is unique up to a gauge transformation (modulo multipli- 
cation by elements of ZN), which is equivalent to the statement i(n)= 1, with: 

i ( n ) =  g.c.d.(n,~, N, x ( n ) / N ) .  (2.8) 

(g.c.d. = greatest common divisor, see [6] for details.) 
In order to establish further correspondence we follow ref. [5] in identifying 

Wilson-loop operators. One makes the change of variables: 

g(x)--,z(x,u)g(x), 

with Z(x,/z) ~ Z u such that 

(2.9) 

Z u v = Z ( x ,  ~ ) Z ( x  -[- ~ ,  p ) Z ( x  -~- ~, ~) - lZ(x ,  p) 1 (2.10) 

is independent of x. After the reduction, R, one retrieves the action of the TEK 
model. In order to see that this change of variables is possible we have to show that 
we can choose the Z(x, ~) such that we still respect the boundary condition: 

Z(x,  = Z(x  + UoO, (2.11) 

for all x and #. We first construct Z(x, t~) satisfying (2.10) on the same lattice but 
neglecting the condition (2.11), which is easily done. We shall show that with a 
suitable Zu-gauge transformation (2.11) will be satisfied. Each time layer represents 
a configuration on an infinite 3-dimensional Z N lattice. They have the same 
plaquette values Z~j and so by an appropriate ZN-gauge transformation we can 
choose: 

Z(x , i )  = Z(x  + O, i ) ,  (2.12) 

for all x and i. Now consider the ratio of the Z N factors picked up by two 
neighbouring straight timelike fines: FI~OolZ(x + kO, O)H~olZ(x + ~ + 10,0) -~. 
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Fig. 1. (a) The timelike lines considered in the construction of the change of variables U , ( x ) ~  
Z(x,  tt)Ut,(x). (b) The "closing" of a single temporal loop in order to define the appropriate surface in 

(2.15). 

Using (2.12) it represents the Z N Wilson factor for a closed loop (see fig. la) and 
with the definition (2.10) this ratio becomes Z~/o. It will be shown later that we must, 
and can, choose the twist such that N O is the smallest positive integer with Z N0 = 1 
for all i. Therefore the Z N factor: 

No-1 

Zt = 1-I Z (x  + kO,O), (2.13) 
k=0  

is independent of x r This is necessary to have a consistent reduction of temporal 
loops. Unlike for Z(x, i) we have Z(x,O) dependent on x 0, but we can consistently 
choose Z(x, 0) to be periodic: 

Z(x,O) = Z (x  + N0(), 0), (2.14) 

because with (2.12) eq. (2.10) remains valid. We can even choose a spatially 
independent Zs-gauge transformation which makes Z t = 1, which will be assumed 
below. 

As in the TEK model one has the following correspondence for the Wilson 
loop C: 

Tr( l-I U~(x)) ~ 1  I--I Z~,Tr(R 1-I U~(x)) (2.15) 
\ x E C  / N xES  ~ x ~ C  / 

where S is any surface with boundary C (C = 0S). For single temporal "loops" 
closing by the boundary conditions, S is defined by "closing" C with a straight 
timelike line (see fig. lb). 

3. Loop equations 

We will briefly sketch how the loop equations in the presence of temperature can 
be the same for both the Wilson theory and TEK model. This imposes conditions on 
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the construction of the twists in sect. 4. We have to show that spurious source terms 
[1] arising from the identification of different link variables (U~(y) and U~(z) ~ U~) 
vanish. These terms contain 

( N-1Tr RI-I U~(x) / , 
C> 'z / TEK 

(3.1) 

with Cy z the part  of the loop C running from y to z. For fl ~ ~ the twist eating 
configurations [5]/2~ minimize STEK and the source term vanishes if T r ( H c J 2 ~ )  = 0. 
It  is assumed that the twist effects are strong enough to keep (3.1) zero not only at 

fl = oo but down to flEi( - 0.15N; here the strong-coupling region sets in and the 
unbroken [12] U(1) symmetry U~ ~ ei~°,U~ forces (3.1) to zero. Monte Carlo simula- 
tions appear to confirm this conjecture [5]. 

In the presence of temperature the loop equations in the Wilson theory have 
source terms due to the periodicity, which should be maintained after reduction [9]. 
This implies that N O must be the smallest positive integer with 

Tr(~2N°) 4: 0. (3.2) 

The spurious source terms vanish if: 

(3.3) 

for ku inside a box of dimensions N O × N 1 × N 2 × N 3 with N, ~ oo for N ~ oo, but Nc 
f i xed .  To illustrate this consider the loop equations for the path C of fig. 2a. On the 
link L the change of variables [1] U--, (1 + i ~ T Q U  is performed. In the reduced 

No 

- L  - 

L2 ~L1 C2 

[a} [b) (c} 

Fig. 2. The loop equation for (N-1TrFlxacU~(x))w contains a source term (N-1TrFIL1U~(x))w 
(N 1TrFIL2U~(x))w with L 1 and L 2 as in (b). These terms should survive in the reduced model, but not 
those (c) coming from the identification of the links L and L' in (a). The twist makes these spurious source 

terms vanish. 



F.R. Klinkhamer, P. van Baal / Hot twists 279 

model there are the genuine (temperature) source terms (3.1) with Cv~ = LL2 (fig. 2b) 
and the spurious ones L], 2 from the identification of the links L and L'. The source 
terms from L],~ are forced to zero by the twist, but not those from L1, 2 as follows 
from (3.2) and the cancelling of the ~2i. Note that if the link L' in fig. l a  is shifted 
upwards to the "boundary"  it gives a spurious source term, which also vanishes 
because Tr(~2N°~2~'~2~23 k~) = 0 for k~ 4= 0mod N,. This is necessary if we are to 
mimic finite temperature. 

4. Construction of hot twists 

We will first translate the constraints (3.2) and (3.3) into constraints on n~ ,  which 
is related to ~2~ by: 

[ 2~rin,, 
~2,~2,g2t, I~ = e x p l  ---~---  ) .  (4.1) 

As in [5] we find that condition (3.3) is satisfied if and only if k s is not an element of 
the sublattice A c Z4: 

A =  { k E Z 4 l o k ~ = h ~ l , q ~ , , q E Z 4 } ,  (4.2) 

1 where h.~ = 5e..~an.a and o is defined by (2.7). Also for all/z we have 

k t -  k k (4.3) ~2~2o ~ - Zo,~2 o 

and as long as z0kz 4= 1 we have Tr(~2~) = 0. So in order to have Tr(~2~ vo) 4= 0 we must 
have that N is a multiple of No, and n oi is a multiple of N / N  o. However for at least 
one value of i, no, should equal N / N  o. For practical purposes we take A to be a 
rectangular lattice, so A = N02~ × NlZ × N27 X N3Z. We also wish Art, N 2 and N 3 to 
be of the same order for N-~  m. Furthermore, anticipating that we want to 
reproduce the planar expansion we require the algebra generated by 

A(k)  = o k ° f ) k l ( ) k 2 1 " ) k 3  k E Z4/ /A,  k 4= 0, 
~ 0  ~1  ~ 2  ~3  , (4.4) 

to be SU(N).  Obviously A(k)I2~ = Z~(k)~2~A(k) with Z,(k)  ~ Z N and Z,(k)  = 1 
for all ~ iff k ~ A. This guarantees that they are linearly independent. Namely 
suppose that A(k (i)) for i = 1 to n are independent and F~7+~c~iA(k {i)) = 0. Conjuga- 
tion with ~2~ yields E~+~aiZu(k~O)A(k ~0) and so 27=l,x~E~(1- Z~(k ~ ° -  
k("+l)))A(k(~))=O. This implies a~=0  for all i up to n + l  iff for all i, 
k<"+a)4= k (°modA.  In conclusion the volume 1-I~N, of Z4/A has to equal N 2 
( = dim(SU(N)) + 1). 
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In ref. [6] it was shown that one can easily construct $2~ once nu~ is given. So we 
shall concentrate on finding n~.  

Let us first take o = 1 in (2.7). Then i(n)= 1 (see (2.8)) gives no extra constraint 
on nu~. The condition on A is that its 4 generators k~ ")= h ~  are related by a 
SL(4,Z) transformation to the four basis vectors Nue (~), t he re fo re  Nt~Xht~u is an 
integer (in the last two expressions no summation over #). The appropriate SL(4, Z) 
transformation can be written as Y = - ( L - l h )  t where L =  diag(No, N 1, N2, N3). 
One can check that all conditions on n~  are met by the choice: 

I O K(4K 2 -  1) K(4K 2 -  1) K ( 4 K  2 -  1) t 

0 K ( 2 K -  1) 4K 2 - 1 , (,~.5"~ No n~s, \ - -  v /  

* 0 K ( Z K  + 1) 
0 

N = N 2 K ( 4 K 2 - 1 ) ,  NI=NoK(2K+ I ), Nz=No(4K2-1) ,  N3=NoK(2K-1 ) 

Using the methods of ref. [6] we find: 

a'20 = P1 ® 12, 

I21 = Q1 ® P2(K+l)(2K-1)Q12-4K2, 

~2 = Q1 ® pK(2K+1)Q24KZ, 

$23 = Q1 ® pK(2K+ I)Q 1-'g2. (4.6) 

Here P~, Qi are elements of SU(M~) satisfying the basic commutation relations 
P~QiPTQ~ = exp(2~ri/M,). For eq. (4.6) M 1 = N O and M 2 = NoK(4K 2 - 1) and ® is 
the tensor product of SU(Mx) and SU(M2) which lies in SU(M1M 2 = N). 

One always has that N/is proportional to N 0. Here we constructed nu~ such that 
the N i are as close together as possible. For N ~ ~ we find N~ : N 2 : N 3 = 1 : 2 : 1. We 
would rather have that for N->  ~ all N, become equal, although it certainly is not 
necessary. For this we had to compromise a little by allowing for o 4: 1, supplied 
with a constraint on N 0. The twist we found is also more economic in Monte Carlo 
simulations (in sect. 6 we will elaborate on this). This other hot twist is given by 

0 2 K ( 4 K  2 - 1 )  4K(4K 2 - 1 )  2 K ( 4 K  2 - 1 ) ]  

n~,~ = N o 0 2 K ( 2 K +  1) 4K 2 -  i J , 
* 0 2 K ( Z K -  1) 

0 

(4.7) 

N = 2No2K(4K 2 - 1), N 1 = 2NoK(2K- 1), N 2 = No(4K z - 1), 

N 3 = 2NoK(2K+ 1), N o = odd,  
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and the twist-eating configuration is found to be: 

~0  = Q {  2 ~t¢~ ,p 2K(2K + I)(4K Z-1)t')4K( 1 - 4 K 2 ) 2  ~,~ 2 ' 

f21 = p1K+~ ® p2K(2K+ I)(K+ I)g'I-(2K+ I) 2 
"2  ~ 2  ' 

~22 = P1 ® p 2 K ( 2 K + l ) Q 2 4 K '  

$2 3 = p ~ - r  ® p2(1- 2K2)~2x-1)Q(22x 1) 2. (4.8) 

Here M a = N o, M 2 = 2NoK(4K z -  1) define Pi, Qi as above. This twist has o = 2. 
One must be careful in constructing the sublattice A. Here it will be generated by 
k(0)=-n~o, k(1)= ~n~1,1- k(2)_-nt~ 2 a n d  k~ (3)= lh~3. In (4.2) q is of the form 
( 2 L  Z,2Z, Z) in order to keep k integer. To guarantee a unique minimum action 
configuration (up to a gauge) we need i ( n ) =  1, which reduces here to g.c.d. 

(o, No) = 1 or N O = odd. 

5. Planar graphs 

For N---> ~ we want to reproduce in weak coupling the planar expansion in the 
presence of finite temperature. The only influence of finite temperature is that the 

V'u0 1 with integrals over temporal momenta P0 get replaced by a Fourier sum ~n=o 
po(n)  = 2~rnT. There is no interference with planarity because this is a property of 
the SU(N)  index structure only [13], unlike on the lattice where space-time momenta 
come from the color degrees of freedom. In establishing, for zero temperature, the 
correspondence between the reduced models and the continuum, one ignores the 
infrared problems which still plague the theory. We will do the same for finite 
temperature where the n = 0 sector behaves as a 3-dimensional gauge theory and 
thus gives rise to even more severe infrared problems. These infrared problems have 
a direct analogue in the one-point lattice where corresponding divergencies come 
from "long distance" behavior in group space. The longest wavelength in each 
direction is clearly N~, which goes to infinity (for finite temperature only in the 
spatial directions) if N tends to infinity. So finite N acts as an infrared cutoff. Indeed 
finite N corresponds to finite boundary conditions, which also in the continuum 
serve as an infrared cutoff. More serious might be the quartic mode problem (zero 
modes which are not gauge modes). When we have finite boundary conditions (a 
finite box) quartic modes have their influence both in a lattice [15] and in the 
continuum [16]. In the infinite-volume limit their influence on the lattice disappears 
[15], and we expect the same in the continuum*. This is one of the reasons why we 
carefully choose our twist such that there are only gauge-zero modes [6]. 

* We thank G. 't Hooft for a discussion on this point. 
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We can closely follow ref. [5] in establishing the correspondence. Conjugation with 
~2, corresponds to translation, from which one identifies the momenta q: 

For convenience we suppose o = 1 (generalization is straightforward) and we label 
k ~ Z 4/A through 

~ 

k, = E n,,q, (5.2) 
N~ ' 

then q~ = (Nw/N)n~,k . and 1 ~< q, ~< N,. The propagator is that of a lattice with 
periodic boundary conditions and size FI, N,. For N ~ oo the spatial momenta 
become continuous but the temporal momenta retain their correct discrete character, 
so that the temperature propagator in the continuum limit is reproduced (a = lattice 
spacing; aN o = T-l) :  

[21raq°~ ~ / 2~'qo ] 2 
f i ~ 2 a  -2 1 - c o s ~ ] ] = ~  aNo ] =p0(q0) 2. (5.3) 

Finally a non-planar graph will acquire a phase factor exp(-(2~ri/N) 
E~<jE,>~k~On~k~J)) 4= 1, where q~i) are the loop momenta. Let us explicitly eval- 
uate the phase factor for the twist (4.5) and q(i)=(0, q~°,0,0), for which 
k~ o = ( -  1, 0, 2K - 1, 1 - 2K)q~ °. We find: exp([Z~ri/N]E~<jk~z~)nz3kt j)) = 
e x p ( [ - 2 r r i ( 2 K -  1)/No]Ei<jq~°q~J)). For K ~ oo ~1 = 2~rqz/NoK(2K+ 1) becomes 
continuous and the phase factor is: 

( - i N K ( 2 K + I )  ~_,~(o,~(J)) 
exp 2~r N O i<j't"l "~'1 

which rapidly oscillates. Integration for N ~ ~ over 4~] ~) will yield zero. So all 
non-planar graphs vanish for N ~ ~ .  

6. Discussion 

We constructed the hot twists (4.5) and (4.7) for the SU(N) single-point model, 
which guarantees equivalence for N---, ~ with the Wilson lattice gauge theory at 
temperature T, both perturbatively and non-perturbatively (loop equations). This is 
rigorous in the weak-coupling limit (/3 ~ ~ )  and in the strong-coupling region, but 
probably holds for all/3. This simple model might be useful for analytical calcula- 
tions. As in [6] one can easily construct surviving fluxons (with an action of O(1 /N)  
such that e -~s(n°x°") remains finite for N ~ ~) .  The spectrum is the same (AS = 
8-BZ/N is the spacing in the action), but the "occupation numbers" are different. 
However one can argue that they do not contribute to the string tension for N ~ oo 
(in weak coupling) [17]. 

From a practical point of view, e,g. Monte Carlo simulations, one has to keep N 
finite. Just as for the symmetric twist of [5] we have that for finite N the twist mimics 
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a S U ( N )  lattice gauge theory with periodic boundary conditions and size N o × N 1 × 
N 2 × N 3. From [14] we know that finite-size effects are small for min N i >/2N0, and 
we assume this to be true for the one-point model also. For the twist (4.5) 
N~ = N0(1, K ( 2 K +  1),4K 2 - 1, K ( 2 K -  1)) and N = N ~ K ( 4 K  2 - 1), so that we 

must have K>~2 and therefore N>~ 30N 2. We now see why the twist (4.7) 
is more economic: N =  2 N 2 K ( 4 K  2 -  1) can be as low as 6N 2, because N~= 

N o ( 1 , 2 K ( 2 K -  1),4K 2 - 1 , 2 K ( 2 K +  1)) allows for K =  1, which gives N, > /2N 0. 
To be honest we have to compare this number  of degrees of freedom 4(N 2 - 1) = 

144N04 - 4 of the one-point lattice with 96N 4 (or 256N 4) of a N O × 2N 0 × 2N 0 × 2N 0 
lattice with gauge group SU(2) (or SU(3)). There is only something to be gained* for 
gauge group S U ( M )  with M > 3. Of course from a numerical point of view one has 
to compare the one-point lattice with the lattice theory for M = N and then the 
reduction is enormous. However compared to the torus model of [8], where one 
reduces only in the spatial directions, our model is much easier to handle. The 
Monte Carlo calculations are just as easy as for the symmetric twist [5]. 

One would like to determine tic(N0), above which the global Z N symmetry is 
broken and deconfinement sets in, by calculating the expectation value of a 

single-temperature loop. In order to establish the correct scaling behaviour of fie (N0) 
and extract T c from it, one would like to perform the calculations for quite large N O 
values. For the twist (4.7) we have to work with at least SU(6), SU(54) and SU(150) 
for N O = 1, 3 and 5 respectively. This may seem somewhat large but only in this way 
are we guaranteed of reasonably small boundary effects. For given N and N O our 
model is better in this respect ( N  2 -- NoIqiN/) than the single-point (torus) model of 
ref. [9] with chosen space-time (space) quenched momenta,  where N =  NoFIiN , 

(N  = l-IiNi). 

We thank Gerard 't Hooft  for a critical reading of the manuscript. For one of us 
(P.v.B.) this work is part  of the research programme of the "Stichting voor 
Fundamenteel  Onderzoek der Materie (FOM)",  which is financially supported by 
the "Nederlandse Organisatie voor Zuiver Wetenschappelijk Onderzoek (ZWO)". 

Note added in proof: 

Having finished the present article another twist was found by one of us (P.v.B.), 
that generalizes the one of (4.7) to all No: 

0 - 2 K 2 ( 4 K 2 -  1) 2 K ( 4 K 2 -  1) 2 K 2 ( 4 K Z -  1) 

= No 0 2 K ( 2 K +  1) 4K 2 -  1 

0 2 K ( 2 K -  1) 

0 

(4.9) 

* But the efficiency of the updating may be somewhat lower for TEK. We thank K. Fabricius and 
O. Haan for bringing this to our attention. 
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This twist, which now has o = 1, gives the same N, N~ and [21, ~'~2, ~3 as in (4.7) and 
(4.8), whereas 

~0 = Q11 ® P2 2K(2K+ l)(4K2-1)Q 4K(1-4K2)" (4.10) 
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