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We consider solutions of d = 11 supergravity describing a product of a four-dimensional 
Schwarzschild geometry and a seven-sphere whose radius R does depend on r. Three cases are 
studied as follows. 

(i) Vanishing photon fields: an exact solution with r-dependent R(r )  is presented which 
exhibits a horizon. 

(ii) Freund-Rubin asymptotics: Numerical results show that in this case solutions exist without 
a horizon at a finite value of r, but with R(0) = oe. 

(iii) Englert asymptotics: a striking analogy with the 't Hooft-Polyakov monopolc is found 
which suggests the existence of a completely regular solution which interpolates between the 
Englert solution at r = oc and the Freund-Rubin solution at r = 0. 

Most applications of Kaluza-Klein ideas to supergravity [1] have dealt with what 
we might call global (or rigid) compactification of space-time: above each point in 
four-dimensional space-time M 4 one has the same seven-dimensional compact 
manifold M 7, for example the round seven-sphere S 7 [21, the squashed seven-sphere 

[3], the S U  3 X SU 2 X U 1 spaces [4] or the S U  2 X S U  2 X S U  2 spaces [5]. In this article 
we will consider what we shall call local compactification [6-8]; we shall assume that 

the properties of M 7 may depend o n  M 4. As a model we will consider a black hole 
at the spatial origin of d = 4 Minkowski space-time, and consider above each point a 
round seven-sphere whose radius R may depend on its distance r from the origin. By 
allowing the three-index photon field also to depend on r, the four and seven 
dimensional spaces become interacting via this matter field. Another possibility for 
such an interaction which we will not pursue below would be to allow for off-diago- 
nal terms in the d = 11 metric [7]. An interesting aspect of our model to which we 
intend to return in the future is that the effective four-dimensional gravitational 
coupling constant becomes r dependent, a phenomenon already encountered in 
another model by Cho and Freund [8] (see also Chodos and Detweiller [6]). This has 
led us to speculations concerning a running gravitational coupling constant and a 
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relation between the Planck and G U T  masses. Cosmological (i.e. time-dependent) 
solutions of d = 11 supergravity without torsion have been considered by Freund [6]. 

The reason we became interested in the model of a black hole ® S 7 ( r  ) is a series 
of striking analogies with the 't Hooft-Polyakov monopole [9], as we shall discuss in 
more detail below. Whereas the latter can be viewed as a regular solution which 
interpolates between two particular solutions of the Yang-Mills-Higgs model, namely 
at r = m and at r = 0, we will be looking for a regular solution of the field equations 
of d =  11 supergravity which interpolates between the Englert-Schwarzschild (ES) 
solution [10] at r = m and a Freund-Rubin (FR) solution [1] at r = 0. In order that 
the interpolating solution be regular at r = 0, the energy density at the origin must be 
smooth and not contain the point mass which yields the 2 m / r  term in the usual 
d = 4 Schwarzschild solution. In particular we are interested in solutions whose 
regularity at the origin is suggested by the topology of the asymptotic ES solution. 

The field equations of d = 11 supergravity read* 

D M F M N P Q  - -  ~s  i g r 2  ~ N P Q  R '  " " R 4 S I "  " "S4 F R I  . . . R 4 F s 1 "  " .3  4 = O ,  (1) 

R MN = --96(FMeQRFN eQR -- lZgMNFI}QRS ) , (2) 

where we have set the gravitino field equal to zero and the one free parameter, the 
d = 11 gravitational coupling constant, equal to one. 

We shall always assume that the metric be block diagonal in M 4 and M7, but let 
us first in addition assume that g~  depends only on the coordinates x ~ of M 4 and 

g,¢ only on the coordinates y~ of M 7. Adopting either the Freund-Rubin ansatz 

Fm.~s = ibe . . . . . .  Fabcd = 0, (3) 

or. the Englert ansatz 

F m n r s  = ibe . . . . . .  F , h , .  d = c R  4 ~ l ' a b c d 2 q ,  (4) 

where D.~/= iaF~l and a, b, c are constants, then the Maxwell equation in (1) is 

satisfied if 

c(a  - 3v/2b) = 0, (5) 

while the Einstein equation reduces to 

Rm = 1 9 2 g m ~ ( 2 b 2 + 7 c 2 R  8), R a b = _ 1 9 2 g a b ( b 2 + S c 2  R 8).  (6) 

• F "~ - O x I ' i { ~ , +  ' " ' The Dirac  matr ices  satisf-v * The photon  curl has  s t rength  one, and R,~N = O.~ M.~ ~ . . 

{ I "  M ,  F N } = 28MN and {F. ,  F b} = 2~.h where M =  1,11 and a = 1,7 and m = 1,4 are flat indiccs,  
w h i l e A = l , l l  a n d a = l , 7  and /~ - l ,  4 are curved indices.  No te  that  q . . . 4 -  el 4 = e l . . 7 =  1 7 =  
el 11 = e l  11 = 1, and  g(4) = det  gu,,,  g<V) = det  g,/~. 
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For  later convenience we have extracted the explicit factors of R in F~b~a. The 
consis tency condi t ion for the covar iant ly  constant  commut ing  spinor 71 reads 

R a b  = - -  24a2g~b, (7) 

and since on S 7 with radius R one has R,Z = -6g~BR -2, we see that  a = _+ ½R 1 
For  both  signs covar iant ly  constant  spinors exist on the round $7; an explicit 
representa t ion is given in [11]. In what  follows we shall choose 

a = ½ R - ' .  (8) 

For  non-vanishing c ( c ¢  0) b =  1~2~/2-R 1 according to (5) and c =  + 14~/2R3 

according to (6) and  (7). The case c = 0 must  be considered separately and in this 
case we find f rom (6) and (7) that  b 2 = ~ R  2 

It  is clear f rom (6) that  any Einstein metric  on M 4 with proper  cosmological  
constant  yields a solution of the d = 11 Einstein equations.  In particular,  if g , ,  is the 
Schwarzschild metr ic  with cosmological  constant ,  the d = 11 solution which corre- 
sponds to the ansatz (3) will be called the FRS solution, while the ansatz (4) will be 
called the ES solution. In these solutions the radius R of S 7 is constant  so that  by 
moving in towards the black hole, there comes a point  where the scalar curvatures  of 
M 4 and M v become equal in absolute value. At this point  one expects that one can 
no longer ignore interactions between M 4 and My, and one is led to consider an 
r -dependent  radius of the seven-sphere. 

To  keep the maximal  symmet ry  possible, we shall assume that (4) still holds but 

with b = b(r)  and c = c ( r ) ,  while the metric is the sum of a rotat ional ly invariant  
static metric on M 4 and a maximal ly  symmetr ic  metric on M 7 

- ( d s )  2 = - B ( r ) d t  2 + A ( r ) d r 2 +  r2(d~22) 2 + R(r)2(d~27) 2, 

(d~2,) 2 = d~b2 + s in2(~ , , ) (dQ,  1) 2. (9) 

Thus  we have locally a direct product  M 4 X M 7 and the symmet ry  group is 
R 1 x SO 3 X SO 8. Covar iant ly  constant  spinors still exist a l though g~l~(Y) has become 
r dependent ,  because the derivative in D ~  does not act on r. In fact, ~ is r 
independent  but  a = ~R l ( r ) .  It  is advantageous  for the computa t ions  ahead to 
introduce an r - independent  sevenbein O~(y)= R l(r)e~(r, y). Let us define 

A~B v = ic (r ) f f [~v~ = i c ( r ) R -  3( r )  q r~ ,v~ .  (10) 

Then  the non-vanishing componen t s  of  FMNPQ a r e  in addi t ion to (4) 

F,,#v = ¼OrAaB v = ¼ic'(r)q['#v~7, ( la )  

and we can proceed to solve the Maxwell  equat ion (1). 
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The equat ion for DaF a"p° is no longer automat ica l ly  satisfied but  using that  

F~ = ½Orln g(7) = 7R'R 1, if/x = r,  (12) 

one readily finds the following integrable result 

(bRT)'= - 217~-(c2) ' .  (13) 

(The factor  21 is due to flP~l~v~l~lP~I3v~l = - 4 2 . )  Thus flux is conserved on S 7 when c 
is constant ,  for example  in the F reund-Rub in  case. (If  one were to take the not ion of 
the flux seriously, one might  imagine Sy(r  ) embedded  into an eight (!) d imensional  
manifold;  once again a hint at a theory of d = 12 supergravi ty [12].) Note  that  only 

for c = 0 the abelian " p h o t o n s "  AMN P become non-self-interacting.  
The  DA FA~p~ and DA F A ~  equations are still automat ica l ly  satisfied, but  the 

equat ion for DA FAaBv modifies the result in (5) to 

[ c ' ( A - 1 B r 4 R 2 ) l / 2 ] ' =  16cAR 2(A 1Br4R2)l/2(1 - 6~/2bR). (14) 

For  constant  but  non-vanishing c, b still has the Englert  value in (5), so that  with 
(13) one concludes that in this case also b and R are constant .  Thus M 4 and M 7 only 
interact when c is not constant, in which case all supersymmetr ies  are broken  [13], or 
when c = 0, in which case supersymmet ry  is preserved if a(r) + 2v~-b(r )  = 0, just  as 
in the case of  rigid compact i f icat ion.  

Having  solved the Maxwell  equat ion in (1), we now turn to the Einstein equat ion 
in (2). One can either directly compute  the Ricci tensors f rom (9) or first construct  
an action for  this line element. The  Ricci tensor comes out as follows 

R r r -  2B 4B + A -  - A ~ r  + 2 - R -  +7-- -~- ,  

B" B' { B' 
R t t = - Z - - - A + 4 A - ~ - f f  + - A ' 

r ( . * 2  
R °°= - l  + 2-A B A + - - + 1 4 r  ' 

R , ¢ =  - 6 +  ~ B A + -  + 1 2  + g~l~R 2. (15) 
r 

Of course, the Ricci tensor for R ~/~ is still propor t ional  to g~/~. As a check one may  
note  that  for constant  R one finds the well-known results for the Schwarzschild 
metric,  while the R '  terms are symmetr ic  in S 2 and S 7 and the R "  terms are easily 
checked by  a direct computa t ion .  We have also verified the Bianchi identities. 
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The Einstein equation now becomes 

481 

Rrr= 24A[16b 2 + 56c2R- 8 _ 7 ( c , ) 2 A - 1 R  6], 

Rtt= -24B[16b  2 + 56c2R -8 + 7(c')2A 1R-6] , 

R o o = 2 4 r 2 [ 1 6 b  2 + 5 6 c 2 R - 8 + 7 ( c , ) 2  A 1R 6], 

R ,a  = -24g~a[8b 2 + 40c2R-8 + (c')2A 1R 6]. (16) 

For constant c they reduce to (6), but there are new terms, proportional to (c') 2 and 
due to Fr~ay in (11). As a check one may verify that the Bianchi identities remain 
satisfied if (13) and (14) hold. We now proceed to reduce the set of equations in (16) 
to two coupled equations for R ( r )  and c(r) .  

Just as in the usual Schwarzschild case, Rr~ + A B  aRt, is a useful combination, 
but here it yields an equation for R" instead of the result that A B  is constant 

7 ~ -  = + +-~-~-  + A ( ~ t - X r ) .  (17) 

We have defined RMN = --gMN~.N . From A B - I R t t  one finds a first-order equation 
for B'B 

= - 2 A ~ , -  ~ ( A  + 1 - Ar2~.o).  (18) 

From Roe one may eliminate A54 1 _ B , B - 1  

A' B'  2(1 - A ) + 1 4  + 2 r ~ o A .  (19) 
A B r 

Finally, from R~a one finds with (19) an expression which is linear in A-1 and from 
which we can solve for A in terms of R, b and c 

A ( r ) =  r [ r ( l n R ) ' ] ' +  12 ( rc ' )2 [7r ( lnR)  ' + 2]R -6 

r( lnR) ' (r2~oo - 1) + r 2 ( 6 R - 2 -  ~%) ' 

~0 = -192(2b2+  7c2R-8), w~= 192(b2+ 5c2R-8).  (20) 

From the Bianchi identities we know that of the four equations (17)-(20) only three 
are independent. Thus we shall only keep (17), (19) and (20). Substituting into (17) 
the result for B'B 1 as found in (19) and replacing everywhere A by the result in 
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(20) yields our  final equation for R ( r )  

+  r(ln 7/' 1-1 

+ 2 -  2A(1  - r2~o) + 84(rR 3c')2[1 - r ( ln  R7 ) ' ] [ 1  + ½r(ln RT)'I  

(21) 

This is clearly a third-order differential equat ion for R(r ) .  To obtain our  final 
equat ion for c(r) ,  we go back to (14) and eliminate (A-1/ZB1/Z)541/ZB -1/2 

= ½ (B 'B  - 1 _ A 9t - 1) by  means of (19). This yields a second-order  equation for c ( r )  

c'" + r - l c ' [  A + 1 - 6rR'R - 1 -  r2Aoae + 84( rc ' )  2 R -6 ] d- 1 6 c A R -  2(6~/2bR - 1 ) =  0. 

(22) 

Thus R ( r )  and c(r )  are given by (21) and (22), A ( r )  by (20), b(r )  by (13) and 

B ( r )  by (19). When we demand  R to tend to a constant  R ( m )  at r = oz, also b and c 

have to become asymptotical ly constant  when A does not  tend to zero, see (13) and 

(14). When  A tends to zero an asymptot ic  expansion is needed, see below. Using the 

invariance of all equations under  r - - .  #r ,  R--+ ttR, c ~/*3c, b--+ ~-ab,  we will put  

R(ao)  = 1. Let us now consider first the case b = c = 0, then the case c = 0 but b 4= 0, 

and finally the general case. 
Case (i). Vanishing photon  fields, b = c = 0. F rom (20) we find 

A ( r ) = [ r ( l n R ) ' ] ' [ - r ( l n R ) ' + 6 r 2 R  2 l - a ,  (23) 

while (21) simplifies to 

2 r A 5 4 _ l = 2 ( l _ A ) + R _ 8 [ r 2 R ( R 7 ) , ] , [ l + ½ r ( l n R 7 ) ,  ] 1 (24) 

Putt ing R ( r ) =  ar, (23) yields a 2 =  6, and (24) becomes rA54 1= 8 -  A. Thus we 

have the following exact solution 

R ( r )  = ~/6r, A = 8(1 - 2mr 8) 1,  A B  = 1. (25) 

This solution has a horizon with topology S 2 × S 7 but  it does not  approach flat 
space-time at r =  m because A does not tend to unity. Note  that the d =  11 
Schwarzschild solution for (ds)  2 =  - B ( r ) d t  2 + A ( r ) d r 2 +  r2(d/~9) 2 is given by 

A = (1 - 2 m r - S ) - t  with A B  = 1. 
Case (ii). Vanishing A,t~v, c = 0 but  b 4= 0. In  this case )'r = )', = X0 = °a0 in (20) 

and (17) yields 

+  )(lr 
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With  R ( ~ )  = 1 and bR 7 = constant  according to (13) and b(oo) 2 = ~ R ( o o ) -  2 (valid 

as long as all terms in (15) vanish w.r.t, the term - 6 )  we find b 2 =  1 R  14. 

Substituting this result into (19) yields an expression for B'B -1 which, when 

substituted into (26), yields 

2 A ' A - t =  7 R " R - ' [ r - I  + 7R'R -1] l + 2 r - 1 ( 1 - A ) + 1 4 R ,  R 1 -  24rAR-14" 

(27) 

This is an equation for R containing only R because also A is only a function of  R 

according to (20) 

A ( r ) = r [ r ( l n R ) ' ] ' [ - r ( l n R ) ' { l + 1 2 r 2 R  - 1 4 } + 6 r 2 ( R  - 2 - R - 1 4 ) 1  1. (28) 

One may verify that asymptotical ly 

R = l + q r  6 ( 1 - 1 5  -2+½mr 3 ~ r  + ' ' ' ) ,  

A = ( 1 -  2mr t + 4 r 2 ) - l ( 1 - 4 9 q r  6 { l + ( q ( r - 2 ) } ) ,  

(29) 

which a posteriori  justifies that b ( ~ )  2 = 3J2R(~)  2. Except for R(oc)  which we have 

put  equal to one, there are two free parameters:  the mass m and the "charge"  q. To 

see what happens  at r = 0, we have made a numerical analysis of  (27) for various 

values of  m and q. The results in the figure show that for given m one can choose q 
large enough that there is no horizon, whereas at q = 0 (and presumably small 
enough q) there is a horizon. 

For  positive q there is a singularity at r = 0 and R ( 0 ) =  oo. Compared  to the 
Reissner-Nords t rem solution of  ordinary gravity [14] our solution has a singularity 
of  a new type [18]. 

The large cosmological  constant  in d = 4 is an unwelcome property of all interest- 

ing Kaluza-Klein models. One can add by hand a cosmological constant  to the 

d = 11 action, which then breaks local supersymmetry explicitly [15], and yields the 
following Einstein equations 

RMN= --gMN(}kN + A ).  (30) 

The equations for non-vanishing A are simply obtained by replacing XM by XM + A 

and ~0 m by ¢0 M + A. In the present case with c = 0 one can fine-tune A such that the 
d = 4 cosmological  constant  vanishes, namely by choosing A = 4R(oo)  2 and b(oo) 2 

= 9~6R(o0) - 2. In this case R approaches R(oo)  exponentially fast. It is interesting to 
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note that one cannot make the d = 4 cosmological constant zero by this mechanism 
if one has Englert asymptotics with c(oo) 4= 0. 

Case (iiO. Englert asymptotics. We shall interpret c(r) as the Higgs field whose 
vacuum expectation value c(oo) breaks the isotropy group H = SO(7) of S 7 down to 
G 2. The SO(8) symmetry of S 7 is then broken down to J = SO(7) [16]. (SO(7) is the 
subgroup of SO(8) which keeps a given spinor fixed, but this SO(7) is a different 
subgroup than the isotropy SO(7) which keeps the vector y~ fixed but under which 
no spinor is kept fixed.) Here an interesting analogy with the 't Hooft-Polyakov 
monopole comes to mind. In the Yang-Mills-Higgs model we consider the following 
three solutions, all with A~ = 0 for simplicity. 

(i) The Wu-Yang solution [17] with q5 a = 0, A~ = eaibrbr 2. This solution is gauge 
equivalent to a Dirac U(1) monopole but by the embedding into SO(3) the string 
singularity is avoided. 

(ii) The point-singular 't Hooft-Polyakov monopole [9] with q~ = crar -1, A~ = as 
before. Here one has added to the Wu-Yang monopole a scalar field with constant 
length c which is also covariantly constant 

Di•= Oid/ + Abi(Tb)~Cdpc=o, (Tb)ac= e abc. (31) 

To make the analogy even stronger, note that one may write cO" = c~/t~a~/where ~ is 

A 

I ls.lo ~ 

10.10 3 

5.10 4 

1.10 -3 

[ m = 100 
Aq=O q = 5 0 0  

dlnR \ 
-d-Z'FF , \ 

1 2 3 4 5 10 15 
r > 

1/') d~'nR 
~ / v  d-7'~n r 

Fig. 1. Solut ion for c = 0, which approaches  the Freund-Rubin-Schwarzsch i ld  so lu t ion  asymptot ica l ly .  
The mass  and  charge pa ramete r s  are equal  m = 100 and q = 500. The solu t ion  exhibi t s  a s ingular i ty  

at  r = 0 .  
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an SU 2 spinor 

cos(½e) -sin(½e)e '~) (~) 
n = g  in0 ' g 1= sin(½0) ei~ cos(½0) ' n0= . (32) 

Since d~ = - o T  where o = g - l d g  satisfies d o +  o A o =  0, 7/ is SU 2 covariantly 
constant, just as ~/in supergravity is SO(8) (not merely SO(7)) covariantly constant. 

(iii) The regular 't  Hooft-Polyakov monopole [9] with ¢pu= c(r)rar 1 and A7 = 
w ( r ) e , u j % -  2. For large r this solution approaches (ii) while for small r both c(r) 
and w(r )  tend to zero. Let us now list the analogies with supergravity. 

The FRS solution (c = 0) is the analogue of the Wu-Yang solution. The ES 
solution (c = constant) is the analogue of the point-singular monopole. We envisage 
the analogue of the regular monopole solution to be a solution of d = 11 supergrav- 
ity with c(oo) and R(oo) finite and non-vanishing but c (0)=  0. If R(0) and b(0) 
would also be finite and non-vanishing one would have at r = 0 a Freund-Rubin 
solution, but at r = oo an Englert solution. 

It  is well-known that the existence of the 't Hooft-Polyakov monopole is in- 
timately linked to the topology of the Higgs field ~a(oo), which breaks G = SO(3) 
down to J = SO(2). The Higgs field maps a point (0, 99) of S 2 at r = oo into a coset 
G / J  = SO(3)/SO(2) = S~. A similar situation is encountered for the Englert solution 
where F~v~ (or 71) depends on the coordinates of S 7 and provides a mapping from S r 
into G / J  = SO(8) /SO(7)= S 7. Thus the topologically distinct (homotopy) classes 

are labelled by the winding number of the mapping S 7 --, STF, i.e., by the elements of 

/-/7 ( G / J )  =/-/7 (S 7) = Z.  (33) 

Let us emphasize again that S 7 and S 7 are distinct seven spheres as they are related 

to two inequivalent SO 7 subgroups of SO 8. On the other hand, since both are coset 
spaces of the same SO s the winding number will be fixed. This is also suggested by 
the fact that the covariantly constant spinor used by Englert is in fact a unique 
solution up to the sign of a (which could flip the sign of the winding number) and 
some global SO s rotation (which does not affect the winding number). This is 
different from the monopole case where the boundary condition on the Higgs field 
can generate any winding number. It is however very similar to the monopole case if 
in addition one would insist on spherical symmetry under the mixed angular 
momentum J = L + T, in which case one only has the solutions with winding 

number  + 1. 
It is easy to verify that the c equation (18) on a fixed gravitational background 

(say the ES solution) has no soliton type solution which smoothly interpolates 
between c(oo) = c z and c(0) = 0. A non-trivial behaviour of R, A and B is therefore 
necessary, just like in the monopole case where the Higgs field has only the trivial 
solution if one fixes the gauge fields to be the Wu-Yang solution. Also there both the 
Higgs and the gauge fields are essential for obtaining a regular soliton type solution. 



486 P. van Baal et aL / Black holes in d = 11 supergravity 

To really prove the existence of  these regular solutions we have to solve our set of  

two coupled equations. In  the monopole  case the existence is a simple consequence 

of the positivity of the hamiltonian. Due to the gravitational interactions the 

hamil tonian is not bounded  f rom below in our  case and we look for a solution by 

integrating the equations with the boundary  conditions R --+ 1, c 2 __+ 288 and b --+ 1 

for r - ,  m (the sign of  c is irrelevant). The asymptotics are given by 

R = I  +qlfl(r)r b+q2f2(r)r n + ( 9 ( r - n - 4 ) ,  

c=~4V/2(l+2qlfl(r)r-b-12q2k(r)r " + @ ( r - " - 4 ) ) ,  (34) 

where n satisfies n 2 - 3n - 6 = 0 and is given by n = ½(3 + 3v/33) and 

f l ( r )  = 1 - 9 r - 2 +  3mr -3, 

3 m  f2(r)=1_3(n+3)(2n_l)-1r-2+ T 6 _ ( n + 2 ) n  1 r 3, 

b = ( ~  - 21c2)~/2R 7 (35) 

R and c satisfy a third and a second order differential equation so we expect five 

integration constants. They are R ( ~ )  = 1, c ( ~ )  = ~4(2  and the free parameters  m, 

ql and q2 (respectively the mass and two "charges").  Fur thermore  we find 

(361 

The main problem for finding a regular solution is that a 3-parameter  search in m, q~ 

and q2 is needed. We leave a further numerical  study of the complicated system of 

equations for R and c for a future publication. 

This work has been supported in part  by the Dutch  Nat ional  Science Founda t ion  

( F O M  and ZWO).  
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