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1. Introduction

Calorons are characterised by their holonomy, defined by the value of the Polyakov

loop at spatial infinity. When non-trivial, it resolves the fact that a caloron is built

from constituent monopoles, their mass ratios directly determined by the holon-

omy [1, 2]. These solutions differ from the (deformed) instantons described by the

Harrington-Shepard solution [3], for which the holonomy is trivial. What we find by

(improved [4]) cooling on a finite lattice, to relatively high accuracy, is SU(2) con-

figurations that fit these infinite volume caloron solutions for arbitrary constituent

monopole mass ratios. Twist [5] in the time direction constrains the masses of the

two constituent monopoles to be equal.

The constituent nature becomes evident when the instanton scale parameter ρ

is larger than the time extent β (inverse temperature) of the system. The masses of

the monopoles are for SU(2) proportional [1] to ω and 1/2 − ω, where ω (0 ≤ ω ≤
1/2) follows from the trace of the holonomy: 2 cos(2πω). The distance between the

monopole constituents is given by πρ2/β. At ρ/β � 1 the constituents therefore
hide deep inside the core of the instanton and the non-trivial holonomy plays no

discernible role. But for ρ/β � 1 the situation is opposite; the instanton becomes
static and will dissolve in two BPS monopoles [6, 7]. The transition occurs [8, 9]

for β/2 < ρ < β. When, however, the holonomy is trivial one of the monopoles is

massless and will hide in the background.
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Charge one SU(N) calorons have N constituent monopoles [10] for non-trivial

holonomy. These have the same location in time, but the spatial position of each

constituent monopole can be arbitrary. There are (at fixed holonomy) N − 1 phases
associated to the residual U(1)N−1 gauge symmetry that leaves the holonomy invari-
ant. The total number of parameters describing these calorons is therefore 4N . One

may speculate that the N−1 phases are replaced in a finite volume by the holonomy
itself, indeed described by N − 1 eigenvalues taking values in U(1) (exp(2πiω) for
SU(2)). Also it is likely that, in general, a charge Q caloron is characterised by NQ

constituent monopoles, which we confirm for a Q = 2 caloron solution obtained from

cooling. At zero temperature it is tempting to explain the 4NQ parameters of an

SU(N) charge Q instanton in terms of the positions of NQ objects [11]. Indeed,

there are charge Q = 1/N instanton solutions on a torus with twisted boundary con-

ditions, whose four parameters specify its position [12]. Subdividing a given finite

volume in boxes with the appropriate twisted boundary conditions, such that each

cell supports a Q = 1/N instanton, provides an exact solution that has NQ lumps.

In ref. [11] it is suggested that a typical self-dual configuration would appear as an

ensemble of N randomly placed lumps of charge Q = 1/N , whose locations would

account for the 4NQ parameters. The results at finite temperature presented here

suggest that the assignment of Q = 1/N charge to each lump might only hold on the

average.

Our results point to the usefulness of studying the dynamical role of these con-

figurations. A first attempt in that direction is hampered by the fact that at high

temperatures where the constituent monopoles should be well separated, the fluctu-

ations are so large that on average topological charge cannot be supported over large

enough domains of space-time to capture the configurations with cooling [13].

On a semiclassical basis one is tempted to argue against non-trivial holonomy.

It polarises the vacuum at infinity and raises the energy density above the one with

a trivial holonomy [14]. But now we have seen that these BPS bound states can

be supported in a finite volume, it is time to acknowledge this as an irrelevant

objection, given the non-perturbative and non-trivial nature of the QCD vacuum.

As a consequence, constituent monopoles, at least at high temperatures, are tangible

objects that do not depend on a choice of Abelian projection [15], which till now

has been used to address the monopole content of the theory [16]. In extracting

the non-trivial topological content of the theory constituent monopoles introduce

an extra parameter: their mass, 16π2ω/β. Up to now only the maximal mass,

8π2/β, of such a BPS monopole was considered. It arises in terms of the caloron

with trivial holonomy, described by the Harrington-Shepard solution [3]. Rossi [17]

showed that at high temperature, equivalent to a large scale parameter, this solution

indeed becomes a BPS monopole [7].

In section 2 we discuss the numerical procedure of constructing the configu-

rations. Apart from cooling with improved actions, twisted boundary conditions
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are used as a tool for biasing the cooling towards non-trivial holonomy. The twist

can then be removed, while preserving the non-trivial holonomy and the constituent

monopole nature of the configuration, although it should be pointed out that no exact

charge one instanton solutions can exist on T 4, which remains true at finite temper-

ature. Interesting in this respect is that the well-established Q = 1/2 instanton

solutions that occur with suitable combinations of spatial and temporal twists (so-

called non-orthogonal twist), can be argued to become a single static BPS monopole

in the infinite volume limit at finite temperature. This is discussed in section 3. Con-

figurations of higher charge are discussed in section 4 and we conclude with some

speculations and possible applications. An appendix summarises the formulae for

the SU(2) analytic caloron solutions.

2. Non-trivial holonomy from time-twist

For finite temperature (T = 1/β) and volume (L3, L � β) caloron configurations

with non-trivial holonomy were discovered on lattices with twisted boundary condi-

tions. Starting with a random configuration and after applying a standard cooling

algorithm one frequently reaches Q = 1 self-dual configurations which are stable

under many cooling steps. These configurations are later analysed. An automatic

peak-searching routine identified one or (actually more frequently) two lumps in

them. These are our candidate caloron configurations on the lattice. Below, we will

show how twist in the time direction can help in bringing about non-trivial holonomy.

To appreciate the ease with which twist can be implemented on the lattice, and

because twist has been a very useful tool [4, 18, 19], neglected by large parts of the

lattice community, we think it is useful to review the notion of twist-carrying plaque-

ttes that introduce twist by modifying the lattice action [20], but not the measure.

In the initial formulation of ’t Hooft [5], SU(N) twisted boundary conditions were

implemented by defining gauge functions Ωµ(x) (which are assumed independent of

xµ), such that with a
µ the periods of the torus in the four directions (aνµ = Lµδµν)

Uν(x+ a
µ) = Ωµ(x)Uν(x) Ω

†
µ(x+ ν̂) , (2.1)

here re-formulated for a lattice of size
∏
µNµ. Calculating Uν(x + a

µ + aλ) in two

ways shows that for all x one should have

Ωµ(x+ a
λ) Ωλ(x) = ZµλΩλ(x+ a

µ) Ωµ(x) , (2.2)

with Zµλ = exp(2πinµλ/N) an element of the center of the gauge group. (We define

ki = n0i and mi =
1
2
εijknjk to distinguish the twist in the time and space directions

respectively). The center freedom arises because Uµ(x) is invariant under constant
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center gauge transformations (i.e. the gauge field is in the adjoint representation). In

the presence of site variables (fields in the fundamental representation) one is required

to put all Zµν equal to 1. We now perform the following change of variables [20]

U ′µ(x) = Uµ(x) Ωµ(x) , for xµ = Nµ − 1 . (2.3)

As a consequence, the plaquettes at xλ = Nλ − 1 and xµ = Nµ − 1 (for any value
of the other two components of x) can be shown to have acquired an additional

factor Zλµ. These corner plaquettes are called twist-carrying and the change of

variables has absorbed the twist in the action, by multiplying these plaquettes by

the appropriate center element (the action involves the real part of the plaquette

variables after this multiplication). The location of the twist-carrying plaquette is

arbitrary, as one is free to choose the boundary of the box used for defining the

torus. Alternatively, the twist-carrying plaquette can be moved around by a periodic

gauge transformation. It corresponds to the non-Abelian analogue of a Dirac string,

and is at the heart of ’t Hooft’s definition of magnetic flux for non-Abelian gauge

theories [21, 5]. Thus, twist is introduced by the trivial modification of the weights

of the plaquettes in terms of multiplication with appropriate center elements and

causes no computational overhead.

Note that we have just shown that if Zµν = 1 for all µ and ν, in a suitable gauge

the links can be chosen periodic without changing the weights of the plaquettes. In

the continuum, however, there remains an obstruction in making the gauge field pe-

riodic when the topological charge of the configuration is non-trivial [22, 18]. This

shows that on the lattice, only the center charges are unambiguously defined. Inter-

estingly this includes configurations [12] that in the continuum would be assigned a

non-trivial fractional Pontryagin index [5] (so-called twisted instantons).

To understand what the effect of the twist is on the holonomy, we use the obser-

vation that the presence of the ZN flux can be measured by taking a Polyakov loop

in the aλ direction, which when translated over a period in the aµ direction picks up

a factor Zµλ.

Pλ(x) =
1

N
Tr P exp

(∫ 1
0
Aλ(x+ sa

λ)ds
)
Ωλ(x) , (2.4)

Pλ(x+ a
µ) = ZλµPλ(x) . (2.5)

There are various ways to see this [23, 4], but becomes most evident when ‘pulling’

the loop over the twist-carrying plaquette. For SU(2) this means that the Polyakov

loop is anti-periodic in case the twist is non-trivial. In particular for Z0i = −1, P0(~x)
is anti-periodic in the xi-direction. As we increase the size of the spatial torus it is

natural to expect that the self-dual configuration would approach a caloron solution.

Then P0(~x) would approach a constant at spatial infinity. This is only compatible
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with the anti-periodicity implied by the non-trivial time-twist when P0(~x) → 0 for
|~x| → ∞, forcing ω = 1/4 and thus non-trivial holonomy. This therefore provides
a sure way of obtaining caloron solutions with non-trivial holonomy on the lattice,

which at high temperature gives rise to two constituent monopoles, albeit in this

case of equal mass.

Since the twist in the time direction forces the constituent monopoles to have

equal mass, the lattice corrections to the value of the action (which depend on

the shape of the configuration [4]) are affected only by the separation of the two

constituents (in the next section we will encounter the situation where the mass

ratio is affected by the cooling). This allows to manipulate the positions of the

two lumps by using the tool of cooling with modified actions. This can be im-

plemented [4] by using a lattice action that combines the traces of the 1×1 and
2×2 plaquettes. The two couplings are fixed in terms of the parameters multi-
plying the leading (continuum) and next to leading (a2) terms in the expansion

of the lattice action in powers of the lattice spacing a. The a2 term is given by

a unique dimension six operator, and its coefficient is called ε (it is trivial to in-

corporate the twist-carrying plaquettes also in these modified actions). Wilson’s

action corresponds to ε = 1. The choice ε < 1 is known as over-improvement,

whereas improved cooling is performed by choosing ε=0. In this last case the lat-

tice and continuum action differ only by corrections of order a4. For that reason,

we will choose ε = 0 whenever we compare with the analytic infinite volume con-

tinuum caloron solution. However, unlike for the continuum action, the value of

the a2 operator depends on the position of the constituent monopoles, and there-

fore we can use other values of ε to alter these positions. Cooling with the Wilson

action has the effect of driving the constituent monopoles together, since the Wil-

son action is decreased with respect to the continuum when the field strength has

a larger gradient [4]. Once the two lumps merge, and can no longer be distin-

guished from an instanton (at which point the solution will no longer be static),

it follows the usual fate of an instanton under prolonged cooling with the Wil-

son action: At some point it falls through the lattice [24]. (For cooling histories

see fig. 3).

Over-improved cooling has the effect of pushing the two constituent monopoles

apart. One can speed-up the rate at which monopoles separate by decreasing ε.

Apriori it is not clear if, when the lumps are maximally apart, the solution will not

be affected significantly by the boundary conditions. This will partly depend on the

ratio L/β, but we find for L = 4β that these effects are rather small.

In figure 1 we give an example of a caloron configuration with well separated

constituents on a 163×4 lattice with ~k = (1, 1, 1), initially generated by cooling
with the Wilson action, switching to improved cooling to reduce lattice artifacts.

Shown is the action density s. We see that the agreement with the infinite volume

analytic result is very good, with the action peaks for the lattice result somewhat
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Figure 1: Lattice caloron profiles (left) on a 163 × 4 lattice for ~k = (1, 1, 1), created
with improved cooling (ε = 0). The total action is 1.000185 × 8π2. Vertically is plotted
log(1+s/3), with s the action density at the lattice site (after clover averaging). The profile

fits well to the analytic caloron solution (shown on the right at y= t=0) with ω = 1/4 and

constituents at ~y1 = (2.50, 0.12, 0.95) and ~y2 = (1.38,−0.24, 2.67), in units where β = 1 (or
a = 1/4) and the left most lattice point corresponding to x = z = 0.

lower (this feature is somewhat suppressed by plotting log(1 + s/3), rather than

s). The total action of this static lattice configuration is very close to the required

continuum value 8π2. An example of a non-static configuration with overlapping

constituents will be presented below (see fig. 5). There seems no doubt that a

continuum solution with this constituent monopole structure should exist on the

time-twisted torus.

3. The case of space-twist

When both space and time twists are non-trivial and ~k · ~m 6=0 mod N (called non-
orthogonal twist), the minimum of the action corresponds to a so-called twisted

instanton with fractional charge. Unlike the integer charge instantons, these twisted

instantons can not fall through the lattice. Their scale is fixed, only their position is

a free parameter. This was used in the past [12] to find accurate lattice results using

ordinary cooling (ε = 1). At high temperatures such a twisted instanton becomes

static and represents a single BPS monopole on T 3. The twist allows for non-zero

charge in the box. As discussed in the previous section it also gives rise to a holonomy

characterised by ω = 1/4. Indeed, we were able to fit the finite temperature twisted

instanton (in a sufficiently large volume) to one of the constituent monopoles of

the caloron at ω = 1/4 (when placing the other constituent at a sufficiently large

separation). In the appropriate limits both become ordinary BPS monopoles with

mass 4π2/β.
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Figure 2: Lattice minimum action for various sizes (left), including the best fit to eq. (3.1)

with: S0 = 0.999975(4), b = 0.19950(7), c = 0.3107(3) and d = 0.0844(5). Also shown is

the lattice action profile E(x), obtained by summing the action density over all but one of
the spatial coordinates, as compared to the infinite volume analytic BPS result (right).

Now we will show the type and size of finite volume and lattice artifact effects.

In fig. 2 (left) we display a plot of the minimum lattice (Wilson) action for lattices

with different space and time extensions, N3s ×Nt and twist ~k= ~m=(1, 1, 1). In the
given range, Nt = 4—7 and Ns = 16—32, deviations from the continuum result are

of the order of a few percent. However, the pattern of deviations from the continuum

value is well understood. If we set at = 1/Nt and as = 1/Ns, the value of the lattice

action can be fitted with great accuracy to a formula:

S

4π2
= S0 − ba2t − ba2s − catas − d(at + as)4 . (3.1)

The extrapolated value of the continuum action matches 4π2 to a precision of a few

parts in 105. Notice also that the extrapolation shows the existence of a self-dual

continuum solution for any value of the ratio L/β=Ns/Nt. Furthermore, the lattice

correction to the action decreases in absolute value with the ratio Ns/Nt, consis-

tent with the statement made before that Wilson’s action decreases with decreasing

separation of the monopoles, since in this case Ns plays the role of the separation

between lumps (the periodic mirrors).

To measure finite volume corrections, we performed improved cooling (ε = 0,

to minimise lattice corrections) for Ns = 16 and 32. In this case, the values of

the minimum lattice action attained are of the order S/4π2 = 1.0001(1). In fig. 2

(right) we compare the x-profiles E(x) obtained from the lattice minimum action
configuration with the corresponding one for the BPS monopole. The x-profile

is the integral of the action density over all but the x coordinate. This quantity

has smaller errors and is less sensitive to the lattice discretisation than the action
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density itself. From the figure we see how the lattice profiles approach the infi-

nite volume BPS monopole profile. The slow convergence is due to the powerlike

Abelian tail of the BPS monopole (in contrast to the exponential tail found for other

cases [25]).

Interestingly, an exact caloron solution with equal-size constituents (ω = 1/4)

on the twisted torus can be constructed by gluing two twisted instantons together,

starting from the Q = 1/2 solution defined by ~k = ~m = (1, 0, 0). Gluing two boxes

in the y- or z-directions preserves ~k, but reduces ~m to the trivial value (since nµν
is defined modulo 2 for SU(2)). This exact solution corresponds to the situation

studied in the previous section. Instead, gluing two boxes in the x-direction removes

the time-twist, but preserves the space-twist. The same twist results when gluing

the two boxes in the time-direction. In the first case we have an exact solution on

a space-twisted torus with equal size constituents (corresponding to ω = 1/4) at

maximal separation in the direction of the twist, whereas in the second case the

static nature of the finite temperature solution simply leads to doubling the mass

of the monopole. Therefore this solution corresponds to an exact caloron solution

on a space-twisted torus with trivial holonomy (the other constituent monopole is

massless).

We have also performed lattice studies on a space-twisted torus, with ~k = ~0,

which allowed us to probe the constituent monopole mass ratios, by a subtle use

of the cooling procedure. It can be proven that without twist there are no regular

charge one instanton solutions on a torus [26], but for any non-trivial twist an 8

dimensional space of regular solutions exists [27, 28]. Part of this parameter space

comes about by gluing a localised instanton to the unique curvature free background

supported by the twist. The eight parameters are given by scale, space-time po-

sition and so-called attachment parameters, that describe the gauge orientation of

the localised instanton relative to the fixed curvature free background. For ~m 6= ~0

we find that the magnetically charged constituent monopoles, superposed on this

non-Abelian magnetic flux background, experience an additional force that repels

them as far as the finite volume allows. The presence of this force is evident from

the fact that under prolonged cooling in all cases, ε = 1, 0,−1, the separation be-
tween the two constituent monopoles was increasing and that their centers lined

up with the direction of ~m. Once the constituent monopoles are placed at their

maximal separation, further cooling with the Wilson action (ε= 1) leads to action

shifting from one to the other peak, driving the constituent monopole mass ratios

away from equal masses. Once one of the masses has decreased to zero, the scale

parameter of the remaining (deformed) instanton configuration can shrink, resulting

in the usual fate of falling through the lattice under prolonged cooling with the Wil-

son action. For over-improvement the effect is opposite, and the masses are pushed

to equal values. The ‘force’ — due to lattice artifacts — changing the value of ω

can be neglected for ε= 0 cooling. We summarise the behaviour under cooling in
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Figure 3: Cooling histories for (~m,~k) = (~0,~1) and (~1,~0) (resp. thin and fat curves),

where ~1 ≡ (1, 1, 1), on lattices of size 163× 4. Solid, dashed and dotted curves are for resp.
ε = 0, 1,−1 cooling. For (~0,~1), where ω ≡ 1/4, the two ω–curves cannot be distinguished.

fig. 3, by showing the distance between the peak locations and ω (estimated by

equating (1/2−ω)4/ω4 to the ratio of the peak heights) as a function of the number
of cooling sweeps. Shown are the histories for ~m = (1, 1, 1) at ε =−1, 0, 1 and for
~k=(1, 1, 1) at ε=0, 1.

That we can have solutions that are characterised by arbitrary mass ratios of the

constituent monopoles is also illustrated in figure 4, which represents two values for

the parameter ω, comparing the finite volume configurations obtained from improved

cooling to the analytic infinite volume caloron solutions with non-trivial holonomy.

We see again that the agreement is very good (and will improve for increasing L/β),

with the peaks for the lattice result now somewhat higher as compared to the infinite

volume results.

Next, we discuss the comparison with configurations that are not static. Here

the constituents are close together and therefore there is considerable overlap. This

is illustrated in figure 5, both in the case of twist in time as in the case of no twist.

As mentioned previously, the presence of twist in time (~k 6= 0) forces ω = 1/4, while
in the absence of twist ω can be arbitrary. Obtaining configurations with no twist

requires some care. By cooling random configurations one ends up quickly in the

trivial vacuum configuration. Hence, it is useful to start with a Q = 1 configuration

having ~m 6= ~0 obtained by cooling. Then twist is eliminated from this configuration
by setting the weights of the twist-carrying plaquettes to their standard (untwisted)

value. Additional improved cooling steps were applied to the configuration, leading

to a new solution still having a non-trivial ω value. We recall that there are no

exactly self-dual Q = 1 solutions on the torus without twist [26]. However, for

solutions well-localised inside the torus the configuration is very approximately self-

dual. Notice, nonetheless, that this reflects itself in higher values of the minimum

lattice action. For these configurations with periodic boundary conditions performing
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Figure 4: Lattice caloron profiles (left) for two configurations on a 163 × 4 lattice for
~m = (1, 1, 0), created with improved cooling (ε = 0) - after manipulating with ε = ±1
cooling to obtain the desired mass ratios. The total actions are 1.000155 × 8π2 (top) and
1.000001 × 8π2 (bottom). Vertically is plotted log(1 + s/3), with s the action density
at the lattice site (after clover averaging). The profiles fit well to the analytic caloron

solutions (shown on the right at y = t = 0) with top: ω = 0.210 and constituents at ~y1 =

(1.04,−0.08, 0.86) and ~y2 = (3.05,−0.09, 2.85), and bottom: ω = 0.175 with constituents at
~y1 = (0.85,−0.06, 0.85) and ~y2 = (2.85,−0.06, 2.85), all in units where β = 1 (or a = 1/4)
and the left most lattice point corresponding to x = z = 0.

further cooling steps with positive or zero ε will bring the constituents together and

leads to the standard fate of instantons on the lattice. This can be stabilised by

ε < 0, and the better the solution is contained within the box, the closer one can

take ε = 0 to have a stable lattice solution [4].

The differences with the analytic infinite volume caloron solutions only show

themselves by small differences in peak heights (at t = 0) and would not be clearly

visible on the scale of figure 5. Instead, in figure 6, we display the analytic action

density profile in the z − t plane, where z is the axis connecting the two constituent
monopole centers. The values of ω and the distance of the constituent monopoles is

as in figure 5. It is clear that a two-lump structure is still visible. As a function of

z the constituent monopoles are best seen for t values where the density is minimal

(t = 1/2). The logarithmic scale enhances the regions of low action densities in

favour of those with large densities, and brings out more clearly the constituents.
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Figure 5: Caloron profile for two configurations (top and bottom) on a 163× 4 lattice for
~m = ~0 obtained with improved (ε = 0) cooling. Vertically is plotted log(1+s/3), with s the

action density at the lattice site (after clover averaging). The left plots correspond to the

plane y = t = 0 and the right ones to y = 0, t = 1/2. Top: ~k = (1, 1, 1) with total action

1.000016 × 8π2, ω = 1/4, t0 = −0.125, ~y1 = (1.75,−0.15, 1.43) and ~y2 = (2.20, 0.00, 2.20).
Bottom: ~k = (0, 0, 0) with total action 1.010951 × 8π2, ω = 0.185, t0 = −0.09, ~y1 =
(2.29, 0.07, 2.15) and ~y2 = (1.57, 0.08, 1.73). All coordinates obtained from fitting to the

infinite volume analytic solutions (not shown) are in units where β = 1 (or a = 1/4) and

the left most lattice point corresponding to x = z = 0.

For large L/β the difference between the finite volume solutions with respect

to the infinite volume calorons is mostly due to the contribution of the Coulombic

tails of the periodic copies of the monopole constituents. That this depends on the

nature of the twist is to be expected. For twist in time the charges change sign

when shifting over a period of the torus. For twist in space there is no change in

sign. This behaviour of the charges is correlated to the zeros of A0 (which plays the

role of the Higgs field) at the core of the constituent monopoles as illustrated by

the behaviour of P0 which is anti-periodic with time-twist and periodic with space-

twist. It can be shown from the analytic solution (see the appendix A) that P0 = 1

(corresponding to A0 = 0) near one of the constituent centers, and P0 = −1 near the
other (related to A0 = 0 by a gauge transformation that is anti-periodic in time -
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Figure 6: Space-time profile for the calorons of figure 5, using the infinite volume analytic

result. Vertically is plotted log(1 + s/3), with s the action density. Horizontally is plotted

time ranging over two periods β = 1 and space along the line connecting the two constituent

monopole positions. Right corresponds to ω = 1/4 and left to ω = 0.185.
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Figure 7: Profile of the Polyakov loop P0(~x) for the calorons of fig. 5. Right corresponds

to ~k = (1, 1, 1) and ω = 1/4, left is for ~k = (0, 0, 0) with ω = 0.185. Plotted is the plane

y = 0, for other details see the caption of fig. 5.

the gauge transformation that changes ω to 1/2−ω). This vanishing, i.e. P 20 = 1, of
the Higgs field near to the constituent monopole centers is reproduced by the lattice

data as is illustrated in figure 7.

4. Higher charge calorons

In this section we discuss our finding for higher topological charge. Analytic results

in infinite volumes for higher charge calorons with non-trivial holonomy are not yet

available.

Due to the local (lumpy) character of the caloron solutions one would expect

that higher charge configurations can be obtained by “gluing” together lower charged

solutions. Indeed for configurations on the torus, considering more than one period

in any direction is a sure way of producing solutions with higher topological charge.

On the basis of this it is to be expected that in the case of SU(2), for example,

configurations would have 2Q action density lumps.
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Figure 8: Lattice action density profiles of a (static) charge 2 configuration found with

ordinary cooling on a 163 × 4 lattice with ~k = (1, 1, 1), as a function of x and z for four
consecutive slices in the y direction.

Producing high charge configurations with our method is simple. It is sufficient

to monitor the value of the lattice action during cooling. Typically, this quantity

shows plateaus at integer multiples of 8π2. The cooling process can be interrupted

at the desired value of the lattice action. We used ordinary (ε = 1) cooling; resulting

configurations can subsequently be studied in more detail with other values of ε.

Figure 8 shows a configuration of charge 2, generated with ordinary cooling and

twist ~k = (1, 1, 1). Indeed we find four lumps. We have been able to fit these to two

Q = 1, ω = 1/4, calorons by just adding the action densities together. Other charge

2 configurations have been obtained as well. This includes a configuration with 3

lumps, one of which seems describable as a Q = 1 object.

With similar techniques one can generate configurations with topological charge

higher than 2. This process led us to study the whole cooling histories that go from

randomly generated configurations to low action ones. On lattices N3s ×4, with Ns =
16, 20 and 24, we computed every 10 (ε = 1) cooling steps the total action S of the

configuration and used our peak-searching algorithm to locate action density maxima.

The information was recorded whenever the density of peaks, Npeak/(N
3
s × 4), found

by the algorithm was smaller than 50/(243 × 4) (for higher densities the results are
too sensitive to the details of the peak searching algorithm to be considered reliable).
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For all recorded data the quotient S/(4π2Npeak) was found to lie between 0.8 and 2,

and peaked around 1. This means that on average every peak is associated to an

action of 4π2, a property shared with the exact Q = 1 caloron solution with non-

trivial holonomy. The same follows for configurations that are aggregates of Q = 1

calorons, which each have either one or (more often) two lumps (the constituent

monopoles). Our result shows that this pattern extends to higher densities, where

a detailed analysis of individual peaks is hard to do. Furthermore, the sign of the

topological charge of these lumps is not always the same, thereby pushing the picture

of a constituent monopole ensemble beyond the case of self-dual configurations. Our

result resembles the findings of ref. [29], where a similar behaviour was reported for

Monte Carlo generated configurations at zero temperature. In our case, we have the

additional advantage of having an analytic control for Q = 1 self-dual configurations.

This allows us to conclude that the lumps correspond to constituent monopoles and

hence, at least in this finite temperature case, not all lumps carry integer or half-

integer topological charge. We hope these results will help to motivate other authors

to investigate this point further.

5. Discussion

In this paper we have shown that Q = 1 self-dual solutions can be obtained profusely

on asymmetric lattices L3 × β with L � β by using twisted boundary conditions.

These configurations match quite well the analytic caloron solutions on R3 × S1 [1].
The main change induced by the finite spatial volume is due to the contribution of

the Coulombic tails of the periodic mirrors of the caloron solutions. We have shown

that with judicious use of the twist values and of the parameter ε appearing in the

cooling method of ref. [4], one can produce caloron solutions with different values of

ρ and ω. In comparing to the continuum expressions, the choice ε = 0 (improved

cooling) reduces considerably the size of lattice corrections.

In our analysis we have attempted to disentangle the finite size effects from the

lattice artifacts, by making use of the ε engineering. We have also explored self-dual

configurations with higher values of the topological charge. Our results show that

these configurations look very much like ensembles of Q = 1 calorons with trivial or

non-trivial holonomy. The conclusion, sustained by our results, is that typically a

configuration with topological charge Q has 2Q lumps (constituent monopoles).

Given their local nature and the non-perturbative nature of the QCD (Yang-

Mills) vacuum we vindicate that these configurations ought to play a role in the

dynamics of the theory. It is to be emphasised that for high charges, the existence

of these solutions does not rely on the use of any particular boundary conditions

(twisted or not). Twist however plays a role in stabilising these solutions under

cooling and this lies at the heart of the success of our method. This is most probably

related to the fact that there are no exactly self-dual Q = 1 solutions on the torus
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in the absence of twist [26]. This does not happen for non-zero twist [12, 28]. Thus,

lattice studies involving cooling methods could introduce distortions for low values

of the topological charge [30]. We stress again that due to its simple implementation

and zero computational overhead, the use of twisted boundary conditions is an ideal

tool for non-perturbative investigations of non-Abelian gauge theories and QCD.

A. Analytic results

Here we summarise the infinite volume analytic solutions for the SU(n) calorons

with non-trivial holonomy. After a constant gauge transformation, the holonomy H

is characterised by (
∑n
m=1 µm = 0)

H = exp[2πi diag(µ1, . . . , µn)] , µ1 < · · · < µn < µn+1 ≡ µ1 + 1 . (A.1)

Note that tr(H)/n = lim|~x|→∞ P0(~x). Using the classical scale invariance to put
β = 1, one has

s(x) = −1
2
TrF 2µν(x) = −

1

2
∂2µ∂

2
ν logψ(x) ,

ψ(x) = Ψ(~x)− cos(2πt) ,
Ψ(~x) =

1

2
tr(An · · ·A1) , (A.2)

where

Am ≡ 1
rm

(
rm |~ym − ~ym+1|
0 rm+1

)(
cm sm
sm cm

)
. (A.3)

Noting that rn+1 ≡ r1 and ~yn+1 ≡ ~y1 we defined rm = |~x − ~ym|, with ~ym the
position of the mth constituent monopole, which can be assigned a mass 8π2νm,

where νm ≡ µm+1 − µm. Furthermore, cm ≡ cosh(2πνmrm) and sm ≡ sinh(2πνmrm).
Restricting to the gauge group of SU(2), choosing H = exp(2πiωτ3) and defin-

ing πρ2 = |~y2 − ~y1|, we can place the constituents at ~y1 = (0, 0, ν2πρ2) and ~y2 =
(0, 0,−ν1πρ2) by a suitable combination of a constant gauge transformation, spatial
rotation and translation. For this case the gauge field reads

Aµ(x) =
i

2
η̄3µντ3∂ν log φ(x) +

i

2
φ(x)Re

(
(η̄1µν − iη̄2µν)(τ1 + iτ2)∂νχ(x)

)
, (A.4)

where the anti-selfdual ’t Hooft tensor η̄ is defined by η̄i0j = −η̄ij0 = δij and η̄
i
jk =

εijk (with our conventions of t = x0, ε0123 = −1) and τa are the Pauli matrices.
Furthermore,

φ−1(x) = 1− πρ2

ψ(x)

(
s1c2

r1
+
s2c1

r2
+
πρ2s1s2

r1r2

)
(A.5)

and

χ(x) =
πρ2

ψ(x)

(
e−2πit

s1
r1
+
s2
r2

)
e2πiν1t ,
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Figure 9: Shift of the locations where P 20 (~x) = 1 as compared to the location of the

constituent monopole centers ~yi. Horizontally is plotted the distance d = πρ
2 between the

constituents and vertically the position of z1 = (1− 2ω)d and z2 = −2ωd and the locations
where P0(z) = 1 (z > 0) and P0(z) = −1 (z < 0). Left is for ω = 0.1 and right for ω = 0.2.
with ν1 = 2ω and ν2 = 1− 2ω. The solution is presented in the “algebraic” gauge,

Aµ(t+ 1, ~x) = exp(2πiωτ3)Aµ(t, ~x) exp(−2πiωτ3) .

Since the radii ri are even functions of x and y, derivatives in these two directions

vanish on the z-axis. Hence, along the line connecting the two constituents A0 is

Abelian, allowing for a simple result for P0 along this axis

P0(z) = cos(πν1 + Φ(z)) , Φ(z) =
1

2

∫ 1
0
dt ∂z log φ(t, z) . (A.6)

Since ψ(x) and φ(x) are even functions of ri we may substitute ri = z − zi (with

z1 = ν2πρ
2 and z2 = −ν1πρ2) to find

φ(t, z) =
Ψ(z)− cos(2πt)

cosh(2πz)− cos(2πt) ,

with

Ψ(z) = cosh(2πz) + πρ2
(
s1c2

r1
+
s2c1

r2
+
πρ2s1s2

r1r2

)
> 1

a smooth function of z. The pole of φ(x) at x = 0 represents the usual gauge

singularity. It leads to a jump of 2π in Φ(z), to which the gauge invariant observable

P0(z) is insensitive. The integration over time can be performed explicitly and one

finds

P0(z) = − cos
[
ν1π +

1

2
∂zacosh(Ψ(z))

]
. (A.7)

From this it is easily shown that each of the values P0(z) = ±1 is taken only once.
Only for large ρ one finds P0(z1) = 1 and P0(z2) = −1. When associating the
constituent monopole locations to the zeros of the Higgs field (i.e. to P 20 (~x) = 1), we

find these are shifted outward from ~yi. This is illustrated in figure 9. For the cases
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we studied in this paper these shifts are small, but they tend to become large for

the constituent monopoles with a small mass (ω approaching either 0 or 1/2). We

should also note that the maxima of the energy density (at t = 0) are shifted inward

due to overlap of the energy profiles of each constituent.

The numerical evaluation of the action density s(x) and of the Polyakov loop

P0(~x) are straightforward, but tedious. For the action density it involves taking 4

derivatives, which is most conveniently achieved by using the fact that Ψ(~x) de-

pends on ~x through the radii ri. The C-programmes written for this purpose are

available [31].
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