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QCD on a Torus, and 
Electric Flux Energies from Tunneling 

PIERRE VAN BAAL AND JEFFREY KOLLER 

The energy of ‘t Hooft-type electric flux in pure Qc’D on the hypertorus is a non-pertur- 
hative effect, caused by tunneling through a quantum-induced potential barrier. We calculate 
the electric flux energy using the semiclassical approximation. The problem of infrared 
divergences is attacked directly. and we show how to treat them consistently. using Liischer’s 
effectlvc Hamiltonian approach. A toy model is first solved to demonstrate the consistency of 
our approach. Ltischer’s effective Hamiltonian for the spatially constant modes in QCD is 
rederived using a Lagranglan approach wsith a non-local gauge-lixinp term. and we show, how 
this rigorously delines an effective action to all loop orders. The removal of the gauge degrees 
of freedom from the effective Hamiltonian while avoiding Grihov ambiguities is discussed in 
detail, as are the numerical methods required to treat this non-integrable system. Some con- 
sequences of our final result are noted. / IYX7 Ac:tdemlc Pm\\. Inc 

1. INTRODUCTION 

Unbroken gauge theories are plagued by infrared divergences in perturbation 
theory. However, the infrared region is believed to be crucial for confinement, 
which is a long distance feature of the theory. Our difficulties are caused by the 
strong increase of the effective coupling constant at large distances, the counterpart 
of asymptotic freedom. To be able to do perturbation theory it is therefore useful to 
use an infrared cutoff. and the most elegant procedure is to consider the theory in a 
three-dimensional box and impose periodic boundary conditions. These boundary 
conditions must not break the gauge invariance, so we require only gauge invariant 
quantities to be periodic; the gauge potential is only periodic up to a gauge trans- 
formation. In this way, ‘t Hooft [ 1] introduced gauge theories on the hypertorus. If 
there are no matter fields in the fundamental representation of the gauge group, 
electric and magnetic flux are defined by a topological property called twist. If we 
take the hypertorus to be a cube with sides of length L, and assume that when L 
gets large electric flux tubes form, then the energy of electric flux will be of the form 
(T. L. and we recognize C-J as the string tension. 

However, the energy of electric flux can only be calculated analytically for small 
L. Liischer [2] showed how to do perturbation theory on the hypertorus in the 
zero magnetic flux case. He found that to all orders in perturbation theory there is a 
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degeneracy in electric flux, i.e., electric flux has no energy in perturbation theory. In 
a previous paper by one of us [3] it was explaned how this degeneracy is lifted by 
tunneling through a quantum-induced potential, and we called the associated 
“classical solution” a “pinchon,” because it is analogous to an instanton. We 
expressed the dimensionless ratio of the energy of electric flux (dE(L)) and the 
glueball mas ML(O+ ) in terms of Luscher’s universal expansion parameter 
z = M,(O+ ). L [4], which yields a universal (i.e., renormalization group indepen- 
dent) function. The large L (i.e., large Z) behaviour is also known if we assume 
string formation and a finite glueball mass: dE(L)/M,(O+) - (a/M(O+ )*) 2. 

We expect the formation of flux tubes to be due to non-perturbative effects. One 
could thus hope that in a situation where the perturbative contributions are com- 
pletely absent (unlike in the case of nonzero magnetic flux), there is a smooth 
behaviour when going from small to large values of 2, except of course at the point 
where the non-perturbative effect sets in. 

In a paper [S] where we presented the final result for the short distance expan- 
sion of (5”(L)=dE(L)/M,(O+) for SU(2), this behaviour was indeed observed. 
Although Monte Carlo calculations [6] have not yet confirmed the onset of tunnel- 
ing (which we predicted to occur at z 2: 1.2), data is available in the range z z 1.5 to 
z = 8. Despite the fact that these Monte Carlo calculations were performed on 
periodic lattices, we were able to identify the energy obtained from time-time 
correlation functions for spatial Polyakov loops in the fundamental representation 
[6] as the energy of electric flux, which was first defined by ‘t Hooft by using 
twisted boundary conditions [ 11. Originally these correlation functions were used 
as an alternative way to calculate the string tension, so one was interested in their 
large z behaviour; our interpretation provides a well-defined meaning of this quan- 
tity for all z values. It becomes an important tool in probing the physics of the 
QCD vacuum [S]. 

To understand how one can relate two apparently separate fields, ‘t Hooft’s QCD 
on a torus with twisted boundary conditions, and conventional lattice QCD with 
periodic boundary conditions, we observe that in the Hamiltonian formalism with 
zero magnetic flux (no twist in the spatial deirection) one also works with periodic 
boundary conditions. Electric flux, alternatively defined by ‘t Hooft as a twist in the 
time direction, is introduced in this case by classifying the physical states as 
representations of the homotopy group of allowed gauge transformations, as 
explained in Section 2. Similarly, on the lattice one can define ‘t Hooft-type electric 
flux using the transfer matrix approach, as explained in [32]. On the other hand, a 
spatial Polyakov loop in the fundamental representation creates one unit of electric 
flux [ 11. (Details on this can be found in [8].) Time-time correlation functions of 
such loops thus select the energy difference between the ground state with one unit 
of electric flux and the ground state with zero electric flux, which is the way the 
energy of electric flux was defined by ‘t Hooft. 

This paper is technical in nature. It provides a thorough discussion of the tunnel- 
ing calculation and gives results contained in [ 111, hitherto unpublished. It further- 
more gives results left out in [3, 51. The paper is organized as follows: In Section 2 



QcDON A TORUS 301 

we discuss the classical vacuum. Section 3 presents a toy model closely related to 
the problem at hand; here we also review the effective Hamiltonian calculation 
based on Bloch perturbation theory. Section 4 discusses this effective Hamiltonian 
for SU(2) Yang-Mills on T3, but also gives a Lagrangian derivation. We work out 
in great detail the non-local gauge fixing introduced in [3] and show what the con- 
sequences are for the ghost interactions. It is important to note that our approach 
yields a consistent split into the spatially constant and spatially varying modes, 
which allows a proper and gauge-invariant treatment of infrared modes, without 
giving those modes a “mass” term (as would happen for non-zero magnetic flux or 
for Yang-Mills on a sphere). 

Section 5 is devoted to eliminating the gauge degrees of freedom in the effective 
Hamiltonian. We show that a conventional approach based on gauge fixing leads to 
Gribov ambiguities. We also show how to decompose this Hamiltonian, which has 
six degrees of freedom, into a piece along the three-dimensional vacuum valley and 
a piece orthogonal to it. 

Section 6 explains how the tunneling calculation (to the order in which we are 
interested) reduces to a calculation for a three-dimensional cubic lattice with a well- 
defined bounded potential. In Section 7 we calculate the appropriate energies using 
this reduction and summarize our analytic results. 

These analytic results involve the perturbative energies and wavefunctions, and a 
contribution from transverse fluctuations along the pinchon (the instanton path). It 
has been shown that the effective Hamiltonian (Yang-Mills for spatially constant 
vectors potentials) is non-integrable [ 121, so to obtain these quantities, one has to 
resort to numerical calculations, which are described in detail in Section 8. 

The results of these calculations have been presented earlier [5]. Here we 
describe the methods, closely connected to the route followed by Liischer and 
Miinster [13] for SU(2). 

Finally, there are four appendices, discussing respectively the properties of the 
one-loop effective potential, the polar decomposition, the multiloop infrared 
behaviour, and a discussion on generalizing our results to arbitrary gauge group. 

2. THE CLASSICAL VACUUM 

In this section we will work in the Hamiltonian formalism of Luscher [2]. Our 
base space is then the flat torus T3, or its equivalent R3/A, where A is the lattice 
spanned by a”‘, i = 1,2, 3. We will choose the torus symmetric, of length L in each 
direction (a(” = Le”‘), but this is only for convenience, and the calculation could be 
done on tori of other shapes. If the magnetic flux is zero, as will be assumed 
throughout, one can always choose a gauge such that the potentials themselves are 
periodic: 

A(x + a”‘) = A(x). (2.1) 
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Gauss’s law then imposes the constraint that physical state vectors are invariant 
under any periodic, homotopically trivial gauge transformation. However, the full 
set of all “allowed gauge transformations” (i.e., all those that do not alter the 
periodicity of any periodic gauge potential). is a larger class also containing gauge 
transformations only periodic up to an element of the center of the gauge group. 
For SU(2) this is just Z, = ( + I 1: 

~(x+a’~‘)=(~l)~‘SZ(x). (2.2) 

The homotopy type is thus specified by the three integers k, mod 2, and the 
winding number 

P= (2.3) 

which (for zero magnetic flux) is an integer. 
The physical state vectors are now labeled by the quantum numbers 0 (mod 2n) 

and c (mod 2). which are conjugate to P and k, in the sense that if we denote the 
action of a gauge transformation on state vectors by [Q], then 

[Q] le, 0) = LJ~‘~ ’ +“” le, 0). (2.4) 

The quantum number e is the electric flux of the state, as defined by ‘t Hooft [I]. 
In future we thus distinguish between “periodic gauge transformations,” under 
which physical state vectors are invariant, and the “allowed gauge transformations.” 

Our first step is to identify the classical vacuum. which will suggest appropriate 
coordinates for specifying the wavefunctions. The classical potential is the positive 
definite expression 

l,.(Ai==l [ ~j’.yTr(I$). 
2g; - 7’ 

(2.5) 

F,, = i,.4, ~ (7,,4, + i[.4,, .4,], (2.6) 

so the classical vacuum is the set of the curvature-free (F,, =0) vector potentials. 
Because T” is multiconnected, these are not all gauge equivalent. To see this, con- 
sider the Wilson loop 

W(%)=TrPexp[i$,, *.dxJ. (2.7) 

which is invariant under infinitesimal deformations of the loop $5 if and only if the 
colour magnetic field is zero. (Recall that F,, is given by the area derivative [9].) 
Thus for a vacuum configuration I+‘(% ) is completely determined by the homotopy 
type of the curve %. In a simply connected space % is always contractible and 
kV(‘/, ) = 2. However, for T’ the homotopy type of % is specified by three integers II,. 
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which give the winding numbers around each of the three generating circles of 7”. 
Hence 

where 

C!,= Pexp i [’ .~,(se”‘)tl.~ 
! ! ‘0 

(2.9) 

Furthermore. I+‘(% ) does not depend on the order of (i,‘s, so these must commute. 
Let their eigenvalues be exp( *iv,): then. because Tr( U,) = 2 cos 43, is invariant 
under periodic gauge transformations, vacua with different values of cos q, must be 
inequivalcnt. Indeed, the vacua can be classified by cos y,, since we can explicitly 
construct a curvature free configuration giving any desired value of cos q,, viz.. the 
constant field 

(2.10) 

with 0, the Pauli matrices. Any other curvature-free configuration can be reduced to 
this form by a periodic gauge transformation. Also. one can identify 

y, 2 y, + 37-L 
(2.11 ) 

cp2 -q. 

This corresponds to Liischer’s gauge-invariant labeling of the torons (i.e., 
classical vacua). Finally, note that an allowed gauge transformation of the type in 
Eq. (2.2) transforms I&‘(% ) into ( ~ I )k ” C1’(% ). Since these transformations are 
genuine invariances of the Hamiltonian, we make a note of how they transform the 
vacua: 

0, -+ Y, + Z”,, c, -3 c, + h7,. (2.12) 

These transformations are generated by 

R”‘(x)=exp( -rrj.v,~~jf.). (2.13) 

In summary: the classical “vacuum valley” is parameterized by a vector C, mod 47~. 
and a symmetry relates vacua C, -C, and C + 3-m (n E Z:). 

The next step is to expand the potential around the classical vacuum, so we 
follow Liischer and write 

Q l(x)-iQ(x)?,Q ‘(XL (2.14) 
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s T’ 
dix q;(x) = 0, D;q;(x)=O. 

D, is the covariant derivative in the background vacuum configuration 

(2.15) 

(2.16) 

With this parameterization one finds 

lilA)=[ I’ 
Tr~(D,~,(x))‘+~~g,~D,q,(x))lq,(x),q,(x)l-~g:,Cq,~x),q,(x)]2). (2.17) 

The quadratic part of V can be diagonalized by putting 

q;(x) = 4; (k) @” x ‘.a,, k#O 

y,(x) = q,+(k) $nck x,/A (‘1 + icr( 

2 

where y;(k) (k #O) and q,+(k) satisfy the conditions 

k.q3(k)=(2nk+C).q+(k)=0. 

(2.18) 

(2.19) 

w 
f A- 

Ql 
, 

FIG. 1. An impressionistic graph of the potential V(A), with the infinite-dimensional space of field 
configurations represented as :wo-dimensional. A classical vacuum valley lies at the minimum of the 
potential. but the squeezing of the potential in the transverse direction induces a quantum barrier (the 
dashed curve), causing the perturbative quantum vacua to occur where the potential is widest. Con- 
tigurations with different winding number are separated by a classical barrier. Allowed gauge transfor- 
mations Q map one perturbative vacuum to another. 
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Note that for C = -2nn there are modes with zero eigenvalues, which implies that 
the quadratic approximation fails for these modes. This is the well-known infrared 
problem, and it means that a naive perturbation expansion will fail. Much of this 
paper is devoted to treating these “quartic modes” correctly. It is a non-trivial 
problem to do this, and the same problem reappears in various guises at different 
places in the calculation. In the next section we will show how to deal with this. 

Figure 1 is an attempt to show the shape of the potential V(A). We have reduced 
the three-dimensional vacuum valley to one dimension, and shown only one of the 
infinitely many “transverse” directions. The transverse direction we have shown is 
one with quartic behaviour at C = 0. Thus C’ is wide at this point, but “pinches” 
narrower at non-zero C. 

One might wonder if it is possible to remove these quartic modes by changing the 
metric of the torus. However, we see from Eq. (2.17) that the quartic modes are due 
to a zero eigenvalue for the Laplacian on T’, and are thus related to the non- 
triviality of the De Rham cohomology. This depends only on the topology of the 
space, and not on the metric. For zero magnetic flux, there is no way out of the 
quartic-mode problem. What happens for non-zero magnetic flux is shown in [29]. 

3. A TOY MODEL 

Let us first remind the reader of a toy model which was analysed in [14]: 

(3.1) 

This toy model shares with our full problem the feature of a vacuum valley and the 
breakdown of the quadratic expansion at .Y = k 1. However, there is a feature here 
that is different from the full problem. In [ 141 it was explained that one can use the 
one-loop effective potential V,(.u) in the adiabatic approximation, The non- 
adiabatic corrections could be ignored: where they become important, near the 
points where the quadratic approximation breaks down, the information is con- 
tained in the perturbative wavefunction, which is matched to the non-perturbative 
part in a higher-dimensional WKB-type approximation, called the path &corn- 
position expansion. In the full problem, we have an infinite number of transverse 
modes, each giving a non-adiabatic correction in the Lagrangian of order 1’ to the 
leading order term (l/g;) i”. Instead of ignoring this correction, it is imperative to 
note that it should actually give the proper renormalization of the coupling con- 
stant. We will come back to this later in a Lagrangian approach (Sect. 4). 

Another difference between (3.1) and the full problem is that in (3.1) the 
breakdown of the quadratic approximation is caused by the same transverse 
variable 1’ at both x = &- 1. In the QCD problem, a mode which is quartic at C = 0 
is perfectly well behaved at C = 27cn. To understand what happens if the breakdown 
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of the quadratic approximation occurs due to different transverse modes, we have 
constructed another simple toy model, 

(3.2) 

This exhibits the following symmetry: 

n( II’. s. j’. I ) = ( 11‘, J’, .y - : ). (3.3) 

Note that f7’ is the identity and hence wavefunctions are even or odd under II. In 
particular, the twofold-degenerate ground state will be split into an even and an 
odd state, whose energy difference is determined by tunneling through the one-loop 
effective potential C’,(I): 

(3.4) 

Note that the part of the Hamiltonian quadratic in 11‘ was added to ensure that 
I,.,(z) has isolated conical minima at : = + I. Thus perturbation theory is obtained 
by expanding around : = 1~ .Y = J‘ = rt’ = 0 (or : = ~ I ~ .Y = J‘ = 11’ = 0). 

Much of this section is concerned with understanding the relationship between 
Bloch degenerate perturbation theory [ 151. and tunneling through an induced 
potential barrier as discussed in [ 141. Given a set of states degenerate in the unper- 
turbed theory, the Bloch approach provides one with an effective Hamiltonian 
describing the perturbative energies of these states. We will demonstrate that tun- 
neling in the effective theory and in the full theory gives the same result for the 
energy splitting, in problems of the type we are concerned with. 

We thus want to use this example to prove commutativity of the following 
diagram (BP = Bloch perturbation theory [ 1.51. PDX = path decomposition expan- 
sion 1171): 

(3.5) 

Here H' is the effective Hamiltonian in the non-quadratic variables (H'+ is obtained 
by expanding around z = 1, where s and )t‘ are quadratic. whereas H' is obtained 



by expanding around r = - 1 making ~3 and 11’ behave quadratically). At the end we 
shall discuss how to combine H’, and H' into one effective Hamiltonian. For the 
gauge theory problem, this then implies that we can study the tunneling in a finite 
dimensional setting, because there is only a finite number of non-quadratic modes. 

We will first review Bloch’s method for degenerate perturbation theory [IS], in a 
spirit similar to the way L&her used it for gauge theories [2]. First we rescale the 
coordinates via 

se that the hatted coordinates are 0( 1) for low-lying perturbative states in the well 
region. We thus find the perturbativc expansion (we suppress the suffix + ) 

H=H,,ig"H,. 

fj, = i $ 'H;'), 
(3.7) 

\ 0 

with the following explicit expressions (u,. constants): 

(3.8) 

Hence the Hamiltonian separates naturally into an unperturbed piece involving 
only the quadratic variables, and a perturbation involving the non-quadratic 
variables. The lowest energy unperturbed wavefunctions are given by 

Y( ii‘, .\-. .I’. z ) = fj( J’. 1 ) Y,,( 11‘. .\- ). (3.9) 

with Y/,,(u’, X) the groundstate wavefunction for H,, with zero energy: 

(3.10) 

and & ~3, z) any square-integrable function. The idea of Bloch perturbation theory is 
that when we turn on the perturbation. &J: :) becomes an eigenfunction of an 
effective Hamiltonian H' = I,:= o g"' ' " ' H: In particular. to lowest order & ~1, z) 
is an eigenfunction of 

(3.11) 
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(By choosing the z-dependent w-frequency as in Eq. (3.2), we get an Hb similar to 
that for Yang-Mills and to the toy model in Eq. (3.1).) Beyond lowest order, the 
energy eigenstates are no longer direct products as in (3.9) but from the discussion 
below we see that they are related to direct products by the operator U. 

Later we will need to find the higher order terms in the expansion of the effective 
potential, so we will follow the discussions in [2, 15, 161. Let P, be the projector 
onto the state (3.10): 

(3.12) 

The eigenvalues E, of H, with the property that E, = 0( g”3) (one of which is the 
groundstate energy) are determined by constructing an operator R whose eigen- 
values are E,, 

R I%> = E, la,>, (3.13) 

where we ckfinr R by 

R = P,, HU, (3.14) 

with U the operator that maps ICC,) to the eigenstate ICC) of H with the same energy 
E,(and UIF)=Oforall I!P)withP,,lY)=O). 

u 1%) = lx>3 HIa)=EJa). (3.15) 

Therefore combining (3.13) and (3.14), we must have 

(3.16) 

and one derives from this [15, 161 the Schwinger-Dyson equation for U: 

U=Po+r (Eo-Ho) “’ (* -‘O) (H, U- UH, U). (3.17) 

Note that R is not hermitian. To derive an effective Hamiltonian H’ we observe 
that with P the projector onto the eigenstates Ic( > of H, one has the following her- 
miticity property (use UP,= U and PU = U [16]): 

P, HUP, PP,, = PO HPPo = P, PHP, = PO PP, U’HP,. (3.18) 

Thus, define the operator B: Sz, + Q. (Q, the set of eigenstates of H, with eigen- 
value 0, i.e., square integrable functions of .v and z) by 

B= P<,PP,. (3.19) 
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Since B = P, + 0( g2’3) it is positive definite on Q, for small enough g, so that we 
can define H' by 

H’ = B-l,?,@*. (3.20) 

Note that this perturbation theory breaks down for the smallest value of g where B 
is not invertible. 

The operator H' acts on 52, and can hence be expressed as a Hamilton operator 
in the variables v and z acting on square integrable functions. To lowest order we 
found the result-of Eq. (3.11). 

Next we will describe the features of the PDX for the situation where a vacuum 
valley is present (the line .Y = y = M’ = 0). In [ 143, a recipe was given for applying 
the PDX to a tunneling problem with a vacuum valley. We solve for fixed-z 
eigenstates of H (p,= (l/i)(?/?z), and II = 1 labels the ground state), 

H(p, =O) $‘l (M., .Y, y) = I’,,(:) x:,r-$bv, x, y), (3.21) 

and expand a wavefunction Y( ~$7, s, J’. z) as 

(3.22) 

(In this simple example we can obtain the x1)1\ in closed form.) The Hamiltonian in 
this representation becomes 

H,,,,, = -$ 6,,,,, $- A,,,,(:) z * + ~,,,,, I.‘,,(=), (3.23) 

with the following definition of A,,,,,: 

The first ingredient in the recipe for the tunneling energy split is the potential V,(z), 
defined in Eq. (3.21) and given in Eq. (3.4). The second ingredient for the PDX as 
described in [ 143 is what was called the ground state Y0 [‘I for the single-well poten- 
tial Vlo, or single-well Hamiltonian HCo,. HCol is H to the lowest order in pertur- 
bation theory where degeneracies are lifted. We obviously have 

YQO’(w, .Y, J’, =) = q$O’(y, z) Yo(w, x), 

Hhq5&0'(y,z)= E&"'@&o'(y,:). 
(3.25) 

The final ingredient is the single-well energy E 6’1 Observe, incidentally, that Ho is . 
identical to the single-well Hamiltonian for Eq. (3.1), which was studied in detail in 
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[ 141. The recipe now instructs one to expand !?$‘I as in (3.22) and thus find the 
single-well approximation (p&O1 for cpb”(z), for ,- deep within the barrier. As shown 
in [ 141, the n = 1 term dominates (3.22) in this region, so we find for /z - 11 + g’/‘: 

cjhO’( J: z) ‘v (p($“l( 2) - 
2 I:- 11 V2 

g’ - (3.26) 

The energy splitting between the even and odd ground states is now given in terms 
of what we will call the tunneling data (V,(c), I$“], (P&~](Z)) by [14]: 

(3.27) 

For tl= g”’ this determines dE( g) up to a relative error that vanishes as a positive 
power of g. 

It is immediately clear from Eq. (3.25) that the tunneling data ES01 and (~6”’ can 
equally well be obtained from the single-well ground state Yp1 of Hco, or from the 
single-well ground state ~~(‘1 of HO. W e are now going to show an even stronger 
result: we can also derive V,(z) from the effective Hamiltonian H’. This is similar in 
spirit to the discussion in Appendix A of [S], where it was verified to the fourth 
order in the coordinates. 

Since c’,(s) comes from an infinite resummation of Bloch perturbation theory, we 
will rearrange things slightly. Instead of resealing, we will stick to the original 
variables and write 

H=H,+H;j+ w, 

Equation (3.17) can now be rewritten in terms of 

U(n) = (4 U IO>, 

where In) is the set of eigenfunctions of H,: 

HoIn)=& In>; E,=4(n, +4), 

(3.28) 

(3.29) 

(3.30) 
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and <I!,, .Y 1 0) = Ye(rr, s) as given in Eq. (3.10). The reason that only the matrix 
element U(n) enters is that U = UP,, (see [ 161). We find 

U(O)= 1, 

L’(n) = j U(n) (01 W lm> I/(m) - (nl W Im) Urn) + [U(n), II;] j/E,. 
(3.31) 

whereas the operator R is given by 

R=Hh+(Ol Wlm) U(m). (3.32) 

The matrix elements of W are easily computed explicitly, 

(nl Wlm)=~r(~)~-41ki,...,+a[~_+l~~-41X..,,,:. 

‘Y = ,,,,, JG5 s ,,.,,, , 2 + J&L% 

(3,33) 

s ,),.,, 2 - + (2n + 1 1 6, ,,,, 

but the important point is that they are g-independent. If we next rescale J as 

dependence on g only enters in the term containing Hh in Eq. (3.31) so we can 
expand U(n) in powers of R, 

Wn)= U,,(n)+g’U,(n), (3.35) 

where C’,,(n) satisfies the equation 

Go(n)= U,,(n) (01 W lb> U,(m)- (nl W Im) U,(m) 
i 

(3.36) 

Since Eq. (3.36) is obtainable from Eq. (3.31) by ignoring [a’/~?=‘, U(n)], it means 
we can compute things by deriving the effective Hamiltonian for H(p, = 0) and con- 
sidering z as a fixed parameter. 

Next, because H(pl = 0) separates we easily find 

-? + 3 
R-H;= I-+ II+ + -4+g’R,. 

(. > 

To obtain H’ one observes that B in Eqs. (3.19) and (3.20) is only introduced to 
obtain a hermitian operator, and since R is hermitian to lowest order, we also 
obtain 

H’=HI,+/z+lI+ -4+g%;. (3.38) 
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We can now decompose H’ in a similar way along the vacuum valley; we solve 
for the fixed-z eigenstates of H’(p, = 0), 

H’(p,=O) x;l;y,v, = q7(z) x;l’;‘(!:,, (3.39) 

and expand the effective wavefunction c$( JJ. 2) as 

&J. 2) = c cp”l’(z) x;!;‘(y). (3.40) 

One therefore finds 

with A:,,,, defined as in Eq. (3.24) and 

T,,,,,= ($;‘I I?, -n’,(p,=O) lx;:;‘). 

One easily deduces (see Eq. (3.4)) 

V;(z) = V,(z) + O(g2), (3.42) 

which is what we set out to prove. The 0( g’) correction in (3.42) and the one com- 
ing from T,,,,, can be shown to give negligible contributions to dE(g), as should be 
true for consistency. 

In conclusion, one can obtain the tunneling data ‘pO Co](;), E&O] from Ho (which is 
the single-well approximation of H’), and V,(c) from the one-loop approximation 
for the effective potential along the vacuum valley, which can be computed in a 
variety of ways. 

The above derivation of the one-loop effective potential was one example show- 
ing that H’ makes sense beyond perturbation theory. We have two different 
expressions, H’, , related to two different quartic modes. The symmetry I7 
(Eq. (3.3)) guarantees an intimate connection between these two expressions, 

H; (u, z ) = H’. (u, -z), (3.43) 

and one easily verities that the same holds for the operators R and B (as maps from 
Q,, into itself). We can then naturally combine H’+ and K- into one effective 
Hamiltonian: 

H’(u, z)= H’+(u, 1~1) 
(3.44) 

= H’. (u, - Izl). 

Note that H‘+(u, z) is ill-defined for z L -1, but that we do not use it in that 
region. Now suppose that $(x, ~3, z, IV) is a simultaneous eigenvector of H and I7 
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with eigenvalues E and (T ( = + 1). The reduced wavefunctions $ + (J, :) and 
fi (.u, :) are then related by (use Eqs. (3.12) and (3.16)) 

$+(u,=)=&(u, -=I, (3.45) 

and one can show that $ f (u, 1) is an eigenfunction of H', (u, Z) with eigenvalue E. 
Let us define the wavefunction $(rr, I) by 

(3.46) 

) has the It is clearly an eigenfunction of H' with eigenvalue E, and by Eq. (3.45 
property 

$(ZI. z) = a$(zr, -:). (3.47) 

However, we have to worry about continuity. For example, G = - - 1 forces 
$(u, 0) = 0 and thus Ic/ + (I(, 0) = 0, which is not automatically guaranteed by the 
general symmetry properties of $ under I7. In general, we have 

I)( A-, 1’, 0, w) = o$( j’, s, 0, w), (3.48) 

but one easily verifies that if I/I(.u, J’, 0, M’) is not even under interchanging .Y and y, 
$ will correspond to an excited state, not degenerate with the ground state for 
vanishing coupling, and is hence outside 52,. To see this, consider the decom- 
position of the wavefunction in Eq. (3.22). We find in particular that if I+!I(x, j’,O, M’) 
is odd under interchanging x and ~3, und non-xro, the wavefunction cannot couple 
to those modes for which x’;i-\(.~, y, 1~) is even under interchange of .x and ~1. But an 
analysis along the lines of [ 141 shows that the wavefunctions belonging to Q, do 
couple to those modes. Thus if $(.u, ,I’, 0, \i,) is non-zero and odd under interchang- 
ing x and .1: then cc/ is orthogonal to QcI. Consequently, I$ is properly defined as an 
9’ wavefunction on R’ with Hamiltonian H' as defined in Eq. (3.44). 

We have therefore obtained an effective model in a smaller number of dimen- 
sions, allowing one (in principle) to compute the energy split between the even and 
odd ground states. beyond the semiclassical approximation. using H' as 
Hamiltonian. 

This result carries over in a suitable generalization to our full problem of QCD 
on a torus, but we will leave the more extensive discussion that this issue deserves 
to the future, since this paper is restricted to the semiclassical analysis. (For a few 
additional remarks, see [3].) 

4. THE EFFECTIVE LACRANGIAN 

With the example of the previous section to guide us, we can now return to dis- 
cussing SU(2) Yang-Mills on T3. The Bloch effective Hamiltonian H’ has already 
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been calculated by Liischer [2], and if we expand about C = 0, then H’ is a 
function of the spatially constant vector potentials (k = 0 in Eq. (2.18)). To lowest 
order, it is just the Yang--Mills Hamiltonian in the gauge A,, = 0, restricted to these 
constant vector potentials, with the coupling constant properl), renormalized, 

(4.1) 

where 

A,=?=‘$, ?,c,=O v/ij. (4.2) 

A straightforward generalization of the arguments in the previous chapter tells us 
that the following Hamiltonian t? can be used to calculate the lowest order energy 
splitting between the different electric flux sectors: 

fi= H;(c:‘) + V;(C), IC,I d 7t. (4.3) 

We extend fi by periodicity to C values outside this range. Here V’,(C) is the one- 
loop effective potential along the vacuum valley, where the prime denotes that we 
have excluded the contribution from the constant modes: 

2 ICI 
v;(c) = V,(C) -T, 

V,(C)=& c Jin2(y2). 

(4.4) 

Il#O 

We have used the fact that up to a constant, the sum of the (C-dependent) eigen- 
values of the quadratic fluctuations (see Eq. (2.18)) gives the effective potential 

c’,(C)=2 1 &f(k)“. 
ke%’ 

(4.5 1 

V;(C) = V,(C) - 22.,‘(O)‘:‘. 14.6) 

In Appendix A we will show how to resum these expressions to obtain the more 
rapidly converging result 

(4.7) 

The u,, decrease rapidly with n, 

(4.8 1 
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and the first few are 

u, = 2.7052746... 10 ’ 

u2 = 1.6048745... . 10 ’ 

a3 = 1.6065690... 10 -’ 
(4.9) 

uj = 1.9385627... 10 ’ ‘t 

In [5] we explained how one could calculate K, , xi, and xj in Liischer’s one-loop 
effective Hamiltonian: 

1 
Jq I- 

c 
- 1 + 2 i Gu,, 

71 II- I 1 
. 

This was part of a consistency check, analogous to the one we performed for the 
toy model in the previous section. 

Before we continue to analyze fi (Eq. (4.3)) in more detail, it is useful to show 
how these formulae can be derived using the Lagrangian approach. In this 
language, we are seeking an effective Lagrangian in the spatially constant vector 
potentials, obtained by integrating out all other degrees of freedom in the path 
integral. We start by introducing the projector P onto these states: 

(4.12 

A convenient gauge-fixing function for this procedure is then given by [3], 

jl=(l - P)(c?,,A,,+i[PA,,,A,,])+L ‘PA,, (4.13 

so that if we define 

B,, = PA,,, Q,,=(l -f’)A,, 

then ): = 0 is equivalent to 

B, = 0, ?,,Q, + XB,,, QJ = 0. 

(4.14) 

(4.15) 
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This looks just like the background field gauge-fixing condition. However, there is 
an important difference from the standard background field approach, in that here 
B and Q are functions of A. This has consequences for the Faddeev-Popov ghost, 
as we will see. Also, because B is a dynamical variable, and is not invariant under 
gauge transformations, we need the first condition in Eq. (4.15) to fix the spatially 
constant but time varying gauge transformations. Clearly, B,=O is the most con- 
venient choice of gauge for converting the effective Lagrangian to a Hamiltonian. 

One can calculate the Faddeev-Popov determinant in the standard way. The 
variation of 1 under an infinitesimal gauge transformation Q = e” /’ is 

S,,x=(l -P)jD,,(PA)D,,(A)A+I’CP(D,,(A)/f),A,,lj 
+ L -‘&P/l + is!-‘P[A,. A], (4.16) 

where D,,(A) is the covariant derivative 

D,,(A) /I = ;I,,/4 + i[A,,, A]. (4.17) 

Splitting /1 into PA and (I - P) /i = ,4’. we find 

6 1x=(1 -f’)j~,,U’AW,,bW’- UT-A,,, A’l, A,,]‘, 

+ ; ?,,PA +; P[A,, A’] + i[x, PA]. 

and introducing the operator ..K via 

~dA=D,,(PA)D,,(A, A + CA,,, J’CA,,, All. (4.19) 

(4.18) 

gives the Fadeev-Popov determinant 

The prime indicates that PY = PF= 0. Here, ye and f are spatially constant, and 
can be integrated out explicitly, giving an irrelevant constant. Continuing the stan- 
dard arguments, we have I = d(A”“) J sQs(xR - E), where Q, is defined by xRO = E 
(see e.g., [ 18, p. 581 I). Inserting this into the generating functional, we get 

I’= YA,,Q’YP’Yexp 
s 

~~~Tr(~~,,)-2Tr(Y~&Y) 
> 

S(x - E), (4.21) 
g, 
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which is independent of E. Integrating over E with j Q’E exp( (i/g;) j Tr( E’)), where 
again the prime denotes PE = 0), we find 

-Tr((D,,(B)Q,,)‘)-2Tr(‘t/D,,(B)D,,(B+Q) Y)-2Tr([Q,,, Y] P[Q,, F]) 
1 

. 

(4.22) 

One now easily extracts the effective Lagrangian for B, by writing this as 

(4.23 ) 

A peculiarity in our expression is the non-local interaction for the ghost, which is 
of course due to the non-local gauge fixing. In addition, we have a non-linear 
gauge, which normally needs a counterterm quartic in the ghosts [30]. However, 
because our non-linearity is only due to the constant modes, simple power counting 
shows that no quartic ghost divergences arise. 

We wish to observe here that although Eq. (4.22) is renormalizable, in principle 
one needs to verify that gauge invariance is maintained at the quantum level, by 
using Ward identities. In this way, one could establish perturbative renor- 
malizability ic.it/zout igrzoring infrarrd cfijficulties. Here, we just assume that only one 
renormalized coupling constant has to be introduced. This assumption, incidentally, 
is made in the Hamiltonian approach too. 

The one-loop calculation of y&(B) is particularly simple, and confirms to that 
order the above assumption: 

‘S’Q,, ‘r’Y 8’Yexp 

+ TUQ,, ~ji.(B) Q,,) - 2 Tr(PD,,(B)’ Y) 1 , (4.24) 

with 

*i’wQ,. = -WB,’ Q,,- NF,,,.(B), Q,]. (4.25) 

This is precisely the expression one obtains in a standard background-field 
calculation, except that the integration over the gauge and ghost fields excludes the 
constant modes. We can thus follow ‘t Hooft’s approach [ 191 and write (,filhc are 
the structure constants for the gauge group): 

Tr(Q,,W,‘JB) Qv)= -t(a,,Q~)2+Q~(N~)~~d,~Q~+tQ~M~~Qs, 

2 Tr( YDJB)’ Y) = -(?,, Y’)(c?,, YU) + 2P(. Ci,)Irh c?,, Y” + P-&‘$ Yb, 
(4.26) 
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with 

(Nl’ );; = firhi B;t dl,i, 

M;:: = - Zf;,h< F;;,.(B) + (N,, No);:, 

(. +;Y”‘=,fl,~< B;,, 
cN;f”=(.t,.t’“)“h. 

(4.27) 

Note that N,, =. 1 ,i = 0, and that ,f,,,, A’ is just i(ad A),“, the matrix for A in the 
adjoint representation. We now want to write down the most general possible one- 
loop effective action for B, compatible with the remaining symmetries, i.e., the cubic 
group 0( 3, Z) and a global background gauge invariance. Clearly -V$“P( B) must 
be a function of ad Bi, ad B,, and ad F,,(B). If we restrict ourselves to terms no 
more than quadratic in B and quartic in B, which is the order to which Liischer 
works [2], we find 

+ h, Tr((ad B,)“) + b5 2 Tr(ad B,)‘(ad B,)‘). 
if/ 

(4.28) 

This can be put in a more convenient form (see [Z] for some tools), which for 
SU(2) is 

‘i:,(B)=~Tr(F,,,(B)~)-h,(B:‘)‘+h;Tr(F,;(O)’) 
0 

+ h,(B:‘)‘+hjB:‘B:‘BI’BI’+h;(B:‘B:’BfBf+2B;B; BfBf). (4.29) 

Next we observe that when we calculate the dioeugenf part of P&, the sum over the 
(non-zero) loop momenta can be replaced by an integral. Thus the divergent parts 
of the coefficients in Eq. (4.29) are exactly the same as in the infinite volume field 
theory calculation, i.e., the infinite parts of h, and hI, are equal, and renormalize 
(l/2&) Tr(F;‘,,,.) to (1/2g’) Tr(F;‘,,.) in the usual way, whereas the other parameters 
(h,. hi, and h;) are finite. 

An alternative approach leading to the same conclusion is to use the quasi- 
classical expansion, as described for an arbitrary compact manifold in [20]. There 
one u/~~u~w gets the proper renormalization of the coupling constant, essentially 
because the small-scale behaviour is insensitive to the large-scale details of the 
smooth manifold on which we formulate our gauge theory. 

We can actually get the finite coefficients in Eq. (4.29) without further work, by 
making some simple observations. First, if the finite parts of h, and hl, are not 
equal, we can just rescale B -+ (1 + Mg’) B to absorb those terms, without changing 
anything else at this order. Second, note that for B= 0, -Ye, is just the effective 
potentiai V’, which we have already calculated to one loop for abelian B in 
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Eq. (4.4). A Taylor expansion of V’, thus fixes the remaining constants, giving 
h2 = LK,, hi = 5L3ti,, and hl, = L’(ti3 - tij). This argument is clearly the consistency 
requirement we discussed earlier. 

Converting Eq. (4.29) to a Hamiltonian indeed reproduces Liischer’s 
Hamiltonian, Eq. (4.10), and using the effective potential for arbitrary SU(N) 
derived in Appendix D, we can apply the same reasoning and reproduce his more 
genera1 formula. In principle, the results of Appendix D will in this way give the 
effective Hamiltonian for any simple gauge group, but we have left this to the 
reader. 

We also leave to the reader the task of explicitly doing the background field 
calculation in Eq. (4.24) [ 191. We have found that after integrating over the con- 
tiuous energy. one is left with exactly those momentum sums encountered by 
L&her in his Hamiltonian approach. We believe that there is a genera1 one-to-one 
correspondence between Bloch perturbation theory and this Lagrangian method. In 
particular, resealing By = ,& ‘c:‘/L and t = Lg,,~’ ‘7. leaves an expansion in powers of 
R; ‘. and the energy integral of the propagator is analogous to the fundamental 
operator in Bloch perturbation theory [ 151: 

(4.30) 

In all this, the non-local ghost interaction plays a subtle and intriguing role. A nice 
example of the necessity of this non-local interaction was recently observed in a 
two-loop calculation [29]. 

Although the above gauge fixing term allows us to verify Liischer’s results and 
test our understanding, it is not well suited to a non-perturbative analysis, since it 
breaks the symmetry which maps C into C + 27-m. As was noted before in [3], a 
better choice is to replace everywhere the projector P by the projector P,: 

7-’ Tr(A,,o,) ?. 

This is invariant under the gauge transformation Q”‘(x) in Eq. (2.13). The explicit 
expression for the gauge-fixing function is then 

x3 = (1 - P3)($4,, + I‘I&A,,, A,,11 + L ‘p, A,,, (4.32) 

and one easily verifies that all steps from Eq. (4.13) to before the one-loop 
evaluation can be repeated. Thus one can write 

Tr((D,,(&6,,)‘)-2Tr(@D,,(B)n,,(B+Q) Q) 

-2Tr(C&, PI p,C& @I)], (4.33) 
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with 

B, = PJI,, &=(l-hMl,, (4.34) 

and the conditions 

P,A,=P,F=P,@=O. (4.35) 

This rigorously defines an effective Lagrangian via the analogue of Eq. (4.23): 

Setting as in Eq. (2.11 ) 

C,a, &=- 
2L ' (4.37) 

we obtain an effective Lagrangian for C with the symmetries 

&T(C) = &( -C) = P&(C + 2nn). (4.38) 

However, a Feynman graph expansion around C =0 (or any point gauge- 
equivalent to 0) is not well defined, because the quadratic approximation breaks 
down there. But one can certainly expand around C = rce(‘), and from Eq. (4.38) one 
for example easily derives that L(q) = pJne”‘+ q! satisfies L(q) = L( -9) and 
L(q + 2m) = L(q). By arguments similar to those used in deriving Y&r, we find 

L(qk$(l +g’a,)-a2q2-a3(q2)?-a,CqB, 
I 

(4.39) 

where we work to the same order as in Eq. (4.29). One can then calculate a?, u3, 
and a, indirectly as before by noting L(q, q = 0) = - V,(7ce”’ + q). In general in the 
classically forbidden region one has 

ETw) =$- V,(C), (4.40) 

but this breaks down near the points C = 2m. As is clear from the toy models, 
which mimic the quartic mode problem and the V-shape of V,(C), this 
approximation is good for min, 1C - 2ml 9 g”3. The path decomposition expan- 
sion tells us that we can deal separately with the clasically forbidden regions and 
the classically allowed regions. For C + 0 the dynamics is described by Hb, and, 
after proper resealing, enters in the combination gP2’3C. In Appendix C we will 
show how this combination can be understood heuristically in a loop expansion for 
.&r(C) by examining the leading infrared (C + 0) behaviour. 



QCDON ATORUS 321 

5. THE POLAR DECOMPOSITION OF THE EFFECTIVE HAMILTONIAN 

We now address the problem of eliminating the gauge degrees of freedom from 
Lkcher’s effective Hamiltonian, since they complicate the calculations. The gauge- 
invariant parameter C is a natural coordinate for the vacuum valley, so we will aim 
for an expression involving C and some “transverse” coordinates. Let us first 
describe an attempt based on the standard Faddeev-Popov gauge-fixing procedure, 
which turns out to be a nice illustration of the notion of Gribov ambiguities [26]. 

In the Hamiltonian approach we fix the gauge by xi =O, restricted to the con- 
stant vector potentials, i.e., 

l = - i[P,r,, c,] = 0. (5.1) 

One can easily verify the following expression for the variation of x under an 
infinitesimal gauge transformation Q = exp( i E /i ) = exp( i E /l”a”/2), 

where M is the ghost propagator: 

M,h = 

-(c’)’ + (2)’ Cl .$ 

c1 .$ -(c1)” + (c3)’ ’ 

(5.2) 

(5.3) 

with eigenvalues 

ii+(c,=~~3(c3)2-(cp)2+ ((C’)*-(C*)7)*+4(CI.C*)*l. (5.4) 

Hence Gribov copies are found at 1 *(c) = 0 or 

(C”)2=~j(C’)2+(C2)2~J((C’)~-(c2)2)2+4(c~.C*)*)~o. (5.5) 

A naive perturbation expansion around c = 0 will thus encounter severe problems, 
because Gribov copies occur in any neighbourhood of that point. For lc3/ suf- 
ficiently large they can be avoided in perturbating around (O,O, c3), but their 
presence is a cause for suspicion, so we will not use this approach. 

Instead of using this gauge-fixing method, we will transform to gauge-invariant 
coordinates using the polar decomposition [ 121, and thus explicitly eliminate the 
gauge degrees of freedom. In a sense, Gribov ambiguities are still present, as zeros 
in a Jacobian. These zeros are related to fixed points under a subgroup of the gauge 
group. (An analog is spherical coordinates on R3, with symmetry group SO(3): The 
origin is left fixed, and the Jacobian vanishes at that point.) However, such zeros do 
not lead to any singular behaviour, and there is no difficulty in dealing with them, 
as we will show. 
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The polar decomposition is given by [27] 

3 
“:‘= 1 yhXh?yh,, (5.6) 

with 2, q E SO( 3). The uniqueness of this decomposition is discussed in Appendix B. 
Clearly, t carries the gauge degrees of freedom and ?I the rotational degrees. The -yh 
label the gauge- and rotation-invariant degrees of freedom. Let us first consider 
gauge-invariant, rotationally-symmetric wavefunctions. Since Ho is both gauge and 
rotation invariant, the equation for HA acting on such a wavefunction can be writ- 
ten in terms of the sh only. The potential part is easy: 

(5.7) 

The kinetic part is a little harder. If we write t and ‘I in terms of the SO(3) 
generators (L,),l, = E,,, as 4 = exp(iy L) and PI = exp(iz. L), and denote the nonet 
(x, y, z) by u”, LL = I...., 9 we can write 

(5.8) 

and the metric gLIV is determined by (?;)’ = gli,,ti,,ti,,, with 2 = Jw. Using the 
orthogonality properties Cc, :nh[oh = C, ~f~,,lj,,~ = 0 one easily verifies that g/,,, has 
the form 

(5.9) 

where SJii: is a 6 x 6 symmetric matrix. Clearly the inverse of the metric, gl”, is of the 
same form. Hence (5.8) acting on gauge-invariant rotation-invariant wavefunctions 
is of the form (l/j)(?/c’.u,) j(ii/ii.u,). S’ mce $ is invariant it can be evaluated at 
5 = v = 1; a simple calculation using the explicit form of the SO( 3) generators yields 

i 

x; + x: 0 
A= 0 xf + xi 

0 0 

and we find 

f' = &(A'- B') = fl (XT--Y/Z)'. 
d>, 

(5.11) 
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Hence restricted to the gauge and rotation invariant sector we have: 

Hb= -g n (x-x;) ( 1 
-I 

‘>, 
&n (.K~-.K~)~+~(.Ki.K~+.Kil:+.K:-:,; 

I>, 
(5.12) 

and the inner product of two such invariant wavefunctions is (up to a constant) 

(5.13) 

As remarked earlier, like when converting Cartesian to polar coordinates we can 
understand the zeros of the Jacobian as being due to points which are fixed under 
combined rotations and gauge transformations. A point where some of the X, are 
equal is clearly invariant under a nontrivial subgroup of SO(3) x SO( 3). 

From the invariance of det c; = n, .Y; one sees that any permutation of the X, or 
any simultaneous change of the sign of two of the X, can be achieved by a combined 
rotation and gauge transformation. This implies we have a 6 x 4-fold covering of the 
gauge and rotation invariant configurations by R’, and it explains why vanishing of 
the Jacobian at X, = .Y, implies its vanishing at X, = -s,. It also shows that the 
absolute value in (5.13) does not lead to singularities, because the wavefunction has 
a permutation symmetry. Equation (5.12) is hermitian with respect to (5.13) on the 
Hilbert space of wavefunctions satisfying 

where rr is any 3-permutation. Equivalently, we can restrict X, as follows: 

O<.K,G.K,. x; < x;. (5.15) 

The potential VU (Eq. (5.7)) of HI is zero if and only if two of the three x, are 
zero. With the restriction (5.15) this means x, = ,y7 = 0. Hence the vacuum valley is 
specified by 

C,=-~,q,,. (5.16) 

Thus .Y~ = IC/ and the following parameterization of q is forced upon us: 

‘13, = C,!lCL 
~,i=a,cos<-bh,sin<, (5.17) 

v2, = a, sin i” + h, cos t, 
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with a, b, and C//Cl mutually orthogonal unit vectors with positive orientation. 
Explicitly we can write 

a = (cos cp cos 8, sin cp cos 8, -sin 0), 

b=(-sincp,coscp,O), 

C/ICI = (cos cp sin 0, sin cp sin 0, cos Q), 

(5.18) 

with 

HE co, 7c1, cp E co, 27c1, 4 E [O, 2711. (5.19) 

Thus (.Y~, 0, cp) is a spherical coordinate system for the vacuum valley, and 
(s, s?, ;) are the “transverse” coordinates. 

The kinetic term in the general case of a gauge-invariant, but not necessarily 
rotationally invariant, wavefunction is derived in the appendix, 

(5.20) 

where i, are the generators for the representation of SO(3) acting on the 
wavefunction $(s,, 8, cp, 5) with the inner product 

d’x dtl dcp dt sin 19 n ($-of) F(c) Q(c). (5.21) 
I>/ 

Explicitly these generators are 

i,=-i cotOcos:ai+c$ 
[ 

c?~ + sin ga, 
1 

, 

i,= -i 
I 

sin t 
cotOsin<~:+7 sin 8 a$.? -cm <a, 1 1 (5.22) 

and a simple calculation shows that indeed [ii, i,] = icokik. 
Let us finally transform the Jacobian away, by scaling the wavefunction 

according to 

q=Jm. f = (xi -x:,(x: - xf)(x: -xi). (5.23) 

Noting that (d’/c?.ut) 9 = 0 and ((a/?.~,) In f)‘= 2 xi+, ((~2 +x:)/(x; - .$)‘) we 
find 

(ii - 1) + & &,x’ x;. (5.24) 
I>/ 
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Our next task is to define fi, which is obtained by applying the above transfor- 
mation to the Hamiltonian fi of Eq. (4.3). Thus we write 

fi=po+ I’;(C)=H(c)+jj,,,(s,,.~~, t)+ T, (5.25) 

with (it will become clear below why we make this split) 

H(C)= -82 ?’ +-Q sin”(n . C/2) g’ 

2Lr7 L7?“+* (n”)’ 
-) (sin’ &3$ + a;), 

2LC- 
(5.26) 

(5.27) 

One easily verifies that T, implicitly defined by the above three equations, vanishes 
when 1’,, and ‘7P vanish. The fixed-C eigenfunctions ~P&(.u~, .x2, 5) for 
@,,,(s,, .v2, t) satisfy vanishing boundary conditions for .yf =x;, X: = C’ and 
x; = c’. 

The split in Eq. (5.25) of course anticipates that we want to derive an equation 
along the vacuum valley for the original Yang-Mills Hamiltonian, similar to (3.41) 
for the toy model; this will be done in the next section. Although in this case, we 
cannot solve exactly for xl;,, we can use perturbation theory [S]. To see what the 
expansion parameter is we scale s, and .Y? as 

(5.28) 

The resealed Hamiltonian becomes 

ri +?.:+?.i-2+xii+~(~~).i-2) (5.29) 

with vanishing boundary conditions at ~1: =)I:, y: = IC13/g’, and J$ = IC13/g’. K is 
positive definite and can be read off from Eq. (5.27). Comparing with (5.23) it is 
clear that we can also write 
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with I?rc, transformed to H,,,, 

(5.31 ) 

where xlc, only has vanishing boundary conditions at .I$ = lC13/g’ and .I$ = IC13/g’. 
The ground state is especially easy to determine; it is clearly independent of <, so 
that g’/lCI’ will be the expansion parameter; 

H,,,j(‘$, = W,,(C) xt’;, (5.32) 

therefore has the property that the ground state (x!~,, W,(C)) only depends on ICI, 
so T,, E 0, where 

1 I II ) I ,)I 1 T,,,,,=~ (xrc,l TkIc+ (5.33) 

Furthermore, ignoring the boundary conditions for the ground state would only 
lead to O(exp( -const./g)) corrections, so that these boundary conditions can be 
replaced by square integrability of XL?,. and we find (x[‘& does not depend on 4. 
but “<-dependence” is present because of the normalization) 

Z;:!,=~exp(-‘c’~~~+~~~)~(l+O(g’/~C~3)), 

W,(C)= -&$+L ‘U(g4/IClS). 

(5.34) 

j is normalized with respect to the standard inner product (cf. (5.21) and Appen- 
dix B). 

The next section shows how the tunneling problem can be reduced to the tunnel- 
ing problem for a simple potential (essentially k’,(C)) on a cubic lattice (lattice con- 
stant 2~) with the lattice momenta restricted to multiples ofn. 

6. THE REDUCTION FORMULA 

Combining the results of the previous sections we can write (we introduce the 
factor (CJ to convert the measure to d3C k, d-x, d{) 
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+ ( V,(C) -t W,,(C)) 6,,,,, cpr;“(C) = &cp!;“(C), 

A,,,,,(C) = (i:;J) & lir;!,). 

The single-well lowest order wavefunction !P~‘)~(.u,) is determined by 

H;, Y'~O'(.~-, ) = Y(y'(s,) 

= .qy'Y~,"'(.Y,), 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7 1 

The value of F was determined previously by Likcher and Miinster [ 131 using 
Rayleigh- Ritz perturbation theory. The associated expression for q;“(C) is in the 
single-well approximation given by 

(6.X) 

Using the approximation (Eq. (5.34)) of x(r;,(r,, .Y?) for ICI gg7” we find 

This completes the construction of the tunneling data as described in Section 3, 
with the difference that z is replaced by a three-component vector C. 

We next apply the path decomposition expansion, as was described in detail for 
the toy-models [ 143. For this we need to analyze the asymptotic behaviour of 

‘PO t”l(C ). For $ ’ < ICI < I, qF,“l(C) satisfies the following effective Schrodinger 
equation: 

I - &+ vp(c) qTJ(yqC)=Ep’(p&y’(C), I 
2 ICI vj”l(c)=~= lim 2 ’ Y:(JC). 

j-0 

(6.10) 

(6.11 ) 
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Using the spherical symmetry, the WKB approximation in /Cl gives the 
asymptotics 

-Ii6 
@l(C) SW B 

exp( - (4 ICI - 2LEJ”1)3/‘/6g) 

(4 ICI - 2Lfp)“4 . 
(6.12) 

The following observations should make this result clear: Resealing .Y, =g’/3~yi and 
C =g”“W gives !P~“l(.u,) =g ‘@&“l(~~l) and (p,!j”l(C) =g m’460l(W), where 9 
satisfies (6.6) with s, replaced by J’;, and !&J),) is independent of g. Consequently 
@h”‘(W) is also independent of g and it satisfies 

! - ;$+2 IWI cj~“‘(w)=&cj~o’(w), > 
so that the WKB approximation gives 

Substituting W = g 
We would now 

problem completely 

2:3C gives Eq. (6.12). 
like to construct a three-dimensional quantum mechanics 
equivalent (to this order) to the present probIem. This can be 

done as follows: We replace V,(C) by p,(C), where 

P,(C) = Lv’(C) + 2gZf36, IC - 2nnl <g”36 

V,(C) = f.V,(C), elsewhere. 

B exp( - j:z’ d= A) 
cj&O’(W)r- 

IWI (4 IW( - 2&)‘j4 . 
(6.14) 

(6.13) 

(6.15) 

The g-independent constant 6 is chosen so that the lowest eigenvalue for the three- 
dimensional Hamiltonian with the potential 

(6.16) 

is exactly equal to E: 

(6.17) 

@,,(.u) satisfies the asymptotic equation (1x1 9 1) 

B, exp( ~- f$j J2(2s - E) ds) 
@n(x) =m (4 (XI - 2&)“4 ’ 

(6.18) 

which is purposely of the same form as Eq. (6.14). 
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Finally, consider the Hamiltonian 

-&g+ a,(c), (6.19) 

and restrict the wavefunctions to 

(P,(C+2Tcn)=(-l)e-“q,(c), (6.20) 

and let E,(e, g) be the associated groundstate energies for each given e. Then (up to 
relative errors vanishing as a positive power of g(L)) the energy of electric flux for 
SU(2) on the hypertorus T’ of size L’ is given by 

(6.21) 

with g(L) the renormalized coupling constant at the scale L, i.e., to leading order 

(6.22) 

Hence we have reduced the problem to that of the calculation of the energy for a 
particle in a cubic lattice with potential v,(C). Furthermore, we are only interested 
in the lattice momenta p = ert (because of the gauge invariance). 

It will turn out that the actual value of 6 is irrelevant, as it should be, since we 
introduced it only for a convenient formulation of the problem. We will therefore 
not specify the value of 6. The next section deals with the calculation of Ecj(e, g), 
and it will be shown (as is obvious from the double-cone toy mode1 in [14]) that 
E,(e, g) is of the form JBR/’ times something independent of 6, so that indeed the 
b-dependence drops out of Eq. (6.2 1). 

7. THE TUNNELING CALCULATION 

In the calculation of the energy as a function of the lattice momenta p, for the 
Hamiltonian of Eq. (6.19) one can apply the tight binding limit of solid state quan- 
tum mechanics or the dilute gas picture for instantons. In both cases one finds 

where we normalize such that E(0, g) = 0. d(g) is the energy split between the even 
and odd wavefunctions, taking only tunneling between two nearest neighbour 
minima into account. In other words, d(g) is the energy split due to the single 
pinchon contribution, where we called the instanton for the Hamiltonian of 
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FIG. 2. The pinchon solution C(t) in the approximation L’,(C) = ~‘(2n - C)/n. 

Eq. (6.19) a pinchon, because the effective potential V,(C) is quantum induced and 
provides a potential barrier due to the pinching of the full potential V(A), between 
the two minima (cf. Fig. 1 ). In Fig. 2 we present this pinchon solution in the 
approximation II,, = 0 [3] and in Fig. 3 we sketch the electric field it generates. 

Having reduced the problem to that of a double well, we can directly apply 
techniques developed in [ 141. We focus on the domain - 716 C, < 3n, -z 6 Cz, 
C3 6 X, containing two nearest neighbour minima at C = 0 and C = 2ne”‘. It is clear 
(shifting the origin to C = ne”’ and resealing by n) that the conditions of [ 141 are 
satistied for p, (C ). Indeed. in the appendix we will show that V,(C) 3 I’,( C, e” ‘) 
for all Cl. C,. so that the tunneling path is along the c’, axis. Furthermore, the 
lowest order single-well potential L Ylnl( C ) = V,J /C/ ) is spherically symmetric and 
thus of the double-cone shape studied in [14]. Accordingly, we can copy the 
expression for d(g) directly from these toy models ([ 143, Eq. (4.2)) (tl$ g’.“), 

1 

i J 

?n <I 
x exp - - 

sf d 
J2( B,(se”‘)-g”c) 11s A(d). 

1 
(7.2) 

where cp,,(C) =K ‘@,,(g “ICI ), (see Eq. (6.18)) and /i(n) is the contribution due to 
the transverse fluctuations. Hence, 

t 
T 

FIG. 3. The electric field E = i‘(r) from the pinchon m Fig. 2 
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Thus we are left with the computation of il( d) which is given by [ 143 ( ’ = d/tit) 

The fluctuation y(t) is a solution of 

(7.5) 

where Q’(r) is the second-order variation of p, along the pinchon path 
C(t)= C(I) e”‘, 

and the pinchon is given by the equation 

/ 
~(t,=J2(~,(C(r))-~~~r:), C(0) = Li, C( T) = 271- d. (7.7 

This equation also defines implicitly the tunneling time T(d): 

(7.8) 

As noted in [ 141 and proved further on, we have A(n) = j”g&, because of the 
spherical symmetry of p\ol(C). As for the double cone we have to calculate n(d) 
explicitly to find the constant jL. Furthermore, P, can be replaced by LV, in 
Eqs. (7.3). (7.6). (7.7). and (7.8) since d>ii or (O<s<2~): 

II,, sin’(tz.s/2) , 
I,= I 1 

(cf. Eqs. (A.18). (4.7)). Taken together we have 

where 

(7.9) 

(7.10) 

(7.12) 
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We are thus left with the calculation of S, T, and jV. The first two can be 
calculated by explicitly substituting (7.9) in (7.11) and (7.12) and expanding the 
results in the coefficients a,,. We substitute 

s=7((1 -sinO), HE -;,; , 
[ I 

and find 

P,(S)=’ 7r2cos20+8 i a,, sin’ 
71 ,, = 1 i 

y(l -sinH) 

I 
= - JK’ cos2 Q + 8a, cos’ + 8az sin’( 71 sin 0) + . . (7.14) 

n 

A straigthforward but lengthy calculation yields 

s+Js I +$$I +J,,(x))+~(l -JO(2n))-~(2J,(n)+J,(2n))+ “. 
L 1 

, 

(7.15) 

+ $(4J,(~)+?J,(2n)-3nJ,,(n)-nJ,,(2n))+ ... 
1 

J,, is the Bessel function of order n. The numerical values are 

S = 12.4637..., 

T= 3.9186.... 

(7.16) 

(7.17) 

We now attack the calculation of i. As in the double cone problem of [14], we 
can ignore the g’:‘c terms in Eq. (7.7) because they yield corrections to 1 of order 
g”“. Using the spherical symmetry for & 1, we have 

(7.18) 

with a relative error of O(gdm~3” + d”“), which can be absorbed in the overall error 
(for d =g”‘, gd ‘I2 =g’j4). Because of the isotropy of p,(C) orthogonal to the 
pinchon C(t) we have (d the three-dimensional Laplacian) 

(7.19) 
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and C(r) = C(r) e”’ now satisfies 

C(r)=$mm C(0) = d, C(T(d))=27c-d 

This allows us to eliminate the pinchon time t in favour of the pinchon coordinate 
C (from now on we write V for V,, and the arguments apply to any potential with 
spherically symmetric Vrol): 

4(o=~o~“((.)=~~ql((.). (7.20) 

Hence from Eq. (7.4), 

i=d ‘g ‘A(d)=27rd ‘[ J2r’(2n-d)y:,(2n-I()+~~d.‘q,,(2n-d)l ‘, 

(7.21) 

where q<,(C) satisfies the equations 

mgq&K~=;[(A-~) ,l,CM~ (7.32) 

4,i(4 = 1. q{,(d) = d- ‘. 

Note that (7.21) can be simplified due to the symmetry V( 27~ - d) = V(n), and that 
q,,(C) depends on d through its initial values. Furthermore, for d B 1, the spherical 
symmetry in that region gives AV= V” + (2/d) V’, so that q:(d) = 0. Next, differen- 
tiating (7.22) with respect to d shows that (S/&I) qd(s) satisfies the same differential 
equation as q,,(s). The boundary conditions are obtained in the same way: 

? 
-g“(‘) r-d = -d,(d)= -;q&o. 

7 
;&(r) 

1 I 

3 = ‘f 
= -q&Q-~= --,q>(d). 

(7.23) 

Thus the boundary conditions for (Z/&I) qd(s) are -cl ’ times those for q,,(s), so 
we have for all .s: 

Hence, 

gd4,d”) = -;qAd. 

-q;(2n-ii)d2Jyy 

(7.24 

(7.25 
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Using the equations of motion (7.22) and the spherical symmetry at 271= d we 
obtain 

v’(d) 
4C(2n - 4 = 2 V(d) (q:,(2n - d) + d ‘q,(2n - d)). (7.26) 

As promised, we find ?jJc?dr 0. (The relative error due to the breakdown of 
spherical symmetry is smaller than O(d’) = O(g) for d=g”‘.) 

We are finally ready to collect all our analytic results. Inserting the expression for 
the periodic potential E,,( p, g) (Eq. (7.1 )) into the formula for energy of electric flux 
(Eq. (6.21 )). we obtain the energy of electric flux in terms of the double-well energy 
splitting d(g) (Eq. (7.3 )): 

(7.27) 

The tunneling action S and tunneling time T are given in (7.17) and the constant E,, 
which accounts for transverse fluctuations, is obtained from Eq. (7.21) by taking the 
limit d -+ 0. This involves calculating the transverse fluctuations q,, using Eq. (7.22). 
Explicitly, 

I I I, =.l,i:,q [dq:,(2n-d)+qJ21~-d)], 

JTiq&F ,( )4:I(C))‘=tq,(C)(dV,(C)- V(C)), 

q,,(4 = 1, q:,(d) = d ‘. 

(7.28) 

The constant B is determined by the asymptotics of the groundstate wave 
function cp h”‘(C) in the direction of the vacuum valley, Eq. (6.12). This component 
of the groundstate wavefunction can be obtained from the single-well perturbative 
groundstate wavefunction u/h”’ by projec tin with the “transverse” wavefunction g 
2,:!, using Eq. (6.8) or (6.9). Thus B is obtained by taking the following limit: 

B= lim J%.Y:~ 4 exp 
(4.Q - 2r:y 

ds, d..u, Ix; - .Y;I Y&O’(x) 
I, * r 6 

1 
x exp 

i - 
- -, .Y,(.Yf +x;, 

1 
) 

with ‘Pi”] the single-well eigenfunction 



QcDON A TORUS 335 

normalized according to 

Using the fact that (see Appendix B) Eq. (7.31 ) equals (t/n’) 1 PC IIV~01(~)17, one 
can alternatively determine B by fitting the wavefunction Y,,(x) = (2/r?)‘,” !PA”l(x). 
normalized as j #C ) vl,,(x)l’ = 1. to the asymptotic form 

In the next section we will describe the numerical evaluation of the constants B 
and /.. 

8. CAIXYJLATING THE WAVE FUNCTION 

In previous sections we showed how the energy split due to tunneling through a 
potential barrier can be calculated. The g-dependence of the result was completely 
determined, and we must now find the overall coefficient. It depends on two con- 
tributions: a factor i., accunting for the effect of transverse fluctuations along the 
tunneling path, and a factor (Bl’, representing the amount of penetration of the 
wavefunction into the barrier. More precisely, we found 

(8.1) 

where E. is determined from the stability equation by (see Sect. 7) 

i. ’ = lim !fI.t [LI(I:,(2n-d)+q,(271--[j)l. (8.2) 
,,-0 n 

and B is the coefficient in the asymptotic form of the single-well wave function deep 
within the barrier. 

The evaluation of /1 presents no real problem, amounting to the integration of an 
ordinary differential equation. We discuss this in Section 8.5, and turn first to 
calculating B. 

At first sight, this is quite an easy calculation, because the single-well 
Hamiltonian is so simple, being just the kinetic term plus the lowest power term in 
the potential. Indeed, in many cases the lowest power in the potential is the 
quadratic one, and we find the familiar harmonic oscillator wavefunction, whose 
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asymptotic form is known exactly. This is the class of tunneling problems that 
instanton methods can handle. However, if the lowest power in the potential is not 
quadratic, the problem can be much more complicated. A non-quadratic 
Hamiltonian cannot in general be separated to give non-interacting normal modes, 
and we are faced with a true higher dimensional quantum mechnics problem. This 
is the case in our present problem: we cannot obtain the wavefunction in closed 
form, and a RaleighhRitz approach is necessary. 

In Section (8.2) we discuss the single-well Hamiltonian, its transformation to 
convenient coordinates, and its integrability properties. Section (8.3) considers the 
choice of basis vectors for our Rayleigh- Ritz calculation, which we will see requires 
some care. The following section discusses the numerical calculation, and how to 
extract the coefficient B. Then we return to calculating E., and put everything 
together to get the final formula for AE. 

8.2. The Sitzgle- Well Hamiltonian 

Our single-well Hamiltonian has been examined in other contexts by various 
authors, because it is interesting in its own right. The Lagrangian for the single well 
was shown in Section 4 to be the usual Yang-Mills Lagrangian. in the A,, =0 
gauge, with a renormalized coupling constant and spatially constant fields. We can 
make the following discussion self-contained by simply imposing these conditions. 

Begin with the standard Yang-Mills action per unit time for SU(2): 

(8.3) 

If we now work in the gauge A, = 0, and make the simplifying assumption that the 
remaining fields have no space dependence, then we find 

(8.4) 

where L7 is the volume of the box, and 

AP(x, t) = c;(t), A;;(x, t) = 0. (8.5) 

Y is invariant under spatial rotations and parity, cp -+ c; Rf (R E U(3)), and also 
exhibits a remnant of the global gauge invariance, being invariant under cy -+ Szcf 
(SE SO(3)). It is useful to thus think of c; as a square matrix, transforming by 
c 4 ScR. In Section 5 we have used the polar decomposition to diagonalize c: 

(8.6) 
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Under parity, X, --t -x, Here we find it convenient to use a different set of 
invariant coordinates, (s, X, y), related to (x, , x,, .Y~) by 

A simple motivation for this choice is to note that the functionf(l) = det(cTc + RI) 
is invariant under c -+ ScR, so the coefficients of the power of 3. are invariants of c. 
Expanding the determinant gives 

f(i) = det(c,Tc + j-1) = j.” + ,G’ + s’s>. + .Y’J*. (8.8) 

We have scaled out appropriate powers of s in the definitions of s and y, so that if 
we consider the c; as coordinates in a nine-dimensional Euclidean space, then s is a 
“radial” coordinate, 

(8.9) 

and .Y and j’ are “angles.” The utility of our new coordinates is that the potential in 
Eq. (8.4) takes a very simple form: 

-V(c:‘)=$(~:‘cp)(~f~:)-acc:‘~r)2= -$&. (8.10) 

Before converting to Hamiltonian form, we can scale out the $/L” dependence: 
just choose the length scale such that L = g’,‘, and remember that c has units of 
mass. Then the quantum Hamiltonian is 

where V’ is the nine-dimensional Laplacian. Savvidy [ 121 has recently shown that 
this Hamiltonian is non-integrable, which means that there is no operator that 
commutes with H, other than the known symmetry generators. It is thus impossible 
to obtain the energy eigenfunctions in closed form, and we bane to use a numerical 
method, such as Rayleigh-Ritz perturbation theory 1131. However, let us simplify 
the problem as much as possible before resorting to such an approach. 

We are interested in solutions of 

HY=E’Y (8.12) 

invariant under c; -+ S;C~, because physical wave functions must be gauge 
invariant. Also, we will restrict ourselves to the zero angular momentum sector, 
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with positive parity, so that wave functions are also invariant under c; + c;R/ 
(R E O( 3)). It follows then that Y is a function of s, .Y, and J’ only. The Laplacian V’ 
can now be written in terms of (x, s, JY) as 

(8.13) 

where V’ is the Laplacian on the two-dimensional surface parameterized by the 
angular variables (I, JY): 

V’=(12>,+4s- 

+ ( 8 ~ 44s (8.14) 

It is clear from the form of V in Eq. (8.10) that H is not separable in our coordinate 
system, and the statement that H is non-integrable implies that it is not separable in 
tints coordinate system. On the other hand, if V were purely a function of s, then the 
eigenfunction problem would indeed separate into a radial part and an angular 
part. We are going to use this fact in the next section, when we pick a basis for the 
Rayleigh-Ritz procedure. so we conclude this section by examining the operator 9’ 
of Eq. (8.14) in detail. 

Although v’ is not separable (and possibly non-integrable), we can still solve for 
the eigenfunctions because they must be polynomials in .Y and y. To see this, note 
first that @ transforms polynomials into polynomials. Now suppose we have a 
polynomial P containing all powers s’J~’ such that ui+jh <N for some positive 
integers II, h, N. All powers in v2P will also have ui +,;/I 6 N, except possibly for 
terms coming from J(?‘/?s’) P and .\-(?‘/?J,‘) P, which change .Y’J~’ into 9’ ‘J,‘+ ’ 
and .Y’ + ‘.I%’ ‘, respectively. But both these also satisfy the constraint provided 
2~2 ha (I. Thus for ftxed N, 0’ is a Hermitian operator on a linite set of 
polynomials and can be diagonalized. It turns out that the correct choice is u = 2. 
h = 3. Let 

P&Y, J,) = xyc + 1 C$ syy’, (8.15) 
1; + 30 c 2% + 3/j 

for integer 2, fi. and some coefficients C;,,i. Then 

~‘P,,,(s,y)= -(4r+6P)(4c(+6~+7).u”y”+ c C;.,j.Kjb”. 
2;’ i- 3,s < 22 + 3p 

The Ci.cj are linear combinations of the C;.,. plus some pieces from V”s’.v”, so we 
can solve the equations 

C;.,j = - (4~ + 6fi)(4ct + 68 + 7) C;,j 
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to obtain an eigenfunction P,,,(.\-, y) of v’: 

~‘f’,,d-c !I= - (4% + 6/Q(4~ + 68 + 7) P,,,(x, y). (8.16) 

In this way, we can construct a complete set of polynomial eigenfunctions of v2. 
Clearly, all P,,j with the same value of 4 = 2~ + 3p are degenerate. The combination 
2r + 38 occurs because .?‘+ ‘i’P1,I is a polynomial in (s,, s2, .Y~), by Eqs. (8.7) 
(8.8) and (8.15). 

Finally, we must decide how to normalize P,,!. Introduce an integration measure 
A2 such that integrals in the nine-dimensional Euclidean space are given by 
i d”c, = j I.’ cir 1 t/Q, where we can identify r = ((,;c;)’ ’ = v’ s. It is easy to show that 
jdG’%‘~~=O. (F or instance. by using j ti”cV’(r ‘.u’~%‘)=o). If we use Eq. (8.14) 
for V’, this gives a recursion relation for 

.y;, = - (IL? .Y’l’ ‘, J (8.17) 

which relates .P;, with 2i + 3j = y to Y;.,. with 2;’ + 3j’ < y: 

.r;, = 
1 

2q(2q+ 7) 
[4(1+i+4,j).Y; ,.,+l3i(i-l).Y~~~.,,,+~j(~/‘-l).9~+,,,~,]. 

(8.18) 

We can finally evaluate .& explicitly, since 

i.e., 

.‘y’ -2L*nJ, 
00 - IO5 (8.19) 

Thus the .?‘ can be calculated recursively, and this allows one to calculate the inner 
products j rl!S P$,, P;,, 

8.3. Prcpuriq ,ftir a Rg,leigil-Ritz Culculrtiow 

We have seen that the single-well Hamiltonian is non-integrable, and must be 
attacked with numerical methods. This problem has been examined by Liischer and 
Munster [ 131, who have found the lowest energy eigenstates and eigenvalues. They 
used the RayleighhRitz algorithm, which is: 

Given a Hermitian operator H on Hilbert space, and a complete orthonor- 
ma1 set of basis vectors In), consider the matrix 
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Find the eigenvalues 3.hN’ and eigenvectors uky’ of this matrix. Then ,?I”’ is 
an approximaton for an eigenvalue 3., of H, and lci/l”‘) = z~~~~ Ii) is an 
approximation for the associated eigenvector I$,) of H. As N-r KJ, iLN’ 
converges monotonically to &, and /$I”‘) -+ I$,) in the Hilbert space 
norm. 

In practice, this method works well, but it is very difficult to put any theoretical 
bounds on the error in one’s answers, because a bad choice of basis vectors could 
cause very slow convergence. The usual approach is to decide on a particular 
accuracy, and then methodically increase N until the answers are constant to this 
accuracy. 

For us the problem of errors is quite crucial, because we are interested in the 
magnitude of the wavefunction in a region where it is decaying exponentially. 
Because the wavefunction only converges in the 9” sense as N -+ CD, relative errors 
can be large in regions where the wavefunction is small. We need to take N to very 
large values to achieve reasonable accuracy, and the method of Liischer and 
Miinster begins to suffer from rounding inaccuracy before we can reach these 
values. Liischer and Munster were well aware of this problem, and to reach N = 100 
they did sensitive parts of their calculation using extended precision. Let us review 
the problem. 

The authors of [13] start out with an obviously complete but non-orthonormal 
basis, in our notation 

*,, = e .-I,,>:? 
<,/I< Sushi” . (8.20) 

The number LC) is adjusted to optimize the Rayleigh-Ritz convergence, and is in the 
range 1 - 2. There is a canonical way to order such a basis: by smallest a, then by 
smallest 2h + 3c, then by smallest h. A recursion relation for j e ““s“.Y~J’ can be 
found, and the inner product calculated. An orthonormal basis is then constructed 
by the Gram-Schmidt procedure. The reason for the instability is that for large N, 
the basis Eq. (8.20) becomes almost degenerate, with 

(8.21) 

The Gram-Schmidt procedure then involves subtracting almost-equal numbers, 
which produces rounding error in a computer. In our case, this would propagate 
through the “diagonalization” and “wavefunction reconstruction” steps, to produce 
large errors in the sensitive part of the wavefunction that we are interested in. 

The solution is to orthonormalize to a much greater (preferably infinite) 
precision. For values of N - 200, however, orthonormalizing the basis (8.20) to suf- 
ficient accuracy as Liischer and Miinster did for N - 100, would take an enormous 
amount of computer time and space, so we have taken a slightly different route, 
which we now describe. 

We noted in the previous subsection that the angular Laplacian 9’ could be 
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block diagonalized to give sets of degenerate eigenfuctions P,, with eigenvalues 
- (4cr + 6/?)(4a + 60 + 7). The size of the blocks is quite small: for 4 = 2a + 3/l 6 16 
we have at most a triple degeneracy. Moreover, the P,, are only two-variable 
polynomials, so an algebraic manipulation program can perform the orthonor- 
malization quite readily. 

We now need to take combinations of the P,,] with orthonormal functions of s to 
produce a complete basis. A conceptually simple way of doing this is to use the 
eigenfunctions of the nine-dimensional harmonic oscillator. Thus, replace the poten- 
tial V(c) in Eqs. (8.4) and (8.10) by 

ri,,,(c:l) = ~o’c~cp = &A (8.22) 

The eigenvalues equation in the sector we are interested in becomes a separable 
one: 

+ f (I?.~ - E,,, 1 .y s, x, y ) = 0. (8.23) 

Putting 

Y”(S, .I-, 1’) = q(s) P,,,(.x, y) (q=2a+3P) (8.24) 

therefore gives us a radial equation 

(8.25) 

the solution to which involves half-integer-order Laguerre polynomials [22]: 

x;:; '(~)=k(n,q)e~- 
wI'~yq/+7~2(,~)~ (8.26) 

The new quantum number n is related to the eigenvalue E,,j=, by 

E,,,=,=2n+2q+;, (8.27) 

and N(n, q) is chosen so that 

1 
I,‘7 

For general o, 

E,., = wE,,> = I > X&(s) = Q9’4X;; ‘(OS) 

(8.28) 

(8.29) 

(8.30) 
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If we call the orthonormalized P,,j, “P,,; then the complete set of harmonic 
oscillator eigenfunctions in this sector is 

^ 
~,,&> -? I,) = X,.,(J) P,,(.c y). (8.31) 

The unnormalized P,,j and their norms N(cc, p) for 2c( + 38 < 10 are given in 
Table I. 

We are now in a position to evaluate the matrix elements of the Hamiltonian 
(8.11) exactly in this basis. We can write 

(8.32) 
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and it merely remains to evaluate the two kinds of matrix elements 
( K,,ll s I ~dx~,~ > and ( Y,,,,I S’X I Y,,,,,,I, >$ since H,,, is diagonal in this basis, with 

( Y,,,, I H,,, I Y,, y,i, > = (h + 4a + 68 + ; 1 ~6,,,,, d,,, 6,,, . (8.33) 

The quantities (a/3/ .Y Ia’fl’) = j ciQ P,,,sP,,~. can be calculated exactly because the 
p,,{ are polynomials in s and J’, and we know j &2 .Y’J“ = $,. Moreover, by using 
the generating function for Laguerre polynomials, one can calculate 

(II, q( .s In’, q’) f j” .s4c/ \,A .Y ,,,,, (3) .sx,,.., (A.1 

= (2n + 2q + ;, ii,,,,. - &-z JT-?pj 6,,,,,-- 1 

- & &l + 2q + ; b,,,,,. + , , (8.34) 

and 

(n. q/ .s2 In’, q’) = j s4d (,A, X,,,,(s) .s2x,, Js) 

=A(-l)“+” 

‘=‘ma ‘q’-q-t2 m-m’+2 (2(r+q+q’)+ ll)!! 

x ,Zrn,“( n--t I( i’--I 1 2’t! ’ (8.35) 

where I,,, = minor, !I’) and t,,,, = max(r? -q’ + q - 2, n’ -m + m’ - 2, 0). The 
obvious requirement f,,,, 6 t,,.,, then implies the matrix elements are zero unless , 

- 2 - q + q’ < II’ - II < 2 - q + q’, (8.36) 

and the sum in Eq. (8.35) runs over at most 5 values of t. Equations (8.33) - (8.35) 
are sufficient to evaluate all matrix elements (nap1 H jn’a’fl’) exactly. Reinstating 
the (11 dependence gives 

(naBI H In’a’/Y> = 6,,,,6..,6,,,,E,,, - &ofi,,,dliBs(nql s In’q’) 

1 , 
+ 2w? (tzql s- ~n’q’)(zfl~ s ir’p’). (8.37) 

One needs to decide on an order for the Inafl). We order first by lowest 
/z + 2a + 38, then by lowest n, then by lowest a. This choice can be understood as an 
ordering in increasing powers of the variables S, X, JK Ins/l) ,+ e -(‘l”‘s~n + ‘a + 3pxJL~~L’. 
In our calculation we have chosen the bound n + 2a + 38 < 16, which allows 204 
orthonormal basis vectors. Increasing the bound to say 17 would only increase this 
to 237, and not change the result significantly. 
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8.4. The Wavefunction in the Barrier Region 

Once a suitable basis is chosen, the Rayleigh-Ritz algorithm can be applied, 
using readily available computer programs for matrix diagonalization. We list here 
the various steps in our calculation. The algebraic manipulation was done using the 
program SMP [28], and floating point calculations used routines in the IMSL 
library. 

( 1) The angular eigenfunctions P,,j for q = 2a + 3p < 16 were found by 
explicitly solving Eq. (8.16) with the ansatz Eq. (8.15). The result was a set of 
polynomials in (x, y) with rational coefficients. 

(2) The integrals s df2 .Y’,v~ = .$;, were calculated exactly from the recursion 
relation Eq. (8.1 S), and the initial condition Eq. (8.19). We need all XY for 
2i + jj ,< 34. 

(3) In each subspace of fixed q = 2cr + 3/J, the Gram-Schmidt orthonor- 
malization procedure was applied to the functions P,,]. Because the degeneracy was 
at most triple (q = 12, 14, 15, 16), it was feasible to do this exactly using algebraic 
manipulation. The lowest order orthogonal P,,{ and the squares of their norms are 
given in Table I. Note that after orthogonalization, there is no significance to how 
we label the degenerate P,,j for a given 2r + 38. 

FIG. 4. Non-zero matrix elements (nafll .& In’a’fl’) are shown as black squares. The 204 vectors 
ln~/I) are canonically ordered as described in the text. The large scale structure can be understood from 
the derivation in the text, but the many zeros within the black “islands” are a mystery. 
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(4) The Laguerre polynomials L?+ ‘f’ (s) were constructed for n + q < 16, 
using their explicit definition [22]. 

(5) The reduced matrix elements (c.$ x Icl’p’), (nql s In’q’), and 
(nql s7 Jn’q’) were evaluated. Many of these are zero, so only those expected to be 
non-zero were calculated. 

(6) The full matrix elements (nsr/?I s’s In’cc’fl’) were formed. In Fig. 4 we 
have plotted the positions of all non-zero elements as black squares, where the 
vectors are ordered canonically. 

(7) The matrix elements were converted to 64-bit floating-point numbers 
and stored. 

(8) The wave functions Y,,,,{ were calculated, and the coefficients in the 
polynomial part (i.e., in e”’ Y/,,,,I) were converted to floating point and stored. 

(9) A program using IMSL routines (and written in the language C) read in 
the matrix elements and wavefunction coefficients. 

(10) For any given w, and number of basis vectors N, the Hamiltonian was 
constructed and the lowest eigenvalues and eigenvectors found. (Figure 5 is a plot 
of the groundstate wavefunction.) 

( 11) Using the basis wavefunction coefficients from step (8), the eigenvectors 
were converted to polynomial functions of (s, s, J!) with floating-point coefficients. 

(12) The value of B was extracted from the wavefunction in various ways, as 
will be described later in this section. 

FIG. 5. Plot showing the single-well wavefuction Y&~](.x~, I ?, x3). We have taken a spherical coor- 
dinate system for (z , . x2, x3) and plotted the probability per unit solid angle as a function of cp. for 0 in 
steps of IO’. The outermost contour is 0 = 90”. It is instructive to compare with the three-dimensional 
plots of the energy surface in [ 121. 
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The total amount of computer time exceeded 50 h on a Ridge 32 (comparable in 
speed to a VAX 1 l/780). To insure reliability of our results, we made the following 
consistency checks at each stage: 

( 1 ) Each P,,, satisfies Eq. (8.16) identically. 

(2) j ds2 P,,j =0 if 2 #O or I#0 checks the .P;,, as does i P,,fP,.,i. = 0 if 
2c(+3p#2x'+3fl'. 

(3) The 30 P,,, are orthogonal after application of the Gram-Schmidt 
procedure. 

(4) All Laguerre polynomials satisfy the defining equations identically. 

(5) ss’ lrzrj?) = I,,,,,,, In’n’fi’)(n’r’fl’I .Y.? In@) checks the accuracy of the 
matrix elements. This test is limited to the first + 140 vectors, because beyond that 
point matrix elements involving vectors outside the set of 204 that we work with are 
required for the completeness relation (see Fig. 4). 

(6 ) Converting to floating point at earlier points in the calculation produces 
consistent results. 

(7) Results scale correctly with Q, and accuracy improves with increasing N. 

We therefore believe our result is trustworthy. 
One finds that the results are fairly insensitive to the value of w if Q m 1.55 1.6. 

Any (U in this range gives results consistent with the error bars we quote. 
We must now compare the asymptotic form of the Rayleigh-Ritz eigenfunction 

with the predicted asymptotic form. We are interested in the properties of the eigen- 
function along the vacuum valley, which is the direction .Y = y = 0. However, we will 
find it convenient to work for a while in the polar decomposition variables 
(s, , .vl, .Y~) of Eqs. (8.6) and (8.7), where the vacuum valley is along .Y, = .vZ = 0. 

Recall that in Section 6 we derived the following “adiabatic decomposition” of a 
spherically symmetric wavefunction 

where here @(“‘(ICI) = ICI cp”“(C) of Section 6. This expression is useful because the 
@“I’ are known to be exponentially decaying functions of -vi. As was shown in some 
detail for the toy models in [ 141, the asymptotic form of the wavefunction for large 
sj is given by the II = 1 term. The I’;:\, are otrhonormal eigenfunctions of a 
Hamiltonian in which .Y~ is regarded as an adiabatic parameter. 

Now the forms of @‘I’ and x[‘,:, are both known for large sj. x\\\, is known to be 
normalized for any value of the “parameter” sj, but what is not known, and what 
this whole section is trying to find, is the normalization of @‘I’. From Eq. (5.34). we 
have to first order in l/-v:. 

x I- [2xfs:s; + x,(x; + x;, - 31 
16.x; 

e -,,,,; + ,;+ (8.39) 
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Here we adopt the simpler normalization conventions of [5], which differ by a 
factor of 4% in xl’,\, and Y (because we drop < in the measure for the 

spherical sector ). Thus ~[‘&,(x, . x?) = & x;‘~\,(.Y,, x2, 5) and Y(x, , .x2, .rl) = 

j% Y~](.x,, s?, .u,). Let c be the true energy eigenvalue of Y(x, , s2. x3). Then, as 
shown in Section 6 and [5], @‘I’ is known to satisfy 

This equation determines the asymptotic behaviour of @(“(.u,). If for convenience 
we relable sj = Y, then we find from Eq. (6.12) 

@jc”(r)+B(4r--21:) “4exp 
(4r - 2&)3” 

6 ! 
as r-+cc (8.41 ) 

(where only the lowest order term (2x,) in Eq. (8.40) has been used so far). This is 
the dejbzition of B. The simplest way, therefore. to extract B from the wavefunction 
Y(.u,, x?, x~) is to take the limit of (cf. Eq. (7.32)) 

B(r) = (4r - 2c)“4 exp ( (4r -2”“‘) r~rr,~~~,o~, (8.42) 

It turns out, though, that this approach is too simplistic. In Fig. 6, we plot the 
function on the right of Eq. (8.42), for the lowest energy wave function Y, 
calculated using w  = 1.5 and N = 204 in the Rayleigh-Ritz program. It obviously 
does not have a non-zero limit as r + X, but we cannot expect it to have a 
meaningful limit: all our basis functions are polynomials times e r”r’.“, and a finite 
sum of such terms can never accurately reproduce the different exponential 
behaviour of Eq. (8.41). Thus there is a limitation on the RayleighhRitz method’s 
ability to reproduce asymptotic behaviour correctly. The problem therefore is to 
extract B without taking the limit in Eq. (8.42). 

Suppose, therefore, that we look at B(r) for some finite value of r, where the 
Rayleigh-Ritz wave function is accurate (say r d r ,,X). B(r) may not be constant for 
r <r,,,, for two reasons. First, @“l)(r) may not yet have attained its asymptotic 
form, Eq. (8.41 1. Second, for finite r, terms involving @“‘, @‘31, etc. are still con- 
tributing to the wavefunction Y. by Eq. (8.38). Nevertheless, we do expect B(r) to 
be approximately constant for r large enough, where these effects are small, say in a 
region r min < r < r,,,. Clearly, r,in is intrinsic to our problem, but rmax depends on 
how many basis vectors we use in the Rayleigh-Ritz calculation. Looking at Fig. 6 
shows that rmax y  6, and since the plateau in B(r) is not very flat, we deduce that 
the asymptotic form of Y has not been attained very accurately yet. This uncer- 
tainty in the precise height of the plateau is the dominant contribution to our error 
in the determination of B. 
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0-l I 
0 2 4 6 8 

FIG. 6. B(r) extracted from the wavefunction using the naive definition Eq. (8.42). There is no flat 
plateau. 

The fact that the plateau in Fig. 6 has a definite slope suggests that a systematic 
correction could be made to improve our accuracy. We have found two ways to do 
this. First, one can find the leading correction to the asymptotic form of Q”‘(Y), 
and divide that into B(v). Second, one can use the orthogonality of the ~g\(x,, x2) 
for different n to project out the @(I) contribution to Y in Eq. (8.38). 

For the correction to the asymptotic form of Q”‘(r), we just use Eq. (8.40), but 
now with the - 1/2x: term included. (Note that this is an O(ree3) correction relative 
to the 2s, term.) In practice, we made the ansatz 

(4r - 2~)“~ 
@(~)=B’(r)(4r-2~))“~exp - 6 

i > 
, 

j-(Q)= 1, 

and numerically integrated Eq. (8.40) back from Y - 100 to getf(r). The integration 
is stable all the way down to r - 2.1. 

Projection with the xt,, (‘1 term also has to be carried out to order rp3, and for this 
we use Eq. (8.39). Taking into account the normalization of the x’;,‘,,, we can thus 
project out @‘I) from Eq. (8.38) (cf. Eq. (6.8) and [S, Eq. (23)] with N=np3”): 

In Fig. 7 we have plotted two curves. The curve labeled (I) is B(r) improved by 
both methods. That labeled (II) is just the B(r) of Fig. 6 divided by f(r) of 
Eq. (8.43), i.e., B(r) improved only by the first method. 
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3 4 5 6 7 8 

f- 

FIG. 7. Improved B(r) for the ground state (upper two curves) and 0 + state (lower two curves). 
Curves labelled I are improved by both methods discussed in the text. Those labeled II have been 
improved only by the first method. 

We have included in the computer program code to use either or both of these 
methods, and have examined results for various numbers of basis vectors and 
values of o. Some of these curves B(r) are shown in Fig. 8. We calculated the 
integral in Eq. (8.44) by expanding the square root to the appropriate order in xy3. 
The type (I) curves were obtained by integrating this correction explicitly. The cur- 
ves merging into the middle curve of Fig. 8 were instead obtained by approximating 
the square root by its weighted average (i.e., the right hand side of (8.44) with Y 
replaced by x[!\!l,). In general, the curves coincide between Y - 2.9 and Y - 3.5, and 

0.25 T 

0 
2 3 4 5 6 7 8 

FIG. 8. B(r) for the ground state, for a variety of values of N (100~ N<204) and w (1.5 <W < 1.6), 
showing that curves overlap between I = 2.9 and r = 3.5. 
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differ slightly for larger r. It is clear that the Rayleigh-Ritz wavefunction is 
inaccurate beyond r - 5, whereas for r d 2.9 curves only coincide within each class 
of corrections, showing that for small si, @‘“‘(,u,) (n > 1) gives a significant con- 
tribution to Y. We thus measure B between r = 2.9 and r = 3.5. 

From the curves in Fig. 7, we can thus extract the following values for the lowest 
energy state and the first excited state: 

(1) c=4.116719735& 1 x lOmy 

B = 0.2063 + 8 10 -. ’ 
(8.45) 

(21 F’ = 6.3863588 i 1 x 10 ’ 

B’=0.1480*8. 10-j. 
(8.46) 

The energies were obtained directly from the Rayleigh-Ritz calculation. The errors 
in E are estimated from the variation in c as the number of basis vectors is changed, 
and the error in B is the uncertainty in the height of the plateau between r = 2.9 and 
r = 3.5. For the first excited state. correcting by just the first method is inadequate 
for any value of r, because a much larger fraction of the wavefunction is contained 
in @(“I (n > 1 ); therefore we rnztst project out the @(I’ term first, via Eq. (8.44). 

In summary, we saw that the Rayleigh--Ritz method became inaccurate before we 
reached the asymptotic region, but by including corrections we could understand 
the wavefunction in the non-asymptotic region, and still determine the constant B. 
It was nevertheless imperative that we used at least 200 basis vectors. 

8.5. Calculution of i. 

In Section 7, we defined the constant 3. through the stability equation 

i. ’ =t,im”$ [dq:,(Zlr-d)+qJ2n-d)], 

where q,,(s) satisfies the differential equation 

Ws)( W(s) d,b))’ = yt,(sl Ws), (8.48 ) 

4,(d) = 1, q>(d) = f. (8.49) 

U and W are known functions of s, given by Eqs. (7.28) (A.18), and (A.30). 
The only difficulty in evaluating i is that qd(2n - d) diverges as d -+ 0. We have 

numerically integrated Eq. (8.48) from G! to 271 -d for various values of d, using a 
fourth-order Runge-Kutta algorithm. We plot the results for A(d) in Fig. 9. The 
limit d + 0 is now easily obtained by extrapolation or, equivalently, by linear 
regression. Thus we find 

I = 0.69970 k 0.00001. (8.50) 
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0.68d 0 01 02 

d 

FIG. Y. Evaluation of the constant 1. = hm,, .,/ i.(d) = 0.69970 F 0.00001. Because it is defined as the 

difference of two divergent functions, j.(O) cannot be evaluated directly. Points marked were evaluated 

using numerical integration. 

Inserting the values for ;“, c, and B into Eq. (8.1) thus gives the final answer for AE 
for the two states we have considered [S]: 

(1) 1:=4.116719735-+_ 1 x loo-’ 

AE = 0.05956g” “L ’ exp( - 12.4637~ ’ + 16.132g- ’ 3, (8.51) 

(2) i: = 6.3863588 &- 1 x 10 ’ 

AE = 0.03065g”L ’ exp( - 12.46371: ’ + 25.026~ ‘I~). (8.52) 

These are the semi-classical expressions for the tunneling energy splits. In the 
next section we will discuss these results, but for a more complete discussion of the 
physics involved, we refer the reader to [S], where we used them without a detailed 
derivation. 

9. DISCLJSSI~N AND CONCLUSION 

The expression for the energy of electric flux in terms of L and g(L) in general 
depends on the renormalization scheme used, although to the order displayed in 
Eq. (8.51) it is actually scheme independent. To compare analytic and numerical 
calculations it is convenient to derive an expression in terms of scheme-independent 
parameters. Pure QCD in a box has only two free parameters: the box size L, and a 
mass scale A. Thus the theory is completely fixed by specifying some energy (say 
the mass of the O+ glueball, MJO+ )), plus the box size in those units: 
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2 = L. ML(O + ). There are of course other choices of parameterization, but this is 
the one used by Liischer [4], and we adopt it here. Note that our definitions in no 
way require ML(O+ ) to be the mass gap (i.e., the lowest mass state). In perturbation 
theory, I has been calculated by Ltischer and Miinster [ 133: 

(9.1) 

If we now eliminate g from our expressions in favour of z, and express all 
energies in units of M,(O + ), we obtain physical, renormalization-scheme-indepen- 
dent functions. Not only are these functions physically meaningful, but., as 
emphasized in previous work [S], we expect these functions of z to have a 
smoother behaviour than functions of g as we go from small to large box size, for 
the following reason. As L gets large, g(L) gets large, and higher order terms in the 
b-function start to affect the behaviour of g. Therefore g can vary rapidly, and its 
behaviour is highly renormalization-scheme-dependent. Thus any physical quantity, 
expressed as a function of g or L, could acquire a complicated behaviour just to 
compensate for this irregular g behaviour. 

Rewriting Eq. (8.51) in terms of the renormalization-scheme-independent 
parameters gives 

W(z)= AE ~ =0.00767. z3". exp( -42.6169. =m 3'2 + 34.2001 .= 
M,(O+) 

I/Z), (9.2) 

We have discussed the implications of this result in detail in another paper [S]. 
Note that a(:) increases suddenly by several orders of magnitude at z w 1.2. Thus 
for : < 1.2, the energy of electric flux is exponentially small, because the box is so 
small that all interactions are weak. However, as we increase the size of the box, 
stronger interactions can take place, and tunneling between the degenerate vacua 

occurs. The effect of tunneling becomes sizeable at around 2 = 1.2. For boxes with 
; 3 1.2, the degeneracy between states with different electric flux is lifted completely. 
We wish to emphasize, however, that this transition is smooth, and is thus not a 
phase transition. In particular, it should not be confused with the decontining phase 
transition in finite-temperature QCD. It is a smooth but rapid transition associated 
with the restoration of the Z, symmetry of the vacuum. 

Because A(-) is a physical function, it is possible to relate our results to those 
obtained in other ways, such as from Monte Carlo calculations on a lattice. In par- 
ticular, by taking recent Monte Carlo results [6, 71, and assuming that they are in 
a region where lattice artifacts are small, we can obtain an estimate of a(:) for 
: 2 1.5 [S]. On the other hand, from the discussion in the previous paragraph, it is 
clear that our analytic result is valid for -’ values up to about 1.2. At that point, 
where the tunneling becomes important, the assumptions inherent in our 
semiclassical approximation break down. Taking our analytic result and the Monte 
Carlo data together thus provides a description of R(z) over an almost continuous 



QCD ON A TORUS 353 

range, from I = 0 to I w  8, and the remarkably simple picture which emerges is 
described in [S]. The dominant feature in 8(z) appears to be the onset of the tun- 
neling that we have just calculated, and no other rapid transitions seem to occur. We 
also noted in [S] that string formation appears to set in around z = 5, so that only 
beyond z = 5 will 8(z) approach its asymptotic value. There could be variables 
which are more sensitive to an expected transition around ,I = 5, such as the expec- 
tation value of the absolute value of spatial Polyakov loop in the fundamental 
representation. For a further discussion of this important issue, see [29]. 

It is our conjecture that we will be able to calculate L?(z) for : values up to -2 by 
going beyond the semiclassical approximation. This would completely bridge the 
gap between our present analytic calculation and the Monte Carlo data, and even 
provide some overlap, which would be a very significant advance. 

Instead of repeating discussions contained in [S], we will conclude by describing 
in this article a classic textbook tunneling example (see, e.g., [31 I), the double har- 
monic oscillator. The Hamiltonian is given by 

(9.3) 

Here, the quantity analogous to the electric flux is the energy difference between the 
even and odd ground states dti; the first excited state in the even sector, with energy 
11, above the ground state, is analogous to the Of glueball in QCD. The parameter 
a is adjustable: when a$ 1 the wells are far apart and tunneling is suppressed, but 
as a decreases, the tunneling sets in. Thus l/a is analogous to L. In Fig. 10 we plot 
(5’(r) = Av/v, vs. z = v,(a)/(d a) for this simple model, using data from the exact 
solution of [31]. The reader is invited to compare Fig. 10 with Fig. 2 of [S], the 
energy of electric flux for SU(2) QCD on the hypertorus. If we could show that 
Fig. 2 of [S] is asymptotically linear while Fig. 10 is asymptotically constant, we 
would be explaining confinement. 

FIG. IO. The analog of 6(z) for the double harmonic oscillator. This should be compared with 
Fig. Za of [5]. 
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APPENDIX A 

In this appendix we will derive some of the properties of the one-loop effective 
potential Y,(C). Here we will put L = 1 and hence study 

I-,0=$ 1 sin’(n C/2) 

n+O in’)” . 
(A.1 1 

We will first discuss the use of lattice sums [21] to express V,(C) in rapidly con- 
verging sums, valid for all C. After that we construct more efficient expressions 
when restricting (A. 1) to one of the coordinate axes. Finally the extremal properties 
of V,(C) are discussed. 

The lattice sum technique is based on splitting ES(n) into x,‘“(n)g(n) and 
C,f‘(n)( 1 -g(n)). Here g(n) is a rapidly decreasing auxiliary function such that 
f’(x)( 1 -g(x)) behaves very smoothly for 1x1 + 0. So if f(n) is some more slowly 
decreasing series, .f’(n) g(n) becomes rapidly decreasing, whereas the second part 
behaves similarly after Poisson resummation. One obtains the result [21] 

c 
$T!X~ r(“, 

ntO Ir(n)-RI”’ 

with r(n) running over the lattice spanned by a,, x(n) running over the dual lattice, 
:)( p, s) and f( p, X) the incomplete gamma function [22, p. 2601: 

r(n) =I vb x(n)=xn,bj, 

a,. b, = d,,. v,=a, .(a2 A a,), 

f(p,x)=/’ C’fP ‘Lit, 
\ 

(A.4) 

(A.5) 
HP, xl = T(p) - f(p, x). 

To compute V,(C) we take the limit R -0, X=C/27c, a,=b,=e”’ (hence V,=l) 
and substitute p = 2: 

V,(C)=4 c “~~[~+2]e~in2sin’(n.C,2) 

-4rcC [lnl erfc(& InI)- In-C/27c erfc(JG(In-C/27cI))], (A.6) 
” 
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In going from (A.2) to (A.6) we applied the Poisson resummation formula 

Similarly we compute the Laplacian of the one-loop effective potential 

Al’,(c)=; c cosjlnl.c), 
nfo 

in which case we substitute p = 1 in Eq. (A.2) 

u,(c)=; -1+ c ~cos,“.c)+, 
i 

erfc(J;I Jn - C/2nl) 

“#O ial- n 1 In-C/2x1 ’ 

or we can apply the Laplacian directly to Eq. (A.6). 

(A.81 

(A.91 

(A.10) 

A special role is played by the restriction of I’,(C) and d V,(C) to C, = C’, = 0, 
for which (A.6) and (A.lO) are a bit clumsy. We can write (C 2 Ce”‘): - 

V!(C)=> i h,, sin’(nC/Z), (A.ll) 
II I 

(A.12) 

To compute h,, we note that 

i?,,(Y)= c &" k 
kE72,1 

(A.13) 

satisfies the equation 

which is solved by the modified Bessel function [22, p. 3741. 

g,(y) = 271 c &An IY - 2xkl), 
k 

(A.15) 
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We can exactly calculate the slowly converging part 

,,g, s sin’(nC/2) = rrC(2n: - C)/4, 

Ikl K,(zzn lkl). (A.16) 

CE w, 2n1, (A.17) 

periodically extended outside the interval [0, 2711 (#/X2 of the left- and right-hand 
sides of (A.1 7) are identical). Hence 

V,(Ce”‘)= 
C(27c-C) 8 ‘cc 

7r 
+; C a,, sin’(nC/2), 

I*= I 
(A.18) 

(A.19) 

The a,, form a very rapidly decreasing series, and one easily shows that 
a,, < 5n’n ‘e zrr”. The values of the first four a,, are 

a, = 2.7052746... x 10 -’ 

a, = 1.6048745... x lO-5 

a3 = 1.6065690... x 10 -’ 

ad = 1.9385627... x lo-“. 

(A.20) 

Similar arguments show that we can write (C = (C, yl, y2)): 

AV,(C)=i i c,,cos(nC)+i 2 cos(nC)K,(%nn lyl)+i 1 ’ 
ik y 

I,= I ,I= I 
k+Ok2’ (A.211 

c,, = 1 Ko(2nn Ikl 1. 
k#O 

(A.22) 

Now the limit y + 0 is not easily taken because of logarithmic singularities. 
However, for IyI < q applying the Laplacian to the last two terms in (A.21) is easily 
seen to give a sum of &functions at C = 2nne”‘, and this is sufficient to show that 

(AV )(Ce(‘))= -E g I c, sin2W/2) + n f 
4 

n = I n= -cc 
,c- 2nnl + Q, (A.23) 
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where Q is an infinite constant. Introducing the 
Gamma function 

$(C) =$ (In r(C)) 

which satisfies [ 221 
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logarithmic derivative of the 

x r i 11 -$(.YS l)=;,+ 1 
,,=, (,+,,]: 

(A.24) 

(A.25 ) 

we can write (A.23) for C E [0,2x] as 

(A.26) 

Q’ is now a finite constant and it can be fixed by comparing (A.26) with (A.lO) or 
with the expansion of V,(C) to fourth order in C in terms of a,, (Eqs. (4.10) and 
(4.11) ) which gives 

(N,W)=~+~~~,+~OK,C"+O(C~). (A.27) 

Combining this with the expansion of II/( 1 + s), 

-till +x1=l’+ i i(n+ 1)(-X)“, 
,1 = I 

we find (‘J = 0.57721566..., Euler’s constant): 

(A.28) 

(A.29) 

Exhibiting explicitly the pole terms we can write 

(AV,)(Ce’~‘)=~+ C &C--+l,t,!, H’cI,,-~~, c,,sin’(nC/2) 

-;[$(l+fj-$(l)+$(2-;j-$(2)] CECO,2711, 

(A.30) 

595 174.2.x 
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and periodically extended outside the interval [0, 27~1. The first four coefficients for 
c,, (Eq. (A.22)) are given by 

c, = 3.9029359.m x lo--’ 

1’2 = 4.9074404... x 10 fi 

ci = 7.4739898... x 10 ‘) 

cj= 1.2102679... x lo-“. 

(A.31 ) 

They satisfy the same upperbound as the coefficients u,,. 
Note that the function in square brackets in Eq. (A.30) is symmetric about C= 7c 

and vanishes at C = 0 and C= 27~. It can therefore be written as 
C,:=, id,c,, sin’(nC/2), with 

2n d 32 - II s cos(nC) t+b i 1 + 2 > dC = -64Ci(2m), 
77 0 

(A.32) 

(Ci(2rcn)= -g(2rrn)- 1/(27cn)‘, see [22]) and thus 

(dV,)(c’e”‘)= 
871 

ct27+-c) 
(A.33) 

or (one can sum the slowly converging part of d,, using Eq. (A.1 7)) 

47t 

=q2n-C) 
A+1 i 

71 Tc,,=, 
n7a,, + 4 i (n2a,, - 2c, - 2d,,) sin”(nC/2). (A.34) 

,I = I 

We finally address the properties of V,(C) - V,( C, e” ‘) which can be written as 

cos(nC) sin’(k y/2) 
(n’)’ 

In this case we find the sum over II to be 

(A.35) 

(A.36) 
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The result is 

v,(C) = V,(Ce”‘) + 1 .f,,,(C) sin’&. y/2), 
k fO 

(A.37) 

with .f;k@n - c) =f,k,tc, and periodically extended outside the interval [0, 2~11. 
Explicitly .f,( C) can be written as 

2 
f,-(C) =7 

cosh(x(n - C)) + SC sinh(-y(n - C)) + 2 cosh(.K) 
(A.38) 

71s~ sinh(s7r) X’ sinh’(xz)’ 

which is positive definite. Hence V,(C)> V,(C,e”‘) for all C, and equal iff 
C,=C,=Omod2z. 

Consequently for fixed C, , C, = C, = 0 mod 271 are minima. This is in accordance 
with 

iiV,(C) 

CT, 
= 0, CfOmod 2n, 

C;=Omodn 
(A.39) 

which can be derived from the symmetries of Y,(C): V,(C + 2rrn) = V,( -C) = 
b’,(C). The extrema of V, are hence given by C = 0 mod r-r, where C = 0 mod 2n are 
absolute minima ( V,(C) = 2 ICI + O(C”)), C = n( 1, 1, 1) mod 27-r are maxima and 
the other extrema are saddle points. Except for the cone-shaped minima, V,(C) is 
C’. In Fig. 11 we sketch the behaviour of P’,(C) in one eighth of the unit cell (i.e., 
[O, nl’,. 

oa- 

06 

El 

$v,( 
a4 

02 T  
0 

0 E 
4 

;3$ n 

-+C 

F~ti. Il. Picture showing the behaviour of V,(C). The corners are extrema and arrows give the direc- 
tion of decrease of the potential. The behaviour of V, along the C, axis is plotted. 
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APPENDIX B 

Here we will derive the polar decomposition retaining gauge and rotational 
degrees of freedom. (There is some overlap with [27], and we choose our 
definitions so as to reproduce the standard commutation relations in Eq. (B.26)) 
To keep the algebra simple, we parameterize 5 and q by their S, coordinates of 
SU(2) after steriographic projection (giving a double covering for both SO(3) 
factors) 

4 ‘A = $ Tr(Ra”Rfah) (B.1) 

vi, = 4 Tr(S+a,Sa,) (B.2) 

R=((I -r2)+2ir.o)/(I +r’), TER3 (B.3) 

S=((l -s’)+2is.a)/(1 +s?), SE R3. (B.4) 

The S, coordinates are given by 

to-(1 -r’)/(l +r’), i=2r/(l +r2). (B.5) 

S,=(l -s’)/(l +s’), B = 2s/( 1 + sL ), 03.6) 

in terms of which we can write 

yh= (ii - P2) ii,, + 2i,fh - 2r^o?,Ekoh, (B.7) 

q,, = (ii - 8’) 6,, + 2&i, - 2i,s^,Ek,,. u3.8) 

The next step is to calculate ?yfy for c’; = Ci=, i’Ub~~,~,,i to deduce the metric gP,,, 
where we label XI’ = (x, r, s), and a dot denotes differentiation w.r.t. the geodesic 
parameter. So 

.t”g/,v.Y= 2 i/,-i-,+2 i (Uhxhqhr<u’.~,.~,.,+ i [((“h)2+(lj,h)2]~;. (B.9) 
h=I h.<, = I h= I 

We have 

cfohtuc = a Tr(d’( Rtohk + d+d’R)) Tr(o”Rta’R) 

= 4 Tr((Rtahl? + l?ohR) R+o’R) 

= -i Tr(bRtaU) euhc. (B.lO) 

(B.ll) 

and, similarly, 

qikijlk = i Tr(%?a,) .skj,. 
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Introducing the SO(3) matrices U and V by 

, 

we can write 

1 3 0 0 

g,,,. = 0 A B > 

i i 0 Bt C 

(B.12) 

(B.13) 

(B.14 

with 

A,, = 
16 

2 u,,u,,(x’-.u;), 
(lfr’)‘,=, 

B,, = 
16 3 u,, V,h 

c --‘2.u,s,.u,, 
(1 +r”)(l +s”),=, .Y~ 

c,,=(l +#=, 
J-c- $ v, v,,(x’-.x:). 

(B.15) 

(B.16) 

(B.17) 

Hence g = det g,[,, =det Adet(C- BtAm’B) and because U, VeSO(3) they drop 
out of the expression forg: 

i 

16 

‘= (1 +r’)(l+s’) 

Also g’“’ is easily determined: 

g 

If we introduce the shorthand notation, 

(B.18) 

(B.19) 

(B.20) 

we can write 
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F = -(1+r2)(1 +s’) ’ CiihV,h 7 
I, 16 c 

-. 

h=, uKh wh 
-1 , x2 x3, 

Using (~?/?r,)( ( I + r’) ’ u,,) = (?/~?s,)(( 1 + s’) ’ r,h) = 0 we finally find 

with ,p = n,,,(.\-f - .~f) and 

fk =i(l+r’)(; 
h 

2 
4 Ih ?r, ’ 

i,= -j!!+?! V,h$, 
c/s, 

which are easily seen to be representations of SO(3): 

[i,.L,]=ie,,Ai,, [f,, f,]=i&,ikFk, [i,, f,] = 0. 

We can rewrite (B.24) in the elegant form 

and the normalization of the wave function is related by 

d’.u 141 Iti(x, r, ~11”. 

(B.21) 

(B.22) 

(B.23) 

(B.24) 

(B.25) 

(B.26) 

(B.27) 

(B.28) 

v = 384 is the degree of the map (x, r, s) H cp = lah.~h~hr decomposed as follows: a 
factor 2 for each SU( 2) (covering SO(3) twice), a factor 4 for the set (5, q) leaving x 
fixed (hence 5 and r] are equal and diagonal with k 1 on the diagonal), a factor 6 
for the pairs (4, 11) which permute the .xh, and a factor 4 for the pairs (5, q) which 
change the signs of .Y~ (det L’ = n;‘=, .Y,; thus sign changes occur in pairs). In total 
r = 2 ‘2 ‘4 .6 .4 = 384 (one easily verifies, e.g., that Eq. (B.28) is satisfied for 
i(c) = I (0) for L’” < I ( > 1)). These symmetries will be needed to show the gauge 
and rotational invariance of (B.27) (i.e., to show explicitly that [a’/&; &p, i,] = 
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[(?‘J&: ?c;, Th ] = 0). We will not discuss this, or the interesting consequences for 
the spectrum at non-zero angular momentum. (For example, in [2 J it was shown 
that gauge invariant wave functions with J= 1 do not exist.) 

Finally, we discuss the explicit parameterization of g,, (Eqs, (5.17) and (5.18)). 
This parameterization is equivalent to the following one for S’: 

Using (B.4), (B.6), (B.13), and (B.25) we find 

(B.30) 

which after some calculation yields (5.22). 

APPENDIX C 

In this appendix we will give a heuristic derivation of the contribution to the 
effective potential along the vacuum valley due to the leading infrared behaviour in 
a multiloop expansion for the effective Lagrangian introduced in Eq. (4.36). Hence 
we take C to be constant in time. One can easily specify the Feynman rules in terms 
of C and there is no need to expand in powers of the background field. If we call g3 
the neutral component and (0, ? (r2)/& the charge components, we have two 
types of propagators: 

1 
---= 

k; - ((:!k))/)” 
k #O; 

1 
(Cl) 

---+--= 
k; - ((27rk + C)/L)” 

where we suppress factors of i, 2n and spacetime indices. We also make no dis- 
tinction between vector and ghost particles. The vertices are of the following type: 

(C.2) 
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We are now interested in the leading infrared behaviour and will only consider 
the part of the diagram with k = 0, hence only the last (four-point) vertex in (C.2) 
will occur. Let us point out that this is precisely what one would obtain if an effec- 
tive Lagrangian in C were derived from the Yang-Mills Lagrangian in the sector of 
spatially constant vector potentials, and indeed one easily verifies that in this sector 
no three-point vertices are present. 

If we next rescale k, by ICI/L, each propagator has a factor L’/C’ and each loop 
integration a factor ICI/L’. A vacuum graph with V4 vertices, P propagators and I 
loops therefore contributes 

Y( v,, P, I),xL3g2”1 y 
( > 

I 2P 

L 3’ (C.3) 

to the effective potential. Using the well-known relations 

P=2V4, /=1+&V,, (C.4) 

one finds 

9( v,, P, I) = L ‘g”)( g yc/) jl.4. (C.5 1 

One indeed recognizes the one-loop result Lp’ [Cl (V,(C) = 2Lm’ ICI for ICI < 1) 
and a two-loop contribution behaves as g2L ~’ ICI --‘. In conclusion, the leading 
infrared behaviour of the effective potential to all loop orders yields a contribution 
of the form 

((33) 

and it is no accident that W, in Eq. (5.34) is exactly of this form. 

APPENDIX D 

In this appendix we discuss the generalization to SU(N) for zero magnetic flux m 
in such a way that the generalization to any simple, simply connected group is 
obvious. 

The vector potential is again chosen periodic, and the remaining gauge 
invariance is specified by a gauge function, periodic up to an element of the center: 

Q( x + Le”‘) = exp( 2rtiki/N) Q( x ), tD.1) 

where k E Z$ and PE Z (Eq. (2.3)) specify the homotopy type, with conjugate 
variables e (integer mod N) and 0 (mod 271). e and 0 label the physical state vectors 

[Q] (e, 0) =Pk e’N+iHP le, 0). 03.2) 
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The classical vacuum is again given by the curvature-free connections (Q not 
periodic) 

A,(x)= -iQ(x)a,Q-I(x). (D-3) 

Imposing periodicity on A is easily seen to imply that the 

Q,(x) = W’(x + Le”‘) Q(x) (D.4) 

are independent of x and mutually commute 

Q,Q, = Qm ‘(x + Le”) + Le’“‘) Q(x) = Q2,Q,. (D-5) 

Therefore, we can simultaneously diagonalize Q,, li = 1, 2, 3 by a constant gauge 
transformation U, 

Q,= Vexp(iQk) V’, (D.6) 

where Qh is real, traceless, and diagonal. Using Eq. (D.4) this is seen to imply that 

(D.7) 

is a periodic gauge function, such that A, is gauge equivalent to Qk/L: 

Ak(x) = fi(x)(@,/L) a(x) ’ - id(x) i?kd(x)P’. (D.8) 

Again as in Section 2, the gauge invariance of @ can be established by considering 
the Wilson loop 

IV(%) = Tr n exp( i@,)“i , 
k > 

(D.9) 

where n, are the winding numbers of the curve %‘, but apart from these, V is 
arbitrary. I+‘(%‘) is invariant under: (i) Qk --f Qk + 2n and (ii) permutations of the 
eigenvalues of @Jo (for all k simultaneously). The associated gauge transformations 
are easily written down. Including invariance of IV(%) up to an element of the cen- 
ter of the gauge group, we also have invariance under the gauge transformation 

ok = diag(e?“ik. xN:L,..., eZnik xN~L, elnii I - N)k xN/L), (D.lO) 

which leaves Qp, diagonal. Hence @, is to be identified with @, + 2&, whenever 

exp(27ciO;) E Z, (D.ll) 

(Z, the center of SU(N)). This condition on 0 is well known from monopoles 
[23], and is solved by elements of the dual weight lattice of SU(N). 
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To be more precise, we consider the canonical (complex) basis for the Lie aigebra 
(I is the rank and nr the dimension of the group (resp. N - 1 and N” - 1 for 
SU(N)), r = $m - I)): 

T,, T,, . . . . T,, Ekxf,t ,..., E+,tri, (D.12) 

[Tit &I = x,E,. (D.13) 

The T, span the Cartan sub-algebra and can be chosen diagonal, hermitian, and 
traceless; they generate the maximal torus which contains the center of the gauge 
group and we can consequently expand 

@ = CT<,; 0 = VT,. (D.14) 

Note exp(2ni0,) E Z, if and only if it commutes with all group elements or, iff for 
all z 

exP(2ni@, 1 E, exp( - hiOk) = E,. (D.15) 

The r form an I-dimensional root system. The metric on the Euclidean space span- 
ned by these roots is ((r, /I) = LX, y”p,, g” = g,, ’ ): 

g,, = Tr.,d T, T, 1. (D.16) 

Let A = { CI( ’ ), x”)~..., P 1 be a basis [24] for the root lattice. The associated dual 
weight lattice (i.e., the weight lattice for the dual root lattice spanned by 
a’. = Zcc/(cr, a)) is defined by its basis .(I”‘, il”‘,.... 2”‘; such that 

(I: l(I) , @I) zz pgy = s,,. (D.17) 

Since Eq. (D.15) is easily seen to imply that exp( 2nit;x,) = 1 for each root c( we find 
that t,, is an element of the dual weight lattice: 

th = jpt,; t,, = ll’~‘X~‘~ n6” E z. (D.18) 

If we express c“ in terms of the basis for the dual weight lattice, 

then the gauge transformation (D.10) corresponds to shifting 2”’ over multiples of 
27c, whereas the gauge transformations which permute the eigenvalues of @ corres- 
pond to the action of the Weyl group (see also [lo]). Let us remind the reader that 
the Weyl group is generated by the Weyl reflections (c( a root) 

(D.20) 
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c’ 4 

f-n;. 12. Equtpotential lines for the S/J(3) one-loop potential I., restricted to one dimension 
(c” = Pe”‘). The homotopically nontrivial gauge transformations .Q, with k = ie”’ mod 3 connecting 
minima of type 0 and type _+ correspond to translations over 2n?“’ and 26”‘. respectively. The broad 
lines correspond to the pinchons connecting type 0 and type + vacua. The point 47rrS corresponds to the 
maximum M of L’, . and equtpotentials are plotted in steps of M/7. 

and that an element of the Weyl group is an automorphism of the root system. The 
above-mentioned gauge transformations form the normalizer N.,(H) of the Cartan 
subalgebra H (the span ( T, ), _ , ,) in !9: 

N,,(H)= {,~E’! / ghg ’ E H, Vhe Hj,. (D.21) 

Note that the normalizer contains the centralizer C,,,(H) of H in ?? which leaves @ 
invariant. 

C,(H)= jg~?Yjghg ‘=h,VkH). (D.22) 

Hence (see 1125, Theorem 4.9.11) we have an isomorphism between the Weyl group 
and N.,(H)/C.,( H) generated by the map g H Ad(g) 1 H, with Ad(g) h = ghg- ‘. 

There exists an elegant description for the action of the Weyl group. Recall that 
the fundamental Weyl chamber (w.r.t. the basis d) is defined by y such that 
(J‘, a’;‘) > 0 for all i. or J, > 0 for all i, where y, are the components of y w.r.t. the 
basis for the dual weight lattice (J’ =JI;~“‘). Any y can be written as an element of 
the Weyl group acting on the closure of the fundamental Weyl chamber. For SU(3) 
this is sketched in Fig. 12, to which we will return in a while. 

As for SU(2). the one-loop effective potential is given by 

with 

VI(@)=Tr(( -D’(@))“‘), (D.23) 

Dk(@) = r?, + i ad(@,/L). (D.24) 
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The spectrum of -g:(a) is explicitly given by 

(D.25) 

and we can copy the result for V, (4)) directly from SU(2): 

y,(a) - xzL c 1 ~~n’((l~~~)~~c~‘~.) 
2 rl#O 

sin’( ( l/2) n . z”‘( 1(l), a)) 
(D.26) 

(n’)’ 

We can explicitly verify the invariance of V,(a) under Weyl transformations W 
using { Wci} = {ct], and under translations of ::I) over 27r, because a basis A for a 
root lattice is defined such that for any root a we have CI = xi=, k;x(‘) with k, all 
positive (or all negative) integers. 

As for SU(2) we have that the quadratic approximation breaks down for those 
z”) where -D:(O) has a vanishing eigenvalue. Since this vanishing eigenvalue for 
SU(2) causes V,(z) to behave as 2 /z//L we see that for general gauge group this 
breakdown occurs at zCi’ = 0 (mod 2~) for one or more values of i. This corresponds 
precisely to the boundaries of the Weyl chambers. This is obvious since boundaries 
of Weyl chambers are associated with points left invariant by one or more elements 
of the Weyl group. This is equivalent to the fact that the associated value of @ has a 
smaller holonomy group than those @ not related to the boundary. As we discussed 
in detail this leads to the breakdown of the quadratic approximations, and extra 
zeros in the Faddeev-Popov determinant, For SU(2) these singularities were 
isolated, but in general they are of codimension 3. Although of zero measure, they 
strongly dominate the quantum behaviour, as caustics do in optics. 

Away from these singularities the effective one-loop Lagrangian is given by 

L?= 
1 

m 
Tr (6’) - I’,(@). 

It should be plausible, but we will give no proof, that in lowest order the energy 
splitting due to electric flux is determined by the Lagrangian in (D.27). The 
situation is more complicated than for SU(2); it will turn out that the pinchon 
solution is contained in the set of singular points. Still, one can show that V,(m) 
can be regularized by O(g”‘) corrections by taking the quartic interactions into 
account. This, however, leaves the leading result unaltered. 

Before specializing to SU(N) we first derive a few general properties of V,(a). 
I’,(@)2 Y,(@,e”‘) follows because V’](a) is related to the SU(2) potential. It 
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means that pinchon solutions are again obtained by “dimensional reduction.” 
Restricted to one dimension we find ‘: 

V,(@e”‘)=;;f7; 1 z,(27c-z=,)+8 f a,,sin2(nz,/2) , (D.28) 
?I>0 ,I= I 1 

- = c”c( = qP’, c?) E [O, 2n], -2 0 - (D.29) 

extended periodically in zi( with periods 271 in the obvious way. If we introduce the 
so-called maximal weight 6 

(j =+ 1 c(= i i(i’ (D.30) 
% > 0 ,=I 

where I.“‘, i= I,..., I form the basis of the weight lattice defined by 

(A”‘, 3”‘) = b,, (D.31) 

with (for LX, fl roots always integer) 

(D-32) 

and if we use the “completeness” relation 

Ctlix/=g,/ (D.33) 

(the sum is over all roots), then for zz E [0, 2n3, 

y,(rp,i”)=~((4n6)‘-(c-4n6)~)+~ f 2 a,, sin’(nz,/2). (D.34) 
,1= 1 I>0 

This, in the approximation a,, E 0, is indeed a very simple expression. Also, the 
kinetic part is simple since 

Tr(&,‘) = Pch Tr( T, T,) = a?@‘Kg,,. (D.35) 

The constant K only depends on the group and g,, can always be chosen propor- 
tional to doh. 

We will now specialize to SU( N) for which K = 2N. The associated algebra is of 
type AN [24]. All roots are of equal length (a, a) = N-’ and for CI > 0 are given by 
s(‘~’ and c(“) + LX(‘), i#j. It hence follows that 

’ Any root can be written as C n,cc”l with all n, positive (z > 0) or negative (a < 0). 
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and 

y=Li”)(A,‘),i”’ N-1 

R2(L) 
- ,g, v,(z”))- y v,(z”‘+z”‘), (D.37) 

,>,= I 

where (A ,V)r, = (cl”), ~1”’ ) is the Cartan matrix with 2 on the diagonal and - 1 on 
both subdiagonals, and V,(z) is the SU(2) potential. Note that (I”‘, I’/‘) = 
(2N)‘(i”‘, A(/)) and @), (CP, cd’)) A”’ = (AN)O /I”), which leads to (I(“, 1”‘) = 
2N(A ; I),,. This proves the expression for the kinetic part, whereas the potential part 
follows from the above-mentioned explicit form of the roots ~1. In Fig. 12 we exhibit 
the potential for SU(3) by choosing units according to: 

(D.38) 

From this it is obvious that the pinchon has one and only one pair (i, k) such that 
::‘I #O. This is easily seen to generalize to arbitrary N (with a little imagination). 
The energy splitting due to electric flux can therefore be computed by restricting 9 
as 

With (AN’),, =det(A. , )/det(A N) = (N - I )/N we find 

E(e,L)=+ i ,=, sm’(?)expc- i2~,:12)‘~S+O(g-‘;i,), (D.40) 

with S the SU(2) pinchon action. 
Note that we expect 0(g’j7) corrections to V, in Eq. (D.39), and hence the 

0(gpm”3) is expected to have contributions from this modification. Equation (D.40) 
would also imply that the effect does not survive in the N -+ CT: limit. 
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Nore udded in proof: Recently the SU(3) effective Hamiltonian of Liischer [2] was numerically 
analysed by Weisz and Ziemann [33], giving results similar to those found by Liischer and Miinster 
[ 131 for SU(2). We also extended our result for arbitrary SU( N) (Eq. (D.40)) beyond the leading order, 
predtcting for SU(3) the onset of tunneling at z- 1.6 1341. Reference 34 also contams a further dis- 
cussion of an expected crossover at z - 5. It is only beyond this value of z that one can expect formation 
of flux tubes and the gluebail to behave as a particle state. 
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