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Introduction
• The Gravitational-Wave window onto the universe is likely to 

be opened

- in the next decade

- in four widely different frequency bands, spanning 22 decades:

LF



Radical New Windows ➠ Great Surprises
• Radio Window: 1940s & 50s

- 104 x lower frequency than optical
- radio galaxies, quasars, pulsars, cosmic microwave background, ...

• X-Ray Window: 1960s & 70s
- 103 x higher frequency than optical
- black holes, accreting neutron stars, hot intergalactic gas, ...



• Gravitational Waves are far more radical than Radio or X-rays

Radical New Windows ➠ Great Surprises

Completely new form of radiation!

Frequencies to be opened span 22 decades
fHF / fELF ~ 1022

• What will we learn from Gravitational Waves?
‣ “Warped side of the universe” 

- our first glimpses, then in-depth studies
‣ The nonlinear dynamics of curved spacetime
‣ Answers to astrophysical & cosmological puzzles: 

- How are supernovae powered?
- How are gamma-ray bursts powered?
- What was the energy scale of inflation? ...

• Surprises



Growth of GW Community

• 1994: LIGO Approved for Construction: ~ 30 scientists

• Today:  ~ 1500 scientists

- influx from other fields

- needed for success

- drawn by expected science payoffs



These Lectures

1. The Physics of Gravitational Waves and their Generation               
Today

2. Astrophysical and Cosmological Sources of Gravitational 
Waves, and the Information they Carry                                   
Next Friday, Sept 25

3. Gravitational Wave Detection: Methods, Status, and Plans  
Following Friday, Oct 2



These Lectures

• Prerequisites for these lectures:
- Knowledge of physics at advanced undergraduate level 

- Especially special relativity and Newtonian gravity

- Helpful to have been exposed to General Relativity; not necessary 

• Goals of these lectures:
- Overview of gravitational-wave science 

- Focus on physical insight, viewpoints that are powerful

• Pedagogical form of these lectures: 
- Present key ideas, key results, without derivations 

- Give references where derivations can be found     



• Pedagogical references that cover this lectureʼs material:

- LH82: K.S. Thorne, “Gravitational Radiation: An Introductory Review” 
in Gravitational Radiation, proceedings of the 1982 Les Houches 
summer school, eds. N. Deruelle and T. Piran (North Holland, 1983) - 
requires some knowledge of general relativity

- NW89: K.S. Thorne, Gravitational Waves: A New Window onto the 
Universe (unpublished book, 1989), available on Web at    http://
www.its.caltech.edu/~kip/stuff/Kip-NewWindow89.pdf - does not 
require prior knowledge of general relativity, except in Chaps. 5 & 6.

- BT09: R.D. Blandford and K.S. Thorne, Applications of Classical 
Physics (near ready for publication, 2009), available on Web at http://
www.pma.caltech.edu/Courses/ph136/yr2008/ - contains an 
introduction to general relativity.

These Lectures



Resources

• The best introductory textbook on general relativity:

- James B. Hartle, Gravity an Introduction to General Relativity 
(Addison Wesley, 2003)

• The best course-length introduction to gravitational-wave 
science:

- Gravitational Waves, a Web-Based Course (including videos of 
lectures, readings, problem sets, problem solutions):                        
http://elmer.caltech.edu/ph237/



Outline of This Lecture

1. Gravitational waves (GWs) in the language of tidal gravity

2. GWs in the linearized approximation to general relativity

3. GW generation

a. Linearized sources

b. Slow-motion sources

c. Nonlinear, highly dynamical sources: Numerical relativity

4. GWs in curved spacetime; geometric optics; GW energy

5. Interaction of GWs with matter and EM fields



1. Gravitational Waves in the Language
of Tidal Gravity



Relative Motion of Inertial Frames
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The GW field 
• The gravitational-wave field, 

• + Polarization 

Symmetric, transverse, traceless (TT); 
two polarizations: +, x

hGW
jk

hGW
jk

y

z

x
hGW

yy = −h+(t− z)

hGW
xx = h+(t− z/c) = h+(t− z)

Lines of force
ẍ = ḧ+x

ÿ = −ḧ+yẍj =
1
2
ḧGW

jk xk

•   x Polarization

hGW
xy = hGW

yx = h×(t− z)



Gravitons
• Quantum spin and rest mass:   imprint on classical waves

spin =
180o

return angle E
photon

return angle = 360o

spin=1

graviton

return angle = 180o

spin=2

y

x

propagation speed = c ≡1   ⇒   rest mass = 0 



Behavior of         Under boosts in z direction
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GW Field

h�GW
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Transverse Lorenz gauge

transform as
scalar fields

AT
j is transverse:

AT
x (t− z), AT
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• Proper Reference Frame: analog of local Lorentz frame

GWs as Seen in Laboratory on Earth

ds2 = −(1 + 2g · x)dt2 + dx2 + dy2 + dz2

• GWs unaffected by earthʼs gravity

- except for a very tiny, unimportant gravitational blue shift

• Total gravitational force

Photodetector

Laser

L+ L

L - 
L

ẍj =
1
2
ḧGW

jk xk + gj



2. GWs in Linearized Approximation
to General Relativity



Metric Perturbation, Lorenz Gauge, Einstein Field Equation
• Metric: gµν = ηµν + hµν

Flat Grav’l Field

• Field theory in flat spacetime 

• Lorenz gauge

hµν analogous to Aµ

h̄µν ≡ hµν −
1
2
hα

αηµν

∂h̄µν

∂xν
= 0 analogous to

∂Aν

∂xν
= 0

• Einstein field equation in Lorenz gauge

• Gravitational-wave field

nearwave
zone zone

r

θ

ϕ

In wave zone, gauge change with �ξα = 0 (analogous to �φ = 0)→
Project out TT piece; get GW field: hnew

tt = hnew
jt = 0, hnew

jk = (hold
jk )TT = hGW

jk

where (hold
θϕ )TT = hold

θϕ = h×, (hold
θθ )TT = hold

θθ −
1
2
(hθθ + hϕϕ) =

1
2
(hθθ − hϕϕ) = h+,

analogous to obtaining Transverse Lorenz gauge by projecting: AT
j = (Aold

j )T

�h̄µν ≡ ηαβ ∂

∂xα

∂

∂xβ
h̄µν = −16πGTµν analogous to �Aµ = −4πJµ

• Gauge freedom (ripple coordinates) xµ
new = xµ

old − ξµ

hnew
µν = hold

µν +
∂ξµ

∂xν
+

∂ξν

∂xµ
analogous to Anew

µ = Aold
µ +

∂φ

∂xµ



3. Gravitational Wave Generation



Example: Linearized, Point Particles in Lorenz Gauge
• Electromagnetic

• Gravitational

• Gravitational-Wave Memory 

initial

final

time

h+
∆h+

pα

kα

O

�Aα = −4πJα
⇒ at O, Aα =

q pα

kµpµ

in rest frame of particle, reduces to At =
q

r
In wave zone Ej = −(Ȧj)T (Liénard-Wiechart)

h̄αβ = G
pαpβ

kµpµ
�h̄αβ = −16πGTαβ

⇒ at O,

in rest frame of particle, reduces to h̄tt =
4Gm

r

In wave zone hGW
jk = (h̄jk)TT = G

�
pjpk

kµpµ

�TT

∆hGW
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�
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�

A
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Apk

A

kA µpµ
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Slow-Motion GW Sources
Slow Motion: speeds << c = 1;  wavelength = λ >> (source size) = L

examples:  me waving arms; pulsar (spinning neutron star); binary made 
from two black holes

nearwave
zone zone

r

θ

ϕ• Weak-field, near zone: Newtonian Potential
Φ = −G

m

r
& G

mass dipole
r2

& G
mass quadrupole

r3
& ...

• Wave zone:  hGW
jk ∼ 1

r
[by energy conservation] and dimensionless⇒

hGW
jk ∼ G

m

r
& G

∂(mass dipole)/∂t

r
& G

∂2(mass quadrupole)/∂t2

r
& ...

momentum; cannot oscillate
mass; cannot oscillate

canonical field theory ⇒ radiation field carried by 
quanta  with spin s has multipoles confined to ℓ ≥ s 

Mass 
quadrupole
dominates

hGW
jk = 2G

�
Ïjk

r

�TT

for Newtonian source Ijk =
�

ρ(xjxk − 1
3
r2)d3x



h̄GW
jk (t,x) =

2
�
Ïjk(t− r)

�TT

r
, where Ijk =

�
T 00(xjxk − r2δjk)d3x

Common Textbook Derivation
1. Linearized Approximation to General Relativity (set G=1)

2. Conservation of 4-momentum

2T jk = (T ttxjxk),tt − (T abxjxk),ab − 2(T ajxk + T akxj),a

3. Insert 2 into 1; integral of divergence vanishes

slow motion ⇒ h̄jk(t,x) =
4

�
T jk(t− r, |x�)d3x�

r

�h̄jk = −16πh̄jk ⇒ h̄jk(t,x) = 4
�

T jk(t− |x− x�|,x�)
|x− x�| d3x�

Tαβ
,β = 0 ⇒

h̄jk(t,x) =
2Ïjk(t− r)

r
, where Ijk =

�
T 00xjxkd3x

4. Take transverse traceless part

PROBLEM: Derivation Not valid when self 
gravity influences source’s dynamics!!



Derivation via Propagation from Weak-Field Near 
Zone to Wave Zone

• Weak-gravity regions: Linearized approximation to GR
�hαβ = 0
h̄αβ

,β = 0

• Quadrupolar solution in Induction Zone:

h̄tt
,t = −h̄tj

,j

h̄tj
,t = −h̄jk

,k

i.e.

In weak-field near zone (wfnz) Φ = −M

r
− 3Ijknjnk

2r3
, h̄tt = −4Φ

pure gauge

h̄tj = 2
�
1
r
İjk(t− r)

�

,k

� −2
r2

İjknk in wfnz, � −2
r2

Ïjk(t− r)nl in lwz

� 2
r
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6
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�
1
r
Ijk(t− r)

�

,jk

�

pure gaugetiny

h̄jk =
2
r
Ïjk(t− r) Take TT part to get GW field in wfnz: h̄GW

jk (t,x) =
2
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unit radial vector



     Order of Magnitude
• Source parameters:  

mass ~ M,  size ~ L,   rate of quadrupolar oscillations ~ ω, distance ~ r,   
internal kinetic energy of quadrupolar oscillations ~ Ekin ~ M(ωL)2 

• GW strength:

hGW
jk

hGW
jk = 2G

Ïjk

r
∼ G

ω2(ML2)
r

∼ G
Ekin/c2

r
∼ Φ produced by kinetic energy of shape changes.

hGW
jk ∼ h+ ∼ h× ∼ 10−21

�
Ekin

M⊙c2

� �
100Mpc

r

�

100Mpc = 300 million light years ∼ 1

30
(Hubble distance)



Slow-Motion Sources: Higher-Order Corrections

• Source Dynamics: Post-Newtonian Expansion 

in v/c ∼
�

Φ/c2 ∼
�

P/ρc2

• GW Field: Higher-Order Moments (octopole, ...)

- computed in same manner as quadrupolar waves:  by analyzing the 
transition from weak-field near zone, through induction zone, to local 
wave zone

- actually Two families of moments (like electric and magnetic) -  

‣ moments of mass distribution, moments of angular-momentum 
distribution

- Use symmetric, trace-free (STF) tensors to describe the moments and 
the GW field ... (19th century approach; Great Computational Power)



STF Tensors [an aside]
• Multipole moments of Newtonian gravitational potential

- Spherical-harmonic description: Φ ∼
+��

m=−�

M�mY�m(θφ)
r�+1

M�m has 2� + 1 components: m = −�, � + 1, ...,+�

- STF description:  Φ ∼ Ia1a2...a�n
a1na2 ...na�

r�+1

Ia1a2...a� has 2� + 1 independent components

• Multipolar Expansion of gravitational-wave field

hGW
jk =

� ∞�

�=2

4
�!

∂�

∂t�
Ijka1...a�−2(t− r)

r
na1 ...na�−2

�TT

+

� ∞�

�=2

8�

(� + 1)!
�pq(j

∂�

∂t�
Sk)pa1...a�−1(t− r)

r
nqna1 ...na�−1

�TT

mass moments

angular momentum moments
current moments

- Indices carry directional, multipolar and tensor information, all at once  



Strong-Gravity (GM/c2L ~1), Fast-Motion (v~c) Sources

• Most important examples [next week]

- Black-hole binaries: late inspiral, collision, merger, ringdown

- Black-hole / neutron-star binaries: late inspiral, tidal disruption 
and swallowing

- neutron star / neutron-star binaries: late inspiral, collision and 
merger

- supernovae

• These are the strongest and most interesting of all sources

• Slow-motion approximation fails

• Only way to compute waves:  Numerical Relativity



4.  Gravitational Waves in curved spacetime; 
geometric optics; GW energy



GWs Propagating Through Curved Spacetime (distant wave zone)

• Definition of gravitational wave: the rapidly varying part of 
the metric and of the curvature

Same definition used for waves in plasmas, fluids, solids

• In local Lorentz frame of background: GW theory same as in 
flat spacetime (above)

λ̄ = λ/2π � L = (lengthscale on which background metric varies) � R

�hαβ = 0 in vacuum. Same propagation equation as for EM waves: �Aα = 0

⇒ GWs exhibit same geometric-optics behavior as EM waves

gαβ = gB
αβ + hαβ

≡ �gαβ� ≡ gαβ − �gαβ�



Geometric-Optics Propagation
• GWs and EM waves propagate along the same                 

rays: null geodesics in the background spacetime

- Label each ray by its direction        in sourceʼs local wave zone, 
and the retarded time it has in the local wave zone,

(θ,ϕ)

tret ≡ (t− r)local wave zone

- Waveʼs amplitude dies out as 1/r in local wave zone.               
Along the the ray, in distant wave zone, define A = (cross 
sectional area of a bundle of rays, and                              
where       and      are values at some location in local wave 
zone. Then amplitude continues to die out as 1/r in distant 
wave zone.

r ≡ ro

�
A/Ao

ro Ao

- Waveʼs amplitude dies out as 1/r in local wave zone.               
Along the the ray, in distant wave zone, define A = (cross 
sectional area of a bundle of rays, and                              
where       and      are values at some location in local wave 
zone. Then amplitude continues to die out as 1/r in distant 
wave zone.

- Waveʼs amplitude dies out as 1/r in local wave zone.               
Along the the ray, in distant wave zone, define A = (cross 
sectional area of a bundle of rays, and                              
where       and      are values at some location in local wave 
zone. Then amplitude continues to die out as 1/r in distant 
wave zone.

- Transport the unit basis vectors       and       parallel to 
themselves along the ray, from local wave zone into and 
through distant wave zone.  Use them to define + and x

�eϕ�eθ

- Then in distant wave zone:

h+ =
Q+(tret, θ, ϕ)

r
, h× =

Q×(tret, θ, ϕ)
r

Aθ =
Qθ(tret, θ, ϕ)

r
, Aϕ =

Qϕ(tret, θ, ϕ)
r

local wave zone

distant
wave
zone

ray (tret, θ, φ)

�eθ

�eϕ



Geometric-Optics Propagation
• Form of waves:  

h+ =
Q+(tret, θ, ϕ)

r
, h× =

Q×(tret, θ, ϕ)
r

Aθ =
Qθ(tret, θ, ϕ)

r
, Aϕ =

Qϕ(tret, θ, ϕ)
r

local wave zone

distant
wave
zone

ray (tret, θ, φ)

�eθ

�eϕ
• ⇒ GWs experience identically the same 

geometric-optics effects as EM waves:

- gravitational redshift,

- cosmological redshift,

- gravitational lensing,  ... 

‣ and at the focus of a gravitational lense:              
the same diffraction effects as EM waves



Energy and Momentum in GWs
• Einsteinʼs general relativity field equations say

• Break metric into background plus GW: gαβ = gB
αβ + hαβ

• Expand Einstein tensor in powers of

Energy-momentum-stress tensor1
Einstein’s curvature tensor

Gαβ = 8π G Tαβ

hαβ

Gαβ = GB
αβ + G(1)

αβ + G(2)
αβ

quadratic in hµν
linear in hµν

Background
Einstein tensor

• Average over a few wavelengths to get quantities that 
vary on background scale    , not wavelength scale L λ̄

�Gαβ� = GB
αβ + �G(2)

αβ� = 8π�Tαβ�
• Rearrange:

• Evaluate the average: TGW
αβ =

1
16π

�h+,αh+,β + h×,αh×,β�• In Local Lorentz Frame
T tt

GW = T tz
GW = T zz

GW =
1

16π
�ḣ2

+ + ḣ2
×� .

GB
αβ = 8π(�Tαβ�+ TGW

αβ ) where TGW
αβ ≡ −

�G(2)
αβ�

8π



Energy and Momentum Conservation
• Einsteinʼs field equations                                                                    

guarantee energy and momentum conservation, e.g. 
GB

αβ = 8π(�Tαβ� + TGW
αβ )

• Source loses mass (energy) at a rate

• Source loses linear momentum at a rate
S

r

dM

dt
= −

�

S
T tr

GWdA = − 1
16π

�

S
�ḣ2

+ + ḣ2
×�dA

dpj

dt
= −

�

S
T jr

GWdA = − 1
16π

�

S
(�ej · �er)�ḣ2

+ + ḣ2
×�dA

• Angular momentum is a little more delicate



5. Interaction of Gravitational Waves 
with matter and EM fields



Plane GW Traveling Through Homogeneous Matter 
• Fluid:

- GW shears the fluid, (rate of shear) =                            σjk =
1
2
ḣGW

jk

- no resistance to shear, so no action back on wave

- Viscosity                                                                                                  
produces stress 

- Linearized Einstein field equation:

- Wave attenuates:                                  where

�hGW
jk = −16π(Tjk)TT = 16πηḣGW

jk

hGW
jk ∼ exp(−z/�att)

- Fluidʼs density curves spacetime (background Einstein equations)
1
R2

∼ GB
00 = 8πρ

- Therefore 

Tjk = −2ησjk = −ηḣGW
jk

η ∼ ρvs = (density)(mean speed of particles)(mean free path)
NOTE: s must be < λ̄

The viscous attenuation length is always far larger than the 
background radius of curvature.  Attenuation is never significant! 

�att ∼
R2

vs
= RR

s

c

v
� RR

λ̄

c

v
� R

�att =
1

8πη
=

1
8πρvs



Plane GW Traveling Through Homogeneous Matter 
• Elastic Medium:

- GW shears the medium, (rate of shear) =                   , (shear)=                  σjk =
1
2
ḣGW

jk Σjk =
1
2
hGW

jk

Tjk = −2µΣjk − 2ησjk = −µhGW
jk − ηḣGW

jk- Medium resists with stress        

- Einstein equation becomes        �hGW
jk = −16π(Tjk)TT = 16π(µhGW

jk + ηḣGW
jk )

- Insert                                        .  Obtain dispersion relation         

- Same attenuation length as for fluid:

hGW
jk ∝ exp(−iωt + ikz)

ω2 − k2 = 16π(µ− iωη); i.e. ω = k(1 + 8πλ̄2µ)− i8πη, where λ̄ = 1/k

�att =
1

8πη
� R

- Phase and group velocities (dispersion):

vphase =
ω

k
= 1 + 8πλ̄2µ, vgroup =

dω

dk
= 1− 8πλ̄2µ

- Dispersion length (one radian phase slippage) � =
λ̄

δvphase
=

1
8πλ̄µ

� R2

λ̄
� R

The dispersion length is always far larger than the background 
radius of curvature.  Dispersion is never significant! 



GW Scattering

• Strongest scattering medium is a swarm of black holes:                     
hole mass M, number density of holes n

- Scattering cross section σ � M2

- Graviton mean free path for scattering

� =
1

nσ
� 1

nM2
=

1
ρM

∼ R
2

M
� R

The scattering mean free path is always far larger than the 
background radius of curvature.  Scattering is never significant! 



Interaction with an Electric or Magnetic Field
• Consider a plane EM wave propagating through a DC 

magnetic field

• Beating produces a TT stress Txx = −Tyy =
BoBDC

4π

Bwave = Bo sin[ω(t− z)]ey, BDC = BDCey

• TT stress resonantly generates a GW �hGW
jk = −16π(Tjk)TT

h+ = hGW
xx = −hGW

yy =
2BDCBo

ω
z cos[ω(t− z)] The “Gertsenshtein effect”

• Ratio of GW energy to EM wave energy:
T tt

GW

T tt
EMwave

=
�ḣ2

+�/16π

B2
o/8π

= B2
DCz2 =

z2

R2

The lengthscale for significant conversion of EM wave energy into 
GW energy is equal to the radius of curvature of spacetime 

produced by the catalyzing DC magnetic field.

• The lengthscale for the inverse process is the same
There can never be significant conversion in the astrophysical 

universe.



Conclusion

• Gravitational Waves propagate through the astrophysical 
universe without significant attenuation, scattering, 
dispersion, or conversion into EM waves

• Next Friday:  Astrophysical and Cosmological Sources of 
Gravitational Waves, and the Information they Carry

- slides will be available Thursday night at                                                 
http://www.cco.caltech.edu/~kip/LorentzLectures/


