Waves in strongly disordered systems

JB Pendry
Imperial College London

Waves in disordered systems - the classical picture

 Conventionally waves are treated like particles randomly diffusing through a medium - their phase does not matter much.Most incident waves are reflected, but a few get through the maze:

$$
\operatorname{transmission} \propto L^{-1}
$$

This law holds if the disorder is weak: e.g. in a metal the resistance is $\propto L$.

However in the presence of strong disorder this is no longer true ...

Anderson localisation

Absence of Diffusion in Certain Random Lattices

P. W. Anderson
Bell Telephone Laboratories, Murray Hill, New Jersey

(Received October 10, 1957)

This paper presents a simple model for such processes as spin diffusion or conduction in the "impurity band." These processes involve transport in a lattice which is in some sense random, and in them diffusion is expected to take place via quantum jumps between localized sites. In this simple model the essential randomness is introduced by requiring the energy to vary randomly from site to site. It is shown that at low enough densities no diffusion at all can take place, and the criteria for transport to occur are given.

Long ago in 1958 PW Anderson pointed out that in the presence of strong disorder diffusion is completely eliminated, electrons are localised on specific sites, and transmission drops dramatically, only happening when the frequency of the wave coincides with that of a localised state.

Imperial College

xany

Anderson localisation

Strong disorder 'localises' the states of the system and transport is by tunnelling through these states which act as stepping stones. The tunnelling events are rare and transmission drops dramatically with sample thickness:

$$
\text { transmission } \propto \exp \left(-L / \ell_{0}\right)
$$

where ℓ_{0} is the localisation length.

Despite intense theoretical activity, the nature of the transition from diffusion to localisation is not understood.

However recent advances enable the transition to be studied using optical experiments and this has brought new urgency to unravelling the mystery.

Anderson localisation

What is known:

Imperial College

Anderson localisation

What is known:

- all 1D and 2D disordered systems are localised (some exceptions in 2D)

Anderson localisation

What is known:

- all 1D and 2D disordered systems are localised (some exceptions in 2D)
- in 3D there is a transition from diffusion to localisation at a critical value of the disorder, $\delta_{c}^{\prime 2}$

Anderson localisation

What is known:

- all 1D and 2D disordered systems are localised (some exceptions in 2D)
- in 3D there is a transition from diffusion to localisation at a critical value of the disorder, $\delta_{c}^{\prime 2}$
- computer simulations on 3D systems show that as the disorder reduces to the critical value, $\delta_{c}^{\prime 2}$, the localisation length diverges as $\ell_{0} \approx\left(\delta^{2}-\delta_{c}^{\prime 2}\right)^{-v}$

Anderson localisation

What is known:

- all 1D and 2D disordered systems are localised (some exceptions in 2D)
- in 3D there is a transition from diffusion to localisation at a critical value of the disorder, $\delta_{c}^{\prime 2}$
- computer simulations on 3D systems show that as the disorder reduces to the critical value, $\delta_{c}^{\prime 2}$, the localisation length diverges as $\ell_{0} \approx\left(\delta^{2}-\delta_{c}^{\prime 2}\right)^{-v}$
- v is known as the 'critical exponent' and computer simulations give $v=1.571$. This quantity is regarded a the critical test of any theory of localisation.

Anderson localisation

What is known:

- all 1D and 2D disordered systems are localised (some exceptions in 2D)
- in 3D there is a transition from diffusion to localisation at a critical value of the disorder, $\delta_{c}^{\prime 2}$
- computer simulations on 3D systems show that as the disorder reduces to the critical value, $\delta_{c}^{\prime 2}$, the localisation length diverges as $\ell_{0} \approx\left(\delta^{2}-\delta_{c}^{\prime 2}\right)^{-v}$
- v is known as the 'critical exponent' and computer simulations give $v=1.571$. This quantity is regarded a the critical test of any theory of localisation.

What is not known:

Anderson localisation

What is known:

- all 1D and 2D disordered systems are localised (some exceptions in 2D)
- in 3D there is a transition from diffusion to localisation at a critical value of the disorder, $\delta_{c}^{\prime 2}$
- computer simulations on 3D systems show that as the disorder reduces to the critical value, $\delta_{c}^{\prime 2}$, the localisation length diverges as $\ell_{0} \approx\left(\delta^{2}-\delta_{c}^{\prime 2}\right)^{-v}$
- v is known as the 'critical exponent' and computer simulations give $v=1.571$. This quantity is regarded a the critical test of any theory of localisation.

What is not known:

- no theory has correctly predicted the critical exponent

Anderson localisation

What is known:

- all 1D and 2D disordered systems are localised (some exceptions in 2D)
- in 3D there is a transition from diffusion to localisation at a critical value of the disorder, $\delta_{c}^{\prime 2}$
- computer simulations on 3D systems show that as the disorder reduces to the critical value, $\delta_{c}^{\prime 2}$, the localisation length diverges as $\ell_{0} \approx\left(\delta^{2}-\delta_{c}^{\prime 2}\right)^{-v}$
- v is known as the 'critical exponent' and computer simulations give $v=1.571$. This quantity is regarded a the critical test of any theory of localisation.

What is not known:

- no theory has correctly predicted the critical exponent
- still less, no theory has correctly predicted the critical disorder, δ_{c}^{2}

Disorder in 1D systems

Although 3D systems and their transition for diffusion to localisation are still a mystery, 1D systems which are always localised are well understood.

We can make a good start on understanding localisation by studying the 1D case.

Transmission of waves through disordered systems

PRL 94, $113903(2005)$ PH Y S IC AL REVIEW LETTERS Optical Necklace States in Anderson Localized 1D Systems

Jacopo Bertolotti, Stefano Gottardo, and Diederik S. Wiersma
European Laboratory for Nonlinear Spectroscopy and INFM, 50019 Sesto Fiorentino (Florence), Italy

Mher Ghulinyan and Lorenzo Pavesi
INFM and Department of Physics, University of Trento, I-38050 Povo (Trento), Italy (Received 8 November 2004; published 22 March 2005)
We report on the observation of nonlocalized modes or necklace states of light waves in disordered systems in the Anderson localized regime. The samples consist of positional-disordered binary multilayer systems. Anderson localized modes manifest themselves as narrow high-transmission peaks in the transmission spectrum, whereas the average of the logarithm of the transmission coefficient decreases linearly with thickness. Optical necklace states are observed as modes with a characteristic multiresonance time response and relatively fast decay time.

Transmission of waves through disordered systems

1D disordered arrangement of layers

Transmission of waves through disordered systems

Strongly disordered systems, and all 1D disordered systems, trap electrons on localised sites.

When the energy of an electron hits one of these resonances we see transmission. The intensity of the transmission depends on how far the resonance is from the ends - in the middle works best.

How do we study the wild statistics of transmission through disordered systems?

The problem

We wish to calculate $T_{L}^{++}, T_{L}^{--}, R_{L}^{+-}, R_{L}^{-+}$defined by,

Transfer Matrices

We divide the system into statistically independent slices,

whose properties can easily be calculated. For example each slice might contain a single scattering centre.

Scattering by a single slice

Scattering by a single slice

$$
\begin{gathered}
\stackrel{a_{n-1}^{+}}{r_{n}^{-+} a_{n-1}^{+}} a_{n-1}^{++} \\
a_{n}^{+}=t_{n}^{++} a_{n-1}^{+}+r_{n}^{+-} a_{n}^{-} \\
a_{n-1}^{-}=r_{n}^{-+} a_{n-1}^{+}+t_{n}^{--} a_{n}^{-}
\end{gathered}
$$

Scattering by a single slice

$$
\begin{gathered}
\xrightarrow[\longrightarrow]{a_{n-1}^{+}} \xrightarrow{t_{n}^{++} a_{n-1}^{+}} \xrightarrow{r_{n}^{-+} a_{n-1}^{+}} \\
a_{n}^{--} a_{n}^{-} \\
a_{n}^{-}=t_{n}^{++} a_{n-1}^{+}+r_{n}^{+-} a_{n}^{-} \\
a_{n-1}^{-}=r_{n}^{-+} a_{n-1}^{+}+t_{n}^{--} a_{n}^{-}
\end{gathered}
$$

$$
\text { rearranging, } \quad\left[\begin{array}{cc}
1 & -r_{n}^{+-} \\
0 & t_{n}^{--}
\end{array}\right]\left[\begin{array}{l}
a_{n}^{+} \\
a_{n}^{-}
\end{array}\right]=\left[\begin{array}{ll}
t_{n}^{++} & 0 \\
r_{n}^{-+} & 1
\end{array}\right]\left[\begin{array}{l}
a_{n-1}^{+} \\
a_{n-1}^{-}
\end{array}\right]
$$

Scattering by a single slice

$$
\begin{aligned}
\stackrel{a_{n-1}^{+}}{r_{n}^{-+} a_{n-1}^{+}} & \xrightarrow{t_{n}^{++} a_{n-1}^{+}} \\
& {\left[\begin{array}{c}
a_{n}^{+} \\
a_{n}^{-}
\end{array}\right]=\mathbf{X}_{n}\left[\begin{array}{c}
a_{n}^{-} \\
a_{n-1}^{+} \\
a_{n-1}^{-}
\end{array}\right] }
\end{aligned}
$$

and inverting,

Scattering by a single slice

$$
\begin{aligned}
\stackrel{a_{n-1}^{+}}{r_{n}^{-+} a_{n-1}^{+}} & \xrightarrow{t_{n}^{++} a_{n-1}^{+}} \\
& {\left[\begin{array}{c}
a_{n}^{+} \\
a_{n}^{-}
\end{array}\right]=\mathbf{X}_{n}\left[\begin{array}{c}
a_{n}^{-} \\
a_{n-1}^{+} \\
a_{n-1}^{-}
\end{array}\right] }
\end{aligned}
$$

and inverting,
where \mathbf{X}_{n} is the transfer matrix,

$$
\mathbf{X}_{n}=\left[\begin{array}{cc}
t_{n}^{++}-r_{n}^{+-}\left(t_{n}^{--}\right)^{-1} r_{n}^{-+} & r_{n}^{+-}\left(t_{n}^{--}\right)^{-1} \\
-\left(t_{n}^{--}\right)^{-1} r_{n}^{-+} & \left(t_{n}^{--}\right)^{-1}
\end{array}\right]=\left[\begin{array}{cc}
\left(t_{n}^{--*}\right)^{-1} & r_{n}^{+-}\left(t_{n}^{--}\right)^{-1} \\
r_{n}^{+-*}\left(t_{n}^{--^{*}}\right)^{-1} & \left(t_{n}^{--}\right)^{-1}
\end{array}\right]
$$

The fundamental theorem

Evidently we can repeatedly apply transfer matrices to give,

$$
\left[\begin{array}{c}
a_{L}^{+} \\
a_{L}^{-}
\end{array}\right]=\mathbf{Z}_{L}\left[\begin{array}{c}
a_{0}^{+} \\
a_{0}^{-}
\end{array}\right]=\prod_{n=1}^{L} \mathbf{X}_{n}\left[\begin{array}{l}
a_{0}^{+} \\
a_{0}^{-}
\end{array}\right]
$$

The fundamental theorem

Evidently we can repeatedly apply transfer matrices to give,

$$
\left[\begin{array}{c}
a_{L}^{+} \\
a_{L}^{-}
\end{array}\right]=\mathbf{Z}_{L}\left[\begin{array}{c}
a_{0}^{+} \\
a_{0}^{-}
\end{array}\right]=\prod_{n=1}^{L} \mathbf{X}_{n}\left[\begin{array}{c}
a_{0}^{+} \\
a_{0}^{-}
\end{array}\right]
$$

$$
\prod_{n=1}^{L} \mathbf{X}_{n}=\mathbf{Z}_{L}=\left[\begin{array}{cc}
\left(T_{L}^{--*}\right)^{-1} & R_{L}^{+-}\left(T_{L}^{--}\right)^{-1} \\
T_{L}^{+-*}\left(T_{L}^{--*}\right)^{-1} & \left(T_{L}^{--}\right)^{-1}
\end{array}\right]
$$

The fundamental theorem

Evidently we can repeatedly apply transfer matrices to give,

$$
\left[\begin{array}{c}
a_{L}^{+} \\
a_{L}^{-}
\end{array}\right]=\mathbf{Z}_{L}\left[\begin{array}{c}
a_{0}^{+} \\
a_{0}^{-}
\end{array}\right]=\prod_{n=1}^{L} \mathbf{X}_{n}\left[\begin{array}{c}
a_{0}^{+} \\
a_{0}^{-}
\end{array}\right]
$$

$$
\text { where, } \quad \prod_{n=1}^{L} \mathbf{X}_{n}=\mathbf{Z}_{L}=\left[\begin{array}{cc}
\left(T_{L}^{--^{*}}\right)^{-1} & R_{L}^{+-}\left(T_{L}^{--}\right)^{-1} \\
T_{L}^{+-^{*}}\left(T_{L}^{--^{*}}\right)^{-1} & \left(T_{L}^{--}\right)^{-1}
\end{array}\right]
$$

\mathbf{Z}_{L} has the same functional form as \mathbf{X}_{n} providing a means of calculating transmission and reflection coefficients for a slab from the easy-to-obtain transmission and reflection coefficients for a thin slice.

The fundamental theorem

Evidently we can repeatedly apply transfer matrices to give,

$$
\left[\begin{array}{c}
a_{L}^{+} \\
a_{L}^{-}
\end{array}\right]=\mathbf{Z}_{L}\left[\begin{array}{c}
a_{0}^{+} \\
a_{0}^{-}
\end{array}\right]=\prod_{n=1}^{L} \mathbf{X}_{n}\left[\begin{array}{c}
a_{0}^{+} \\
a_{0}^{-}
\end{array}\right]
$$

where, $\quad \prod_{n=1}^{L} \mathbf{X}_{n}=\mathbf{Z}_{L}=\left[\begin{array}{cc}\left(T_{L}^{--*}\right)^{-1} & R_{L}^{+-}\left(T_{L}^{--}\right)^{-1} \\ T_{L}^{+-*}\left(T_{L}^{--*}\right)^{-1} & \left(T_{L}^{--}\right)^{-1}\end{array}\right]$
\mathbf{Z}_{L} has the same functional form as \mathbf{X}_{n} providing a means of calculating transmission and reflection coefficients for a slab from the easy-to-obtain transmission and reflection coefficients for a thin slice.
Also since the slices are independent we can easily average \mathbf{Z}_{L} :

$$
\overline{\mathbf{Z}_{L}}=\prod_{n=1}^{L} \overline{\mathbf{X}_{n}}
$$

More transfer matrices

We know how to average \mathbf{Z}_{L}, but this average is of little interest as $\overline{\left(T_{L}^{--}\right)^{-1}}$ tells is nothing about $\overline{\left.T_{L}^{--}\right|^{2}}$, the quantity we really want to know.

More transfer matrices

We know how to average \mathbf{Z}_{L}, but this average is of little interest as $\overline{\left(T_{L}^{--}\right)^{-1}}$ tells is nothing about $\overline{\left.T_{L}^{--}\right|^{2}}$, the quantity we really want to know.
However there are other transfer matrices obtained by taking direct products,

$$
\left[\begin{array}{l}
\mathbf{Z}_{L} \\
\otimes \\
\mathbf{Z}_{L}
\end{array}\right]=\prod_{n=1}^{L}\left[\begin{array}{l}
\mathbf{X}_{n} \\
\otimes \\
\mathbf{X}_{n}
\end{array}\right]
$$

More transfer matrices

We know how to average \mathbf{Z}_{L}, but this average is of little interest as $\overline{\left(T_{L}^{--}\right)^{-1}}$ tells is nothing about $\overline{\left|T_{L}^{--}\right|^{2}}$, the quantity we really want to know. However there are other transfer matrices obtained by taking direct products,

$$
\left[\begin{array}{l}
\mathbf{Z}_{L} \\
\otimes \\
\mathbf{Z}_{L}
\end{array}\right]=\prod_{n=1}^{L}\left[\begin{array}{l}
\mathbf{X}_{n} \\
\otimes \\
\mathbf{X}_{n}
\end{array}\right]
$$

and more of the same,

$$
\mathbf{Z}_{L}^{\otimes N}=\prod_{n=1}^{L} \mathbf{X}_{n}^{\otimes N}
$$

More transfer matrices

We know how to average \mathbf{Z}_{L}, but this average is of little interest as $\overline{\left(T_{L}^{--}\right)^{-1}}$ tells is nothing about $\overline{\left|T_{L}^{--}\right|^{2}}$, the quantity we really want to know. However there are other transfer matrices obtained by taking direct products,

$$
\left[\begin{array}{l}
\mathbf{Z}_{L} \\
\otimes \\
\mathbf{Z}_{L}
\end{array}\right]=\prod_{n=1}^{L}\left[\begin{array}{l}
\mathbf{X}_{n} \\
\otimes \\
\mathbf{X}_{n}
\end{array}\right]
$$

and more of the same,

$$
\mathbf{Z}_{L}^{\otimes N}=\prod_{n=1}^{L} \mathbf{X}_{n}^{\otimes N}
$$

We can think of each component matrix of the direct product as a particle evolving as the length of the system increases, much as real particles evolve in time. Since each of the N components of $\mathbf{X}_{n}^{\otimes N}$ is identical we can ask what is the symmetry of these particles? It turns out that they are Bosons.

Imperial College

Even more transfer matrices

By various mathematical tricks we can extend the family of transfer matrices to negative and to fractional values of N. For example the $N=0$ transfer matrix can be found as follows.
Suppose that we already know the reflection coefficient of $L-1$ slices and use multiple scattering theory to add another slice,

$$
R_{L}^{-+}=r^{-+}+t^{--}\left[R_{L-1}^{-+}+R_{L-1}^{-+} r^{+-} R_{L-1}^{-+}+\left(R_{L-1}^{-+} r^{+-}\right)^{2} R_{L-1}^{-+} \cdots\right] t^{++}
$$

Imperial College

taking direct products with itself,

$$
\left[\begin{array}{c}
1 \\
R_{L}^{-+} \\
R_{L}^{+2} \\
R_{L}^{-+3} \\
\vdots
\end{array}\right]=\left[\begin{array}{ccccc}
1, & 0, & 0, & 0, \cdots \\
r^{-+}, & t^{--} t^{++}, & t^{---} r^{+-} t^{++}, & t^{--} r^{+-2} t^{++}, \ldots \\
r^{-+} r^{-+}, & r^{-+} t^{--} t^{++}, & r^{-+} t t^{--} r^{+-} t^{++}+\left(t^{--} t^{++}\right)^{2}, & \cdots \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right]\left[\begin{array}{c}
1 \\
R_{L-1}^{++} \\
R_{L-1}^{-+2} \\
R_{L-1}^{+3} \\
\vdots
\end{array}\right]
$$

taking direct products with itself,

$$
\left[\begin{array}{c}
1 \\
R_{L}^{-+} \\
R_{L}^{-+2} \\
R_{L}^{-+3} \\
\vdots
\end{array}\right]=\left[\begin{array}{ccccc}
1, & 0, & 0, & 0, \cdots \\
r^{-+}, & t^{--} t^{++}, & t^{--} r^{+-} t^{++}, & t^{--} r^{+-2} t^{++}, \cdots \\
r^{-+} r^{-+}, & r^{-+} t^{--} t^{++}, & r^{-+} t^{--} r^{+-} t^{++}+\left(t^{--} t^{++}\right)^{2}, & \cdots \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right]\left[\begin{array}{c}
1 \\
R_{L-1}^{-+} \\
R_{L-1}^{-+2} \\
R_{L-1}^{+3} \\
\vdots
\end{array}\right]
$$

It follows that

$$
\mathbf{Z}_{L}^{\otimes N=0}=
$$

$\left[\begin{array}{cccc}1, & 0, & 0, & 0, \cdots \\ R_{L}^{-+}, & T_{L}^{--} T_{L}^{++}, & R_{L}^{+-} T_{L}^{--} T_{L}^{++}, & R_{L}^{+-2} T_{L}^{--} T_{L}^{++}, \\ R_{L}^{-+2}, & R_{L}^{-+} T_{L}^{--} T_{L}^{++}, & R_{L}^{-+} R_{L}^{+-} T_{L}^{--} T_{L}^{++}+T_{L}^{--2} T_{L}^{++2}, & \cdots \\ \vdots & \vdots & \vdots & \vdots\end{array}\right]$
taking direct products with itself,

$$
\left[\begin{array}{c}
1 \\
R_{L}^{-+} \\
R_{L}^{-+2} \\
R_{L}^{-+3} \\
\vdots
\end{array}\right]=\left[\begin{array}{ccccc}
1, & 0, & 0, & 0, \cdots \\
r^{-+}, & t^{--} t^{++}, & t^{--} r^{+-} t^{++}, & t^{--} r^{+-2} t^{++}, \cdots \\
r^{-+} r^{-+}, & r^{-+} t^{--} t^{++}, & r^{-+} t^{--} r^{+-} t^{++}+\left(t^{--} t^{++}\right)^{2}, & \cdots \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right]\left[\begin{array}{c}
1 \\
R_{L-1}^{-+} \\
R_{L-1}^{-+2} \\
R_{L-1}^{+3} \\
\vdots
\end{array}\right]
$$

It follows that

$$
\mathbf{Z}_{L}^{\otimes N=0}=
$$

$\left[\begin{array}{cccc}1, & 0, & 0, & 0, \cdots \\ R_{L}^{-+}, & T_{L}^{--} T_{L}^{++}, & R_{L}^{+-} T_{L}^{--} T_{L}^{++}, & R_{L}^{+-2} T_{L}^{--} T_{L}^{++}, \\ R_{L}^{-+2}, & R_{L}^{-+} T_{L}^{--} T_{L}^{++}, & R_{L}^{-+} R_{L}^{+-} T_{L}^{--} T_{L}^{++}+T_{L}^{--2} T_{L}^{++2}, & \cdots \\ \vdots & \vdots & \vdots & \vdots\end{array}\right]$

Fractional and negative order transfer matrices are infinite.

Maximal fluctuations

$$
\overline{\mathbf{Z}_{L}^{\otimes N=0}}=\prod_{n=1}^{L} \overline{\mathbf{X}_{n}^{\otimes N=0}}=\left[\overline{\mathbf{X}_{n}^{\otimes N=0}}\right]^{L}
$$

is an infinite matrix and contains all possible products of $T_{L} T_{L}^{*}$.

Maximal fluctuations

$$
\overline{\mathbf{Z}_{L}^{\otimes N=0}}=\prod_{n=1}^{L} \overline{\mathbf{X}_{n}^{\otimes N=0}}=\left[\overline{\mathbf{X}_{n}^{\otimes N=0}}\right]^{L}
$$

is an infinite matrix and contains all possible products of $T_{L} T_{L}^{*}$.
In particular the averages of all powers of this quantity, $\overline{\left(T_{L} T_{L}^{*}\right)^{M}}$ can be found somewhere in the elements of $\overline{\mathbf{Z}_{L}^{\otimes N=0}}$.

$$
\overline{\left(T_{L} T_{L}^{*}\right)^{M}}=\left[\overline{\mathbf{Z}_{L}^{\otimes N=0}}\right]_{i_{M}, j_{M}}
$$

Maximal fluctuations

$$
\overline{\mathbf{Z}_{L}^{\otimes N=0}}=\prod_{n=1}^{L} \overline{\mathbf{X}_{n}^{\otimes N=0}}=\left[\overline{\mathbf{X}_{n}^{\otimes N=0}}\right]^{L}
$$

is an infinite matrix and contains all possible products of $\overline{T_{L} T_{L}^{*}}$.
In particular the averages of all powers of this quantity, $\overline{\left(T_{L} T_{L}^{*}\right)^{M}}$ can be found somewhere in the elements of $\overline{\mathbf{Z}_{L}^{\otimes N=0}}$.

$$
\overline{\left(T_{L} T_{L}^{*}\right)^{M}}=\left[\overline{\mathbf{Z}_{L}^{\otimes N=0}}\right]_{i_{M}, j_{M}}
$$

If the system is large, $L \gg 1$, then $\overline{\mathbf{Z}_{L}^{\otimes N=0}}$ is dominated by the largest eigenvalue of $\overline{\mathbf{X}_{n}^{\otimes N=0}}$,

$$
\overline{\left(T_{L} T_{L}^{*}\right)^{M}}=\left[\overline{\mathbf{Z}_{L}^{\otimes N=0}}\right]_{i_{M}, j_{M}}=\left[\left[\overline{\mathbf{X}_{n}^{\otimes N}}\right]^{L}\right]_{i_{M}, j_{M}} \approx\left\langle i_{M} \mid \lambda_{\max }\right\rangle\left\langle\lambda_{\max } \mid j_{M}\right\rangle \lambda_{\max }^{L}
$$

Maximal fluctuations

$$
\overline{\left(T_{L} T_{L}^{*}\right)^{M}}=\left[\overline{\mathbf{Z}_{L}^{\otimes N=0}}\right]_{i_{M}, j_{M}}=\left[\left[\overline{\mathbf{X}_{n}^{\otimes N=0}}\right]^{L}\right]_{i_{M}, j_{M}} \approx\left\langle i_{M} \mid \lambda_{\max }\right\rangle\left\langle\lambda_{\max } \mid j_{M}\right\rangle \lambda_{\max }^{L}
$$

Since the only dependence on L is through the last factor,

Maximal fluctuations

$$
\overline{\left(T_{L} T_{L}^{*}\right)^{M}}=\left[\overline{\mathbf{Z}_{L}^{\otimes N=0}}\right]_{i_{M}, j_{M}}=\left[\left[\overline{\mathbf{X}_{n}^{\otimes N=0}}\right]^{L}\right]_{i_{M}, j_{M}} \approx\left\langle i_{M} \mid \lambda_{\max }\right\rangle\left\langle\lambda_{\max } \mid j_{M}\right\rangle \lambda_{\max }^{L}
$$

Since the only dependence on L is through the last factor,

$$
\frac{\overline{\left(T_{L} T_{L}^{*}\right)^{M}}}{\overline{T_{L} T_{L}^{*}}} \approx \frac{\left\langle i_{M} \mid \lambda_{\max }\right\rangle\left\langle\lambda_{\max } \mid j_{M}\right\rangle \lambda_{\max }^{L}}{\left\langle i_{M=1} \mid \lambda_{\max }\right\rangle\left\langle\lambda_{\max } \mid j_{M=1}\right\rangle \lambda_{\max }^{L}}=\frac{\left\langle i_{M} \mid \lambda_{\max }\right\rangle\left\langle\lambda_{\max } \mid j_{M}\right\rangle}{\left\langle i_{M=1} \mid \lambda_{\max }\right\rangle\left\langle\lambda_{\max } \mid j_{M=1}\right\rangle}
$$

Maximal fluctuations

$$
\overline{\left(T_{L} T_{L}^{*}\right)^{M}}=\left[\overline{\mathbf{Z}_{L}^{\otimes N=0}}\right]_{i_{M}, j_{M}}=\left[\left[\overline{\mathbf{X}_{n}^{\otimes N=0}}\right]^{L}\right]_{i_{M}, j_{M}} \approx\left\langle i_{M} \mid \lambda_{\max }\right\rangle\left\langle\lambda_{\max } \mid j_{M}\right\rangle \lambda_{\max }^{L}
$$

Since the only dependence on L is through the last factor,

$$
\frac{\overline{\left(T_{L} T_{L}^{*}\right)^{M}}}{\overline{T_{L} T_{L}^{*}}} \approx \frac{\left\langle i_{M} \mid \lambda_{\max }\right\rangle\left\langle\lambda_{\max } \mid j_{M}\right\rangle \lambda_{\max }^{L}}{\left\langle i_{M=1} \mid \lambda_{\max }\right\rangle\left\langle\lambda_{\max } \mid j_{M=1}\right\rangle \lambda_{\max }^{L}}=\frac{\left\langle i_{M} \mid \lambda_{\max }\right\rangle\left\langle\lambda_{\max } \mid j_{M}\right\rangle}{\left\langle i_{M=1} \mid \lambda_{\max }\right\rangle\left\langle\lambda_{\max } \mid j_{M=1}\right\rangle}
$$

Hence the ratio of the moments in the limit $L \rightarrow \infty$ is independent of L. This has implications for the probability distribution of $T_{L} T_{L}^{*}$.

$$
\frac{\overline{\left(T_{L} T_{L}^{*}\right)^{M}}}{\overline{T_{L} T_{L}^{*}}} \approx C_{M}
$$

Maximal fluctuations

$$
\overline{\left(T_{L} T_{L}^{*}\right)^{M}}=\left[\overline{\mathbf{Z}_{L}^{\otimes N=0}}\right]_{i_{M}, j_{M}}=\left[\left[\overline{\mathbf{X}_{n}^{\otimes N=0}}\right]^{L}\right]_{i_{M}, j_{M}} \approx\left\langle i_{M} \mid \lambda_{\max }\right\rangle\left\langle\lambda_{\max } \mid j_{M}\right\rangle \lambda_{\max }^{L}
$$

Since the only dependence on L is through the last factor,

$$
\frac{\overline{\left(T_{L} T_{L}^{*}\right)^{M}}}{\overline{T_{L} T_{L}^{*}}} \approx \frac{\left\langle i_{M} \mid \lambda_{\max }\right\rangle\left\langle\lambda_{\max } \mid j_{M}\right\rangle \lambda_{\max }^{L}}{\left\langle i_{M=1} \mid \lambda_{\max }\right\rangle\left\langle\lambda_{\max } \mid j_{M=1}\right\rangle \lambda_{\max }^{L}}=\frac{\left\langle i_{M} \mid \lambda_{\max }\right\rangle\left\langle\lambda_{\max } \mid j_{M}\right\rangle}{\left\langle i_{M=1} \mid \lambda_{\max }\right\rangle\left\langle\lambda_{\max } \mid j_{M=1}\right\rangle}
$$

Hence the ratio of the moments in the limit $L \rightarrow \infty$ is independent of L. This has implications for the probability distribution of $T_{L} T_{L}^{*}$.

$$
\frac{\overline{\left(T_{L} T_{L}^{*}\right)^{M}}}{\overline{T_{L} T_{L}^{*}}} \approx C_{M}
$$

The same result also applies in higher dimensions, whether or not the system is localised.

Maximal fluctuations

$$
P\left(T_{L} T_{L}^{*}\right)
$$ 'bimodal' so that if you happen to catch the right frequency, the system can be almost perfectly transparent, but mostly it rejects the incident wave.

$T_{L} T_{L}^{*}=0$
$T_{L} T_{L}^{*}=1$

Physica A168 400 (1990), J.B. Pendry, A. Mackinnon \& A.B. Prêtre.

Maximal fluctuations - 1D

In 1 D we can obtain an analytic expression for the moments,

$$
\frac{\overline{\left(T_{L} T_{L}^{*}\right)^{M}}}{\overline{T_{L} T_{L}^{*}}} \approx C_{M}=\frac{\Gamma^{2}\left(N-\frac{1}{2}\right) \Gamma^{2}(1)}{\Gamma^{2}\left(\frac{1}{2}\right) \Gamma^{2}(N)}
$$

M	C_{M} (theory)	C_{M} (computed)
1	1.0	1.0
2	0.250	0.269
3	0.141	0.146
4	0.098	0.101
5	0.075	0.083
6	0.061	0.065

Comparison of values of C_{M}, as predicted by the theory of necklace states, and as calculated in simulation.

Maximal fluctuations - 1D computations

(a)

(b)

Moments of $G_{L}=T_{L} T_{L}^{*}$ computed by averaging over $9 \times 10^{6} 1 \mathrm{D}$ samples of various lengths.

Maximal fluctuations - 2D computations

$\overline{\operatorname{trace}\left(T_{L} T_{L}^{*}\right)^{M}} / \overline{\operatorname{trace} T_{L} T_{L}^{*}}$ plotted against L^{-1} for squares of size $4<L<256$ averaged over 128 samples. As in 1D, the ratios tend to a limit independent of L.

Imperial College

Maximal fluctuations - 3D computations

$\overline{\operatorname{trace}\left(T_{L} T_{L}^{*}\right)^{M}} / \overline{\operatorname{trace} T_{L} T_{L}^{*}}$ plotted against L^{-1} for cubes of size $4<L<20$ averaged over 128 samples. Left: disorder less than critical (diffusion); right: disorder greater than critical (localisation). As in 1D and 2D the ratios tend to a limit independent of L.

Imperial College

Left: conductance of a silicon metal oxide field effect transistor measured at 50 mK . Right: spectral intensity fluctuations for microwaves passing through a 140 cm length of tube filled with half-inch diameter polystyrene balls.

Imperial College

Maximal fluctuations

Our theorem predicts that, however small the average transmission, the average is dominated by a few highly transmitting eigenvalues of the transfer matrix.
If the incident waves had exactly the right form to select this dominant eigenvalue, then even a strongly disordered specimen would transmit most of the incident waves.

Maximal fluctuations

Our theorem predicts that, however small the average transmission, the average is dominated by a few highly transmitting eigenvalues of the transfer matrix.
If the incident waves had exactly the right form to select this dominant eigenvalue, then even a strongly disordered specimen would transmit most of the incident waves.

August 15, 2007 / Vol. 32, No. 16 / OPTICS LETTERS 2309

Focusing coherent light through opaque strongly scattering media

I. M. Vellekoop* and A. P. Mosk
Complex Photonic Systems, Faculty of Science and Technology and MESA + Research Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
*Corresponding author: i.m.vellekoop@utwente.nl

Received March 6, 2007; revised June 14, 2007; accepted June 21, 2007; posted June 28, 2007 (Doc. ID 80762); published August 2, 2007
We report focusing of coherent light through opaque scattering materials by control of the incident wavefront. The multiply scattered light forms a focus with a brightness that is up to a factor of 1000 higher than the brightness of the normal diffuse transmission. © 2007 Optical Society of America

OCIS codes: 290.1990, 290.4210, 030.6600.

Imperial College

xar

Vellekoop and Mosk

Optics Letters, 32, 2309 (2007)

Imperial College

Vellekoop and Mosk

 Optics Letters, 32, 2309 (2007)

Imperial College
EEbLE London

Vellekoop and Mosk Optics Letters, 32, 2309 (2007)

Transmission through a strongly scattering sample consisting of TiO_{2} pigment (white paint).
(a) Transmission with an unshaped incident beam.
(b) Transmission after optimization

The scattered light is focused to a spot that is $\mathbf{1 0 0 0}$ times brighter than the original speckle pattern.

Imperial College
 \pm London

Vellekoop and Mosk Optics Letters，32， 2309 （2007）

Phase of the optimized incident wavefront

Transfer Matrices - the model

The Anderson Model of disorder for electrons - 1D version

Consider a chain of atoms:
 coupled together by 'hopping integrals', V, but with disordered energies,

$$
E_{n} \psi_{n}+V\left(\psi_{n-1}+\psi_{n+1}\right)=E \psi_{n}
$$

We can rearrange the Schrödinger equation to give,

$$
\left[\begin{array}{c}
\psi_{n+1} \\
\psi_{n}
\end{array}\right]=\tilde{\mathbf{X}}_{n}\left[\begin{array}{c}
\psi_{n} \\
\psi_{n-1}
\end{array}\right], \quad \tilde{\mathbf{X}}_{n}=\left[\begin{array}{cc}
\left(E-E_{n}\right) / V & -1 \\
+1 & 0
\end{array}\right]
$$

$\tilde{\mathbf{X}}_{n}$ is referred to as a transfer matrix: it transfers the wavefield down the chain of atoms and enables us to write,

$$
\left[\begin{array}{c}
\psi_{L+1} \\
\psi_{L}
\end{array}\right]=\prod_{n=1}^{L} \tilde{\mathbf{X}}_{n}\left[\begin{array}{l}
\psi_{1} \\
\psi_{0}
\end{array}\right]
$$

Transfer Matrices - continued

If there were no disorder in the system, the eigenstates would be Bloch waves,

$$
\left[\begin{array}{cc}
\left(E-\overline{E_{n}}\right) / V & -1 \\
+1 & 0
\end{array}\right]\left[\begin{array}{c}
e^{ \pm i K c} \\
1
\end{array}\right]=e^{ \pm i K c}\left[\begin{array}{c}
e^{ \pm i K c} \\
1
\end{array}\right]
$$

which we can use as a basis for $\tilde{\mathbf{X}}_{n}$,

$$
\mathbf{X}_{n}=\left[\begin{array}{cc}
e^{+i K c} & 0 \\
0 & e^{-i K c}
\end{array}\right]-i \delta_{n}^{\prime}\left[\begin{array}{cc}
+e^{+i K c} & +e^{-i K c} \\
-e^{+i K c} & -e^{-i K c}
\end{array}\right], \quad \delta_{n}^{\prime}=\frac{\overline{E_{n}}-E}{2 V \sin (K c)}
$$

where,

$$
\delta_{n}^{\prime}=\frac{\overline{E_{n}}-E}{2 V \sin (K c)}
$$

Computations using transfer matrices

Transmission coefficient of a disordered 1D Anderson model ($L=1000$) calculated using transfer matrices.

Necklace States

How does the wave pass through a disordered system?

or,

Necklace States

Argument for tunnelling via a resonance:
Rate at which waves tunnel directly given by the decay rate,

$$
\tau_{0}^{-1} \propto \exp \left(-L / \ell_{0}\right)
$$

For efficient tunnelling via a resonance, the resonance should lie half way across the specimen: it nearer to the entrance side the wave I deposit back where it came from, too far to the other side and the wave never reaches the resonance. The tunnelling rate for a resonance in the centre is,

$$
\tau_{1}^{-1} \propto \exp \left(-L / 2 \ell_{0}\right)
$$

Thus tunnelling via a resonance beats direct tunnelling hands down. why stop at one?

Imperial College

Necklace States

What is the optimum number of resonances in a necklace?
Exact theory for the 1D case can calculate the bandwidth of conducting channels and shows that,

$$
\delta \omega \approx \exp \left(-\frac{\pi}{1.816}\left(\overline{\delta_{n}^{\prime 2}} L\right)^{\frac{1}{2}}\right)
$$

which means that a typical hopping distance is $\approx \sqrt{L}$. As the sample gets longer there are more resonances in the necklace, but the are spaced further apart:
the necklaces have fractal dimension of $1 / 2$.

Necklace States in 3D

Necklaces are important in 3D localised systems. Waves cross the sample through a series of hops. To maximise the overlap with the incident frequency, hops must be as short as possible. As in 1D this requires that they be of approximately equal length, but in addition the path across the sample must be as short as possible and therefore as straight as possible.

In 3D localised systems conduction is through a few 'holes' in the sample that occur exponentially rarely across the surface.

Imperial College

Conclusions

同署 Imperial College
(\sin)

Conclusions

Transfer matrices have shown great mathematical power in solving difficult problems in 1D systems. They have given results which other methods have only hinted at or not revealed at all and often given them in very general terms.

Conclusions

Transfer matrices have shown great mathematical power in solving difficult problems in 1D systems. They have given results which other methods have only hinted at or not revealed at all and often given them in very general terms.
Before us stands the challenge of disordered 3D systems, all the greater because of the richness of experimental results now available in the new optical experiments.

Conclusions

Transfer matrices have shown great mathematical power in solving difficult problems in 1D systems. They have given results which other methods have only hinted at or not revealed at all and often given them in very general terms.
Before us stands the challenge of disordered 3D systems, all the greater because of the richness of experimental results now available in the new optical experiments.
More than half of a century's work on the transition between localised and delocalised behaviour has not solved the problem, despite great ingenuity and application of the most powerful mathematical techniques available to us; we do not understand this transition in any real sense of the word.

Conclusions

Transfer matrices have shown great mathematical power in solving difficult problems in 1D systems. They have given results which other methods have only hinted at or not revealed at all and often given them in very general terms.
Before us stands the challenge of disordered 3D systems, all the greater because of the richness of experimental results now available in the new optical experiments.

More than half of a century's work on the transition between localised and delocalised behaviour has not solved the problem, despite great ingenuity and application of the most powerful mathematical techniques available to us; we do not understand this transition in any real sense of the word.

Perhaps transfer matrices can make an impact. Their mathematical structure is alien to that which has been tried before; they have a record of success in one dimension; and they can already reproduce the major known results in three dimensions.

Imperial College

Thank you for inviting me!

