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Waves in disordered systems – the classical picture 
Conventionally waves are treated like particles randomly diffusing through a 
medium – their phase does not matter much.  

Most incident waves are reflected, but a few get through the maze:  

transmission ∝ L−1 

 

 

This law holds if the disorder is weak: 
e.g. in a metal the resistance is ∝ L . 

However in the presence of strong 
disorder this is no longer true … 
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Anderson localisation 

 
Long ago in 1958 PW Anderson pointed out that in the presence of strong 
disorder diffusion is completely eliminated, electrons are localised on specific 
sites, and transmission drops dramatically, only happening when the frequency 
of the wave coincides with that of a localised state. 



 

Anderson localisation 
Strong disorder ‘localises’ the states of the system and transport is by 
tunnelling through these states which act as stepping stones. The tunnelling 
events are rare and transmission drops dramatically with sample thickness: 

transmission  ∝ exp − L ℓ0( ) 

where  ℓ0 is the localisation length. 

Despite intense theoretical activity, the 
nature of the transition from diffusion to 
localisation is not understood. 

However recent advances enable the 
transition to be studied using optical 
experiments and this has brought new 
urgency to unravelling the mystery. 
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ℓ0 ≈ δ 2 −δc

'2( )−ν  

• ν  is known as the ‘critical exponent’ and computer simulations give 
ν = 1.571. This quantity is regarded a the critical test of any theory of 
localisation. 

What is not known: 

• no theory has correctly predicted the critical exponent 

• still less, no theory has correctly predicted the critical disorder, δc
'2  



 

Disorder in 1D systems 
 

 

Although 3D systems and their transition for diffusion to localisation are still a 
mystery, 1D systems which are always localised are well understood. 

 

We can make a good start on understanding localisation by studying the 1D 
case.
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Transmission of waves through disordered systems 
Strongly disordered systems, and all 1D disordered systems, trap electrons on 
localised sites.  

When the energy of an electron hits one of these resonances we see 
transmission. The intensity of the transmission depends on how far the 
resonance is from the ends – in the middle works best. 

 

How do we study the wild statistics of transmission through 
disordered systems? 



 

The problem 

We wish to calculate TL
++ ,TL

−− , RL
+− , RL

−+ defined by, 

 

 



 

Transfer Matrices 
We divide the system into statistically independent slices, 
 

 
 
whose properties can easily be calculated. For example each slice might 
contain a single scattering centre. 
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where Xn  is the transfer matrix, 
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ZL  has the same functional form as Xn  providing a means of calculating 
transmission and reflection coefficients for a slab from the easy-to-obtain 
transmission and reflection coefficients for a thin slice. 
Also since the slices are independent we can easily average ZL : 
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L
∏  



 

More transfer matrices 
We know how to average ZL , but this average is of little interest as TL

−−( )−1  

tells is nothing about TL
−− 2 , the quantity we really want to know.  



 

More transfer matrices 
We know how to average ZL , but this average is of little interest as TL

−−( )−1  

tells is nothing about TL
−− 2 , the quantity we really want to know.  

However there are other transfer matrices obtained by taking direct products, 

ZL
⊗
ZL

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

Xn
⊗
Xn

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥n=1

L
∏  



 

More transfer matrices 
We know how to average ZL , but this average is of little interest as TL

−−( )−1  

tells is nothing about TL
−− 2 , the quantity we really want to know. However 

there are other transfer matrices obtained by taking direct products, 

ZL
⊗
ZL

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

Xn
⊗
Xn

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥n=1

L
∏  

and more of the same,   ZL
⊗N = Xn

⊗N

n=1

L
∏  



 

More transfer matrices 
We know how to average ZL , but this average is of little interest as TL

−−( )−1  

tells is nothing about TL
−− 2 , the quantity we really want to know. However 

there are other transfer matrices obtained by taking direct products, 

ZL
⊗
ZL

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

Xn
⊗
Xn

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥n=1

L
∏  

and more of the same,   ZL
⊗N = Xn

⊗N

n=1

L
∏  

We can think of each component matrix of the direct product as a particle 
evolving as the length of the system increases, much as real particles evolve in 
time. Since each of the N  components of Xn

⊗N  is identical we can ask what is 
the symmetry of these particles? It turns out that they are Bosons. 



 

Even more transfer matrices 
By various mathematical tricks we can extend the family of transfer matrices 
to negative and to fractional values of N . For example the N = 0  transfer 
matrix can be found as follows.  
Suppose that we already know the reflection coefficient of L −1 slices and use 
multiple scattering theory to add another slice,  

 

RL
−+ = r−+ + t−− RL−1

−+ + RL−1
−+ r+−RL−1

−+ + RL−1
−+ r+−( )2 RL−1−+ !⎡

⎣⎢
⎤
⎦⎥
t++

= r−+ , t−− t++ , t −−r+− t++ , t−− r+−2 t++ ,!⎡
⎣⎢

⎤
⎦⎥

1
RL−1
−+

RL−1
−+2

RL−1
−+3

"

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 



 

taking direct products with itself, 

 

1
RL
−+

RL
−+2

RL
−+3

!

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

1, 0, 0, 0, "

r−+ , t−− t++ , t −−r+− t++ , t−− r+−2 t++ ,"

r−+r−+ , r−+t−− t++ , r−+t −−r+− t++ + t−− t++( )2 , "

! ! ! !

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

1
RL−1
−+

RL−1
−+2

RL−1
−+3

!

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 



 

taking direct products with itself, 

 

1
RL
−+

RL
−+2

RL
−+3

!

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

1, 0, 0, 0, "

r−+ , t−− t++ , t −−r+− t++ , t−− r+−2 t++ ,"

r−+r−+ , r−+t−− t++ , r−+t −−r+− t++ + t−− t++( )2 , "

! ! ! !

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

1
RL−1
−+

RL−1
−+2

RL−1
−+3

!

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

It follows that 

 

ZL
⊗N=0 =

1, 0, 0, 0,!

RL
−+ , TL

−−TL
++ , RL

+−TL
−−TL

++ , RL
+−2TL

−−TL
++ ,

RL
−+2, RL

−+TL
−−TL

++ , RL
−+RL

+−TL
−−TL

++ +TL
−−2TL

++2, !

" " " "

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 

 



 

taking direct products with itself, 

 

1
RL
−+

RL
−+2

RL
−+3

!

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

1, 0, 0, 0, "

r−+ , t−− t++ , t −−r+− t++ , t−− r+−2 t++ ,"

r−+r−+ , r−+t−− t++ , r−+t −−r+− t++ + t−− t++( )2 , "

! ! ! !

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

1
RL−1
−+

RL−1
−+2

RL−1
−+3

!

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

It follows that 

 

ZL
⊗N=0 =

1, 0, 0, 0,!

RL
−+ , TL

−−TL
++ , RL

+−TL
−−TL

++ , RL
+−2TL

−−TL
++ ,

RL
−+2, RL

−+TL
−−TL

++ , RL
−+RL

+−TL
−−TL

++ +TL
−−2TL

++2, !

" " " "

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 

Fractional and negative order transfer matrices are infinite. 
  



 

Maximal fluctuations 
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If the system is large, L >>1, then ZL
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Hence the ratio of the moments in the limit L→∞ is independent of L . This 
has implications for the probability distribution of TLTL

*. 
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The same result also applies in higher dimensions, whether or not the 
system is localised. 



 

Maximal fluctuations 
The distribution is 
‘bimodal’ so that if you 
happen to catch the right 
frequency, the system can 
be almost perfectly 
transparent, but mostly it 
rejects the incident wave. 
 
 
 
 
 
 
 

Physica A168 400 (1990), J.B. Pendry, A. Mackinnon & A.B. Prêtre. 

P TLTL
*

most samples transmit almost nothing

a very few samples transmit 
almost perfectly

TLTL
* 1TLTL

* 0



 

Maximal fluctuations – 1D 
In 1D we can obtain an analytic expression for the moments, 

TLTL
*( )M

TLTL
*

≈CM =
Γ2 N − 12( )Γ2 1( )
Γ2 1

2( )Γ2 N( )
 

 
M CM (theory) CM (computed) 
1 1.0 1.0 
2 0.250 0.269 
3 0.141 0.146 
4 0.098 0.101 
5 0.075 0.083 
6 0.061 0.065 

Comparison of values of CM , as predicted by the theory of necklace states, and 
as calculated in simulation. 
 



 

Maximal fluctuations – 1D computations 

 

Moments of GL = TLTL
* computed by averaging over 9 ×106  1D samples of 

various lengths.  



 

Maximal fluctuations – 2D computations 
 

trace TLTL
*( )M trace TLTL

*  

plotted  against L−1 for 
squares of size 4 < L < 256 
averaged over 128 samples. 

As in 1D, the ratios tend to 
a limit independent of L . 

 



 

Maximal fluctuations – 3D computations 

 

trace TLTL
*( )M trace TLTL

*  plotted  against L−1 for cubes of size 4 < L < 20 
averaged over 128 samples. Left: disorder less than critical (diffusion); right: 
disorder greater than critical (localisation). As in 1D and 2D the ratios tend to a 
limit independent of L . 



 

Maximal fluctuations – 3D experiment 

 
Left: conductance of a silicon metal oxide field effect transistor measured at 
50mK. Right: spectral intensity fluctuations for microwaves passing through a 
140 cm length of tube filled with half-inch diameter polystyrene balls. 



 

Maximal fluctuations  
Our theorem predicts that, however small the average transmission, the 
average is dominated by a few highly transmitting eigenvalues of the transfer 
matrix. 
If the incident waves had exactly the right form to select this dominant 
eigenvalue, then even a strongly disordered specimen would transmit most of 
the incident waves. 
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Vellekoop and Mosk 
Optics Letters, 32, 2309 (2007) 

 

  



 

Vellekoop and Mosk 
Optics Letters, 32, 2309 (2007) 

 

  



 

Vellekoop and Mosk Optics Letters, 32, 2309 (2007) 

 
Transmission through a strongly scattering sample consisting of  
TiO2  pigment (white paint).  

(a) Transmission with an unshaped incident beam.  

(b) Transmission after optimization  
The scattered light is focused to a spot that is 1000 times brighter than the 
original speckle pattern. 



 

Vellekoop and Mosk Optics Letters, 32, 2309 (2007) 
 

 
Phase of the optimized incident wavefront  



 

Transfer Matrices – the model 
The Anderson Model of disorder for electrons – 1D version 

Consider a chain of atoms:  
V En

V En 1
n 1

En 1
n 1n

 
coupled together by ‘hopping integrals’, V , but with disordered energies, 

Enψ n +V ψ n−1 +ψ n+1( ) = Eψ n 
We can rearrange the Schrödinger equation to give, 

 

ψ n+1
ψ n

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= !Xn

ψ n
ψ n−1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, !Xn =

E − En( ) V −1
+1 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 

 !Xn  is referred to as a transfer matrix: it transfers the wavefield down the chain 
of atoms and enables us to write, 

 

ψ L+1
ψ L

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= !Xn
n=1

L
∏

ψ1
ψ 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 



 

Transfer Matrices - continued 
If there were no disorder in the system, the eigenstates would be Bloch waves, 

E − En( ) V −1

+1 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

e±iKc

1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= e±iKc e±iKc

1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 

which we can use as a basis for  !Xn , 

Xn =
e+iKc 0
0 e−iKc

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− iδ 'n

+e+iKc +e−iKc

−e+iKc −e−iKc
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, δ 'n =

En − E
2V sin Kc( )  

where,   δ 'n =
En − E

2V sin Kc( )  

 



 

Computations using transfer matrices 

 
Transmission coefficient of a disordered 1D Anderson model L = 1000( ) 
calculated using transfer matrices. 



 

Necklace States 
How does the wave pass through a disordered system? 

 
or, 

 



 

Necklace States 
Argument for tunnelling via a resonance: 
Rate at which waves tunnel directly given by the decay rate, 

 τ0
−1 ∝ exp − L ℓ0( ) 

For efficient tunnelling via a resonance, the resonance should lie half way 
across the specimen: it nearer to the entrance side the wave I deposit back 
where it came from, too far to the other side and the wave never reaches the 
resonance. The tunnelling rate for a resonance in the centre is, 

 τ1
−1 ∝ exp − L 2ℓ0( ) 

Thus tunnelling via a resonance beats direct tunnelling hands down. 

why stop at one? 



 

 



 

 



 

Necklace States 
What is the optimum number of resonances in a necklace? 
Exact theory for the 1D case can calculate the bandwidth of conducting 
channels and shows that, 

δω ≈ exp − π
1.816

δn
'2L( )

1
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

which means that a typical hopping distance is ≈ L . As the sample gets 
longer there are more resonances in the necklace, but the are spaced further 
apart:  

the necklaces have fractal dimension of 1 2. 
 



 

Necklace States in 3D 
Necklaces are important in 3D localised systems. Waves cross the sample 
through a series of hops. To maximise the overlap with the incident frequency, 
hops must be as short as possible. As in 1D this requires that they be of 
approximately equal length, but in addition the path across the sample must be 
as short as possible and therefore as straight as possible. 

 

  

 

In 3D localised systems conduction is 
through a few ‘holes’ in the sample 
that occur exponentially rarely across 
the surface. 

L



 

Conclusions 
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Conclusions 
Transfer matrices have shown great mathematical power in solving difficult 
problems in 1D systems. They have given results which other methods have 
only hinted at or not revealed at all and often given them in very general terms.  

Before us stands the challenge of disordered 3D systems, all the greater 
because of the richness of experimental results now available in the new 
optical experiments.  

More than half of a century's work on the transition between localised and 
delocalised behaviour has not solved the problem, despite great ingenuity and 
application of the most powerful mathematical techniques available to us; we 
do not understand this transition in any real sense of the word.  

Perhaps transfer matrices can make an impact. Their mathematical structure is 
alien to that which has been tried before; they have a record of success in one 
dimension; and they can already reproduce the major known results in three 
dimensions. 



Thank you for inviting me! 
 




