
Topological Mechanics

I. Topology and the Wave Equation

II. Topological Phonons and Photons:

- Topological band gaps at finite frequency

III.        Classical Mechanical Modes in Isostatic Lattices

- Floppy modes and Maxwell’s counting rule

- Twisted Kagome lattice Model

- Topological boundary modes.

- Index theorem

- Analog SSH model



Topological Electronic Phases

2D  Integer quantum Hall effect
no symmetry

Bulk:           Integer Chern invariant   

Boundary:   Chiral edge states

2D  topological insulator
time reversal symmetry

Bulk:           Z2 invariant

Boundary:   Helical edge states

3D  topological insulator
time reversal symmetry

Bulk:          Z2 invariant

Boundary:  Helical surface state

1D Topological Superconductor
particle-hole symmetry

Bulk:          Z2 invariant

Boundary:  Majorana zero mode

Quantum Hall state 

n=1

Quantum spin Hall

insulator
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Bulk Topological Invariant             Boundary Topological Modes



Wave Equations

i ij ji H 

i ij jmu D u 

e.g. Schrodinger Equation

e.g. Newton’s Laws

Quantum: 

Classical: 

Common features:

Normal modes define an eigenvalue problem.

Role of symmetry and topology for bulk and boundary modes

Search for periodic “metamaterials” with topological band structures    



Periodic Table of Topological Insulators and Superconductors

- Time Reversal :   

- Particle - Hole  :

Unitary (chiral) symmetry :  

1( ) ( ) 12 ;    H H       k k

1( ) ( ) 12 ;   H H       k k

1( ) ( )H H      k k  ;   

Kitaev, 2008

Schnyder, Ryu, Furusaki, Ludwig 2008

Even richer topological classes when accounting for crystalline space group symmetries :

“weak topological insulators”,   “topological crystalline insulators”, ……

Insulator: no symmetry

BdG superconductor

T invariant BdG superconductor

T invariant insulator



Periodic Table of Topological Insulators and Superconductors

- Time Reversal :   

- Particle - Hole  :

Unitary (chiral) symmetry :  

1( ) ( ) 12 ;    H H       k k

1( ) ( ) 12 ;   H H       k k

1( ) ( )H H      k k  ;   

Kitaev, 2008

Schnyder, Ryu, Furusaki, Ludwig 2008

Even richer topological classes when accounting for crystalline space group symmetries :

“weak topological insulators”,   “topological crystalline insulators”, ……

no symmetry

T - invariant



Classical Topological Band Phenomena

Topological bandgaps and chiral edge modes at finite frequency in classical systems

In two dimensions with broken time reversal symmetry.

Photonic

Phononic

Gyroscopic Metamaterial

Haldane, Raghu PRL 2008

Wang,  Chong, Joannopoulos, 

Soljacic, PRL 2008

…..
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wavevector (2p/a)

Prodhan, Prodhan, PRL 2009

Nash, Kleckner, Read, Vitelli, 

Turner, Irvine, PNAS 2015

……..

Microwave Waveguide



Nfm ≥   d ns - nb
Nfm – Nss = d ns - nb

Maxwell Problem

Is a “frame” or configuration of masses 

and springs mechanically stable ?

ns = # sites

nb = # bonds,     d = dimension

Nfm = # zero frequency  “floppy modes”

Maxwell Counting Rule:  

JC Maxwell 1865

* (Calladine ’78)

Nss = # states of self-stress

State of self-stress



Proof of Maxwell-Calladine Counting Rule:
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elastic energy :

bond extension xm: site displacement ui

1

bn

i im m

mi

U
f Q t

u 


   


site force fi: bond tension tm=kxm

dns x nb “Equilibrium Matrix” Qim

floppy mode : 0TQ u  Nfm = # zero eigenvectors of QT

self-stress state: 0Q t  Nss = # zero eigenvectors of Q

Rank Nullity Theorem of Linear Algebra :

n = Nfm - Nss =    #rows  - #columns of Qim =   dns - nb

n = “index” of Q :   simplest version of an index theorem.



Periodic Isostatic Lattice

A periodic structure with  dns – nb = 0

Coordination number (# neighbors):   z = 2d

d=2 square lattice (z=4) d=3 pyrochlore (z=6)

On the verge of 

mechanical instability

d=2 kagome lattice (z=4)

A model system for problems in soft matter and statistical physics

• Rigidity percolation

• Random closed packing, Jamming

• Network glasses

isostatic on

the average



Kagome Lattice Model Sun, Souslov, Mao and Lubensky 2012

floppy

mode (fm)

state of

self stress 

(ss)

Untwisted

Twisted

periodic boundary condition

Periodic b.c. :  2 nsite - nbond =  0

NFM = NSS ~  L/a

Periodic b.c. :  twisting eliminates

both  FM and SS

floppy modes

w(k) = 0

kx

ky

kx

ky

Open  b.c. :     2 nsite - nbond ~ L/a

NFM ~  L/a;  NSS = 0

Open  b.c. :     NFM ~  L/a;  NSS = 0

Localized on Boundary



Floppy Modes on a Free Boundary

For twisted Kagome, floppy modes required by Maxwell’s count are localized on boundary

Fixed Boundary

Free Boundary 0 p/ap/a
kx

wn

x

bulk acoustic 

modes

zero frequency mode 

localized at boundary

Normal Mode SpectrumStrip Geometry

0



Tom Lubensky

2012 Tom:   Are my boundary modes related 

to your boundary modes?

CLK:   I don’t think so

i ij jmu D u i ij ji H 

2013     Tom:   Are you sure ?

2nd order in time

Dynamical matrix D has only 

positive eigenvalues mw2

1st order in time

Hamiltonian H has positive

or negative eigenvalues E

Newton’s LawsSchrodinger Equation

w

k

E

k

No “valence band” Topologically classify valence band 



Dirac’s Problem :

Klein Gordon Equation

2 2 2 2( )t x yp p m    

Paul Dirac:  “I’m trying to take 

the square root of something”2 2 2( )x y x x y y zp p m I p p m      
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Dirac’s Square Root  predicted

the anti-electron  (= positron)
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“Supersymmetric partners”
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floppy mode

state of self stress
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Equivalent “Quantum Hamiltonian”
eigenvalues of H :

n nE w 

Symmetries

Time reversal ( H=H* )

Particle – Hole  (H tz = -tz H) Class “BDI”     (same as SSH model)

2
nD D w and  have same eigenvalues:   

2 2      ( ) ( )T T T T

n n n n n nQQ u u Q Q Q u Q uw w  

Except for zero modes

+ both kinds of

zero modes



no symmetry

T - invariant

( ) ( , )Q k GL n C

Integer Topological Invariant:  

0 det[ ]Q C 
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D=2:   “Weak Topological Invariants”

kx

ky

p/a
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Two independent (1D) winding numbers
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The two invariants define a lattice vector

1 1 2 2T n n R a a

where Cj is along reciprocal lattice generator bj with 2i j ijp a b

Twisted Kagome lattice model :  0T R



New Topological Phases and Domain Walls

Z x Z topological invariant:      RT = n1 a1 + n2 a2 (lattice vector)

“Deformed” Kagome lattice model can have :   RT ≠ 0

RT= 0

RT =

RT = 0

periodic boundary condition

floppy 

modes

self-

stress

0 p/ap/a
kx

Spectrum of ~H D

En

x



Two Kinds of Zero Modes?

1. Edge modes due to mismatch of # sites and # bonds

Global count of zero modes:

Maxwell/Calladine rule

Nfm – Nss = d ns - nb

2.  Topological boundary modes

No mismatch in sites

and bonds

Are they related?



Index Theorem

A “local” generalization of the Maxwell-Caladine counting rule

Variant of a famous theorem in mathematics

fm ss

S S S S

L TN N n n  

S S S

L s bdn nn  “Local count” of sites 

and bonds in S

1

ˆ
cell

d
S
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d S
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  R

# floppy modes and 

states of self stress

in region S

“Topological count” on

boundary of S

RT
1 RT

2

S1

S2

Depends on edge

termination

Depends on topological

class(es) of bulk

Attiyah and Singer ‘63

Callias, Bott and Seeley ‘78 



Sketch of proof of Index Theorem
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projection onto zero modes
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Since H is local, contribution comes only from boundary of S.  Further manipulation

relates the result to the topological polarization integrated around boundary.

 , 0zH t 



Boundary modes for different edge terminations



Recall the Su Schrieffer Heeger Model

“A phase” : u<0

“B phase” : u>0

Polyacetylene:  A 1D conducting polymer

u<0

u>0

≠ 0

B phase

≠0 

A phase

u0

=0:  Topological Quantum

Critical Point

Insulator

Gap   ~ |u| ≠ 0

• Dimerized : u = ± u0

• Undimerized : Conductor

Gap  =0
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A and B phases are topologically distinct

Bulk Boundary Correspondence : 

At the boundary between topologically distinct insulating phases, 

there exist topologically protected low energy states.

0





E=0
zero mode

conduction band

valence band

Jackiw and Rebbi 76, 

Su Schrieffer, Heeger 79

u(x)
0(x)

A B

Distinguished by integer* topological invariant

h(k) h(k)

hx

hy

hx

hy

Nw=0 Nw=1

Nw = winding number characterizing h(k) 

* Assuming ‘particle-hole’ symmetry
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spectrum symmetric 

under E → -E



Mechanical Analog of SSH Model

A B



A model of the model
B. Chen, N. Upadhyaya, V. Vitelli, PNAS 111, 13004 (2014).

Vincenzo Vitelli Bryan Chen

University of Leiden



Conclusion

Topological boundary modes are an elegant consequence of a 

mathematical structure that has applications in diverse areas

• Topological Electronic Phases

• Mechanical Modes of isostatic systems

Much more to do:

• New materials and experiments on electronic systems

• Experiments on metamaterials?

- mechanical systems

- optical, electronic, plasmonic systems?

• Role of interactions and nonlinearities


