Topological Mechanics

- I. Topology and the Wave Equation
- II. Topological Phonons and Photons:
 - Topological band gaps at finite frequency
- III. Classical Mechanical Modes in Isostatic Lattices
 - Floppy modes and Maxwell's counting rule
 - Twisted Kagome lattice Model
 - Topological boundary modes.
 - Index theorem
 - Analog SSH model

Topological Electronic Phases

Bulk Topological Invariant 🖚 Boundary Topological Modes

2D Integer quantum Hall effect no symmetry

Bulk:Integer Chern invariantBoundary:Chiral edge states

2D topological insulator time reversal symmetry

Bulk:Z2 invariantBoundary:Helical edge states

3D topological insulator time reversal symmetry

Bulk:Z2 invariantBoundary:Helical surface state

1D Topological Superconductor particle-hole symmetry

Bulk:Z2 invariantBoundary:Majorana zero mode

Wave Equations

Quantum:

e.g. Schrodinger Equation

$$i\hbar\dot{\psi}_i = H_{ij}\psi_j$$

Classical:

e.g. Newton's Laws

$$m\ddot{u}_i = -D_{ij}u_j$$

Common features:

Normal modes define an eigenvalue problem.

Role of symmetry and topology for bulk and boundary modes

Search for periodic "metamaterials" with topological band structures

Periodic Table of Topological Insulators and Superconductors

 $\Theta H(\mathbf{k})\Theta^{-1} = +H(-\mathbf{k}); \quad \Theta^2 = \pm 1$

Unitary (chiral) symmetry : $\Pi H(\mathbf{k})\Pi^{-1} = -H(\mathbf{k})$; $\Pi \propto \Theta \Xi$

- Particle - Hole :

- Time Reversal :

 $\Xi H(\mathbf{k})\Xi^{-1} = -H(-\mathbf{k}); \quad \Xi^2 = \pm 1$

Kitaev, 2008 Schnyder, Ryu, Furusaki, Ludwig 2008

		d										
	AZ	Θ	Ξ	П	1	2	3	4	5	6	$\overline{7}$	8
Insulator: no symmetry	Α	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
	AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
	AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
	BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
BdG superconductor	D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
T invariant BdG superconductor	DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0
T invariant insulator	AII	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}
	CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
	\mathbf{C}	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
	CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0

Even richer topological classes when accounting for crystalline space group symmetries : "weak topological insulators", "topological crystalline insulators",

Periodic Table of Topological Insulators and Superconductors

- Time Reversal :

 $\Theta H(\mathbf{k})\Theta^{-1} = +H(-\mathbf{k}); \quad \Theta^2 = \pm 1$

- Particle - Hole :

 $\Xi H(\mathbf{k})\Xi^{-1} = -H(-\mathbf{k}); \quad \Xi^2 = \pm 1$

Unitary (chiral) symmetry : $\Pi H(\mathbf{k})\Pi^{-1} = -H(\mathbf{k})$; $\Pi \propto \Theta \Xi$

Kitaev, 2008 Schnyder, Ryu, Furusaki, Ludwig 2008

	Symmetry				d								
	AZ	Θ	Ξ	Π	1	2	3	4	5	6	$\overline{7}$	8	
no symmetry	Α	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	
	AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	
T - invariant	AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
	BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	
	D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	
	DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	
	AII	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	
	CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
	\mathbf{C}	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
	CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	

Even richer topological classes when accounting for crystalline space group symmetries : "weak topological insulators", "topological crystalline insulators", ……

Classical Topological Band Phenomena

Topological bandgaps and chiral edge modes at finite frequency in classical systems In two dimensions with broken time reversal symmetry.

Photonic

Haldane, Raghu PRL 2008

Wang, Chong, Joannopoulos, Soljacic, PRL 2008

Phononic

.

.

Prodhan, Prodhan, PRL 2009

Nash, Kleckner, Read, Vitelli, Turner, Irvine, PNAS 2015

Gyroscopic Metamaterial

Maxwell Problem

JC Maxwell 1865

Is a "frame" or configuration of masses and springs mechanically stable ?

Maxwell * Counting Rule: (Calladine '78)

$$N_{fm} - N_{ss} = d n_s - n_b$$

 $n_s = #$ sites

 $n_b = \#$ bonds, d = dimension

N_{fm} = # zero frequency "floppy modes"

N_{ss} = # states of self-stress

Proof of Maxwell-Calladine Counting Rule:

elastic energy :
$$U = \frac{1}{2}u \cdot D \cdot u = \sum_{m=1}^{n_b} \frac{1}{2}kx_m^2 = \frac{1}{2}u \cdot QQ^T \cdot u$$

bond extension \mathbf{x}_m : $x_m = \sum_{i=1}^{dn_s} Q_{mi}^T u_i$ site displacement \mathbf{u}_i
site force \mathbf{f}_i : $f_i = -\frac{\partial U}{\partial u_i} = -\sum_{m=1}^{n_b} Q_{im} t_m$ bond tension $\mathbf{t}_m = \mathbf{k}\mathbf{x}_m$
floppy mode : $Q^T \cdot u = 0$ $N_{fm} = \#$ zero eigenvectors of Q^T
self-stress state: $Q \cdot t = 0$ $N_{ss} = \#$ zero eigenvectors of Q

Rank Nullity Theorem of Linear Algebra :

 $v = N_{fm} - N_{ss} = \#rows - \#columns of Q_{im} = dn_s - n_b$ v = "index" of Q : simplest version of an index theorem.

Periodic Isostatic Lattice

A periodic structure with $dn_s - n_b = 0$

Coordination number (# neighbors): z = 2d

On the verge of mechanical instability

d=2 square lattice (z=4)

d=2 kagome lattice (z=4)

d=3 pyrochlore (z=6)

A model system for problems in soft matter and statistical physics

- Rigidity percolation
- Random closed packing, Jamming
- Network glasses

isostatic on the average

Kagome Lattice Model

Untwisted

Sun, Souslov, Mao and Lubensky 2012

Floppy Modes on a Free Boundary

For twisted Kagome, floppy modes required by Maxwell's count are localized on boundary

Strip Geometry

Normal Mode Spectrum

Fixed Boundary

2012 Tom: Are my boundary modes related to your boundary modes?

CLK: I don't think so

2013 Tom: Are you sure ?

Tom Lubensky

Schrodinger Equation $i\hbar\dot{\psi}_i = H_{ij}\psi_j$

1st order in time Hamiltonian H has positive or negative eigenvalues E

Topologically classify valence band

Newton's Laws $m\ddot{u}_i = -D_{ij}u_j$

 2^{nd} order in time Dynamical matrix D has only positive eigenvalues $m\omega^2$

No "valence band"

Dirac's Problem :

Klein Gordon Equation $(\vec{p} = -i\vec{\partial})$

$$-\partial_t^2 \psi = (p_x^2 + p_y^2 + m^2)\psi$$

$$\begin{pmatrix} m & p_x - ip_y \\ p_x + ip_y & -m \end{pmatrix} \begin{pmatrix} m & p_x - ip_y \\ p_x + ip_y & -m \end{pmatrix} = \begin{pmatrix} p_x^2 + p_y^2 + m^2 & 0 \\ 0 & p_x^2 + p_y^2 + m^2 \end{pmatrix}$$

$$\sqrt{(p_x^2 + p_y^2 + m^2)I} = p_x\sigma_x + p_y\sigma_y + m\sigma_z$$

Paul Dirac: "I'm trying to take the square root of something"

Dirac's Square Root predicted the anti-electron (= positron)

$$D = QQ^T \qquad U = \frac{1}{2}u \cdot D \cdot u = \frac{1}{2}k\sum_n x_n^2 = \frac{1}{2}u \cdot QQ^T \cdot u$$

"Supersymmetric partners"

$$D = QQ^T \qquad \tilde{D} = Q^T Q$$

D and \tilde{D} have same eigenvalues: ω_n^2

$$QQ^T u_n = \omega_n^2 u_n \implies Q^T Q(Q^T u_n) = \omega_n^2 (Q^T u_n)$$

Except for zero modes

 $QQ^T \cdot u = 0$ floppy mode $Q^T Q \cdot t = 0$ state of self stress

Equivalent "Quantum Hamiltonian"

eigenvalues of H:

$$H = \begin{bmatrix} 0 & Q \\ Q^T & 0 \end{bmatrix} \quad ; \qquad H^2 = \begin{bmatrix} QQ^T & 0 \\ 0 & Q^TQ \end{bmatrix}$$

$$E_n = \pm \omega_n$$

+ both kinds of zero modes

Symmetries

Time reversal (H=H*)
Particle – Hole (H $\tau^z = -\tau^z H$)Class "BDI" (same as SSH model)

	AZ	Θ	Ξ	Π	1	2	3	4	5	6	7	8
	А	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
no symmetry	AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
	AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
T - invariant	BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
	D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
	DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0
	AII	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}
	CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
	\mathbf{C}	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
	CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0

Integer Topological Invariant:

$$Q(k) \in GL(n,C) \qquad \text{invertable complex} \\ n \ge n \text{ matrix} \qquad 0 \neq \det[Q] \in C$$

$$d=1: n = \frac{1}{2\pi i} \oint_{BZ} \operatorname{Tr}[Q^{-1}(k)dQ(k)] = \frac{1}{2\pi i} \oint_{BZ} dk \ \partial_k \log(\det[Q(k)]) \qquad \text{= winding number of phase of det[Q]}$$

$$d=3: n = \frac{1}{24\pi^2} \oint_{BZ} \operatorname{Tr}\left[\left(Q^{-1}(k)dQ(k)\right)^{\wedge 3}\right]$$

D=2: "Weak Topological Invariants"

Two independent (1D) winding numbers

$$n_{j=1,2} = \frac{1}{2\pi i} \oint_{C_j} \text{Tr}[Q^{-1}(k)dQ(k)]$$

The two invariants define a lattice vector

 $\mathbf{R}_T = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2$

where C_j is along reciprocal lattice generator \mathbf{b}_j with $\mathbf{a}_i \cdot \mathbf{b}_j = 2\pi \delta_{ij}$

Twisted Kagome lattice model : $\mathbf{R}_T = \mathbf{0}$

New Topological Phases and Domain Walls

Z x **Z** topological invariant: $\mathbf{R}_{T} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2$ (lattice vector)

"Deformed" Kagome lattice model can have : $\mathbf{R}_{T} \neq 0$

Two Kinds of Zero Modes?

1. Edge modes due to mismatch of # sites and # bonds

Global count of zero modes: Maxwell/Calladine rule

 $N_{fm} - N_{ss} = d n_s - n_b$

2. Topological boundary modes

No mismatch in sites and bonds

Are they related?

Index Theorem

A "local" generalization of the Maxwell-Caladine counting rule Variant of a famous theorem in mathematics Attivah and Singer '63 Callias, Bott and Seeley '78

floppy modes and states of self stress in region S

"Local count" of sites and bonds in S

"Topological count" on boundary of S

$$N_{\rm fm}^S - N_{\rm ss}^S = \nu_L^S + \nu_T^S$$

 $\boldsymbol{v}_{L}^{S} = d\boldsymbol{n}_{s}^{S} - \boldsymbol{n}_{b}^{S}$ $\boldsymbol{v}_{T}^{S} = \int_{\partial S} \frac{d^{d-1}S}{V_{\text{cell}}} \hat{\boldsymbol{n}} \cdot \boldsymbol{R}_{T}$

Depends on edge termination

Depends on topological class(es) of bulk

Sketch of proof of Index Theorem

$$H = \begin{pmatrix} 0 & Q^T \\ Q & 0 \end{pmatrix} \qquad \tau^z = \begin{pmatrix} 1_{dn_s} & 0 \\ 0 & -1_{n_b} \end{pmatrix} \qquad \{H, \tau^z\} = 0 \qquad \hat{\mathbf{r}} = \begin{pmatrix} \mathbf{r}_i \delta_{ii}, & 0 \\ 0 & \mathbf{r}_m \delta_{mm'} \end{pmatrix}$$

Region S defined by "support function": $\rho_{S}(\mathbf{r}) = \begin{cases} 1 \text{ for } \mathbf{r} \in S \\ 0 \text{ for } \mathbf{r} \notin S \end{cases}$

$$\hat{\rho}_{s} = \rho_{s}(\hat{\mathbf{r}})$$

$$\upsilon_{S} \equiv N_{fm}^{S} - N_{ss}^{S} = \operatorname{Tr}\left[\rho_{S}(\hat{\mathbf{r}})\tau^{z}\lim_{\varepsilon \to 0}\frac{i\varepsilon}{i\varepsilon + H}\right] = \nu_{S}^{L} + \nu_{S}^{T}$$
projection onto zero modes
$$\nu_{S}^{L} = \operatorname{Tr}\left[\rho_{S}(\hat{\mathbf{r}})\tau^{z}\right] = dn_{s}^{S} - n_{b}^{S}$$

$$\nu_{S}^{T} = \nu_{S} - \nu_{S}^{L} = \lim_{\varepsilon \to 0} \operatorname{Tr}\left[\rho_{S}(\hat{\mathbf{r}})\tau^{z}\frac{-H}{i\varepsilon + H}\right] = \frac{1}{2}\lim_{\varepsilon \to 0} \operatorname{Tr}\left[\rho_{S}(\hat{\mathbf{r}}), H\right]\tau^{z}\frac{1}{i\varepsilon + H}$$

Since H is local, contribution comes only from boundary of S. Further manipulation relates the result to the topological polarization integrated around boundary.

Boundary modes for different edge terminations

Recall the Su Schrieffer Heeger Model

A and B phases are topologically distinct

Distinguished by integer* topological invariant

 N_w = winding number characterizing **h**(k)

* Assuming 'particle-hole' symmetry $H\sigma^{z} = -\sigma^{z}H \rightarrow h_{z} = 0$ $\sigma^{z}|\psi_{E}\rangle = |\psi_{-E}\rangle \rightarrow \text{spectrum symmetric}$ $\text{under } E \rightarrow -E$

Bulk Boundary Correspondence :

At the boundary between topologically distinct insulating phases, there exist topologically protected low energy states.

Mechanical Analog of SSH Model

A model of the model

B. Chen, N. Upadhyaya, V. Vitelli, PNAS 111, 13004 (2014).

Vincenzo Vitelli

Bryan Chen

University of Leiden

Conclusion

Topological boundary modes are an elegant consequence of a mathematical structure that has applications in diverse areas

- Topological Electronic Phases
- Mechanical Modes of isostatic systems

Much more to do:

- New materials and experiments on electronic systems
- Experiments on metamaterials?
 - mechanical systems
 - optical, electronic, plasmonic systems?
- Role of interactions and nonlinearities