Topological Mechanics

I. Topology and the Wave Equation
II. Topological Phonons and Photons:

- Topological band gaps at finite frequency
III. Classical Mechanical Modes in Isostatic Lattices
- Floppy modes and Maxwell's counting rule
- Twisted Kagome lattice Model
- Topological boundary modes.
- Index theorem
- Analog SSH model

Topological Electronic Phases

Bulk Topological Invariant

2D Integer quantum Hall effect no symmetry

Bulk: Integer Chern invariant
Boundary: Chiral edge states
2D topological insulator time reversal symmetry

Bulk: $\quad Z_{2}$ invariant
Boundary: Helical edge states
3D topological insulator time reversal symmetry

Bulk: $\quad Z_{2}$ invariant
Boundary: Helical surface state
1D Topological Superconductor particle-hole symmetry

Bulk: $\quad Z_{2}$ invariant
Boundary: Majorana zero mode

Wave Equations

Quantum:

$$
\text { e.g. Schrodinger Equation } \quad i \hbar \dot{\psi}_{i}=H_{i j} \psi_{j}
$$

Classical:

$$
\text { e.g. Newton's Laws } \quad m \ddot{u}_{i}=-D_{i j} u_{j}
$$

Common features:
Normal modes define an eigenvalue problem.
Role of symmetry and topology for bulk and boundary modes
Search for periodic "metamaterials" with topological band structures

Periodic Table of Topological Insulators and Superconductors

- Time Reversal :
$\Theta H(\mathbf{k}) \Theta^{-1}=+H(-\mathbf{k}) ; \quad \Theta^{2}= \pm 1$
- Particle - Hole :
$\Xi H(\mathbf{k}) \Xi^{-1}=-H(-\mathbf{k}) ; \quad \Xi^{2}= \pm 1$
Unitary (chiral) symmetry : $\quad \Pi H(\mathbf{k}) \Pi^{-1}=-H(\mathbf{k}) ; \quad \Pi \propto \Theta \Xi$

Kitaev, 2008
Schnyder, Ryu, Furusaki, Ludwig 2008

	Symmetry				d							
	AZ	Θ	Ξ	Π	1	2	3	4	5	6	7	8
Insulator: no symmetry	A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
	AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
	AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
	BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
BdG superconductor	D	0	1	0	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}
T invariant BdG superconductor	DIII	-1	1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0
T invariant insulator	AII	-1	0	0	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}
	CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0
	C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0
	CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0

Even richer topological classes when accounting for crystalline space group symmetries : "weak topological insulators", "topological crystalline insulators",

Periodic Table of Topological Insulators and Superconductors

- Time Reversal :
$\Theta H(\mathbf{k}) \Theta^{-1}=+H(-\mathbf{k}) ; \quad \Theta^{2}= \pm 1$
$\Xi H(\mathbf{k}) \Xi^{-1}=-H(-\mathbf{k}) ; \quad \Xi^{2}= \pm 1$
Kitaev, 2008
- Particle - Hole :

Unitary (chiral) symmetry : $\quad \Pi H(\mathbf{k}) \Pi^{-1}=-H(\mathbf{k}) ; \quad \Pi \propto \Theta \Xi$

no symmetry	Symmetry				d							
	AZ	Θ	Ξ	Π	1	2	3	4	5	6	7	8
	A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
	AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
T- invariant	AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
	BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
	D	0	1	0	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}
	DIII	-1	1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0
	AII	-1	0	0	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}
	CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0
	C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0
	CI	1	-1	1	0	0	\mathbb{Z}		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0

Even richer topological classes when accounting for crystalline space group symmetries: "weak topological insulators", "topological crystalline insulators",

Classical Topological Band Phenomena

Topological bandgaps and chiral edge modes at finite frequency in classical systems In two dimensions with broken time reversal symmetry.

Photonic

Haldane, Raghu PRL 2008
Wang, Chong, Joannopoulos, Soljacic, PRL 2008

Microwave Waveguide

Phononic

Prodhan, Prodhan, PRL 2009
Nash, Kleckner, Read, Vitelli, Turner, Irvine, PNAS 2015

Gyroscopic Metamaterial

Maxwell Problem

JC Maxwell 1865

Is a "frame" or configuration of masses and springs mechanically stable ?

Maxwell * Counting Rule: (Calladine '78)

$$
\begin{aligned}
& \quad N_{f m}-N_{s s}=d n_{s}-n_{b} \\
& n_{s}=\# \text { sites } \\
& n_{b}=\# \text { bonds, } \quad d=\text { dimension } \\
& N_{f m}=\# \text { zero frequency "floppy modes" } \\
& N_{s s}=\# \text { states of self-stress }
\end{aligned}
$$

State of self-stress

Proof of Maxwell-Calladine Counting Rule:

elastic energy : $\quad U=\frac{1}{2} u \cdot D \cdot u=\sum_{m=1}^{n_{b}} \frac{1}{2} k x_{m}^{2}=\frac{1}{2} u \cdot Q Q^{T} \cdot u$
bond extension $\mathrm{x}_{\mathrm{m}}: \quad x_{m}=\sum_{i=1}^{d n_{s}} Q_{m i}^{T} u_{i} \quad \begin{aligned} & \text { site displacement } u_{i} \\ & \partial U\end{aligned} \mathrm{dn}_{\mathrm{s}} \times \mathrm{n}_{\mathrm{b}}$ "Equilibrium Matrix" Q_{im} site force f_{i} : $\quad f_{i}=-\frac{\partial U}{\partial u_{i}}=-\sum_{m=1}^{n_{b}} Q_{i m} t_{m} \quad$ bond tension $\mathrm{t}_{\mathrm{m}}=\mathrm{kx}_{\mathrm{m}}$ floppy mode : $Q^{T} \cdot u=0 \quad \mathrm{~N}_{\mathrm{fm}}=$ \# zero eigenvectors of Q^{\top}
self-stress state:
$Q \cdot t=0$
$N_{s s}=$ \# zero eigenvectors of Q
Rank Nullity Theorem of Linear Algebra :
$v=N_{\mathrm{fm}}-\mathrm{N}_{\mathrm{ss}}=$ \#rows - \#columns of $\mathrm{Q}_{\mathrm{im}}=\mathrm{dn}_{\mathrm{s}}-\mathrm{n}_{\mathrm{b}}$ $v=$ "index" of Q : simplest version of an index theorem.

Periodic Isostatic Lattice

A periodic structure with $\mathrm{dn}_{\mathrm{s}}-\mathrm{n}_{\mathrm{b}}=0$
Coordination number (\# neighbors): $z=2 d$

$d=2$ square lattice ($z=4$)

d=2 kagome lattice ($\mathrm{z}=4$)

On the verge of mechanical instability

$\mathrm{d}=3$ pyrochlore ($\mathrm{z}=6$)

A model system for problems in soft matter and statistical physics

- Rigidity percolation
- Random closed packing, Jamming
- Network glasses
isostatic on
the average

Kagome Lattice Model

Untwisted

Twisted

floppy modes $\omega(\mathbf{k})=0$

Periodic b.c. : $2 \mathrm{n}_{\text {site }}-\mathrm{n}_{\text {bond }}=0$

$$
N_{F M}=N_{S S} \sim L / a
$$

Open b.c.:

$$
\begin{aligned}
& 2 \mathrm{n}_{\text {site }}-\mathrm{n}_{\text {bond }} \sim \mathrm{L} / \mathrm{a} \\
& \mathrm{~N}_{\mathrm{FM}} \sim \mathrm{~L} / \mathrm{a} ; \mathrm{N}_{\mathrm{SS}}=0
\end{aligned}
$$

Periodic b.c. : twisting eliminates both FM and SS

Open b.c.: $\quad N_{F M} \sim L / a ; N_{S S}=0$
Localized on Boundary

Floppy Modes on a Free Boundary

For twisted Kagome, floppy modes required by Maxwell's count are localized on boundary

Strip Geometry

Normal Mode Spectrum
Fixed Boundary

2012 Tom: Are my boundary modes related to your boundary modes?

CLK: I don't think so

2013 Tom: Are you sure?
Tom Lubensky

Schrodinger Equation

$$
i \hbar \dot{\psi}_{i}=H_{i j} \psi_{j}
$$

$1^{\text {st }}$ order in time
Hamiltonian H has positive or negative eigenvalues E

Topologically classify valence band

Newton's Laws
$m \ddot{u}_{i}=-D_{i j} u_{j}$
$2^{\text {nd }}$ order in time
Dynamical matrix D has only positive eigenvalues $m \omega^{2}$

No "valence band"

Dirac's Problem :

Klein Gordon Equation $(\vec{p}=-i \vec{\partial})$
$-\partial_{t}^{2} \psi=\left(p_{x}^{2}+p_{y}^{2}+m^{2}\right) \psi$
$\left(\begin{array}{cc}m & p_{x}-i p_{y} \\ p_{x}+i p_{y} & -m\end{array}\right)\left(\begin{array}{cc}m & p_{x}-i p_{y} \\ p_{x}+i p_{y} & -m\end{array}\right)=\left(\begin{array}{cc}p_{x}^{2}+p_{y}^{2}+m^{2} & 0 \\ 0 & p_{x}^{2}+p_{y}^{2}+m^{2}\end{array}\right)$
$\sqrt{\left(p_{x}^{2}+p_{y}^{2}+m^{2}\right) I}=p_{x} \sigma_{x}+p_{y} \sigma_{y}+m \sigma_{z}$
Paul Dirac: "I'm trying to take the square root of something"

Dirac's Square Root predicted the anti-electron (= positron)

Our Problem: $\quad-\partial_{t}^{2} u=D \cdot u$

$$
D=Q Q^{T} \quad U=\frac{1}{2} u \cdot D \cdot u=\frac{1}{2} k \sum_{n} x_{n}^{2}=\frac{1}{2} u \cdot Q Q^{r} \cdot u
$$

"Supersymmetric partners"

$$
D=Q Q^{T} \quad \tilde{D}=Q^{T} Q
$$

D and \tilde{D} have same eigenvalues: ω_{n}^{2}

$$
Q Q^{T} u_{n}=\omega_{n}^{2} u_{n} \quad \Rightarrow \quad Q^{T} Q\left(Q^{T} u_{n}\right)=\omega_{n}^{2}\left(Q^{T} u_{n}\right)
$$

Except for zero modes

$$
\begin{array}{ll}
Q Q^{T} \cdot u=0 & \text { floppy mode } \\
Q^{T} Q \cdot t=0 & \text { state of self stress }
\end{array}
$$

Equivalent "Quantum Hamiltonian"

$$
H=\left[\begin{array}{cc}
0 & Q \\
Q^{T} & 0
\end{array}\right] \quad ; \quad H^{2}=\left[\begin{array}{cc}
Q Q^{T} & 0 \\
0 & Q^{T} Q
\end{array}\right]
$$

eigenvalues of H :

$$
\begin{aligned}
& \quad E_{n}= \pm \omega_{n} \\
& + \text { both kinds of } \\
& \text { zero modes }
\end{aligned}
$$

Symmetries
Time reversal ($\left.\mathrm{H}=\mathrm{H}^{*}\right)$
Particle - Hole $\left(\mathrm{H} \tau^{z}=-\tau^{z} \mathrm{H}\right)$$\quad$ Class "BDI" (same as SSH model)

no symmetry	Symmetry				d							
	AZ	Θ	Ξ	Π	1	2	3	4	5	6	7	8
	A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
	AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
T- invariant	AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	
	BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
	D	0	1	0	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}
	DIII	-1	1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0
	AII	-1	0	0	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}
	CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0
	C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}		\mathbb{Z}	0	0
	CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0

Integer Topological Invariant:

$$
\begin{aligned}
& Q(k) \in G L(n, C) \quad \begin{array}{c}
\text { invertable complex } \\
n \times n \text { matrix }
\end{array} \quad 0 \neq \operatorname{det}[Q] \in C \\
& \mathrm{~d}=1: n=\frac{1}{2 \pi i} \oint_{B Z} \operatorname{Tr}\left[Q^{-1}(k) d Q(k)\right]=\frac{1}{2 \pi i} \oint_{B Z} d k \partial_{k} \log (\operatorname{det}[Q(k)]) \begin{array}{c}
=\text { winding number of } \\
\text { phase of det }[Q]
\end{array} \\
& \mathrm{d}=3: n=\frac{1}{24 \pi^{2}} \oint_{B Z} \operatorname{Tr}\left[\left(Q^{-1}(k) d Q(k)\right)^{\wedge 3}\right]
\end{aligned}
$$

D=2: "Weak Topological Invariants"

Two independent (1D) winding numbers

$$
n_{j=1,2}=\frac{1}{2 \pi i} \oint_{C_{j}} \operatorname{Tr}\left[Q^{-1}(k) d Q(k)\right]
$$

The two invariants define a lattice vector

$$
\mathbf{R}_{T}=n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}
$$

where C_{j} is along reciprocal lattice generator \mathbf{b}_{j} with $\mathbf{a}_{i} \cdot \mathbf{b}_{j}=2 \pi \delta_{i j}$

Twisted Kagome lattice model : $\quad \mathbf{R}_{T}=0$

New Topological Phases and Domain Walls
$Z \times Z$ topological invariant: $\quad \mathbf{R}_{T}=n_{1} \mathbf{a}_{1}+\mathrm{n}_{2} \mathbf{a}_{2} \quad$ (lattice vector)
"Deformed" Kagome lattice model can have: $\mathbf{R}_{\mathrm{T}} \neq 0$

Two Kinds of Zero Modes?

1. Edge modes due to mismatch of \# sites and \# bonds

Global count of zero modes: Maxwell/Calladine rule

$$
\mathrm{N}_{\mathrm{fm}}-\mathrm{N}_{\mathrm{ss}}=\mathrm{d} \mathrm{n}_{\mathrm{s}}-\mathrm{n}_{\mathrm{b}}
$$

2. Topological boundary modes

No mismatch in sites and bonds

Are they related?

Index Theorem

A "local" generalization of the Maxwell-Caladine counting rule Variant of a famous theorem in mathematics

Attiyah and Singer '63
Callias, Bott and Seeley '78
\# floppy modes and states of self stress in region S
"Local count" of sites and bonds in S
"Topological count" on boundary of S

$$
N_{\mathrm{fm}}^{S}-N_{\mathrm{ss}}^{S}=v_{L}^{S}+v_{T}^{S}
$$

$$
v_{L}^{S}=d n_{s}^{S}-n_{b}^{S}
$$

Depends on edge termination

$$
v_{T}^{S}=\int_{\partial S} \frac{d^{d-1} S}{V_{\text {cell }}} \hat{n} \cdot \mathbf{R}_{T}
$$

Depends on topological class(es) of bulk

Sketch of proof of Index Theorem

$H=\left(\begin{array}{cc}0 & Q^{T} \\ Q & 0\end{array}\right) \quad \tau^{z}=\left(\begin{array}{cc}1_{d n_{s}} & 0 \\ 0 & -1_{n_{b}}\end{array}\right) \quad\left\{H, \tau^{z}\right\}=0 \quad \hat{\mathbf{r}}=\left(\begin{array}{cc}\mathbf{r}_{i} \delta_{i i^{\prime}} & 0 \\ 0 & \mathbf{r}_{m} \delta_{m m^{\prime}}\end{array}\right)$
Region S defined by "support function": $\rho_{S}(\mathbf{r})=\left\{\begin{array}{l}1 \text { for } \mathbf{r} \in S \\ 0 \text { for } \mathbf{r} \notin S\end{array} \quad \hat{\rho}_{S}=\rho_{S}(\hat{\mathbf{r}})\right.$

$$
\begin{aligned}
& v_{S} \equiv N_{f m}^{S}-N_{s s}^{S}=\operatorname{Tr}\left[\rho_{S}(\hat{\mathbf{r}}) \tau^{z} \lim _{\varepsilon \rightarrow 0} \frac{i \varepsilon}{i \varepsilon+H}\right]=v_{S}^{L}+v_{S}^{T} \\
& v_{S}^{L}=\operatorname{Tr}\left[\rho_{S}(\hat{\mathbf{r}}) \tau^{z}\right]=d n_{s}^{S}-n_{b}^{S} \\
& v_{S}^{T}=v_{S}-v_{S}^{L}=\lim _{\varepsilon \rightarrow 0} \operatorname{Tr}\left[\rho_{S}(\hat{\mathbf{r}}) \tau^{z} \frac{-H}{i \varepsilon+H}\right]=\frac{1}{2} \lim _{\varepsilon \rightarrow 0} \operatorname{Tr}\left[\left[\rho_{S}(\hat{\mathbf{r}}), H\right] \tau^{z} \frac{1}{i \varepsilon+H}\right]
\end{aligned}
$$

Since H is local, contribution comes only from boundary of S . Further manipulation relates the result to the topological polarization integrated around boundary.

Boundary modes for different edge terminations

Recall the Su Schrieffer Heeger Model

Polyacetylene: A 1D conducting polymer

- Undimerized :

- Dimerized : $u= \pm u_{0}$

"B phase" : u>0

Conductor
Gap $\Delta=0$

2 band model:

$$
\begin{aligned}
& H(k)=\left\{\begin{array}{cc}
0 & \left.\begin{array}{c}
h_{x}+h_{y}-h_{y} \\
0
\end{array}\right)=\mathbf{h}(k) \cdot \vec{\sigma} \\
\left\{H(k), \sigma^{z}\right\}=0 & \text { Class BDI }
\end{array}\right.
\end{aligned}
$$

A and B phases are topologically distinct

Distinguished by integer* topological invariant
$\mathrm{N}_{\mathrm{w}}=$ winding number characterizing $\mathbf{h}(\mathrm{k})$

* Assuming 'particle-hole' symmetry

$$
\begin{array}{lll}
H \sigma^{2}=-\sigma^{2} H & \rightarrow & h_{z}=0 \\
\sigma^{2}\left|\psi_{E}\right\rangle=\left|\psi_{-E}\right\rangle & \rightarrow & \begin{array}{c}
\text { spectrum symmetric } \\
\text { under } \mathrm{E} \rightarrow-\mathrm{E}
\end{array}
\end{array}
$$

Bulk Boundary Correspondence :

At the boundary between topologically distinct insulating phases, there exist topologically protected low energy states.

Jackiw and Rebbi 76,

Mechanical Analog of SSH Model

A model of the model

B. Chen, N. Upadhyaya, V. Vitelli, PNAS 111, 13004 (2014).

Vincenzo Vitelli

Bryan Chen

University of Leiden

Conclusion

Topological boundary modes are an elegant consequence of a mathematical structure that has applications in diverse areas

- Topological Electronic Phases
- Mechanical Modes of isostatic systems

Much more to do:

- New materials and experiments on electronic systems
- Experiments on metamaterials?
- mechanical systems
- optical, electronic, plasmonic systems?
- Role of interactions and nonlinearities

