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Symmetry, Topology and
Phases of Matter



Topological Phases of Matter
Many examples of topological band phenomena

States adiabatically connected to independent electrons:

- Quantum Hall (Chern) insulators
- Topological insulators
- Weak topological insulators
- Topological crystalline insulators
- Topological (Fermi, Weyl and Dirac) semimetals …..

Topological superconductivity (BCS mean field theory)     
- Majorana bound states
- Quantum information

Classical analogues: topological wave phenomena
- photonic bands
- phononic bands
- isostatic lattices

Beyond Band Theory:  Strongly correlated states
State with intrinsic topological order (ie fractional quantum Hall effect)

- fractional quantum numbers
- topological  ground state degeneracy 
- quantum information

- Symmetry protected topological states 
- Surface topological order ……

Many real materials
and experiments

Much recent conceptual 
progress, but theory is

still far from the real electrons



Topological Band Theory
Topological Band Theory I:

Introduction
Topologically protected gapless states (without symmetry)

Topological Band Theory II: 
Time Reversal symmetry
Crystal symmetry
Topological superconductivity
10 fold way

Topological Mechanics

General References :

“Colloquium: Topological Insulators”
M.Z. Hasan and C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

“Topological Band Theory and the Z2 Invariant,”
C. L. Kane in “Topological insulators” 
edited by M. Franz and L. Molenkamp, Elsevier, 2013.



Topology and Band Theory I
I.     Introduction

- Insulating state, topology and band theory
II.    Band Topology in One Dimension

- Berry phase and electric polarization
- Su Schrieffer Heeger model
- Domain walls, Jackiw Rebbi problem
- Thouless charge cump

III.   Band Topology in Two Dimensions
- Integer quantum Hall effect
- TKNN invariant
- Edge states, chiral Dirac fermions

IV.   Generalizations
- Higher dimensions
- Topological defects
- Weyl semimetal



The Insulating State

The Integer Quantum Hall State

g cE ω= h

2D Cyclotron Motion,    σxy =  e2/h

E

Insulator vs Quantum Hall state

What’s the difference?   Distinguished by Topological Invariant
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Topology 
The study of geometrical properties that are insensitive to smooth deformations
Example:  2D surfaces in 3D

A closed surface is characterized by its genus, g = # holes
g=0 g=1

g is an integer topological invariant that can be expressed in terms of the 
gaussian curvature κ that characterizes the local radii of curvature
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Gauss Bonnet Theorem :

2

1 0
r

κ = > 0κ =

0κ <

A good math book :   Nakahara, ‘Geometry, Topology and Physics’



Band Theory of Solids

Bloch Theorem :   
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Topology and Quantum Phases
Topological Equivalence :    Principle of Adiabatic Continuity

Quantum phases with an energy gap are topologically 
equivalent if they can be smoothly deformed into one 
another without closing the gap.

Topologically distinct phases are separated by 
quantum phase transition.

Topological Band Theory

Describe states that are adiabatically connected to 
non interacting fermions

Classify single particle Bloch band structures
Eg ~ 1 eV

Band Theory of Solids
e.g.  Silicon

E

adiabatic deformation

excited states

topological quantum
critical point

Gap
EG

Ground state E0

( ) : Bloch Hamiltonans  Brillouin zone (tor with enerus gy)   gapH k a

E
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Berry Phase
Phase ambiguity of quantum mechanical wave function

( )( ) ( )iu e uφ→ kk k
Berry connection : like a vector potential ( ) ( )i u u= − ∇kA k k

( )φ→ +∇kA A k
Berry phase : change in phase on a closed loop C C C

dγ = ⋅∫ A k—
Berry curvature :  =∇ ×kF A 2

C S
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Famous example :  eigenstates of 2 level Hamiltonian
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Topology in one dimension : Berry phase and electric polarization

Classical electric polarization :

+Q-Q
1D insulator

Proposition:  The quantum polarization is a Berry phase
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2 BZ

eP A k dk
π

= ∫—

see, e.g. Resta, RMP 66, 899 (1994)
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BZ = 1D Brillouin Zone = S1



Circumstantial evidence #1 :

• The end charge is not completely determined by the bulk 
polarization P because integer charges can be added or 
removed from the ends  : 

• The Berry phase is gauge invariant under continuous gauge transformations, 
but is not gauge invariant under “large” gauge transformations. 

( )( ) ( )i ku k e u kφ→P P en→ + ( / ) ( / ) 2a a nφ π φ π π− − =

Changes in P, due to adiabatic variation are well defined and gauge invariant
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gauge invariant Berry curvature

The polarization and the Berry phase share the same ambiguity:

They are both only defined modulo an integer.



Circumstantial evidence #2 :

( ) ( ) ( ) ( )
2 2 kBZ BZ

dk ieP e u k r u k u k u k
π π

= = ∇∫ ∫— —

 kr i ∇:

A more rigorous argument:  

Construct Localized Wannier Orbitals :
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Wannier states are gauge dependent, but for a sufficiently smooth gauge, 
they are localized states associated with a Bravais Lattice point R
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Su Schrieffer Heeger Model model for polyacetylene
simplest “two band” model

† †
1( ) ( ) . .Ai Bi Ai Bi
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Provided symmetry requires dz(k)=0, the states with δt>0 and δt<0 are distinguished by
an integer winding number.   Without extra symmetry, all 1D band structures are 
topologically equivalent.

A,i
B,i

δt>0 :  Berry phase 0
P = 0

δt<0 :  Berry phase π
P = e/2

Gap 4|δt|

Peierls’ instability → δt

A,i+1



“Chiral” Symmetry :

Reflection Symmetry :

Symmetries of the SSH model

• Artificial symmetry of polyacetylene.  Consequence 
of bipartite lattice with only A-B hopping:

• Requires dz(k)=0 :   integer winding number

• Leads to particle-hole symmetric spectrum:

{ }( ), 0 ( ) ( )    (or    )z z zH k H k H kσ σ σ= = −

iA iA

iB iB

c c
c c

→
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    z E z E z E EH Eσ ψ σ ψ σ ψ ψ−= − ⇒ =

( ) ( )x xH k H kσ σ− =

• Real symmetry of polyacetylene.  

• Allows dz(k)≠0, but constrains dx(-k)= dx(k), dy,z(-k)= -dy,z(k)

• No p-h symmetry, but polarization is quantized:   Z2 invariant 

P = 0 or e/2   mod e



Domain Wall States
An interface between different topological states has topologically protected midgap states

Low energy continuum theory :
For small δt focus on low energy states with k~π/a xk q q i

a
π

→ + →− ∂  ;   

( )vF x x yH i m xσ σ= − ∂ +

0tδ > 0tδ <

Massive 1+1 D Dirac Hamiltonian

“Chiral” Symmetry :

2v   ;  F ta m tδ= =

{ , } 0    z z E EHσ σ ψ ψ−= → =

0

( ') '/ v
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−∫ ⎛ ⎞
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⎝ ⎠

Egap=2|m|Domain wall
bound state ψ0

m>0

m<0

2 2( ) ( )vFE q q m= ± +

Zero mode : topologically protected eigenstate at E=0
(Jackiw and Rebbi 76, Su Schrieffer, Heeger 79)

Any eigenstate at +E 
has a partner at -E



Thouless Charge Pump

t=0

t=T

P=0

P=e
( , ) ( , )H k t T H k t+ =
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The integral of the Berry curvature defines the first Chern number, n, an integer 
topological invariant characterizing the occupied Bloch states, ( , )u k t

In the 2 band model, the Chern number is related to the solid angle swept out by
which must wrap around the sphere an integer n times.
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The integer charge pumped across a 1D insulator in one period of an adiabatic  cycle 
is a topological invariant that characterizes the cycle.



Integer Quantum Hall Effect :  Laughlin Argument

Adiabatically thread a quantum of magnetic flux through cylinder.
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Just like a Thouless pump :  
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TKNN Invariant
Thouless, Kohmoto, Nightingale and den Nijs  82

View cylinder as 1D system with subbands labeled by
0
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Distinguishes topologically distinct 2D band structures.  Analogous to Gauss-Bonnet thm.

Alternative calculation:  compute σxy via Kubo formula
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m x x yE k E k k= Φ



TKNN Invariant Thouless, Kohmoto, 
Nightingale and den Nijs 82

Physical meaning:  Hall conductivity

Laughlin Argument:  Thread magnetic flux φ0 = h/e through a 1D cylinder
Polarization changes by σxy φ0
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For a 2D band structure, define
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